
0 
 

The Long Term Effects of an Aging Fleet on Operational Availability and Cost: Evidence 

from the U.S. Coast Guard 

 

Christopher W. Lavin    Robert M. McNab 

United States Coast Guard   Strome College of Business 

Office of Surface Acquisition            Old Dominion University 

Washington D.C.                      2110 Constant Hall 

chris.lavin@uscg.mil            Norfolk, VA 23529 

      rmcnab@odu.edu 

 

 

Ryan S. Sullivan (contact author)*  

Naval Postgraduate School 

205 Halligan Hall 

Monterey, CA 93943 

rssulliv@nps.edu 

 

Abstract 

This paper empirically examines whether the aging of a fleet affects operational availability and 

operating cost using a unique dataset on the 117 47-foot Motor Life Boats (MLBs) of the United 

States Coast Guard (USCG). Procured from 1997 to 2003, the 47-foot MLB is the standard 

lifeboat of the USCG and all 117 MLBs remain in service. The aging of the MLB fleet has 

resulted in higher annual operating costs and lower operational availability, although the nature 

of this relationship remains unclear. Our estimation strategy utilizes an error components 

estimator to examine these issues. We employ three variants of the dependent variables (i.e., the 

standard logarithmic transformation as is most commonly seen in the literature, inverse 

hyperbolic sine (IHS), and level outcomes). The point estimates from the standard logarithmic 

model finds operational availability for the MLBs decreases at a rate between 0.83% and 1.8% 

per year and cost increases at a rate between 0.33% and 7.81% per year. Similar effects are 

shown with the IHS and level outcome specifications. In terms of nonlinearity effects, we find 

the most pronounced changes in operational availability and cost occur for MLBs aged 15 years 

or more (in comparison to younger MLBs). 
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1. Introduction   

The United States Coast Guard (USCG) performs heavy weather rescue operations in 

winds up to, and including, hurricane force winds using the 47-foot Motor Life Boat (MLB).  

Produced from 1997 to 2003, 117 MLBs are now in service and the MLB is the standard lifeboat 

of the USCG.  Furthermore, the USCG expects to continue to operate the MLBs in the medium-

term even through reliability issues and operating cost are increasingly a concern. Whether (and 

when) an aging fleet affects reliability and cost remains an unanswered question. 

 This paper empirically examines whether the aging of the 47-foot MLB fleet affects 

operational availability and operating cost. Understanding these connections is critical in helping 

decision makers determine when the current MLB fleet should be replaced or undergo a Service 

Life Extension Program (SLEP
1
). To analyze the effects of the aging MLB fleet, we utilize a 

unique dataset on the operational availability and annual operating costs for each of the MLBs 

produced and currently operated by the USCG. We control for geographical location, mission 

type, as well as individual boat effects, and time fixed effects to investigate the influence of an 

aging fleet on operational availability and cost. 

 We contribute to a growing body of research that examines the relationship between 

aging military equipment and operational availability and cost (e.g., Hildbrandt and Sze, 1990; 

Stoll and Davis, 1993; Kiley, 2001; Keating and Dixon, 2004; and Sokri; 2011).
2
  While most of 

the previous research has generally focused on aircraft, the methods displayed in the literature 

(e.g., theoretical models, regression analysis, and simulations) provide context for broader 

                                                           
1
 In February 2015, the USCG issued a Request for Information regarding a SLEP for the 47-foot MLBs, primarily 

focusing on a one-to-one replacement of equipment in the boats.  The operating characteristics of the boats are 

expected to remain the same after the proposed SLEP.  See U.S. Coast Guard (2015) for more details.  
2
 Related to this line of research are other studies more specifically focused on calibrating the optimal time to 

replacement of military equipment (e.g., Dixon, 2005; Francis and Shaw, 2000; Greenfield and Persselin 2002, 

2003; Jondrow et al., 2002; and Keating et al., 2014 ; see Maybury, 2015 for a thorough review of this literature). 
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military applications in other areas such as the replacement of other systems, including tactical 

vehicles, helicopters, frigates, among others. We extend this literature to now focus specifically 

on the USCG MLB program. To the best of our knowledge, this is the first time that the effect of 

aging has been empirically investigated with regards to this USCG MLB fleet.    

We expect, a priori, that operational availability should decrease and cost should increase 

as the age of an MLB increases. What is of particular interest, however, is whether age linearly 

affects availability and cost or whether there is a discontinuity at which availability and cost 

suffer adversely. For the USCG, this behavior is a continuing concern for policy makers with 

regards to managing scarce resources, determining whether or not to proceed with a specific 

SLEP (or complete replacement of the boats), and the optimal usage of MLBs over time. 

 Our estimation strategy utilizes an error components estimator to examine these issues. 

We employ three variants of the dependent variables: the standard logarithmic transformation as 

is most commonly seen in the literature, levels, and the inverse hyperbolic sine (IHS) 

transformation. The logarithmic point estimates suggest that operational availability for MLBs 

decreases at a rate between 0.83% and 1.8% per year and cost increases at a rate between 0.33% 

and 7.81% per year. We find similar estimates for the IHS and levels specifications. In terms of 

nonlinearity effects, we find the most pronounced changes in operational availability and cost 

occurs for MLBs aged 15 years or more in comparison to seven-year-old MLBs (i.e., the 

youngest boats in our dataset). To the best of our knowledge, this is the first use of the IHS 

transformation in the literature with regards to the impact of aging on operational availability and 

cost. 

 The remainder of paper is structured as follows. In the following section, we briefly 

review the institutional background of the MLB program. In the third section, we discuss the 
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data.  We then present the empirical methodology of the study in the fourth section. The fifth 

section discusses our results, limitations of the study, and possible extensions. The last section 

concludes the paper. 

 

2. Institutional Details 

The USCG conducts maritime safety, security and stewardship operations in and around 

the United States (U.S) and around the world to protect American security and economic 

interests (U.S. Coast Guard, 2014). The USCG uses specially designed and constructed boats to 

conduct operations in areas of rough surf and heavy weather (Textron Systems, 2011). The 

primary surface asset used in these areas is the 47 foot MLB. This MLB is unique to the Coast 

Guard because it is designed to operate in the open ocean in seas up to thirty feet, surf up to 

twenty feet and is self-righting within thirty seconds without any loss of operational capabilities 

in the event of a roll over (Textron Systems, 2011).  It is exceptionally useful in search and 

rescue missions since it is a multi-mission asset and conducts operations in all the Coast Guard 

mission areas (CG-731, 2007).  

Typically there are only one to three 47 foot MLBs assigned to boat stations across the 

U.S. (depending on the requirements of the individual station). These stations are generally 

geographically isolated from other stations and thus, the MLBs often work alone or in very small 

numbers on their patrols. For some stations such as those operating in surf or heavy weather 

operating environments, the MLBs will have the support of an additional small response boat 

(RB-S) (CG-7, 2013) for their duties.  

The minimum boat crew for a 47 foot MLB consists of a qualified coxswain, engineer 

and one boat crew member, although additional crew members are required for heavy weather, 
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surf and Port Waterways Coastal Security (PWCS) missions (CG-731, 2013). The boat crew is 

usually on duty for two days and off duty for two days. The boat crew typically conducts a patrol 

of the station’s area of responsibility each duty day and then may be underway for additional 

time depending on operations. The commandant’s policy limits underway time depending on the 

length of the boat and the sea conditions.  The 47 foot MLB crew has a limit of 10 hours in seas 

less than four feet, eight hours in seas greater than four feet but less than eight feet, and six hours 

for seas greater than eight feet (CG-731, 2013). A standby crew would be called in if the eight 

hour timeframe is exceeded. The boat can hold a maximum of 34 passengers in addition to the 

crew (CG-731, 2007). 

The Coast Guard Engineering Logistics Center completed the preliminary design of the 

47 foot MLB in the 1980s. Textron Marine and Land Systems completed the detailed design and 

produced the first prototype in 1990. Textron went on to produce five pre-production variants in 

1993 and 1994 for testing (CG-731, 2007). Full-rate production began in 1997 and ended in 2003 

(CG-731, 2014) at a unit cost of $1,214,300 per copy in 2003 dollars (U.S. Coast Guard 

Thirteenth District, 2003).
3
  The projected design life of an MLB is 25 years with an operational 

availability of 0.8. While all 117 MLBs remain in service, operational availability for the fleet 

has witnessed a steady decline since 2009 and fell below 0.8 after 2012 (CG-9325, 2014).  

Given a fixed fleet size, the decline in operational availability is of significant concern 

given its potential to adversely impact the ability of the USCG to conduct missions.  In 2014, an 

Alternatives Analysis (AA) was completed by the Boats Acquisition Program, CG-9325, and the 

AA attributed the decline in operational ability to equipment casualties to the main propulsion 

system, electrical generation system and steering system (CG-9325, 2014). The CG-9325 report 

                                                           
3
 Textron also sold versions of the 47 foot MLB to Canada, Egypt and Mexico (Textron Systems, 2011) 
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also considered that the Coast Guard could “do nothing”, provide a SLEP for the existing fleet, 

purchase a new fleet (not necessarily the same types of boats currently used), or a combination of 

a SLEP and new fleet purchase. In 2015, the USCG issued a Request for Information for the 

conduct of a SLEP of the existing fleet of MLBs. 

Given the usefulness of the fleet of MLBs, decline in operational availability, and 

increases in operating cost, this paper examines how the aging of the MLB fleet affects 

availability and cost.  If the USCG conducts a SLEP of the existing fleet, the question remains 

when should an MLB be part of the SLEP program?  Too early and the USCG may waste scarce 

resources upgrading a boat that does not require an upgrade.  Too late and the USCG will waste 

scarce resources due to increased operating cost and decrease availability.  This paper seeks to 

estimate the impact of aging on operational availability and cost to help in addressing these 

questions.  

 

3. Data 

We gathered unclassified data on the 117 MLBs in the USCG from 2010-2014.  We 

gather annual cost data from the Fleet Logistics System (FLS) and the Asset Maintenance 

Management Information System (AMMIS) databases. The cost data presented here are an 

aggregated version of the micro-level data and includes information on planned maintenance 

costs, time compliance technical orders, transportation costs, consumables for organizational 

level planned maintenance, and repair of items that are within the organization’s capabilities that 

are not mission limiting, or replacement of outfit items.
4
   

                                                           
4
 See the online Appendix (available at: http://my.nps.edu/web/drmi/working-papers)  for a detailed description of 

these data. 

http://my.nps.edu/web/drmi/working-papers
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 We use the Asset Logistics Management Information System (ALMIS) to obtain 

operational availability data.  ALMIS tracks when a boat is available for operations. As is typical 

in the literature, we define operational availability as mission capable time divided by total 

measured time (Jones 2006). The difference between mission capable time and total measured 

time is the time lost due to preventative maintenance, corrective maintenance, and administrative 

and logistics delays (Jones 2006). We average the monthly data to obtain annual operating 

availability data.
5
   

The USCG tracks operational performance with the Abstract of Operations (AOPS) 

database. The AOPS database contains information on every small boat station, to include 

information on the dominant operating environment or mission.  Each station is denoted through 

the use of a Unit Identification Code (UIC).  We use the AOPS database to capture each MLB’s 

dominant mission type for the purposes of this analysis. As each MLB is assigned to a USCG 

district, we also include geographical location in the database.   

 The MLBs are located in ten separate Coast Guard districts (Table 1).  We label these 

districts as Northeast (i.e., the Northeast district includes the states of ME, NH, VT, MA, NJ, CT, 

and part of NY), mid-East Coast (i.e., DE, MD, VA, NC, Washington D.C., and part of PA), 

Southeast (i.e., SC and most of GA and FL), Central States (i.e., WY, ND, SD, IA, NE, CO, KS, 

NM, TX, OK, MO, AR, LA, MS, AL, TN, KY, and parts of MN, IL, IN, OH, PA, WV, GA, and 

FL), Northern Great Lakes (i.e., WI, MI, and parts of MN, IL, IN, OH, PA, and NY), Southwest 

(i.e., CA, NV, UT, and AZ), Northwest (i.e., WA, OR, MT, and ID), Hawaii, Alaska, and the 

National Motor Lifeboat School. The National Motor Lifeboat School is technically located in 

                                                           
5
 Of note, the Great Lakes boats were routinely unavailable in January, February, and March due to freezing 

conditions. Thus, we modified the annual operational availability data for boats located on the Great Lakes to ignore 

those zero values and calculated their values based on the remaining nine months. 
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the Northwest district, but has its own “district” for data purposes because their concept of 

operations is so different from other boat stations. Boats at the National Motor Lifeboat School 

have a different operational profile because they seek out rough, surf conditions to give students 

experience.  This is different from a normal unit that encounters rough conditions only when 

required by operations. The increased operations in surf conditions may lead to decreased 

operational availability and increased maintenance costs.  We keep the National Motor Lifeboat 

School as a separate district from the Northwest due to its unique features.
6
 

Combining these datasets, we obtain a strongly balanced panel data set of 585 

observations for the 2010-2014 period.  For the 117 MLBs, mean annual operating cost was 

approximately $35,000 and mean operational availability was 0.78 over the period of analysis 

(Table 1).
7
  The MLBs range in age from 7 to 17 years old with a median age of 12 years old.   

 With regards to mission types, we note that the surf mission type was the most common 

for the period of analysis with approximately 31% of the observations (Table 1).  Surf mission 

boats primarily conduct search and rescue operations.  Following surf missions, heavy weather 

missions (HWX) were the next most common with approximately 28% of the observations.  

These boats operate in areas that frequently experience heavy weather conditions and primarily 

conduct search and rescue operations.  Boats with the PWCS Level 1 mission type complete the 

port, waterways and coastal security mission. These MLBs are responsible for escorting large, 

                                                           
6
 We find little difference between the estimates presented in this paper and those that combine the Northwest and 

Training districts. 
7
 Of note, the cost data contained an unusually high number of observations (108 out of 585) equal to zero, 

suggesting there was zero operating cost for these observations. We had detailed discussions with numerous 

operators and data analysts to understand this peculiarity in the data. In the end, it was determined that a changeover 

in accounting systems may have led to inputting zeros where there were missing cost data. Thus, there appears to be 

a considerable amount of measurement error within these 108 observations. Due to this concern, we decided to 

exclude these observations in our final analysis. Policy makers should be aware of this limitation when making 

decisions in regards to our cost results. That stated, discussions with the same military personnel lead us to believe 

that this was not a problem with the operational availability data. Thus, those results should be completely free from 

any measurement error or selection bias. 
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high-value vessels or high-capacity passenger vessels in busy ports and guarding critical 

infrastructure and key resources like oil and natural gas terminals, bridges and nuclear power 

plants. Boats with the surf and PWCS Level 1 missions are located in a surf environment and 

have PWCS responsibilities. Station Golden Gate in San Francisco is an example of one of these 

areas.  MLBs with the HWX and PWCS Level 1 missions are located in heavy weather 

environments and have PWCS responsibilities. Station Southwest Harbor in Maine is an example 

of one of these areas.  Lastly, boats with the station mission do not have any special weather 

requirements or special security responsibilities.  

Geographically, we find that the highest number of boats resides in the Northeast district 

with a total of 29.4% of the observations located there. The next four highest percentages of 

boats by district are in the Northwest (20.2%), mid-East Coast (16.1%), Northern Great Lakes 

(12.7%), and the Southwest (11.6%), respectively. The rest of the individual districts all have 

less than 5% (each) of the total number of observations. 

 

4. Methodology 

4.1. Previous Literature  

As stated previously, the literature has employed a variety of techniques to analyze the effects of 

aging on operational availability and cost, with a particular focus on aircraft. Some additional 

work has analyzed the effects of aging on other types of military vehicles and hardware, although 

the research in these areas has been much more limited in nature. In this section, we present a 

review of the literature most pertinent to this article (i.e., specific studies which measure the 

impact of aging on cost or operational availability). We refer readers to see Maybury (2015) for a 

further, comprehensive review of the literature on this topic and others related to it. 
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 In early work on the subject, Hildbrandt and Sze (1990) estimate the effect of an aging 

aircraft fleet on operating and support cost. The authors estimate a log-linear model where the 

logarithm of total operating and support cost per aircraft is a function of age, type of aircraft, a 

linear time trend, and the logarithms of average flying hours and number of aircraft. They find 

that a one year increase in the mission design fleet age increases total operating and support cost 

per aircraft by about 1.7%.  

Stoll and Davis (1993) examine the impact of aging on a variety of cost measures using 

aircraft data from the 1980s and early 1990s. The authors primarily use an Ordinary Least 

Squares (OLS) estimator in levels where cost is specified as a function of age or fiscal year. 

Additional estimates explored whether the percentage change rates in costs were a function of 

age or fiscal year. Their estimates vary depending upon specification, however, the authors 

generally find that direct labor, overhead, direct material, and total costs all have projected 

increases over time as the aircraft age.  

 Kiley (2001) examines the relationship between aging and the cost of operating and 

maintaining military equipment such as major battle force ships, tanks, Bradley fighting vehicles, 

helicopters and other aircraft. The most detailed analysis in Kiley’s study is presented on aircraft. 

The author employs a one-way fixed time effects estimator where the logarithm of cost is a 

function of age, year fixed effects, and the logarithms of annual flying hours and procurement 

unit average unit cost. Kiley finds a positive relationship between cost and age; an additional 

year of average age is associated with an increase in operational and maintenance costs between 

1% and 3% per year. 
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 Keating and Dixon (2004) provide estimates on the effects of aging on maintenance 

hours and operational availability for the KC-135 aircraft. The authors estimate the logarithm of 

maintenance hours on age. We note that the authors did not include specific control variables. A 

similar model is used to estimate the effects of age on operational availability. The authors find a 

positive, statistically significant relationship between age and cost and a negative, statistically 

significant relationship between age and operational availability. 

 Sokri (2011) takes a similar approach to Kiley in analyzing the impact of aircraft age on 

cost. Using an OLS estimator, the author estimates a model where the logarithm of operating and 

maintenance cost is a function of age. We again note the absence of control variables. Sokri finds 

a positive coefficient for age which is statistically significant at the 5% level, suggesting a robust 

relationship between age and cost increases over time. 

 The literature has, to this point, typically estimated a linear model either in levels or with 

the logarithmic transform of the dependent variables and some of the regressors of interest. 

While some studies (Hildbrandt and Sze (1990) and Kiley (2001)) have included controls, data 

restrictions have precluded the inclusion of controls in other studies (Keating and Dixon (2004) 

and Sokri (2011)). Most of the studies have shown standard aging effects to be in the 1-6% per 

annum range for cost or operational availability, with some outliers. 

 To date, no study has utilized an IHS transformation, relying instead on levels or the 

logarithmic transformation. We acknowledge the literature by specifying models in levels and 

logarithms, but also advance the literature by comparing and contrasting these results with those 

of the IHS transformation. As the properties of the level and logarithmic transformation are well 
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known, we briefly discuss the standard characteristics of the IHS transformation next and then 

outline the formal empirical models utilized in our estimation strategy in section 4.3.   

4.2. The Inverse Hyperbolic Sine 

The IHS can, depending on the value of the scaling parameter, approximately either the 

level or the logarithmic transformation.  The IHS transformation, however, is defined for those 

boats with zero availability or cost in a given year, unlike the logarithmic transformation. As is 

widely understood by statisticians, the logarithmic transformation comes at a cost as 

observations with zero cost or availability must be dropped from the analysis.  While some have 

argued that arbitrarily "small" values can be added to the observations with zero value to enable 

the logarithmic transformation of these observations, the arbitrary nature of what is "small" 

leaves much to be desired.
8
  If observations with zero for cost or availability contain valuable 

information (e.g., these boats did not perform any missions or generate any cost), then we may 

bias our estimates by arbitrarily excluding or transforming these observations.  The IHS 

transformation provides an established methodology to estimate percentage change 

specifications without eliminating observations with zero value.  

Johnson (1949) suggested the use of an IHS transformation for univariate and 

multivariate cases, respectively. Burbidge et. al. (1988) applied the transformation in the 

univariate case and illustrated the potential superiority of the IHS relative to the logarithmic and 

Box-Cox transformations. The IHS of a variable y with scaling parameter θ can be specified as: 

𝑔(𝑦𝑡, 𝜃) =
𝑙𝑛 (𝜃𝑦𝑡 +√(𝑦𝑡

2𝜃2 + 1))

𝜃
=
𝑠𝑖𝑛ℎ−1(𝜃𝑦𝑡)

𝜃
 

                                                           
8
 The wealth literature, for example, has extensively discussed how to handle households with negative or zero 

assets and we draw inspiration from the literature.  
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Unlike the logarithmic or the Box-Cox transformation
9
, the IHS is defined over all θ even though 

most statistical programs explicitly assume that θ is equal to one. While the IHS and Box-Cox 

transformations compress extremes toward the other transformed observations, the damping 

effect of the IHS is superior to that of the Box-Cox transformation. The linearity of the IHS 

transformation through the origin is also appealing.
10

 Figure 1 illustrates the shape of the IHS 

transformation at different values of θ to illustrate the importance of estimating, rather than 

assuming, the value of the scaling parameter. 

As the function g is symmetric about 0 in θ and is linear about the origin, we consider 

those cases where θ≥0.  The value of the scaling parameter is important as it defines the 

proportion of the function’s domain that is approximately linear and the proportion that the 

function is approximately logarithmic. We do note that as the parameter θ approaches 0, the 

value of the IHS transformation of y approaches y. Thus, if the true value of the scaling 

parameter is 0, the transformed observations and estimation approximate the original values of 

the observation and estimation in levels. 

Burbidge et.al. (1988) note that for large values of |𝜃𝑦𝑡|, the IHS becomes similar to the 

transformation: 

𝑔(𝑦𝑡, 𝜃) ≈
𝑠𝑖𝑔𝑛(𝜃𝑦𝑡)log⁡(2|𝜃𝑦𝑡|)

𝜃
 

Likewise, Pence (2006) notes that, for large y, the function is a vertical displacement of the 

logarithm as:  

                                                           
9
 Burbidge et.al. (1988) note that while the Box-Cox and IHS have linear models that are defined for positive and 

negative values, the Box-Cox transformation is not defined at zero. Also as the scaling parameter approaches zero 

for the Box-Cox transformation, negative observations are transformed into infinitely large negative values. These 

issues raise concerns about the validity of the Box-Cox transformation when observations with zero value are 

observed in the data. 
10

 As noted by Pence (2006) with regards to wealth data, the logarithmic transformation treats a $1 to $2 increase in 

wealth equivalent to a $10,000 to $20,000 increase in wealth and that result may not be appealing to wealth 

researchers. With regards to cost data, a $1 to $2 increase in cost would be, in our opinion, viewed much differently 

than a $10,000 to $20,000 increase in cost.  
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ln (𝜃𝑦 + (𝑦𝑡
2𝜃2 + 1)

1
2) ≈ 𝑙𝑛2𝜃 + 𝑦𝑡 

Using: 

𝛿sinh⁡(𝑥)−1

𝛿𝑦𝑡
= (1 + 𝜃2𝑦𝑡

2)−1/2 

An examination of the derivative yields two properties of interest. First, if θ is large relative to y, 

the derivative becomes an approximation of the derivative of the logarithm for most positive 

values of y. On the other hand, if y is large relative to θ, the derivative is approximately one and 

the function is approximately linear (Pence, 2006). 

We continue to follow Burbidge et.al. (1988) and use l’Hopital’s rule and the derivative 

of g to show that: 

lim
𝑛→∞

𝑔𝑡 =⁡𝑦𝑡 

Given that g(θ) is an n-vector having element t of gt, the IHS model can be specified as: 

𝑔(𝜃) = 𝑋𝛽 + 𝑢, 𝑢~𝑁(0, 𝜎2𝐼) 

Following Burbidge et. al. (1988) and MacKinnon and Magee (1990), we assume that the errors 

are normally distributed so that the log-likelihood function with n observations can be expressed 

as: 

𝐿(𝜃, 𝛽, 𝜎) = −
𝑛

2
𝑙𝑛2𝜋 −

𝑛

2
𝑙𝑛𝜎2 −

1

2𝜎2
(𝑔(𝜃) − 𝑋𝛽)𝑇(𝑔(𝜃) − 𝑋𝛽) −

1

2
∑ln(𝜃2𝑦𝑡

2 + 1)

𝑛

𝑡=1

 

Let 𝑀 = 𝐼 − 𝑋(𝑋𝑇𝑋)−1𝑋𝑇, then the concentrated log-likelihood can be expressed as: 

𝐿(𝜃) = −
𝑛

2
𝑙𝑛2𝜋 − (

𝑛

2
) ln𝑔(𝜃)𝑇𝑀𝑔(𝜃) −⁡

1

2
∑ln(𝜃2𝑦𝑡

2 + 1)

𝑛

𝑡=1

 

Given that g is symmetric about 0 in θ, we following Pence (2006) in conducting a careful search 

over possible values of θ to maximize the concentrated log-likelihood function. We obtain a 
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bootstrap estimate of 𝜃 = 8.810. This estimate illustrates the need to obtain an estimate of 𝜃 and 

not to rely on the assumption that θ = 1.
11

  

 Lastly, we turn to the interpretation of the estimated coefficients. The interpretation of the 

level and logarithm transformation are well known. With regards to the IHS, we note that 

since⁡𝑦 = 𝐼𝐻𝑆(𝐴) = 𝑋𝛽 + 𝑢, then 
𝛿𝐴

𝛿𝑥
=

𝛿𝐴

𝛿𝑦

𝛿𝑦

𝛿𝑥
=

𝛿𝐴

𝛿𝑦
𝛽 =

1

2
(𝑒𝜃𝑦 + 𝑒−𝜃𝑦)𝛽 (Pence, 2006). For 

sufficiently large y, 𝜃𝛽 approximates the marginal effect of a one unit change in x on the 

percentage change of y (McKinnon and MaGee, 1990; Pence, 2006). This interpretation is 

notable in that it is akin to a regression where the dependent variable is a logarithmic transform. 

Of course, this approximation is useful for where the IHS transformation approximates the 

logarithm. Following Pence (2006), the approximation is: 

𝛽 =
𝛿𝐼𝐻𝑆(𝑦)

𝛿𝑥
= ⁡

1

√1 + 𝜃2𝑦2

𝛿𝑦

𝛿𝑥
≈

1

𝜃𝑦

𝛿𝑦

𝛿𝑥
=
1

𝜃

1

𝑦

𝛿𝑦

𝛿𝑥
=
1

𝜃

𝛿ln⁡(𝑦)

𝛿𝑥
 

𝜃𝛽 ≈
𝛿ln⁡(𝑦)

𝛿𝑥
 

 

4.3. Empirical Models and Tests 

To test the aging effects of the MLB fleet, we first use individual boat variation in operational 

availability and cost over time as a function of age, which is analogous to previous studies on 

this topic (e.g., Hildbrandt and Sze, 1990; Stoll and Davis, 1993; Kiley, 2001; Keating and 

Dixon, 2004; and Sokri; 2011). This model is shown below: 

𝑌𝑖𝑡 = 𝛼 + 𝛽1𝑎𝑔𝑒𝑖𝑡 + 𝐗𝐢𝐭
′ 𝛉 +⁡𝜇𝑖 + 𝜆𝑡 + 𝜐𝑖𝑡 (1) 

                                                           
11

 For example, for the a value Operational Availability of 0.8796, the logarithm is -0.1386. The IHS transformation 

with θ = 1 is equal to 0.7869. Using the estimate of 𝜃̂ = 8.810, the IHS transformation is equal to 0.3104. 
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where the outcome variables, Operational Availability (i.e., mission capable time divided by 

total measured time) and Cost (i.e., annual aggregation of monthly operating cost) for boat i in 

year t are denoted by 𝑌𝑖𝑡. Of note, this model is estimated by using six different specifications of 

𝑌𝑖𝑡 in our final analysis including: the level effects of Operational Availability, log of 

Operational Availability, IHS of Operational Availability, level effects of Cost, log of Cost, and 

IHS of Cost. The vector X is a set of control variables including binary indicator variables for 

each of the individual coast guard districts and binary indicator variables for primary boat 

mission type. In addition, 𝜇𝑖 and 𝜆𝑡  represent the unobservable individual boat and time effects, 

respectively, and 𝜐𝑖𝑡 is a white noise error term. The variable of interest in Equation 1 is 𝑎𝑔𝑒𝑖𝑡 

and represents the age of boat i in year t. 

 Equation 1 provides standard measures of the impact of age on operational availability 

and cost. Interpreting the results from Equation 1 is relatively straightforward. A positive 

coefficient for 𝛽1 can be interpreted as a positive impact on operational availabliity or cost due to 

a one-year increase in the age of an MLB (ceterus paribus). Next, we present a model that 

examines whether specific ages significantly affect operational availability or operating cost 

(which is new to the literature). This model is displayed below: 

𝑌𝑖𝑡 = 𝛼 + 𝛽1𝑌8𝑖𝑡 + 𝛽2𝑌9𝑖𝑡 + 𝛽3𝑌10𝑖𝑡 + 𝛽4𝑌11𝑖𝑡 + 𝛽5𝑌12𝑖𝑡 +⁡𝛽6𝑌13𝑖𝑡 +⁡𝛽7𝑌14𝑖𝑡 

+⁡𝛽8𝑌15𝑖𝑡 +⁡𝛽9𝑌16𝑖𝑡 +⁡𝛽10𝑌17𝑖𝑡 + 𝐗𝐢𝐭
′ 𝛉 +⁡𝜇𝑖 + 𝜆𝑡 + 𝜐𝑖𝑡 

(2) 

where 𝑌, X, 𝜇,⁡𝜆, and 𝜐 are the same as those defined in Equation 1. The key difference in this 

equation is that the variable 𝑎𝑔𝑒 in Equation 1 has been replaced by dummy variables for each of 

the years in the data. More specifically, we create dummy variables that coincide with the age of 

a specific boat during a given year. We define, for example, Y8, as a dummy variable that is 

equal to one for those MLBs that are eight years old during a specific year in the sample and zero 
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otherwise.  Following this methodology, we similarly define years 9 through 17 as Y9 through 

Y17, respectively. 

 The interpretation of the results from Equation 2 is somewhat different in comparison to 

Equation 1 since we use binary indicator variables for specific ages (instead of a continuous 

variable for age) in this model. For Equation 2, we leave out boats that are 7 years-old as our 

baseline boats to use as a comparison group. We also have 10 specific variables of interest (i.e., 

𝑌8, 𝑌9, …, 𝑌17) instead of just one (i.e., 𝑎𝑔𝑒). As an illustrative example, a negative coefficient 

on say, Y17, would indicate the negative impact of a 17 year old boat on operational availability 

or cost in comparison to being a seven year old boat (ceteris paribus). A positive coefficient 

would indicate the opposite. Similar interpretation of the results can be done with the other 

coefficients of interest (i.e., 𝛽1, 𝛽2, …, 𝛽9) in comparison to seven year old boats. 

Before estimating Equations 1 and 2, we exercise caution and examine whether the 

variables of interest suffer from a unit root; whether the pooled OLS estimator, random effects 

Generalized Least Squares (GLS) estimator or fixed effects Within estimator is appropriate; 

whether the effects are jointly significant, and lastly, whether the residuals are heteroscedastic. 

Each of these issues either renders the estimators inconsistent (unit root), inefficient (whether the 

time and individual effects are statistically significant), or biases the standard errors of the 

estimated coefficients (heteroscedasticity). We, of course, take the appropriate correction action 

when an issue is determined to be present.    

We first examine whether the variables of interest suffer from a unit root.  If so, this 

would render the empirical estimators inconsistent and increase the likelihood of spurious 

results. Following Maddala and Wu (1999), we can examine the null hypothesis that all the 

panels exhibit a unit root against the alternative that at least one panel is stationary. We use the 
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Augmented Dickey-Fuller and Philipps-Perron variants of the Fisher-type test.  We also examine 

whether the inclusion of a linear time trend affects the results of the test and test of each of the 

variants of the dependent variables of interest. We strongly reject the null hypothesis of non-

stationarity at the 1% level of significance for each of the dependent variables of interest.
12

    

Under specific assumptions about the lack of individual boat and time specific effects, the 

pooled OLS estimator is consistent and efficient relative to the error components estimators 

(Baltagi, 2008). If there are individual boat or time effects, however, then an error components 

estimator is consistent and efficient relative to the pooled OLS estimator. We examine whether 

the individual effects are jointly significant and reject the null hypothesis that the individual 

effects are jointly equal to zero at the 1% level of significance. We then examine the 

appropriateness of a random effects GLS estimator versus a fixed effects Within estimator for 

each of the dependent variables.  If the effects are orthogonal to the regressors, then the random 

effects GLS estimator is consistent and efficient relative to the fixed effects Within estimator.  

On the other hand, if the effects are correlated with the regressors, the GLS estimator is 

inconsistent while the Within estimator is consistent and efficient. For the Availability and Cost 

variables, we fail to reject the null hypotheses of the Hausman test that there are not systemic 

differences between the random effects GLS estimator versus the fixed effects Within 

estimator.
13

 The random effects GLS estimator is consistent and relatively efficient to the fixed 

effects Within estimator.  We also unambiguously reject the null hypotheses of 

                                                           
12

 We strongly reject the null hypothesis at 1% level of significance for Availability with a Chi-squared test statistic 

of 1450.96.  We also strongly reject the null hypothesis at the 1% level of significance for Cost with a Chi-squared 

test statistic of 1354.21.  Full results of all the unit root tests are available upon request. 
13

 To calculate the Hausman test, we compare the random and fixed effects estimates with individual effects, time 

effects, mission controls, and district controls.  For Availability as the dependent variable, the Chi-squared test 

statistics with 25 degrees of freedom is 17.72.  For Cost as the dependent variable, the Chi-squared test statistics 

with 25 degrees of freedom is 15.44. We also conduct tests for the logarithmic and inverse hyperbolic sine 

transformations of the dependent variables. In all cases we fail to reject the null hypothesis of no systemic 

differences between the random and fixed effects estimators.  Full results are available upon request. 



18 
 

homoscedasticity.
14

 We thus estimate and compare the one-way individual effects, and two-way 

individual and time effects estimates with robust standard errors in the next section. 

 

5. Results 

Overall, we find that Age statistically, significantly, and negatively impacts Operational 

Availability. This result is consistent across all specifications and almost all transformations of 

the Operational Availability variable. We also find evidence to suggest that Age statistically, 

significantly, and positively affects Cost. This result, however, appears to be fragile to the 

inclusion of time effects and may also be dependent upon sample selection. In terms of 

nonlinearity effects, we find the most pronounced changes in Operational Availability and Cost 

occurs for MLBs aged 15 years or more in comparison to seven-year-old MLBs (i.e., the 

youngest boats in our dataset). 

Table 2 presents our estimates for the impact of Age on Operational Availability as 

described in Equation 1. In general, we find a statistically significant, negative, and mostly 

robust relationship between Age and Operational Availability. The point estimates from the 

standard logarithmic model in columns 3 and 4 finds operational availability for the MLBs 

decreases at a rate between 0.83% and 1.8% per year. A similar result is suggested for the levels 

specification. With regards to the IHS transformation, the estimated impact ranges from 

approximately 1.9% to 3.1% per year.
15

 Five of the six specifications show the age coefficient to 

                                                           
14

 We use a Breusch-Pagan test to examine the null hypothesis of homoscedasticity.  With Availability as the 

dependent variable, the Chi-squared test statistic with one degree of freedom is 106.04.  With Cost as the dependent 

variable, the Chi-squared test statistics with one degree of freedom is 91.10. We also conduct Breusch-Pagan tests 

for the logarithmic and inverse hyperbolic sine transformations of the dependent variables.  In all cases we reject the 

null hypothesis of homoscedasticity. Full results are available upon request. 
15

 The estimated coefficients for Age are -0.0046 and -0.0028 for the IHS transformation of Availability (Columns 5 

and 6). This yields two marginal estimates of 𝜃̂𝛽̂ = −0.045 and 𝜃̂𝛽̂ = −0.025, respectively. We also evaluate the 

inverse hyperbolic sine at the mean value of Availability of 0.778 which yields two estimates of the marginal effects: 
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be negative and statistically significant, with the lone exception being the logarithmic 

specification with time effects (which is shown to be negative and insignificant in column 4). 

Next, we turn our attention to estimates showing the impact of specific years on 

Operational Availability from Equation 2. These results are shown in Table 3. We find empirical 

evidence to indicate that, relative to 7-year old MLBs, 15 and 16-year-old MLBs are less 

available across the sample period and some suggestive evidence for similar effects for 17-year-

old MLBs. For the Y15 variable, all of the estimated coefficients are negative with four of the six 

specifications being statistically significant at the conventional levels. Columns 2 and 4 show 

that the Y15 results are fragile to the inclusion of time effects for the levels and logarithm 

specifications. For the Y16 variable, the estimated coefficients are all statistically significant, 

with the lone exception of the logarithmic transformation which includes of time effects (as 

presented in column 4). The Y17 coefficients are the only other coefficients (besides Y15 and 

Y16) in Table 3 showing any evidence of statistical significance. All of the Y17 coefficients are 

negative; however, only columns 1 and 5 display statistically significant results at the 

conventional levels.  

Of note, discussions with data analysts lead us to believe that the nine observations with 

zeroes for operational availability (which were left out of the regressions in columns 3 and 4 in 

Table 3) were actually not available and thus the logarithmic transformation may result in a 

biased sample that understates the impact of age on availability. Regarding the other year 

dummies in Table 3, these appear to be either fragile to the inclusion of the time effects or 

statistically insignificant across specifications.
16

 For 15-year-old boats, our results suggest that, 

                                                                                                                                                                                           
1

2
(𝑒𝜃̂𝑦 + 𝑒−𝜃̂𝑦)𝛽̂ = −0.031⁡and − 0.019. We use the lower estimate as it should be more precise as Availability is 

bounded between 0 and 1. These calculations are available upon request. 
16

 Removing the observations with zero Availability yields smaller estimated coefficients for the regressors of 

interest. The estimated coefficients for the levels and inverse hyperbolic sine specifications for Y15, for example, are 
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all else being equal, 15-year old boats are between 16 and 21% less available than 7-year-old 

boats, though this result is fragile to specification choice.
17

 Our results suggest that, all else being 

equal, 16-year-old boats are between 16% and 34% less available than 7-year-old boats, 

depending on the specification and transformation of the dependent variable.
18

 The point 

estimates for the 17-year-old boats, while somewhat imprecise, suggest that 17-year-old boats 

are between 21% and 27% less available than 7-year-old boats.
19

 

Turning to the question of the impact of age on cost, we recognize that while only 9 

observations have zeros with regards to availability (and we are fairly confident that these zeros 

actually represent zero availability), 108 observations have zeros with regards to operational 

cost. We note that the average Availability of an observation with zero Cost is 83.9%, suggesting 

that non-zero cost was incurred but not captured in the accounting system. We suspect, a priori, 

that some MLBs had zero cost but also understand that a change in accounting systems may have 

resulted in missing data.  Unfortunately, as discussed previously, we do not know whether the 

zeroes contain information or are merely missing data. For the purposes of exploring the impact 

of Age on Cost, we reduce the sample to those observations that reported non-zero Cost. 

Table 4 presents our estimates for the impact of Age on Cost as described in Equation 1. 

All six of the specifications show positive values for the Age coefficients. Four of the six 

specifications are statistically significant at the standard conventional levels. The two exceptions, 

                                                                                                                                                                                           
-0.11 and 0.025, respectively and are statistically significant at the 10% level of significance. This would yield a 

marginal impact of between 11% and 17%, respectively.  These regressions and calculations are available upon 

request. 
17

 The estimated coefficient for Y15, for example, is -0.031 for the IHS transformation of Availability (Column 6). 

Evaluating the inverse hyperbolic sine at the mean value of Availability of 0.778 yields: 
1

2
(𝑒𝜃̂𝑦 + 𝑒−𝜃̂𝑦)𝛽̂ =

−0.215. Additional calculations are available upon request. 
18

 The estimated coefficient for Y16 is -0.049 (Column 6). Evaluating the inverse hyperbolic sine at the mean value 

of Availability of 0.778 is: 
1

2
(𝑒𝜃̂𝑦 + 𝑒−𝜃̂𝑦)𝛽̂ = −0.339. Additional calculations are available upon request. 

19
 The estimated coefficient for Y17 is -0.040 (Column 5). Evaluating the inverse hyperbolic sine at the mean value 

of Availability of 0.778 is: 
1

2
(𝑒𝜃̂𝑦 + 𝑒−𝜃̂𝑦)𝛽̂ = −0.277.⁡The estimates are based upon Columns (1) and (5) of Table 

(3). 
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as shown in columns 4 and 6, indicate fragility of the results for the logarithmic and IHS 

specifications when time effects are included in the regressions. Noting this, we observe that an 

increase in Age by one year increases predicted Cost by approximately $1736 to $3365 for the 

levels specification. For the logarithmic specification, the point estimates suggests Cost increases 

at a rate between 0.33% and 7.81% per year. As we argued previously, the IHS transformation 

approximates the logarithm for large values of the transformed variable; the IHS estimates show 

Cost increasing at a rate between 0.32% to 7.82% per year.  

The estimates for the effect of specific years on Cost in Table 5 appear to be much more 

fragile to the changes in specification (in comparison to the Operational Availability results in 

Table 3). While the estimated coefficient for Y15 is statistically significant in the levels 

specification (as shown in columns 1 and 2), it appears to be fragile to the inclusion of time 

effects for the logarithmic and IHS transformations (as shown in columns 4 and 6, respectively). 

The estimated coefficients suggest that, relative to 7-year-old MLBs, 15-year-old MLBs are 

approximately 116% more expensive. 

One of the primary limitations of this study (and others like it) is that it is incredibly 

difficult to plausibly identify the effect that aging has on operational availability and cost given 

Department of Homeland Security (DHS) policy and data constraints. For instance, it is possible 

that omitted variables (e.g., different crews, usage rates, etc.) may be correlated with our 

variables of interest. This could bias the results one way or another. We cannot completely rule 

out these concerns. That stated, we do believe that the random effects and unique control 

variables used in our estimation strategy should rule out most of this bias (if not all of it). 

However, it is possible that some of the variation is not being picked up. Thus, policy makers 

should be aware of this limitation of the study in determining future courses of action.  
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The reduced form effects shown in this study simply predict the overall effect of age on 

operational availability and cost with this given set of controls and fixed effects. Other methods 

may be better suited to handle such questions such as randomized control trials. Unfortunately 

these methods are often impossible to implement in military settings which is why we advocate 

and use this particular methodology outlined in this study. It is our belief that we provide the best 

estimates possible given the constraints of DHS policy and data available.  

6. Conclusion 

This paper combines numerous unclassified data from the U.S. DHS to empirically 

estimate the effect that an aging fleet has on operational availability and annual cost. We utilize 

an error components estimator to examine these effects and employ three variants of the 

dependent variables (i.e., the standard logarithmic transformation, IHS, and level outcomes) in 

our models.  

The point estimates from the standard logarithmic model finds operational availability for 

the MLBs decreases at a rate between 0.83% and 1.8% per year and cost increases at a rate 

between 0.33% and 7.81% per year. Similar effects are shown with the IHS and level outcome 

specifications. Of note, the estimates for cost (in contrast to the operational availability results) 

appear to be much more fragile to the inclusion of time effects and may also be less precise due 

to sample selection bias. In terms of nonlinearity effects, we find the most pronounced changes 

in operational availability and cost occurs for MLBs aged 15 years or more in comparison to 

seven-year-old MLBs (i.e., the youngest boats in our dataset). 

The results of this study have a number of policy implications for officials within the 

U.S. Coast Guard. First, it does not appear that taking a “do nothing” approach with the fleet is a 
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viable option. The aging of the current fleet of 47 foot MLBs is on a clear downward trajectory 

in terms of operational availability. The projections for annual costs appear to be just as 

discouraging and will undoubtedly continue to increase as the fleet ages. Thus, we suggest a 

couple of specific policy proposals based off of our results. 

 If policy makers choose to stay with the current fleet, then it probably makes sense to 

have a service life extension program around year 15 for each of the boats in service. Some of 

the estimates not directly presented here (such as estimates on mission type and district effects) 

could also be of use in these decisions.
20

 The estimates in this paper strongly advocate support of 

such an overhaul strategy if new procurement of boats is deemed to be too expensive. 

 Alternatively, the U.S. Coast Guard could take a hybrid approach to overhauling the fleet 

with some MLBs receiving an overhaul around the 15 year mark and some being completely 

replaced by new boats. We recommend an extension of this study if the Coast Guard chooses to 

procure an entire new fleet since our focus has been on the operational availability and cost of 

the current fleet. Regardless of the higher level policy decision implemented; the data, estimates, 

and methodology presented here provides a sound basis not only for the current U.S. Coast 

Guard procurement or boat overhaul guidance, but for U.S. DHS (and her allies) future decisions 

in general. 

                                                           
20

 These estimates are available upon request. 
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Figure 1: Logarithm and Inverse Hyperbolic Sine Transformations 
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Table 1: Summary Statistics 

       

 

Mean Standard Deviation 

  

Mean Standard Deviation 

Outcome Variables 

   

Boat Mission 

  Annual Cost $35,266  $45,433  

 

Station 0.2205 0.4146 

Operational Availability 0.7781 0.1981 

 

Surf & PWCS Level 1 0.0427 0.2023 

    

Surf 0.3094 0.4622 

Boat Age 

   

HWX & PWCS Level 1 0.1487 0.3558 

7 Years Old 0.0239 0.1528 

 

HWX 0.2752 0.4466 

8 Years Old 0.0581 0.2340 

 

PWCS Level 1 0.0034 0.0584 

9 Years Old 0.0940 0.2919 

    10 Years Old 0.1299 0.3362 

 

Coast Guard District 

  11 Years Old 0.1658 0.3719 

 

Northeast 0.2940 0.4556 

12 Years Old 0.1675 0.3734 

 

Mid-East Coast 0.1607 0.3672 

13 Years Old 0.1419 0.3489 

 

Southeast 0.0222 0.1474 

14 Years Old 0.1060 0.3078 

 

Central States 0.0017 0.0413 

15 Years Old 0.0701 0.2553 

 

Northern Great Lakes 0.1265 0.3324 

16 Years Old 0.0342 0.1817 

 

Southwest 0.1162 0.3205 

17 Years Old 0.0085 0.0921 

 

Northwest 0.2017 0.4013 

    

Hawaii 0.0171 0.1296 

    

Alaska 0.0171 0.1296 

        Training School 0.0427 0.2023 

Notes: The data contains 585 observations that have information on each of the variables presented. The years are evenly split with 

20% of the observations shown in each year from 2010 through 2014 (i.e., a balanced panel dataset of the 117 boats). 
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Table 2: The Effect of Boat Age on Operational Availability (OA) 

       

 

(1) (2) (3) (4) (5) (6) 

 

OA  OA  Log(OA) Log(OA) IHS(OA) IHS(OA) 

       Age -0.016** -0.0095* -0.018* -0.0083 -0.0046** -0.0028* 

 

(0.0047) (0.0048) (0.0081) (0.0086) (0.0013) (0.0012) 

       Observations 585 585 576 576 585 585 

Estimator GLS GLS GLS GLS GLS GLS 

Time Effects No Yes No Yes No Yes 

R
2
 0.101 0.108 0.054 0.060 0.110 0.136 

Notes: **,*,+ denote significance at the 1%, 5%, and 10% level respectively. All models have  

the full set of controls, and report the heteroscedastically robust standard errors in  

parentheses. Full estimates available upon request. 
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Table 3: The Effect of Specific Boat Years on Operational Availability (OA) 

       

 

(1) (2) (3) (4) (5) (6) 

 

OA OA  Log(OA) Log(OA) IHS(OA) IHS(OA) 

       Y8 -0.057 -0.040 -0.100 -0.084 -0.011 -0.0098 

 

(0.059) (0.061) (0.093) (0.099) (0.010) (0.011) 

Y9 -0.032 -0.0044 -0.027 0.0054 -0.0026 -0.0008 

 

(0.052) (0.055) (0.073) (0.078) (0.0083) (0.009) 

Y10 -0.017 0.015 -0.015 0.027 -0.0006 0.0013 

 

(0.05) (0.054) (0.07) (0.077) (0.0079) (0.0089) 

Y11 -0.063 -0.023 -0.083 -0.029 -0.011 -0.0062 

 

(0.058) (0.064) (0.087) (0.093) (0.010) (0.012) 

Y12 -0.038 0.0062 -0.049 0.013 -0.0038 0.0023 

 

(0.053) (0.057) (0.077) (0.081) (0.0087) (0.010) 

Y13 -0.073 -0.023 -0.100 -0.031 -0.013 -0.0057 

 

(0.056) (0.059) (0.081) (0.086) (0.0098) (0.011) 

Y14 -0.037 0.018 -0.035 0.045 -0.007 0.0019 

 

(0.056) (0.062) (0.080) (0.090) (0.010) (0.012) 

Y15 -0.16* -0.099 -0.23+ -0.14 -0.043** -0.031+ 

 

(0.069) (0.074) (0.120) (0.130) (0.016) (0.016) 

Y16 -0.23* -0.16+ -0.21+ -0.11 -0.065* -0.049+ 

 

(0.092) (0.097) (0.120) (0.130) (0.026) (0.026) 

Y17 -0.21+ -0.13 -0.31 -0.19 -0.040+ -0.018 

 

(0.120) (0.130) (0.220) (0.230) (0.024) (0.026) 

       Observations 585 585 576 576 585 585 

Estimator GLS GLS GLS GLS GLS GLS 

Time Effects No Yes No Yes No Yes 

R
2
 0.133 0.139 0.078 0.084 0.157 0.174 

Notes: **,*,+ denote significance at the 1%, 5%, and 10% level respectively. All models have 

the full set of controls, and report the heteroscedastically robust standard errors in parentheses. 

Full estimates available upon request. 
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Table 4: The Effect of Boat Age on Cost 

       

 

(1) (2) (3) (4) (5) (6) 

 

Cost  Cost  Log(Cost) Log(Cost) IHS(Cost) IHS(Cost) 

       Age 3364.8** 1736.8+ 0.0781** 0.00329 0.00887** 0.000373 

 

(876.6) (1017.7) (0.0298) (0.0382) (0.00338) (0.00433) 

       Observations 477 477 477 477 477 477 

Estimator GLS GLS GLS GLS GLS GLS 

Time Effects No Yes No Yes No Yes 

R
2
 0.097 0.141 0.091 0.156 0.091 0.156 

 

 

 

 

 

  

Notes: **,*,+ denote significance at the 1%, 5%, and 10% level respectively. All models have 

the full set of controls, and report the heteroscedastically robust standard errors in parentheses. 

Full estimates available upon request. 



32 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5: The Effect of Specific Boat Years on Cost 

       

 

(1) (2) (3) (4) (5) (6) 

 

Cost Cost Log(Cost) Log(Cost) IHS(Cost) IHS(Cost) 

       Y8 12856.9 11099.8 0.44 0.203 0.05 0.0231 

 

(13751) (13556.9) (0.763) (0.761) (0.0866) (0.0864) 

Y9 11626.1 15713.5 0.722 0.644 0.082 0.0731 

 

(10976.7) (11644.1) (0.609) (0.628) (0.0692) (0.0712) 

Y10 17835.6 18274.5 0.722 0.495 0.0819 0.0562 

 

(13056.1) (13431.4) (0.619) (0.640) (0.0703) (0.0726) 

Y11 19649.2* 16664.7 0.964+ 0.598 0.109+ 0.0679 

 

(9830.2) (10947.2) (0.565) (0.593) (0.0641) (0.0673) 

Y12 18052.9 14357.7 0.863 0.455 0.0979 0.0516 

 

(11692.2) (12792.3) (0.595) (0.627) (0.0675) (0.0712) 

Y13 28424.1* 24136.0+ 1.249* 0.821 0.142* 0.0932 

 

(11371) (13131.9) (0.591) (0.639) (0.0671) (0.0725) 

Y14 12913 6512.5 0.816 0.314 0.0926 0.0356 

 

(11365.5) (13355.2) (0.593) (0.644) (0.0673) (0.0731) 

Y15 40826.8** 31139.7* 1.166+ 0.556 0.132+ 0.0631 

 

(14082.5) (15465.6) (0.621) (0.678) (0.0705) (0.0769) 

Y16 48684.2* 36224.6 1.026 0.337 0.116 0.0383 

 

(23134.8) (23688.3) (0.698) (0.747) (0.0792) (0.0848) 

Y17 37515.9 25747.5 1.462+ 0.829 0.166+ 0.0941 

 

(28782.8) (29429.1) (0.761) (0.810) (0.0864) (0.0919) 

       Observations 477 477 477 477 477 477 

Estimator GLS GLS GLS GLS GLS GLS 

Time Effects No Yes No Yes No Yes 

R
2
 0.097 0.141 0.091 0.156 0.091 0.156 

Notes: **,*,+ denote significance at the 1%, 5%, and 10% level respectively. All 

models have the full set of controls, and report the heteroscedastically robust standard 

errors in parentheses. Full estimates available upon request. 
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Appendix 

Cost Data 

Cost data is from fiscal years 2010-2014 and is recorded in two tracking systems: FLS and 

AMMIS. FLS cost data comes in the following categories: CASREP, CASREP MODERN, 

CSMP, Planned Maintenance, TCTO and Transportation. A CASREP is a casualty report 

message that a unit releases to inform their operational commander an asset is unable to perform 

or partially perform a primary or secondary mission. The CASREP message also notifies the 

support community of the casualty and requests assistance such a parts, labor or technical 

guidance. CASREP costs are funds expended to correct the discrepancies.  

CASREP MODERN costs are funds expended to correct a discrepancy with a planned 

equipment modernization project instead of the original system. A CSMP is a current ship’s 

maintenance project. CSMP costs fix materiel or configuration discrepancies that do not limit the 

boat’s ability to complete the mission (do not require a CASREP) and are above the 

organizational capability level. Planned maintenance is preventive maintenance that is part of the 

boat class maintenance plan. A TCTO is a time compliance technical order; these costs are 

typically planned changes to the entire fleet to upgrade or replace obsolete equipment or provide 

a new capability. Transportation costs are to hire a hauling company or licensed commercial 

vessel captain to move a boat between units or to complete maintenance availability at another 

location.  

AMMIS cost data is money spent on a boat that does not fall into one of the other 

categories, discussed above. These costs may include consumables for organizational level 

planned maintenance, repair of items that are within the organization’s capabilities that are not 

mission limiting, or replacement of outfit items.  
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The Coast Guard switched to a new finance and logistics system between 2009 and 2012 

so cost data during this time is incomplete. FLS data is available from 2010 to June 2014, when 

we received the data, and AMMIS data is available from 2011 to June 2014. In 2011, two 

percent of boats had AMMIS costs recorded. That number jumped to 81 percent in 2012, 93 

percent in 2013 and 94 percent in 2014. Table 1AX shows the annual average amount of money 

spent per boat, the standard deviation and the total amount. 

AMMIS data has been tracked since 2012 for most units, though there is no AMMIS data 

for six boats, hull numbers as follows: 47233, 47249, 47279, 47301, 47316 and 47322. All these 

boats are at stations within the Sector Long Island Sound area of responsibility.  This suggests 

the sector has a problem logging their costs in AMMIS. We have notified SFLC SBPL of this 

issue.  
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Figure 1AX: Standard 47 foot Motor Life Boat 

 

Notes: Photograph courtesy of the U.S. Coast Guard, 2012 
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 Figure 2AX: Distribution of Support Costs for the Fleet of 47 foot MLBs 
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Table 1AX: Annual Average Cost per Boat 

  FY10   FY11   FY12   FY13   FY14  Total  

Ave. $23,056  $20,594  $24,567  $54,486  $59,833  $184,013  

St. 

Dev. 
$33,736  $33,372  $31,729  $53,846  $101,029  $110,160  

Total $2,720,711  $2,430,162  $2,898,944  $6,429,402  $7,060,361  $21,529,521  

 


