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Abstract

Risk matrices are used in many organizations as a basis for risk
management decisions. They are easy-to-use and have intuitive
appeal. They are often defended as the only avenue of approach
to risk management because quantitative information is “scarce
or nonexistent”. Unfortunately their theoretical basis is super-
ficial and the validity of the qualitative information they em-
ploy is highly suspect. Assessments of the likelihood of occur-
rence and their impacts suffer all the shortcomings associated
with subjective assessment. These all combine to produce a
less than useful portayal of risk management information. The
true value of subject matter experts (SME) is in aiding the de-
vlopemnt of quantitative models representing the inter-relations
between variables that ultimately determine the outcome of in-
terest for the decision maker.

1 INTRODUCTION

Many organizations in public and private sector confront decision
making in an environment fraught with significant uncertainty. As
a result risk becomes an overriding concern and many decisions be-
come ones of risk management. Risk management requires that: (1)
risk is unambiguously defined; (2) the definition supports the mea-
surement (quantification) of the risk; (3) the risk reduction produced
by each prospective risk management alternative is quantifiable; and
(4) the cost of each risk management alternative is known. Given
this information the manager can then choose the “best”alternative
(where best means that alternative that reduces the risk the most
subject to the budget constraint). Often the information supporting
the quantification or measurement of risk appears lacking or is hard
to obtain. In such circumstances a “qualitative”approach is sought.
Predominant among such approaches is the use of the “risk matrix”.



The risk matrix is like a simple spreadsheet model composed of rows
and columns. There usually are four or five rows and columns. The
rows and columns define categories of likelihood (probability) and
“impact”(severity). We assume throughout that the rows define the
categories of probability (likelihood) while the columns define the
categories of the outcome, often called the “impact”, “severity” or
“consequence”. The cells within the matrix are assigned numbers
called risk scores that purport to represent a quantitative assessment
of the risk —the higher the score the higher the risk. Figure 1 displays
a generic risk matrix.

almost certain

highly likely

likely

unlikely

almost never

negligible marginal serious catastrophic

Figure 1: Example Risk Matrix

These matrices have intuitive appeal. Individuals easily can imagine
risk as a function of the two dimensions portrayed by the matrix.
For example, it seems self-evident that a highly likely event associ-
ated with catastrophic loss is riskier than an unlikely event associated
with negligible loss. The cells of the matrix often are color-coded to
communicate this (i.e., the cells in the upper right corner are red, the
cells in the lower left corner are green, while the cell in between range
from yellow to orange as we proceed along the diagonal from lower
right to upper left). Green is “good”(none or very low risk), red is
“bad”(very high risk), yellow and orange indicate increasing risk.

As a management tool the matrix offers a way to rank things like
R&D projects in terms of their potential for cost overruns, sched-
ule delays or substandard performance. Other examples of ranking
objects by perceived risk are: military operations alternatives, na-
tional defense budgets, possible terrorist threats and deficiencies in
accounting systems.
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Risk matrices purport to serve risk management decisions. They are
seen as useful tools by many practitioners. In reality their deficiencies
render them less than useful. To understand why, we must first look
behind the curtain and see how a risk matrix produces a ranking of
risks. This is followed by a section reviewing the relevant theory, both
prescriptive and descriptive, that forms the foundation of decision
making under risk and risk management. Finally, we contrast the
risk matrix assessment process with theoretical foundations using a
example. This highlights the deficiency in the rationale behind the
risk matrix. Our findings are summarized in the last section.

2 RISK ANALYSIS USING RISK MATRICES

The use of risk matrices to rank risks proceeds as follows. Each of the
alternatives (projects, operational alternatives, budget allocations,
etc.) become the objects of evaluation by subject matter experts
(SME). The SME assign to each object a probability category and
an impact category. This locates objects in the matrix using the two
labels as row and column addresses. The result is a matrix “popu-
lated”with the alternatives. Numerical scales are assigned to the row
and column categories and used to compute a risk score for each cell.
Often the cells are color-coded in an attempt to highlight the meaning
and interpretation of the scores. Figure 2 is an example from the U.S.
Army (TRADOC 2009, Appendix I). Here the categories of likelihood
are assigned “scores” from 1 (= almost never) through 5 (= almost
certain), while the categories of consequence are assigned “scores”
from 1 (= negligible) through 4 (= catastrophic). The reasons for
this coding is not given. Sometimes the cell scores are obtained by
“weighting” (e.g., consequence is weighted by 0.6 and likelihood by
0.4 before) multiplying the two. The justification for this is not ex-
plained. We find cells of the same color are not scored the same. For
example, the red cells in the “Northeast”corner are not all equal. It
appears that the risk corresponding to “almost certain and serious”
is less than the risk associated with “highly likely and catastrophic”.
Evidently there is more to risk than what is communicated by color-
coding.

The risk score calculation is described formally as follows. Let Si
denote the ithprobability (row) category score and Sj denote the jth

outcome (column) category score. Denote the subjectively assessed
probability by p̂ and the subjectively assessed consequence by ŷ. If the
assessed probability is such that the SME declares it to fall within the
ith row category, then this probability is denoted p̂i and is represented
in subsequent calculations by its score value Si(p̂i). If the assessed
outcome is such that the SME declares it a member of the jth column
category, this outcome is denoted ŷj and is represented in subsequent
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almost certain 2.6   [ Y ] 3.2   [ O ] 3.8   [ R ] 4.4   [ R ]

highly likely 2.2   [ G ] 2.8   [ Y ] 3.4   [ O ] 4.0   [ R ]

likely 1.8   [ G ] 2.4   [ Y ] 3.0   [ O ] 3.6   [ O ]

unlikely 1.4   [ G ] 2.0   [ G ] 2.6    [ Y ] 3.2   [ O ]

almost never 1.0   [ G ] 1.6   [ G ] 2.2   [ G ] 2.8   [ Y ]

negligible marginal serious catastrophic

Figure 2: Example Risk Matrix with Color Code and Risk Score

calculations by its score value Sj(ŷj). The risk score assigned to the
(i, j)th cell within the risk matrix is now represented by:

Rij = R(Si(p̂i), Sj(ŷj)). (1)

Rij exhibits monotonic behavior in its arguments:

Rij ≤ Ri+1,j and Rij ≤ Ri,j+1.

There is no guidance as to the form of R(Si(p̂i), Sj(ŷj)). Its definition
appears to depend upon who is using the risk matrix. Most often we
find Rij computed as the product of its two arguments:

Rij = Si(p̂i) · Sj(ŷj) (2)

or a modification of this as in the U.S. Army TRADOC example in
Figure 2:

Rij = [0.4× Si(p̂i)] · [0.6× Sj(ŷj)].

3 SOME THEORY OF CHOICE UNDER RISK

The rationale for risk matrices apparently derives from the quantita-
tive definition of risk proposed by Kaplan and Garrick (1981) They
state that “.... risk consists of the answer to three questions: (1)
What can go wrong?; (2) How likely is it to go wrong?; and (3) If it
does go wrong, what is the outcome?”These authors represent the
answers symbolically as a triple:

{si, pi, yi} (3)
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where si is the name of the scenario (event) representing “what can
go wrong”, pi is the probability of occurrence (likelihood) of si and
yi is the measure (magnitude) of the outcome (damage) associated
with the occurrence of si. Thus it appears as self-evident that risk
is a function of two quantities: pi and yi. It is determined by the
probability and the associated outcome of a scenario. A matrix rep-
resentation is a natural way to describe this: let the rows represent
the pi and the columns represent the yi. Thus Figure 1 appears to
capture all that is relevant. Right?

Wrong? There is more to risk than just likelihood and outcome. In
fact, this is implicitly acknowledged by those who use risk matrices,
for they feel compelled to add more information. First, there is uni-
versal use of color-coding of the cells to convey something about the
amount of risk to associate with a cell: red cells represent more risk
than orange cells, orange cells represent more risk than yellow cells
and green cells represent less risk than yellow cells. Second, there is
an apparent need for more detailed information than the colors pro-
vide. Indeed, we find the cells contain a number representing either
the risk score or the risk rank. These numbers are used to order
the risks, even among cells with the same color. Evidently, all cells
of the same color are not created equal! The use of colors and risk
scoring are attempts to provide missing information —risk assessment
requires more than just probability, pi, and outcome, yi.

The information omitted from the Kaplan and Garrick triple is de-
cision maker preference1. To make a decision (e.g., NO, there is no
significant risk; or YES, there is significant risk and something must
be done to manage it), the decision maker must be able to express
preference over the set of probable outcomes. That is, the decision
maker must be able to express how he/she feels about the outcomes,
{yi; 1 ≤ i ≤ n}. Is there a range, or specific values, of yi that the deci-
sion maker prefers to avoid? Is there a range, or particular values, of
yi that the decision maker prefers to have happen? Decision theory
describes decision maker preference by a payoff function (sometimes
called a value function). We denote this function by v(yi).

The Kaplan and Garrick “trio”needs to be expanded to a “quartet”.
Risk is really a combination of the answers to four questions: (1)
“What can go wrong?”; (2) “How likely is it to go wrong?”; (3) “If it
does go wrong, what is the outcome?”; and “How do you feel about
it (the likely outcomes)?” The Kaplan and Garrick “trio”must be

1 Kaplan and Garrick omit any reference to decision maker preferences because
their primary focus is provivision of information necessary for public evaluation
of risk. They leave it to the public through the democratic political process to
establish preferences.
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replaced by a “quartet”:

{si, pi, yi, v(yi)}. (4)

The importance of decision maker preferences requires a brief review
of a well-developed and widely accepted model of decision maker pref-
erence. This model will serve to highlight a major source of error in
risk matrices: If the color-coding and scoring are not determined by
the decision maker, then they do not represent risk and are meaning-
less!

3.1 Models of Preference

Decision maker preference in risky decision problems is represented by
a payoff function, v(Y ). Its development has a long history beginning
with Daniel Bernoulli (1738, published in translated form in 1954).
His model of preference was later called a utility function by John von
Neuman and Oscar Morgenstern (1944). Their work established the
utility function as the gold-standard for the payoff function until the
mid-1970’s. Utility theory always had troubling deficiencies when it
came to descriptive power —it is unable to explain observed decision
behavior in important situations. This led Daniel Kahneman and
Amos Tversky (1979) to develop the prospect function as a better
payoff function for representing preferences in risky decisions. This is
now the new gold-standard for decision theory (although its embrace
by the economics community proceeds slowly).

The prospect function version of the decision maker’s payoffhas three
salient characteristics: (i) a reference point for the outcome that sep-
arates gains from losses; (ii) loss aversion in which losses loom larger
than gains; and (iii) risk aversion for gains and risk taking for losses.
Much empirical research finds a power function form adequate to rep-
resent the payoff function:

v(Y ) = v+(Y ) + v−(Y ) (5)

where

v+(Y ) = [Y − Y R]β if Y − Y R > 0

v−(Y ) = −λ|Y − Y R|γ if Y − Y R < 0

when more Y is preferred to less Y. If preferences are reversed so less
Y is preferred to more Y then we have

v+(Y ) = −λ[Y − Y R]γ if Y − Y R > 0

v−(Y ) = |Y − Y R|β if Y − Y R < 0.

Y R denotes the reference point that distinguishes the Y representing
gain from the Y representing loss. Loss aversion is represented by
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the constant, λ > 1. Decreasing marginal returns for both losses and
gains are captured by the powers 0 ≤ β < 1 and 0 ≤ γ < 1.The
prospect functions is convex for losses an concave for gains. Empirical
estimates, in terms of median values, are:

2 < λ < 5 (6)

and
0.5 ≤ β and γ ≤ 0.8 (7)

for a large number of studies with a wide range of subjects. Figure
3 depicts a payoff prospect function in the case where more Y is
preferred to less when Y R = 3.0, β = γ = 0.70.

Figure 3: Payoff Prospect when “More is Better”

3.2 Models of Choice under Risk

Normative decision theory represents the choices made by a decision
maker using a mathematical optimization construct: The alternative
chosen is that which maximizes the decision maker’s payoff function,
v(Y ). In decisions involving uncertainty the theory replaces the payoff
function with the expected payoff, E{v(Y )} where the expectation is
taken with respect to the distribution function of Y, PY . If {Am, 1 ≤
m ≤ M} denotes the set of alternatives, and PY |Am denotes the
distribution function of Y conditioned on the alternative, then the
decision problem is

max
Am

E{v(Y )|Am} = max
Am

∫ ∞
−∞

v(Y )dFY |Am (8)

7



if Y is a continous-valued outcome and

max
Am

E{v(Y )|Am} = max
Am

k=N∑
k=1

v(yk) · p(Y = yk|Am) (9)

if Y is discrete-valued with N distinct values 2. The solution is de-
noted as A∗. Since v(Y ) is negative for outcomes the decision maker
prefers to avoid, the maximization operation means that A∗ will be
the risk minimizing alternative (i.e., the least negative among the set
of alternatives).

This model is useful both normatively and descriptively. In the nor-
mative mode it informs the decision maker by inducing an ordering
over the alternatives, from “best” to “worst”. Descriptively it pro-
vides an explanation of why and how decisions are made. No matter
what the mode of use, the model tells us what information the de-
cision maker requires to make a rational informed decision: (i) the
outcomes as a function of the alternatives, Y (Am); (ii) the conditional
likelihood over the outcomes, PY |Am ; and (iii) the preferences (payoff
function) of the decision maker over the outcomes, v(Y ).

3.3 Theoretical Implications for Risk Matrices in Practice

Risk matrices cannot integrate all that matters using only two vari-
ables: one defining the rows (probability or likelihood) and one defin-
ing the columns (outcome, consequence, impact or severity). A third
quantity is required: payoff (preference). This describes how the
decision maker values the probable outcomes. Risk cannot be quanti-
fied/measured/described until we know how much the decision maker
desires to avoid the various outcomes representing loss. Thus, the
need to add a third dimension to what is in reality a two-dimensional
object. Risk matrices in practice attempt this by introducing color-
coding and/or numerical-coding (scoring) to the cells.

Risk matrices facilitate decision making only if they faithfully depict
the information the theory demonstrates is necessary for informed
decisions. Risk matrices must accomplish this in situations where
quantitative data appears unavailable, nonexistent or too diffi cult and
costly to obtain. This means that risk matrix construction relies on
subjective assessment. Subjective assessment is, however, fraught
with problems.

4 AN ILUSTRATIVE EXAMPLE

We now contrast the qualitative risk matrix approach with the quan-
titative approach based on the theory of decision making under risk.
2 Eq. (9) also applies when Y is continuous-valued but we use a relative frequency
histogram approximation to the conditional probability ditribution of Y.
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An illustrative example serves our purposes.

Suppose you want to know the risk inherent in doing nothing (the
status quo) to mitigate infrastructure damage due to earthquakes.
This is the first step in risk management: assessing the risk inherent
in the “do nothing”alternative. If the answer is “NO”, there is only
insignificant risk, then it can be ignored. If the answer is “YES”,
there is significant risk, then you will be interested in assessing the
risk associated with risk management alternatives. The process of
deciding which of the proposals is “best” involves the same process
of assessment as the original assessment, so we only consider this.
Suppose further that the outcome of concern is the total program
cost (implementation plus damage repair) and the time horizon is
the next 20 years.

4.1 The Quantitative Approach

Given access to cost analysts, actuaries, earthquake engineers, simu-
lation modelers and data you develop a simulation model that rep-
resents this knowledge. The uncertainty derives from the number,
and strength, of earthquakes occurring over the next 20 years. Geol-
ogists say the number of annual earthquakes is modeled by a Poisson
process with mean given by geological data. They say the size of the
next earthquake (Richter scale) is modeled by an exponential distrib-
ution with mean given by geological data. The earthquake engineers
and insurance industry provide a model that explains damages as a
function of Richter scale value. You develop a spreadsheet model, use
“add-in” simulation software, and produce a relative frequency his-
togram of total program cost (approximating the distribution, PY |A0).
This is depicted in Figure 4. This provides a complete picture of the

Figure 4: Example Total Cost Relative Frequency
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uncertain situation confronting the decision maker. All that remains
is to determine how the decision maker “feels about it”.

We know from theory that this is captured by the computations in
Eq. (9). The decision maker evaluates PY in the light of his/her pref-
erences, v(Y ). The decision made depends on the value of E{v(Y )} :
if E{v(Y )} > 0 there is an expected gain and insignificant risk; if
E{v(Y )} < 0 then there is an expected loss and significant risk.

To illustrate, assume the decision maker has preferences over Y that
give rise to the payoff function of Fig. 5 (here λ = 5, β = 0.8, γ = 0.7
and Y R = 20.). A decision maker with this payoff function finds there

Figure 5: Decision Maker v(y) for Earthquakes

is expectation of a loss; i.e., E{v(Y )} = −8.431. This person will
conclude there is significant risk and seek management alternatives to
reduce the risk. The dependence on Y R is important. If Y R > 27.772
then E{v(Y )} > 0 and the decision maker will conclude there is no
significant risk. Of course, the actual decision is a function of all three
parameters of the payoff function model.

The quantitative approach provides the decision maker the informa-
tion required to make an informed decision. There is no more com-
plete a characterization of the uncertainty in the outcome of interest,
Y, than that provided by PY . Given this information (cf., Fig.4) the
decision maker can determine its implication in terms of his/her pay-
off function for Y ; i.e., v(Y ). Without knowledge of PY there is no
hard evidence upon which to base a decision.
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4.2 The Qualitative Approach

If you have no access to data and simulation modeling you rely on
a qualitative approach using a risk matrix. You seek direct subjec-
tive assessment of likelihood and outcome by subject matter experts
(SME), some or all of whom would be used by the quantitative ap-
proach in model construction. Let’s assume you decide on four cate-
gories for this outcome: negligible (N), marginal (M), serious (S) and
catastrophic (C). You also decide to use five categories for likelihood:
almost never (AN); unlikely (U), likely (L), highly likely (HL) and
almost certain (AC). Together, these define a risk matrix with four
columns and five rows as in Figure 1 reproduced here.

almost certain

highly likely

likely

unlikely

almost never

negligible marginal serious catastrophic

Figure 6: Earthquake Risk Matrix

Once the risk matrix is defined the qualitative approach requires sub-
jective assessment of the situation by the SME. This involves three
steps.

4.2.1 Subjective assessment of probability and outcome are unreliable

First, and foremost, the SME must subjectively assess the existing
risk in terms of the two dimensions of the matrix: the estimate of the
likely outcome, ŷj and the estimate of its probability of occurrence, p̂i.
Unfortunately, all humans suffer substantial limitations in judgment
under uncertainty (Kahneman, Slovic and Tversky, 1982). Three
factors significantly affect the accuracy of subjective assessment: the
representativeness heuristic; the availability heuristic; and anchoring
with insuffi cient adjustment. Each lead to subjective assessments that
exhibit bias and error. These limitations guarantee systematic errors
in p̂i and ŷi. Appendix A provides a brief summary of the details.
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4.2.2 Interpretation of category labels is unreliable

Second, there are problems with interpretation of the subjective as-
sessments in terms of the categories of the risk matrix. To illustrate,
let the outcome categories be Yj = {Y l

j ≤ y < Y u
j } and probability

categories be, Pi = {P li ≤ p < P ui }. Clearly these are incomplete
without specifying the upper and lower limits (signified by the super-
scripts l and u). Unfortunately there is no guidance how to do this.
It is sometimes left to the SME for their definition. Other times defi-
nitions are provided by organizational doctrine, policy, or an analyst
other than the SME.

4.2.3 Combining unreliable information compounds the problem

The last step requires the SME to reconcile the outputs of the first
two steps. The SME must find a “home” for the assessed risk by
placing it in one of the cells of the risk matrix. There are at least two
possibilities here.

If no explicit (quantitative) definitions exist for the categories, then
it is left to the SME to interpret the words defining them. There are
significant diffi culties in the interpretation, especially with respect
to probabilities. Research finds that individuals attach very differ-
ent meanings to the words defining the probability categories. In-
dividuals interpret probabilities in the approximate range 0.0 - 0.05
as if they are indistinguishable from P = 0, while probabilities in
the approximate range 0.92 - 0.99 as if they are indistinguishable
from P = 1. Individuals over-weight the importance of probability
when 0.05 < P < 0.4 while they under-weight probabilities when
0.4 < P < 0.9. This can result in an unlikely or highly unlikely risk
receiving a likely classification, or a likely or highly likely risk receiv-
ing an almost certain classification. These diffi culties also arise in
the inverse. Given a numerical probability, different individuals will
assign it to different rows in the matrix without explicit knowledge
of the probability category definitions. On the other hand, given a
probability identified by a verbal label, such as “highly likely”, differ-
ent individuals will identify it with different numerical probabilities
and insert it into different rows. Again there is no guidance on how
to do this. The same can be said for the outcome columns. Even
when categories are explicitly defined in quantitative terms, individu-
als interpret these ranges using different words. Appendix B presents
research findings that illustrate these problems.

Even if explicit category definitions exist for the SME, problems still
arise. We illustrate using three different partitions for each outcome
category:
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• N: Y1 = {0 ≤ y < 5}; {0 ≤ y < 10}; {0 ≤ y < 5}

• M: Y2 = {5 ≤ y < 20}; {10 ≤ y < 15}; {5 ≤ y < 10}

• S: Y3 = {20 ≤ y < 40}; {15 ≤ y < 25}; {10 ≤ y < 20}

• C: Y4 = {40 ≤ y}; {25 ≤ y}; {20 ≤ y}

and three different partitions for each probability category:

• AN: P1 = {p ≤ .10}; {p ≤ .05}; {p ≤ .01}

• U: P2 = {.10 < p ≤ .33}; {.05 < p ≤ .25}; {.01 < p ≤ .20}

• L: P3 = {.33 < p ≤ .90}; {.25 ≤ p ≤ .80}; {.20 ≤ p ≤ .70}

• HL: P4 = {.90 ≤ p ≤ .95}; {.80 ≤ p ≤ .95}; {.70 ≤ p ≤ .90}

• AC: P5 = {.99 ≤ p}; {.95 ≤ p}; {.90 ≤ p}

Let us assume the SME are in possession of the probability informa-
tion given in Figure 4. Even with all this information a single cell
location is not possible. For example, denote by “X”the risk classifi-
cation using the first partition of the {Pi} and {Yj}. Likewise, denote
the classification corresponding to the second partition by “Y”. Fi-
nally, denote the classification associated with the third partition “Z”.
None of the three category groups produce unambiguous risk classi-
fications. as pictured in Figure 7. There is no unambiguous position

almost
certain

likely

highly
likely

unlikely

almost
never

Negligible          Marginal              Serious             Catastrophic

X

X YY ZZ

Figure 7: Risk Matrix Alternative Locations

for “X”because P{Y2} = 0.33 while P{Y3} = 0.66. There is no unam-
biguous location for “Y”because P{Y4} = 0.66 while P{Y5} = 0.30.
There is no unambiguous location for “Z” because P{Y4} = 0.33
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while P{Y5} = 0.66. Even when the complete probabilistic picture is
available to the SME subjectively judge must still be applied to force
the situation into the matrix framework. The introduces error and
may depend upon a proclivity to be pessimistic or optimistic when
classifying the risk.

4.2.4 Risk scores are not informative

The final piece of information presented in the risk matrix is the risk
score of Eq. (1). This score supposedly provides the decision maker
a way to order the risks in the matrix from highest to lowest score.
Unfortunately, the calculated score is based on subjective judgment
and suffers from the same errors in judgment we find in the assessment
of p̂i and ŷi.

Developing a risk score requires specifying two components. First,
there is the definition of the category scales that convert categories
into numerical values. Second, there is the form of the function Sij .
Again there is no guidance provided to help decide what to do.

The current example requires five numerical values for the probability
categories {Si; 1 ≤ i ≤ 5} and four numbers for the outcome cate-
gories, {Sj ; 1 ≤ j ≤ 4}. The most common scaling uses a direct linear
mapping:

Si = i and Sj = j.

This appears self-evident to most users of the qualitative approach.
There are however, important implications for the eventual risk score
calculation that may be unintended. For example, the outcome “seri-
ous”is three times more important than “negligible”and “catastrophic”
is 1.25 more important than “serious”. There is no guarantee that the
implied trade-offs correspond to the preferences of the decision maker.
In reality, the decision maker may consider the “catastrophic” out-
come to be 5 times more important than the “serious”outcome. Sim-
ilar observations apply to the probability category scaling. Appendix
B presents more detail on the errors introduced by all category scal-
ing.

The next step in computing a risk score is specification of Sij . The
only requirement is that it be monotonically increasing in each factor.
If no other information is provided, then the simple product of the
scales defined in Eq. (2) is used:

Sij = Si · Sj = i · j.

In particular we have Sij = Si · j which implies risk neutrality with
respect to the outcome. This contradicts the fact that decision mak-
ers are not risk neutral. Using what appears to be an intuitively
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attractive risk scoring function requires one to ignore the contradic-
tion. The risk score computed this way has little to do with decision
maker preferences and cannot be used to rank risks.

If the more general case of Eq.(1) is employed, the qualitative ap-
proach offers no guidance as to the preferred form of this function.
The theory of decision making under risk offers guidance in terms of
pi and yj but not in terms of Si and Sj .

4.2.5 Summary of the qualitative approach

Every step of the qualitative approach involves subjective judgment.
The need to force all the information contained in Figure 5 into a
single cell of the matrix requires this. Unfortunately, all subjective
judgment is imbued with bias and heuristics that limit its effi cacy.

• Subjective judgment is required to extract from Figure 5 one
representative ŷj and its corresponding p̂i.We find this leads to
non-unique classification.

• Subjective judgment is required in deciding the definition (par-
titioning) of each category. Different individuals use different
partitions, even when explicit definitions exist.

• Subjective judgment is required in deciding the scaling of the
categories, Siand Sj . Scaling is arbitrary and ignores decision
maker preferences.

• Subjective judgment is required in deciding on the form of the
risk scoring function, Sij .The most popular form, multiplication
of Siand Sj , combined with the most popular form of scaling,
the direct linear map from categories to the positive integers,
produces an inappropriate risk score.

5 COMPUTED SCORES DO NOT REPRESENT RISK

Users of risk matrices claim risk scores provide the information needed
to rank risks. This claim has little or no foundation. Both the theory
of decision making, and research results describing actual decisions,
yield models that do not support the risk scoring in risk matrices.
This, above all else, makes the information value of risk scores highly
suspect. Let us see why.

Normative decision theory defines risk as the expected value of the
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decision maker’s payoff 3:

E{v(Y )} =
k=N∑
k=1

p(Y = yk) · v(yk) = R. (10)

(cf., Eq.9 with reference to the decision alternative, Am, suppressed
for notational convenience)4. Comparison of Eq.2 and Eq.10 shows
some similarity: (i) both involve probability values; (ii) both involve
the outcome values; and (iii) both involve combining this information
via multiplication. Indeed, it may be argued that Eq.10 motivates
the form of Eq.2. The differences are, however, significant. Both fac-
tors in Eq.2 are of dubious quality and content. The scales used to
represent the p̂i category and the ŷjcategory of are arbitrary. Mul-
tiplying the two only compounds the errors. Unless Si(p̂i) = p̂i and
Sj(ŷj) = v(ŷj) we obtain meaningless results. The multiplication
bears no resemblance to the expected pay-off of the decision maker.
The Sj(ŷj) factor does not represent decision maker preferences and
does not serve as a proxy for the decision maker pay-off function.

6 SUMMARY

Risk matrices have intuitive appeal and seem easy-to-use. They offer
an approach to risk management that appears to avoid the need for
quantitative information. As a result they have found widespread use.
Unfortunately their true value is little more than a “placebo effect”
(cf. Chpt. 7 in Hubbard, 2009).

First and foremost, they rely on a flawed process of subjective assess-
ment. Any information obtained this way is fraught with bias and
systematic errors. The use of SME does not eliminate this problem.
SME are humans and are no less insulated from these problems than
any other individual.

Second, the construction of the matrix itself is arbitrary. The number
of rows and columns is arbitrary. Risk matrices can exhibit anywhere
between three and six categories of outcome and probability. Increas-
ing the number of categories does not improve accuracy or precision.

The definition of the categories is arbitrary. Category labels for prob-
ability and outcome use terms that vary from one application to the
next. More importantly, the interpretation of the meaning of these
labels is left entirely to the individual, whether SME or the decision
3 Only the discrete form (c.f., Eq.9) of the normative theory is used to provide a
straight forward comparison with Eq.10

4 If the decision maker is strictly loss averse then v(yk) reduces to a simple switch
where v(yk) = −1 if yk corresponds to a “loss” and is zero otherwise. In this
case E{v(Y )} =

∑
p(Y = yk) = R where the sum is only over those yk that

represent a loss.
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maker. In fact, there is no assurance that the SME and decision maker
employ identical interpretations of the categories. Experimental re-
sults show this creates errors understanding the information being
communicated by the matrix. The term “high risk” that is given
one combination of probability and outcome by an individual may be
interpreted as “moderate risk”by another individual. These effects
are exacerbated when SME attempt to force a veritable continuum
of possibilities into a finite set of categories. Figure 7 illustrates this
problem.

Third, category scaling arbitrary. Scales are necessary to convert cat-
egories to quantitative values for computing risk scores. No consid-
eration, however, is given to the consequences of employing ordinal,
interval or a ratio scales. Yet the choice of scale can have a substantial
impact on resulting risk score and the decision as to how to allocate
scare resources in an effort to manage risk. In reality we find scaling
leads to range compression errors.

Fourth, and most important, the entire exercise of risk scoring is
arbitrary. The theoretical foundations that should be employed in
quantifying risk are ignored. The risk scoring functions that appear
in the risk matrix literature are offered as a way to combine the nu-
merically scaled values for probability and outcome but no basis is
provided for their definition. They appear to be an effort to capture
the belief that risk is a monotonic function of the severity (impact,
magnitude or size) of the outcome of concern and the probability of
its occurrence. Unfortunately, the most popular scoring function, the
product of probability and outcome scales, is just plain wrong. De-
cision makers are risk averse and not risk neutral. More important
is a total neglect of decision maker preferences in defining the risk
scoring function. There is a veritable mountain of experimental re-
sults that shows that (decision maker) risk is determined by decision
maker preferences over the likely values of the outcome. Moreover,
the function that best expresses this risk is a prospect function. This
function does not use the product of probability and outcome. It’s
form is dictated by four fundamental components: (a) a critical value
by which the decision maker distinguishes those outcomes represent-
ing loss from those representing gain; (b) loss aversion by which losses
are weighted more than gains (of the same absolute magnitude); (c)
risk aversion for gains; and (d) risk taking behavior for losses. None
of these components is contained in a function formed by the product
of probability and outcome. All four components are determined by
decision maker preferences, yet nowhere in the development of the
risk matrix is there any attempt to solicit and incorporate decision
maker preferences.

17



7 CONCLUSION

The principal reason for using the risk matrix is a perceived lack
of quantitative information. Users claim it either does not exist or
cannot be obtained without requiring significant time and resources.
Apparently the time and resources expended to employ SME is viewed
differently than those expended on quantitative analysis.

SME have valuable insights and experience that can and should be
employed. Their expertise, however, is misapplied. It would be a far
better use of SME experience and judgment if they are applied to
the development of models describing the process that generates the
outcome of concern. This includes the specification of variables, their
interrelationships, ranges of likely values for parameters (confidence
intervals), and information on possible probabilistic models of the
uncertainties. Simulation models and the generation of data for a
thorough quantitative risk analysis would follow in a matter of hours.
It is hard to imagine the time required for this to be any more than
the time required for SME to develop and complete a risk matrix!

8 EXAMPLES OF RISK MATRICES

The followiing section provides a small sample of risk matrices found
in the public sector.

8.1 State of California

This risk management matrix uses risk ranking instead of risk scoring
to order the risks in the matrix. A risk score (i.e., larger score =
greater risk) is easily obtained. For example, replace the rank, rij , by
Sij = 13−rij . The categories are explicitly defined, but no explanation
or justification is given the cell ranking. One may ask what is the
necessity of including the bottom row.

8.2 U.S. Navy

This risk matrix provides no explicit category definitions. The cat-
egory scale is linear for both the row and the column. There is no
explanation or justification for the risk scoring. The patterns of risk
scores suggests a linear relationship over a subregion of the matrix.

8.3 Australia/New Zealand

This matrix does not have explicit definitions for categories and no
risk scores. Risks can be ordered only by color (wording). The diffi -
culties in using this matrix is illustrated by noting that an insignif-
icant consequence is rated differently when it is almost certain but
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Neg.

$0  $20

Marg.

$20$40

Crit.

$40$80

Cata.

$80$100

0.7 – 1.0 9 5 2 1

0.4  0.7 11 8 4 3

0.0 – 0.4 12 10 7 6

0 0 0 0 0

Figure 8: Californina Department of Transportation Risk Manage-
ment Matrix

Low Impact Mod. Impact High Impact
3

Critical Impact
4

Very High Likelihood

4
High Likelihood

3
Moderate Likelihood

2
Low Likelihood

1

Risk units = 4 Risk units = 5

Risk units = 3

Risk units = 6

Risk units = 1

Risk units = 1

Risk units = 6

Risk units = 4

Risk units = 4 Risk units = 6

Risk units = 2 Risk units = 5

Risk units = 3Risk units = 1 Risk units = 4

Risk 2CRisk 2C

Risk 2ARisk 2A Risk 2BRisk 2B

Risk2 DRisk2 D Risk 2ERisk 2E

Zone C

Zone B

Zone A

Risk units= 5

2

4 5

3

6

1 2

4

4

4

5

5

31 1

6

6

1

Figure 9: U.S. Navy Region SW Risk Management Process Matrix

still insignificant. If such a risk is insignificant then it must be so no
matter how likely it is.
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A APPENDIX: SUBJECTIVE ASSESSMENT ERROR

Subjective assessment is subject to cognitive limitations that affect
human ability to interpret and evaluate information. These produce
errors and bias in the qualitative inputs to risk matrices. The most
important of these, for our purposes, are those that affect the subjec-
tive assessment of: (1) the impact/severity/consequence; and (2) the
likelihood/probability/frequency. Subject matter experts (SMEs) are
no less insulated from these shortcomings than the man in the street
—SME are human beings —enough said!

A.1 Representativeness Heuristic

Humans are susceptible to the “Representativeness”heuristic. Indi-
viduals are more apt to classify an object based on how representative
the object is of a certain class or group of objects. This has serious
implications for probability assessment. Questions like: “What is the
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probability that object A belongs to class B?”“What is the probabil-
ity that event A originates from process B?”“What is the probabil-
ity that process B will generate event A?”are examples of where this
heuristic leads to serious errors in assessment. Research has found
six factors that give rise to the representativeness heuristic.

Ignoring the prior probabilities. Individuals ignore facts related
to the “base rate”. In terms of conditional probability we know that
P (A and B) = P (A|B) · P (B). Research findings show that humans
erroneously omit the prior probability or “base rate”, P (B), from this
calculation.

Failure to account for sample size. The variability in a sample
statistic is a function of the sample size. The sample statistics (e.g.,
the mean value) computed from a small sample (e.g., 10 observations)
will have more variability than the same sample statistic computed
from a larger sample (e.g., 100 observations). Research shows that
humans consistently fail to incorporate this fundamental result in
probability statements.

Misconception of chance (effects of random behavior). The
classic example of this failure is the sequence of coin tosses: HTHTTH,
HHHTTT, and HHHTH. Individuals consistently rate the first se-
quence as more indicative of a fair coin than the second sequence.
Likewise the third sequence is rated as more indicative of a fair coin
than the fourth sequence. Individuals infer the characteristics of a
long sequence (global result) when judging the characteristics of a
very short sequences. This erroneous inference is a demonstration of
an effect called the “law of small numbers”. Statistically sophisticated
individuals commit this error more than one would think.

Insensitivity to predictability of the outcome. Normative sta-
tistical theory maintains predictions are a function of prior informa-
tion and the expected predictive accuracy of the available evidence.
When predictability is nonexistent, prior probabilities dominate the
process so all predictions should be very close to the base rate. If
predictability is perfect, then the evidence dominates the process so
predictions should be very close to actual outcomes. In reality, how-
ever, the ordering of the perceived likelihood of outcomes coincides
with the ordering of outcomes by their representativeness.

Illusions of validity. Subjects develop an unwarranted confidence
in their predictions when there is a good fit between the predicted
outcome and the input information. This confidence is the product
of the representativeness of the input information and nothing else.
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Failure to recognize the regression effect. Humans do not in-
corporate the regression effect or “regression toward the mean”when
making subjective assessment . First, they do not expect this effect
in many situations where it is bound to occur. Second, when they
experience this effect, they invent spurious causal explanations for
it. Failure to appreciate the regression effect leads to subjective as-
sessment based on representativeness. This can produce pernicious
effects. For example, experienced flight instructors have concluded
that harsh criticism of students rather than verbal rewards is better
in training, contrary to accepted psychological doctrine.

A.2 Availability Heuristic

Humans are susceptible to the “Availability” heuristic. Individuals
assess the likelihood of an event by the ease with which instances or
occurrences come to mind. This heuristic is useful in assessing likeli-
hood by frequency but it is influenced by three factors that produce
serious biases.

Retrievability. An event whose instances are easily retrieved from
memory will appear more numerous than an event of equal frequency.
Salience also effects retrievability. For example, the impact on fre-
quency of actually witnessing an event will be greater than that from
merely reading about it in the newspaper.

Imaginability. Sometimes one must evaluate the likelihood of an
event not stored in memory. In such situations one usually constructs
mental images of the event and evaluates the likelihood of the event
by the ease with which the event can be constructed. Unfortunately,
the ease with which an event can be constructed does not reflect their
actual frequency. This bias is observed in many real-life situations.

Illusory correlation. Individuals significantly over-estimate the
co-occurrence natural associates. Here the ease with which one as-
sociates the occurrence of two events seriously biases the likelihood
estimate that these two events will co-occur in the future.

A.3 Anchoring and Adjustment

Many times individuals make estimates by starting from some initial
value and then adjust it to obtain the final estimate. This is the
“Anchoring and Adjustment”heuristic. The initial value may come
from the problem formulation or it may be from some other partial
computation. In either case, the adjustment is typically insuffi cient.
There are three ways it fails.
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Insuffi cient adjustment. Experiments reveal how significant is
the anchoring effect on the final estimate of a quantity. Individu-
als given a low initial value are anchored so that their final estimate
is consistently lower than the true value. Individuals given a high ini-
tial value produce final estimates consistently above the true value.
Humans do not adjust suffi ciently to offset the bias in the initial in-
formation.

Biases in the evaluation of conjunctive and disjunctive events.
Studies show that individuals consistently underestimate the prob-
abilities of disjunctive events and overestimate the probabilities of
conjunctive events. This bias is the result of insuffi cient adjustment
of prior probability estimation.

Anchoring in the assessment of subjective probability dis-
tributions. Both naive and sophisticated individuals fail to ade-
quately adjust probability estimates from initially given values. This
is revealed in many experiments where individuals consistently state
overly narrow confidence intervals for the likelihood of some event.
This is but one example of a trait exhibited by individuals when as-
sessing random outcomes: overconfidence. Figure 11 presents an ex-
ample of overconfidence in expert judgment. Seven experts (geotech-
nical engineers) were asked to estimate the failure height of an earthen
wall. Each expert provided their estimate (blue square) along with its
25% and 50% percentiles (red triangle and red horizontal bar, respec-
tively). The heavy black line depicts the actual failure value. Even
SMEs are not well calibrated!

Figure 11: Expample of Expert Overconfidence
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B APPENDIX: CATEGORY AND SCALE ERRORS

The use of categories for the row dimension and the column dimension
introduce ambiguities that exacerbate errors. For example, individ-
uals attach varying meanings to words like “high”, “medium” and
“low” in relation to assessing outcomes and probabilities. The use
of more categories to produce a finer grid does nothing to alleviate
problems and may even make them worse. The problems with the
use of categories is very similar to the ambiguities of the χ2− statistic
in deciding goodness-of-fit: choosing different categories gives gives
different values for the statistic. This can lead to the wrong decision.

Errors introduced by range compression. Forcing the conver-
sion of an otherwise meaningful unambiguous quantity into a score
with few (usually 3 to 5) values introduces error. Consider the Inter-
governmental Panel on Climate Change (IPCC) example given below
in Figure 12. The definition of the likelihood categories require both
an 11% and 30% likelihood to be grouped together as “unlikely”. Yet
11% corresponds to 1-in-9 odds while 30% represents almost 1-in-3
odds. Clearly this is a case of introducing “round-off” error. The
same problems arise in relation to the outcome/impact axis of the
risk matrix. For example, Hubbard (2009, pg. 131) describes an IT
project risk matrix in which a return-on-investment (ROI) of between
1% and 299% is assigned a score of 1, while 300%<ROI<499% is as-
signed a score of 2. Thus a project with a ROI = 299% is only half
as valuable as a project with a ROI = 300%.

Hubbard (2009, pg.132) also gives an example of “clustering”. He
shows how the five-point category assessment on the outcome (im-
pact) scale for IT project evaluations in seven different companies
produces a situation where the SMEs give an average score of 1 with
probability = 0.01, an average score of 2 with probability = 0.12,an
average score of 3 with probability = 0.30, an average score of 4 with
probability = 0.48, .and an average score of 5 with probability = 0.09.
Hubbard infers from this that SMEs suffer from bias: they tend to
score more projects 4 and are biased away from the extremes of 1 or
5.

Errors with interpretation of the meaning of categories. The
terminology used is ambiguous. An example from Hubbard (2009,
pp.126-127) suffi ces. Research results from experiments by David
Budescu at University of Illinois, Champagne-Urbana demonstrates
how variable are individuals interpretation of terms used to define the
likelihood of events. Figure 12 presents results from the experiments.
The first column presents the phrases used to define category. The
second column presents the offi cial interpretation of the phrase ac-
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cording to the guidelines of the Intergovernmental Panel on Climate
Change (IPCC). The third and fourth columns summarize subjects
responses and the fifth column presents the errors of the responses.
It is most interesting that, when provided with the explicit offi cial
guidelines, subjects still gave answers at variance with the instruc-
tions!

Figure 12: Example of Interpretations of Probability

Problems with assigning numerical values (scales) to repre-
sent and quantify the categories. The arbitrary assignment of
numerical scales is based on the presumption of regular or uniformly
spaced intervals. Hubbard (2009, pp.133-134) presents the following
example illustrating the errors introduced by this presumption. Fig-
ure 13 shows the relative value of the mitigating effect against IT
project failure risk of the project sponsor rank in an organization.
The scale assignment means that the influence of a CEO, CFO or
CIO is three times as important as a VP. The influence of a VP is
twice as important as that of a line manager. In reality, after acquir-
ing historical data on the actual impact of sponsor rank on project
success, we find the actual differences do not support the presumption
of regular (uniformly spaced) intervals. While the rank ordering is
preserved, the difference between C-level, senior VP and VP is quite
small and that the influence of a manager is very much less that even
the “ordinary”VP.

Problems with lack of independence between events. Scor-
ing methods presume independence among factors and risks. They do
not account for correlation between random variables or the effect of
deterministic interdependencies. Two “medium-impact”, “medium-
likelihood” outcomes located in a risk matrix may represent a very
high risk if they happen together (are correlated or interdependent).
The only way such a situation can be taken into account is through
the definition of a new outcome that represents the joint occurrence
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Figure 13: Sponsor Rank and IT Sucess

of the two constituent outcomes. There is no evidence that this is re-
definition of outcomes is practiced in the application of risk matrices.
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