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Optimization in Chemical Processes

e Model Predictive Control
— MIMO with many states and constraints
— Detailed nonlinear dynamic models
— Slower dynamics (seconds, minutes)
— Optimal reference trajectories

e Dynamic Real-time Optimization (eNMPC)
— Moving Horizon Framework
— Extensions of MPC

— Stage costs may not be dissipative

0

e Can NLPs with first principle dynamics be -~
solved on-line with stability and robustness
guarantees?




NMPC Nominal Stability with Terminal Cost
(Rawlings and Mayne, 2009)

V(x(k))=min > y(z,v,) + ¥(z,)

<1 =f(Zz>Vl))
z,=x(k), z, € X, VIEU,ZNEXf,

S.z.

==> u(k)=vo, Set k=k+1

Assumptions:

* f(x, u)is Lipschitz continuous (will assume smooth)

* There exists a local control law u = k4x) for all x € X, such that

P(f(x, k(x))) - P(x) = -1p(x, K(x))

* Y(x, u), W(x) satisty a,(Ixl) = Y(x, u), a(xl) = Hx) where a,(*), o,() are
K functions.

* N sufficiently long, W(x) sufficiently large (Pannocchia, Rawlings, 2011) -
no terminal constraints needed

e Stability Properties: Lyapunov Function based on Stage Costs



% MFCQ for Reformulated NLP

V()= minWz,)+ >z D08

s.t. z,, =J(z,v)

z, = x(k)

v, eU,l=0,.,N-1
g(z,)=§,,5=0,,0=0,.,N
e=[11,1,1...1]"

e Choose pand a sufficiently large N to determine nominal stability

e Softened state constraints with exact penalties are enough to satisfy:
— MFCQ: equalities have full rank Jacobian, & can always be increased
— tosatisfy: Vg(2)T'd, — dg <0
— CRCQ: inequalities are linear

— GSSOSC: assume weights on quadratic stage costs are chosen sufficiently large
e The solution and V(x(k)) are uniformly continuous
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KKT Properties and Constraint
Qualifications for Sensitivity

For s*(p) =(x*, A*, v*)

* MFCQ, GSSOSC — uniform continuity of objective function and
x* with respect to p. (Kojima, 1985)

* MFCQ, GSSOSC, CRCQ - (D 4, x*) - directional derivatives
calculated with additional LP and QP steps (Ralph and Dempe,
1995)

 LICQ, SOSC, SC = (ds*/dp) - derivatives can be calculated
(Fiacco, 1983) =» KKT matrix is nonsingular




%&“ NLP Sensitivity

Parametric Program s*(p) D
2

s.t. c(x,p) =0 » P(p)
x>0

Solution Triplet

S*(p)T — [x*T AT V*T]

Optimality Conditions P (p)

Vaef(z,p) + Vec(z,p) A\ —v = 0

c(z,p) = O
XVe = O

NLP Sensitivity = Rely upon Existence and Differentiability of s™(p)
8
> Main Idea: Obtain—| and find 5*(p1) by Taylor Series Expansion _,
op o S (Pl)....‘

T 70 ¢ (1)

(r1 — Po)

. 0s
§°(p1) =~ s"(po) + .
P pg s*(po)




é% NLP Sensitivity with IPOPT
il (Pirnay, Lopez Negrete, B., 2011)

Obtaining g—:

Po

Optimality Conditions of P(p): Solved with Newton’s Method in IPOPT

Vel =Vaf(x,p) + Vec(z,p) A\ —v 0

c(w,p) = O } Q(s,p) =0

XVe = O

Apply Implicit Function Theoremto Q(s,p) = O around (pg, s*(pg))
0Q(s*(po),po) 9s

3Q(8*§po),po) —0

Os op PO D
e
-~ - o N
W(s*(po)) A(z*(po)) I op Va,pL(s*(po))
A(z*(po))" 0 0 % || Vee(z*(po)) | =0
V*(po) 0 X*(po) g_; 0

KKT Matrix IPOPT

Wk, A\g) A(zg) —1
Axz)T 0 0
| %7 0] X

- Already Factored from Newton Step in IPOPT

- Sensitivity Calculation from Single Backsolve

> Approximate Solution Retains Active Set



Update using sensitivity on-line

_Advanced Step Nonlinear MPC (zavala, B., 2009)

Solve NLP in background (between steps, not on-line)

X(k).'/.: Xk+1;k
u(k), _—

tk tk+1 tk+2

k+N-1

min  V(x(k), u(k)) = k+N|k)+ E w('xﬂk’ llk

st X =S (x(k),u(ku

[=k+1

Xk =f(xl|k, l|k) [ = k+l,..k+N-1
xl|kEX, vl|kEU, X EXf

k+Nk

Solve NLP(k) in background (between 1, and 7., ;)

Offline Predictor

tk+N



_Advanced Step Nonlinear MPC (zavala, B., 2009)
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Solve NLP in background (between steps, not on-line)
Update using sensitivity on-line

tk+N
i O
w, A, -1 AX :
Al O O AAl= x4 —Xx(k+1)
| Z, O X, Az O

Solve NLP(k) in background (between ¢, and 7, ;)
Sensitivity to update problem on-line to get (u(k+1))

Online Corrector




_Advanced Step Nonlinear MPC (zavala, B., 2009)
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Solve NLP in background (between steps, not on-line)
Update using sensitivity on-line

i Xk+2.|k+1 i i

() g—x(ks1) i
ke T L T

u(k)'U(—+'f)= R e e — .
I ——iu,

e Tt Y k+N L
min V(X(k+ 1)1 u(k+ 1)) = F(xk+N+1|k+1) T E W(xl|k+1’vl|k+1)
[=k+2
st X =S ek +1),u(k +1))

X et =f(xl|k,vl|k , | =k+2,..ktN
cX, elU, x EX,

xl lk+1 vl lk+1 k+N+1|k+1

Solve NLP(k) in background (between 1, and 7., ;)
Sensitivity to update problem on-line to get (u(k+1))
Solve NLP(k+1) in background (between ¢, ; and 7, >)




asNMPC: Concepts and Properties

Interpretation: Fast linear MPC controller using linearization
of nonlinear model at previous step.

NLP solved between samples, “instantaneous” sensitivity
update at sampling time

* On-line computation 2-3 orders of magnitude faster;

=» Computational delay virtually eliminated
e Second order errors compared to ideal NMPC
=» Nominal and ISS stability (zavala, B., 2009)

* |SpS stability when coupled with embedded state estimators
(Huang, Patwardhan, B., 2009a,b, 2010a-c, 2012)



éﬁﬁé Nonrobust NMPC Problem

Dynamic system:

=@+ du+ &
o) = T T ey 200

1+ (2% + x23)u? — 2z u

v

Z_

Inequality Constraints: 5\
. 2 *\
X ={z:2eR%z <.25) A
\ \\\q T " AN\
U=[-11] SO B
Xf = .18 Xy = 1B

Cost functions:

B(z) = |2 cos— 15— 212Dz

2|27 + (22 — |2])?
xlfl(xa _1) + (33‘2 _ |$|)(f2($, _1) B |$|)

Y(z,u) = |z| cos™

L§
Vat+ (22— [2)2 V fi(z, —1)? + (f2(2, 1) — |2])?

Grimm, G., Messina, M. J., Tuna, S. and Teel, A. [2004], ‘Examples when nonlinear model predictive control is nonrobust’,

Automatica 40, 523-533.



Source of Nonrobustness

* Nonrobustness is caused by the hard state constraint

. . e . . _ ¢ .
There. exists a crlt.lcal circle V\{Ith radius 7. . = outside
of which there exists no feasible c.w. solution

* Thus the value function of the NLP is discontinuous at this
circle

M N\ \ \
"\_
N Y
SONN 1]
3 »

;,. )




% Impact of Reformulation

(¢, penalties and/or larger N)

07 ; : 08 :
—+—hard constraint —hard constraint
I—+— soft constraint 05 — M — soft constraint
1 or n
06} 1 |
1
1
| 04+t
05} :
: 02h
1
1
1
04t i ol .
N 1
x Y =
03t 021 ‘
04+
02+ -
06k o
01F —
-08r H
0 1 1 1 f 1 1 | | | | | 1
0 0.05 0.1 0.15 02 025 03 0.35 0 5 10 15 20 25 30
X, time step

» Hard constraint x; < ¢ prevents trajectory from going beyond x;=c
» Soft constraint allows the trajectory to exceed x;=c and converge
» MFCQ and GSSOSC satisfied



Aﬁﬁé |[deal NMPC vs. asNMPC Results
(small amount of noise, o = 0.05)

0.7

-0.91

== 5oft+NMPC —I soft+NMPC

== soft+asNMPC _ = soft+asNMPC
-0.92f
0.6
-0.93f
05F
-0.94f
04F ~0.95|
X' 3
ol -0.96f
097}
0.2
-0.98f
01F A
-0.99} =
0 \ | | | ! -1 L — 4
0 0.05 0.1 0.15 02 0.25 03 0.35 0 5 10 o5 20 25 30
X ! time step

State Space Trajectory Control Trajectory



% Terminal Conditions

V(x(k))=min Y y(z,v,) +|¥(z,)

214 =f(21’vz))
z,=x(k), z, €X,v €U,z |€EX

S.zt.

f’

* Assume large, N --> 0 ? ==>u(k)=v,, Set k=k+1

* Hard to check, Can result in large NLPs
* Typically ignored in real applications

* Endpoint constraint zy = 0

* Requires N controllability.
 What is N? Potential difficulty in finding feasible solutions

* Terminal region zy € X and/or terminal cost W(zy)
* Avoids problems of previous two methods
e Selection of region or cost not obvious
* Recursive feasibility requires W(xy+1) — W(xg) < =Py, up) V x € X5



i Quasi-Infinite Horizon NMPC

4 V(x(k)=min Y y(z,v,)+ ¥(z,)

21 =f(Zz’vz))
z,=x(k), z, EX, leU,ZNEXf,

S.L.

Infinite cost

approximated by v

|
ke k+1 kN ko N+ 1 e :
 Framework for terminal conditions that bound infinite horizon problem

e Accounts for what happens after predictive horizon
* Robustness maintained as time proceeds

* Terminal cost W represents infinite horizon controller stabilizing in X

* Choose LQR (linear quadratic regulator) to bound V_, in the terminal region

* H. Chen and F. Allgéwer. A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability. Automatica, 34:1205—
1218, 1998.

* C.Rajhans, S. Patwardhan, and H. Pillai. Two Alternate Approaches for Characterization of the Terminal Region for Continuous Time Quasi-
Infinite Horizon NMPC. Proceedings of the 12t IEEE International Conference on Control and Automation, 98-103, 2016.

* M. Lazar, M. Tetteroo, IFAC Papers Online 51(20) (2018), pp. 141-146

* S. Lucia, P. Rumschinski, A. J. Krener, R. Findeisen, IFAC Papers Online 48(23) (2015), pp. 254-259
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Terminal Cost Based on LQR

Infinite horizon bounded by ),

Rigorous finite horizon  \3]id in Xr
A A
AP
. Y |
Y(x) = 21 Pr = min E 2!l Qz; + v Ru;
Zi,Uq
1=N
st. zix1 =Az;+Bv; Vi=0...00 T T
20=1T ! ]
0 k k+ N

* Terminal cost i) becomes infinite horizon cost for linearized system
« P found from Ricatti equation P = A"PA- A"PB(R+B"PB)"'B"PA+Q

* Computing terminal region X is equivalent to finding region where LQR
stabilizes nonlinear system

* Terminal region can be derived from Lyapunov function descent ==> provides
bound on system nonlinearities

 To bound nonlinearities, method must scale to many states




Bounding nonlinearities

Example of nonlinearity bound

Apply scalable method (off-line)

|f(x,—Kx) — Ax + BKx| = |¢p(x)| < M|x|?
 Sample one-step CL-LQR simulations

e Apply Taylor’s Theorem
* Simple and effective for large systems

Xf computed from M and q:

—~—

7, > 0increases weight of LQR costs: W = (1+ y, )(Q + K'RK)
Cost to go P and gain K satisfy the Lyapunov equation for the LQR

Terminal region given by Xr = {x | [x| < ¢}
o (&Ap +/(6Ap)? 1 AK%AP> o1
f=

ApM

)\77/_:1,/0,33

0 is the maximum singular value of Ax = A — BK and Ap = [ 22

Satisfies assumptions on terminal region/cost formulation for asymptotic stability



E‘%Robust QIH-NMPC Reformulation

N—-1
Vy(zg) = min (z;erZ — ?J;TRUZ' +- pﬁére) + zjj\;PzN -+ pfg"\}e
15U i—0
S.t. Zi4+1 — f(Z,L',Ui) Vi=0...N -1

20 = Tk
h(z)|< &,6>0V0=1...N—1
v, €eU Ve=0.. N —1
lzn| < ep[HEN,EN >0

* Penalty weight p chosen sufficiently large to inherit nominal stability

* Formulation satisfies MFCQ, (feasible search direction exists)

GSSOSC holds if Q, R large enough

Thus Vy, is uniformly continuous ==> Input-to-state stability (I1SS) holds



Inputs
Manipulated variables
Controlled variables <

_—

\‘/

DI1fxA

Distillation Example

v

-

=

e Separation of three component mixture A,B,C - maintain product purities
e 246 States - tray holdups and compositions at 41 trays in each column
8 Controls - reflux, boilup, distillate flow, bottoms flow

e ~ 10000 variables, 200 do

fs

R.B. Leer. Self-optimizing control structures for active constraint regions of a sequence of distillation
columns. Master's thesis, Norwegian University of Science and Technology, 2012.
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Terminal Regions for Distillation

* Nonlinearity bound set with g= 1.8 Nonlinearity bound
and M = 0.0743

* 10,000 one-step simulations under
LQR (10 CPU min done offline)

e State and control constraints
imposed independently

e Terminal region size and NMPC
performance compared as function I ==
of terminal cost weight yy, S R

In|g|

1 1 1 1 1 1 1 1
1O o0 ~ (o)} W = w2 N
T T T T T T T

|f (x,—Kx) — Ax + BKx| = |¢p(x)| < M|x|4
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Distillation Results

Terminal region size

NMPC performance with N=10

1 <

10

100
1000
10000
100000

[z (R

Yy

50 150 200 0 5 10 1‘5 20

Yy
Terminal region given by Xr = {zy | |zy| < ¢f}
LQR cost given by (1 + ylp)(Q + KTR K)
Terminal region size increases with terminal cost weight, but plateaus
Tracking performance degrades with large terminal cost weight

==> choose moderate weights

25



% Adaptive Horizon NMPC: How long is N7

N-1
Vn(zg) = gmvn (2 Qzi +v{ Rv;) + 2 Pzy
=0
sit. zix1 = f(zi,v;)) Vi=0...N —1
20 = Tk
zze€X Vi=0...N—1
v, €eUVe=0...N—-1
l2n| < ¢
* Horizon length N balances computation and robustness
* N too long: long solve times = delayed control actions

e N too short: limited robustness = unstable or infeasible
* Practical applications must use conservatively long horizon lengths

 Magnitude of trade-off changes with system state
* Longer horizon necessary further from steady state

* Adaptively choose N in real time

D. W. Griffith, S. C. Patwardhan and LTB, Journal of Process Control, 70, pp. 109{122 (2018)
A. J. Krener, ArXiv:1062.08619 (2016)



Horizon Length Selection

* NLP Sensitivity provides fast updates for perturbations to
parametric NLPs

e Fast (™1 sec) estimates to NMPC problems obtained online by
treating initial condition as parameter, as in asNMPC

* Approach: use slpopt to predict the time step S at which the
NMPC solution will reach X

k k+1 K+ Ngyq +1 k+ Ny k+N,+1

* Pirnay, H., Lopez-Negrete, R., LTB. (2012). Optimal sensitivity based on Ipopt. Math. Prog. Comp., 4, 307-331.
* Zavala, V.M., LTB. (2009). The advanced-step NMPC controller: Optimality, stability, and robustness. Automatica, 45, 86-93.



Adaptive Horizon Algorithm

Ny = Npax . Solve . Solve
k=20 NMPC(x;) asNMPC(xj4+1)

A A

No

Determine Nk+i = Nimax
Nipax and N k=k+1

a

Yes

P — NMPC problem _
P, — Sensitivity update N";’Cl B ch++1 Ns 1 Determine Sy
N, — Horizon at time k B

Ny ax — guarantees feasibility

N — safety factor

St — Time step at which the solution reaches the terminal region
Xj — system state at time k

Zy, — sensitivity prediction of terminal state at time k



@ Distillation Example with Noise

. State trajectories Horizon lengths
) ' ' 35 . .
——NMPC Iy
25F - - AHNMPC 30 | —— AH-NMPC| |
Setpoint changes Terminal Region
) 25
ol
I. 1.5 7 =
B 15}
= |
10
05 _\ 5 _\
Wm w AL
0 1 - 1 -’ 0 1 1
0 50 100 15( 0 50 100 150

Noise: 10% variance in feed flow and composition

* Horizon selection is robust, all problems are feasible

Tracking performances similar to noise-free case

AH-NMPC contracts horizon as the setpoint is approach, similar
performance as with N = 25

Feasible horizons chosen despite noise



Solve Times with Noise

Solve times Horizon lengths
200 . . 35
== NMPC = NMPC
= AH-NMPC 30 b — AH-NMPC| |
150
25
=
D) 20 5
£ 100 =
- _
> 15
&)
50 ] 10
A\
0 : : O 1 1
0 50 100 150 0 S0 100
& k

(Off-line) Solve Times
* NMPC average solve time 97 CPU s
* AH-NMPC, average 17 CPU s

* Application of asNMPC --> additional on-line computational savings

150



A% Conclusions

Robust NLP reformulations

* Uniform continuity/sensitivity of NLP guaranteed by KKT conditions and
CQs (SSOSC, MFCQ, LICQ)

e Soft output constraints lead to robustly stable NMPC

Advanced Step NMPC
e Fast off-line solutions

e Virtually no on-line computation
* Leads to ISS Stability

Terminal conditions for large scale systems
* Allows for reachability analysis and ultimately shorter horizons
* Based on LQR control in X, and applying Taylor expansions
* Easily embedded in NMPC formulation

Adaptive Horizon NMPC
» Faster solve times via horizon length adaption utilizing sIPOPT

* Robustness stability properties retained
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Current and Future Work

* Advanced Step Moving Horizon State Estimation

M (I yjk-1,2-Nk-1,Y (k) ;s y (k= N)) : P (x(k)) : N-1
l_nxmzlm N (T_pp Bonip—1 Hoype1) + 0 1%1:1 on (Tnk) + Z [J:;I;\'Q;L"i K+ uj Ru; A}
0 —1 i=0
st Z ‘UI.T,\_RI._I‘U,- LT Z uf;-T‘,\,Qi_lwi k C u rrent stz =1f (1'1 ks W A-)
i=—N i=—N . zok = x (k)
i i s 0k
st. =1/ (.1'1 ,\.) +wy, le{-N,-N+1,...—1} TI me / ®\ o eX, lefo,1,.., N}

y(A+[):]l (.1‘1 ]\.)+‘l‘1 ke l e {—J'\r‘r. —J\""-F 10} @ Uy e U, |l e {0,1.....A‘r— 1}

zreX, le{-N,-N+1,..,0} \

wp €W, le{-N,-N+1,.. -1} \

od MHE | NMPC © ©-0-0-¢
Future

N k N

V. M. Zavala, and LTB, “Optimization-Based Strategies for the Operation of Low-Density Polyethylene
Tubular Reactors: Moving Horizon Estimation," Computers and Chemical Engineering , 33, pp. 379-
390 (2009)



Current and Future Work

Advanced Step Moving Horizon State Estimation

Embedded discrete decisions for nonsmooth dynamics

. Suppler

{ { . Node
' . Demand
! 1 ’ Compressor

L34 L3z L2z

L26
—31—79—73—4—9?

T

* A. Gopalakrishnan, LTB, “Economic Nonlinear Model Predictive Control for the Periodic Optimal Operation
of Gas Pipeline Networks," Computers and Chemical Engineering , 52, pp. 90-99, (2013)

* Kai Liu, Saif R. Kazi, LTB, Bingjian Zhang,, Qinglin Chen, “Dynamic optimization for gas blending in pipeline
networks with gas interchangeability control,” submitted for publication (2019)




A% Current and Future Work

e Advanced Step Moving Horizon State Estimation
 Embedded discrete decisions for nonsmooth dynamics

* Multi-stage Stochastic formulations for NMPC with
uncertainties and recourse variables

Scenario branching: effect of uncertainty while optimizing control

input
X r---(dk+2, Uk+2) Xk+3
(O 1, Ugr1) 2 v @ >
X1 : _JI_ --»@- =’='::—‘=:—:_:—J| ----------- @ -------- >
ST - 1 7T @
e ————— - F---b___ - e [
AT e :
1 1 "‘—-_’. e
1 .- — N
Xk ll’//: : i - . H i - @------- >
1 Le--f-""~ T o
.‘““‘i“‘lr -------- »@-=z::----- :'—“i‘ """" "‘E'-Eizz:]: ----------- @ -------- >
Ik DIl
R I s
[ ‘I\\ m———
T @ -
SNy == i 1 o
7‘.‘E::::::::{l:"i ------ @ i j ___________ @ --------- >
I 2@-eszid N >
!____; ‘‘‘‘‘ Q. >
Non-anticipativity: control inputs from same node set equal until uncertainty is
realized

F. Holtorf, A. Mitsos, LTB, “Multistage NMPC with on-line generated scenario trees: Application
to a semi-batch polymerization process," Journal of Process Control , 80, pp. 167-179 (2019)
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Current and Future Work

Species absorbances (S)

Absorbance Profile

6
£
5
E4
=]
. g3
Spectroscopic g Concentration
G 2
data (D) 3 profiles(C)
1
) Concentration Profile
0 . . . , 0.0010
0 100 200 300 400
Wavelength (cm)
00008
-l
3
§ 0.0006 Y
2 B
»
7 £ 00004 —C
0.0002
dey, V.
Tar BTy 0.0000
200 dey .V, 0 2 4 6 8 10
Wavelg, 2503p9 25 dt v time (s)
n, 350
gth 400 0 e, 7 4

* Larger, more challenging applications
* Big data in MHE (spectral measurements)
* PDEs as process models
* Exploit multiple time scales (ODEs --> DAEs)

M. Short, C. Schenk, D. Thierry, J. S. Rodriguez, LTB, S. Garcia-Munoz, “KIPET, An Open Source Kinetic Parameter Estimation Toolkit,"
Proc. 9 Intl Conference on Foundations of Computer-Aided Process Design, 293-302, (2019)



DynGen

PlantSample
PlantPredict
cycleSamPlant()
update_u()
noisy_plant_()
plant_uinject()
update_state()

|Ce

—

Controller

ympute controller input]

nt and Future Work
Ken

'

Tk Wk | ‘State estimatorj
and disturhances [Compute the current state]

.I'k wy.
estimated states
and disturbances

Y

NMPCGen

create_olnmpc()
initialize_olnmpc()
load_init_state_()
sens_dot_nmpc()
find_target_ss()
change_setpoint()
print_r_nmpc()

o " Reference- \’
steady states L Computatlon y,
MHEGen

create_lIsmhe()
init_Ismhe_prep()

» patch_meas_mhe()

JN2.°.
S,
set_covariance_()
check_bnd_noisy()

load_cov_prior()
sens_dot_mhe()

e CAPRESE: Python/Pyomo framework for asNMPC/asMHE
and Sufficient horizon lengths found via sIPOPT

D. M. Thierry, LTB, “Dynamic Real-time Optimization for a CO2 Capture Process," AIChE J., 65, 7, pp. 1-11 (2019)



Current and Future Work

Advanced Step Moving Horizon State Estimation

Embedded discrete decisions for nonsmooth dynamics

Multi-stage Stochastic formulations for NMPC with
uncertainties and recourse variables

Structured Dynamic Decompositions for Newton Steps in
IPOPT

* Larger, more challenging applications

* Big data in MHE (spectral measurements)

* PDEs as process models

* Exploit multiple time scales

e CAPRESE: Python/Pyomo framework for asNMPC/asMHE
and Sufficient horizon lengths found via sIPOPT




