A Dynamic Programming approach on a tree
structure for finite horizon optimal control problems

Alessandro Alla
works in collaboration with M. Falcone, L. Saluzzi

Third AFOSR Monterey Workshop
Computational Issues in Nonlinear Control

Monterey, October 8, 2019



Outline

o Introduction
@ Dynamic programming principle and HJB equations
@ Classical Semi-Lagrangian approach

9 Dynamic programming on a Tree Structure
@ Tree Structure Algorithm
@ A priori error estimates

e HJB-POD approach on Tree Structure

6 Numerical tests



Outline

o Introduction
@ Dynamic programming principle and HJB equations
@ Classical Semi-Lagrangian approach



HJB equation for the finite horizon problem

Controlled Dynamics and Cost Functional
{y(t, u) = f(y(t), u(t), 1), te(t,T]
(1) =x

Jea(u / L(y(s. u), u(s), s)e~ ds + g(¥(T))

ult)yed ={u:[t,T] - U Cc R™, measurable }

Value Function
t) ;== inf
v(x,1) u('.?eu‘]“(“)




HJB equation for the finite horizon problem

Optimal Feedback Map

u*(x,t) = arg milr}{L(X, ut)y+vv(x,t)- f(x,u,t)}
ue

Dynamic Programming Principle

v(x,t) = min {/: e SL(y(s), u(s),s) ds + v(y(r), )} t<r7<T

uelU

| \

HJB equation

ov
ot

—(x, 1)+ Av(x,t) = m|n {L(x,u,t)+ Vv(x,t) - f(x,u,t)}

.




Classical approach

Semi-Lagrangian scheme (\ = 0)

{ Vit = min[ALL(X;, U, ta) + V7(x; + AtF(x, u, 1)), n=N, ..., 1
ue

VN = g(x)
Xj + At f(x; UQ)X
Xj -+ Atf(x;, uy)
Xi
Xj+ At "(X,'7 LT;)"

Discretization: constant At for

time and N, controls

Cons of the approach

e V'(x; + Atf(x;,u,ty)) needs
an interpolation operator

@ Requires a numerical domain
chosen a priori and selection
of BC

@ The curse of dimensionality
makes the problem difficult to
solve in high dimension (need
e.g. model order reduction)
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Tree Structure Algorithm (A., Falcone, Saluzzi, ’19)

Initial condition x € RY, discrete set of controls U = {uy, ..., un,}

Starting with x, we follow the dynamics given by the discrete controls

T1 :{C,j}/:{X—FAtf(X, U,‘,Z‘o)},‘7 = 1,...,Nu

()

e



Tree Structure Algorithm (A., Falcone, Saluzzi, ’19)
Given the nodes in the previous level, we build the following one

T ={¢ " + AtHG g t) 3y =1, NG




Approximation of the value function

The numerical value function V/(x, t) will be computed on the tree in
space, while in time we consider a piecewise constant function

V(X, t) = Vn(X) VX, Vt € [tn, tn+1)

Computation of the value function on the tree

The tree structure defines a grid 7" = {C,-”},I-V:S1 andn=0,...,N, where
we can compute the numerical value function:

V”(g‘f) = UmEiLr}{ V”+1(C;7 + Atf( ,-”, u,ty)) + At L( ,-”, u,th)} C,“ eT"
VR = g(c) NeTN




Pros vs Cons

@ We do not need interpolation, the nodes x; + At f(x;, u, t) belong
to the grid by construction

@ If the dynamics is autonomous, we can compute

VP(C), V¢ € Up_TH

@ Mitigation of the curse of dimensionality (e.g. , d > 10)

@ Still have dimensionality issues. In fact, given N, controls and N
time steps, the cardinality of the tree is O(N)'*1)




Solution: Pruning the tree




Solution: Pruning the tree

Given a threshold e, two nodes ¢/’ and Cj” will be merged if

I =l <er

/ /
/Gk S g

)
~ :Q} -

Reasonable: if (' ~ (! = V"((]") = V"(¢) (V"(x) is Lipschitz) J




Error estimates

Theorem (Falcone, Giorgi, '99)
Let f, L and g be Lipschitz continuous and bounded, then

sup |v(t,x) = V(t,x)| < C(T)vAt
(x,t)ERIX[0,T]

A\

Theorem (Saluzzi, A., Falcone, '18)

Let f, L and g be Lipschitz continuous, bounded. Furthermore, let L
and g be semiconcave and f € C', then

sup  |v(t,x) — V(t,x)| < C(T)At
(x,H)ERI%[0,T]

Remark

One can obtain the same order of convergence in the case of the
pruned tree if the pruning tolerance ¢+ is chosen properly.

(e.g. e7 ~ O(At?) for forward Euler)
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Control of Partial Differential Equations via DP

The discretization of a PDE leads to a large system of ODEs. The
approximation of the correspondent HJB equations is unfeasible.
Curse of dimensionality.

(Kunisch, Hinze, Volkwein,...)

POD decomposition allows to reduce the number of variables to
approximate partial differential equations.

The goal is to approximate optimal control problems in infinite
dimension coupling numerical schemes for HJBs with POD techniques.
Refs: Kunisch, Volkwein and Xie (2004), A., Falcone (2013, 2014),

A., Hinze (2015), A., Falcone, Kalise (2016), A. Falcone, Volkwein
(2017), A. Schmidt, Haasdonk (2017)




Reduced Order Modelling Control Problem

MOR ansatz
y(t) = wylt)y viw=1  wecR™

| A\

Compact Notations
x'=wTx, Y1) =vTy(t)
(YD), u(t), 1) = W AWy (8), u(t), 1), L(y (1), u(t)) = L(Wy“(t), u(h))

V.

yt) = f(yi(0), u(t)), te[o,T],
{ y4(0) = x* e R%

The cost functional is:

VAOE /OT L(y"(1), u(t), e dt + g(y(T))




Proper Orthogonal Decomposition and SVD
Given snapshots (y(fp),...,y(f)) € R"

We look for an orthonormal basis {1;}¢_; in R™ with ¢ < min{n, m} s.t.

¢ 2 d
’QZ}'I? "awf Za] Z.ijwl>q/} = Zo-lz
i=1 i=0+1

reaches a minimum where {oj}7_, € R*

mind(¥y,...,%)  S.1.(i,Y)) = 6
Singular Value Decomposition: Y = vx V7.
Forte{1,....,d=rank(Y)}, {w, _4 are called POD basis of rank /.
Z 0’
ERROR INDICATOR: £(¢) = —I— with o; singular values of the SVD.
> of

i=1




Reduced Order Modelling Control Problem

Reduced Value Function

Liel p) T _ ¢
vixS ) = vV xt) = ulerid Jye 1(U)

Reduced HJB equation

Vi )

+MVE(XE, B4 sup{ =V, e vi(xt, - F (X5 u, ) —L(Xx5 u, 1)} =0
ot uel

| A\

Feedback Control
utr(x,t) = mei{}{f(x, u) - VeV (x4, 1) + L(x, u, 1)}
u




HJB-POD on a tree structure

VIE) = min{ VLG + AL, 1) + AL u )
CIM eT™ n=N-1,....,0,
VLM = g (M), ¢t e T

Theorem (A., Saluzzi, 2019)

Letf, L and g be Lipschitz continuous, bounded. Moreover let L and g
be semiconcave and f € C', then there exists a constant C(T, |x|)
such that

sup |v(x,s) — V(X! 8)| < C(T,|x)(||ld — P’|| + At), VxeRY,
s€l0,T]

where P* is the projection operator.
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Test 1: Comparison with exact solution

We consider the following dynamics

f(x, u) = <:2>,UGU:[1,1].

i

where x = (xy, x2) € R?, and the following cost functional:
L(x,u,t)=0, g(x(T)) = —x(T), A=0.

We compare the approximations according to /- relative error

ZT v(Xi, t) — VP(x;)[? N

Xic€ n

)= TS g Ee T AL
x;€Tn n=0




Test 1: Comparison with exact solution
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Figure: Full Tree (|7] = 2097151) (left) and Pruned Tree with e = Af? (| 7| = 3151)
(right)

Figure: Error ¢> with different initial conditions



Test 1: Comparison with exact solution

At [T CPU Errny Erry» Orders» Ordery, o
0.2 63 0.05s 9.0e-02 0.122

0.1 2047 0.35s 4.4e-02 0.062 1.04 0.98
0.05 2097151 1.1s 2.2e-02 0.031 1.02 0.99

Table: Error analysis and order of convergence of the TSA without pruning

At T CPU  Erny Errep Orders» Ordery, »
0.2 42 0.05s 9.1e-02 0.122
0.1 324 0.08s 4.4e-02 0.062 1.05 0.98
0.05 3151 0.6s 2.1e-02 0.031 1.04 0.99
0.025 29248 2.5 1.1e-02 0.016 1.005 0.994
0.0125 252620 150s 5.3e-03 0.008 1.004 0.997

Table: Error analysis and order of convergence of the TSA with e = Af?



Test 1: Comparison with exact solution

At Nodes CPU  Ermpp Erry o Order, Ordery

0.2 1365 0.29s 3.5e-03 4.2e-03
0.1 1398101 3.92s 8.6e-04 1.1e-03 2.03 1.98

Table: Table for Heun’s scheme for the Full Tree

At Nodes CPU  Erny Erry» Order, Ordery, »

0.2 160 0.35s 5.3e-03 7.01e-03

0.1 2895 0.61s 8.5e-04 1.07e-03 2.65 2.71

0.05 58888 60s 2.0e-04 2.7e-04 2.11 1.99
0.025 1018012 9051s 3.9e-05 6.7e-05 2.34 2.00

Table: Table for Heun’s scheme with e = Af®



Test 1: Comparison with exact solution

—a—tol = At?
—A—tol = At}
—o—tol = At'
—a—tol = A?

Order 2

—e—tol = At
—A—tol = At}
—o—tol = Ati
—a—tol = At?
Order 1

0.2 0.1 0.05 0.025 0.0125 0.2 0.1 0.05 0.025

Figure: Comparison of the error Err,, » with different tolerances for Euler
scheme (left) and Heun’s scheme (right)



Test 2: Heat equation

We want to study the following heat equation:

Yi= oY+ Yo(X)u(t) (x,t) € 2x [0, T],
y(x,t)=0 (x,t) € 92 x [0, T,
y(x,0) = yo(x) xe.

and minimize the following cost functional

Jyo,z(U)Z/tT (51/QIY(S,X)!2 dX+7\U(S)!2> dS+/QU’(T=X)I2dX

Semi-discrete problem

y(t) = Ay(t) + Bu(t),
Ax =107%, At=0.05 T=1,0=0.1,4 = 1and y = 0.01.




Test 2: Heat equation

—— Uncontrolled dynamics
|—— Controlled dynamics

0.2 0.4 0.6 0.8 1

Figure: (Smooth initial condition) Uncontrolled solution (left), optimal control
solution (middle), time comparison of the cost functionals (right).

0.25

0.2 0.4 0.6 0.8 1

Figure: (Discontinuous initial condition) Uncontrolled solution (left), optimal
control solution (middle), time comparison of the cost functionals (right).



Test 2: Heat equation

—At=0.1
1 —At=0.05
At=0.025

——At=0.0125
—Riccati

— At=0.025
0.9 — At=0.0125
— Riccati

0 0.2 0.4 0.6 0.8 1

Figure: Test 2: Cost functional (left) and optimal control (right) with N, = 11.

At Nodes Pruned/Full CPU Erro  Errs, Order, Order

0.1 134 4.7e-09 0.14s 0.279 0.241

0.05 863 1.2e-18 0.65s 0.144 0.118 0.95 1.03
0.025 15453 3.1e-38 12.88s 5.5e-2 5.3e-2 140 1.17
0.0125 849717 3.8e-78 1.1e3s 1.6e-2 1.6e-2 1.77 142




Test 3: 2D Reaction diffusion equation

8ty(xv t) = UAy(X, t) +p (yZ(X, t) - yS(X7 t)) —+ yO(X)U(t)
ony(x,t) =0

y(x,0) = yo(x)

Jyo.t(U) = / (/ ly(x, s)[2dx + 100!u( )2 )ds+/ﬂ|y(x, T)|2dx

.

POD-DEIM resolution

T=1,0=0.1,u=5,and Ny = 961.
6 POD basis to obtain a projection ratio equal to 0.9999.




Test 3: 2D Reaction diffusion equation
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Figure: Uncontrolled solution (top) and controlled solution with full tree
(bottom) for time t = {0,0.5,1} .



Test 3: 2D Reaction diffusion equation

Control Policy with POD-DEIM s Cost Functional

Figure: Test 1: Optimal policy (left), cost functional (middle) and Jy, o (right)
for U, with n = {2,3,4,5}.

U2 U3 U4 U5
TSA-Full 5.8312s 241.5773s 3845.77s > 4 days
TSA-POD 0.5157s 19.7969s 432.0990s 1.0871¢e + 04s

Table: CPU time of the TSA and the TSA-POD with a different number of
controls




Test 4: Comparison MPC and TSA

_ X2
flx,u) = (0.15(1 — X2 X — X1 + U

4
o) = [ (19(6)1B + g5 1u(9)R ) ds+ Iy

> ue U=[-1,04]

© TS
o ——wpe
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Figure: Comparison of optimal trajectory (left) and optimal control (right).

Cost MPC:0.0695 > Cost TSA: 0.0569



Conclusions and future works

Conclusions

@ We presented a new algorithm to solve finite horizon optimal
control problems using a tree structure with first order
convergence.

@ Introduced a pruning rule to solve dimensionality problem.

@ It can be easily extended to high-order methods.

@ It can be applied in general framework, with non linear dynamics
and non-quadratic cost functional.

@ We coupled the method with POD to obtain a more efficient
algorithm.

@ Stochastic extension.
@ Feedback reconstruction.
@ Algorithm improvements.
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