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Model Predictive Control and Dynamic 
Optimization in Chemical Processes

• Model Predictive Control
– MIMO with many states and constraints
– Detailed nonlinear dynamic models
– Slower dynamics (seconds, minutes)
– Optimal reference trajectories

• Dynamic Real-time Optimization (eNMPC)
– Moving Horizon Framework
– Extensions of MPC
– Stage costs may not be dissipative

• Can NLPs with first principle dynamics be 
solved on-line with stability and robustness 
guarantees? 2



NMPC Nominal Stability with Terminal Cost
(Rawlings and Mayne, 2009)

Assumptions:
• f(x, u) is Lipschitz continuous (will assume smooth)
• There exists a local control law u = κf(x) for all x ϵ Xf such that   

Ψ(f(x, κf(x))) - Ψ(x) ≤ -ψ(x, κf(x))
• ψ(x, u), Ψ(x) satisfy αp(|x|) ≤ ψ(x, u), αq(|x|) ≤ Y(x) where αp(•), αq(•) are 
K functions.

• N sufficiently long, Ψ(x) sufficiently large (Pannocchia, Rawlings, 2011) à
no terminal constraints needed

• Stability Properties: Lyapunov Function based on Stage Costs

V (x(k)) =min
u

ψ(zl ,vl ) +  Ψ(zN )
l=0

N

∑

s.t.
zl+1 = f (zl ,vl ))

z0 = x(k),  zl ∈ X ,  vl ∈U , zN ∈ X f ,

==> u(k) = v0 ,  Set  k = k +1



MFCQ for Reformulated NLP

J (x(k)) := min
vl ,zl

Ψ(zN )+ ψ(zl ,vl )
l=0

N−1

∑

s.t. zl+1 = f (zl ,vl ),l = 0,...,N −1

z0 = x(k)

g(zl ) ≤ 0,l = 0,...,N

vl ∈U ,l = 0,...,N −1

V (x(k)) := min
vl ,zl

Ψ(zN )+ ψ(zl ,vl )+ ρ
l=0

N

∑ ξl
l=0

N−1

∑

s.t. zl+1 = f (zl ,vl )

z0 = x(k)
vl ∈U ,l = 0,...,N −1

g(zl ) ≤ ξl ,ξl ≥ 0,,l = 0,...,N

e = [1,1,1,1...1]T

• Choose r and a sufficiently large N to determine nominal stability
• Softened state constraints with exact penalties are enough to satisfy:

– MFCQ:  equalities have full rank Jacobian, x can always be increased
– to satisfy: !"($)&'( − '* < 0 
– CRCQ: inequalities are linear
– GSSOSC: assume weights on quadratic stage costs are chosen sufficiently large

• The solution and V(x(k)) are uniformly continuous



KKT Properties and Constraint 
Qualifications for Sensitivity

For s*(p) =(x*, l*, n*)

• MFCQ, GSSOSC – uniform continuity of objective function and 
x* with respect to p. (Kojima, 1985)

• MFCQ, GSSOSC, CRCQ à (DDp x*) - directional derivatives 
calculated with additional LP and QP steps (Ralph and Dempe, 
1995)

• LICQ, SOSC, SC à (ds*/dp) - derivatives can be calculated 
(Fiacco, 1983) è KKT matrix is nonsingular
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NLP Sensitivity
Parametric Program 

NLP Sensitivity  à Rely upon Existence and Differentiability of Path

à Main Idea: Obtain         and  find               by Taylor Series Expansion            

Optimality Conditions 

Solution Triplet



NLP Sensitivity with IPOPT 
(Pirnay, Lopez Negrete, B., 2011)

Optimality Conditions of P(p): Solved with Newton’s Method in IPOPT

Obtaining  

à Already Factored from Newton Step in IPOPT

à Sensitivity Calculation from Single Backsolve
à Approximate Solution Retains Active Set

KKT Matrix IPOPT  

Apply Implicit Function Theorem to                                  around 



Solve NLP(k) in background (between tk and tk+1)

Advanced Step Nonlinear MPC (Zavala, B., 2009)

min     V (x(k), u(k)) = F(xk+N |k )+ ψ(xl|k ,vl|k )
l=k+1

k+N−1

∑

s.t.    xk+1|k = f (x(k),u(k))

        xl+1|k = f (xl|k ,vl|k ),    l  = k+1,...k+N -1

        xl|k ∈ X ,     vl|k ∈U ,     xk+N |k ∈ X f

Solve NLP in background (between steps, not on-line) 
Update using sensitivity on-line

tk           tk+1       tk+2  

u(k)

x(k)

tk+N

xk+1|k

Offline Predictor



Solve  NLP(k) in background (between tk and tk+1)
Sensitivity to update problem on-line to get (u(k+1))
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Advanced Step Nonlinear MPC (Zavala, B., 2009)
Solve NLP in background (between steps, not on-line) 

Update using sensitivity on-line

x(k) x(k+1)
u(k+1)

u(k)

tk           tk+1       tk+2  tk+N

xk+1|k

Online Corrector



Solve  NLP(k) in background (between tk and tk+1) 
Sensitivity to update problem on-line to get (u(k+1))
Solve  NLP(k+1) in background (between tk+1 and tk+2)

Advanced Step Nonlinear MPC (Zavala, B., 2009)

min     V (x(k +1), u(k +1)) = F(xk+N+1|k+1)+ ψ(xl|k+1,vl|k+1)
l=k+2

k+N

∑

s.t.    xk+2|k+1 = f (x(k +1),u(k +1))

        xl+1|k+1 = f (xl|k ,vl|k ),    l  = k+2,...k+N

        xl|k+1 ∈ X ,     vl|k+1 ∈U ,     xk+N+1|k+1 ∈ X f

Solve NLP in background (between steps, not on-line) 
Update using sensitivity on-line

tk           tk+1       tk+2  tk+N

x(k) x(k+1)
u(k+1)

u(k)

xk+2|k+1



asNMPC: Concepts and Properties

• Interpretation: Fast linear MPC controller using linearization 
of nonlinear model at previous step. 
• NLP solved between samples, “instantaneous” sensitivity 

update at sampling time
• On-line computation 2-3 orders of magnitude faster; 

è Computational delay virtually eliminated
• Second order errors compared to ideal NMPC

è Nominal and ISS stability (Zavala, B., 2009)

• ISpS stability when coupled with embedded state estimators 
(Huang, Patwardhan, B., 2009a,b, 2010a-c, 2012)



Nonrobust NMPC Problem
Dynamic system:

Inequality Constraints:

Cost functions:

Grimm, G., Messina, M. J., Tuna, S. and Teel, A. [2004], ‘Examples when nonlinear model predictive control is nonrobust’, 
Automatica 40, 523–533.



Source of Nonrobustness



Impact of Reformulation 
(l1 penalties and/or larger N)

} Hard constraint x1 ≤ c prevents trajectory from going beyond x1=c
} Soft constraint allows the trajectory to exceed x1=c and converge
} MFCQ and GSSOSC satisfied



Ideal NMPC vs. asNMPC Results
(small amount of noise, s = 0.05)

State Space Trajectory Control Trajectory



Terminal Conditions

6/1/2018 16Terminal Conditions

• Assume large,  ! --> ∞ ?
• Hard to check, Can result in large NLPs

• Typically ignored in real applications

• Endpoint constraint $% = 0
• Requires ! controllability. 

• What is !?  Potential difficulty in finding feasible solutions

• Terminal region $% ∈ )* and/or terminal costΨ($%)
• Avoids problems of previous two methods

• Selection of region or cost not obvious

• Recursive feasibility requires Ψ ./01 − Ψ ./ ≤ −4 ./, 6/ ∀ ./ ∈ )*

V (x(k)) =min
u

ψ(zl ,vl ) +  Ψ(zN )
l=0

N

∑

s.t.
zl+1 = f (zl ,vl ))

z0 = x(k),  zl ∈ X ,  vl ∈U , zN ∈ X f ,

==> u(k) = v0 ,  Set  k = k +1



Quasi-Infinite Horizon NMPC
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• Framework for terminal conditions that bound infinite horizon problem 
• Accounts for what happens after predictive horizon 
• Robustness maintained as time proceeds

• Terminal cost  Ψ represents infinite horizon controller stabilizing in "#
• Choose LQR (linear quadratic regulator) to bound $% in the terminal region

6/1/2018

• H. Chen and F. Allgöwer. A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability. Automatica, 34:1205–
1218, 1998.

• C. Rajhans, S. Patwardhan, and H. Pillai. Two Alternate Approaches for Characterization of the Terminal Region for Continuous Time Quasi-
Infinite Horizon NMPC. Proceedings of the 12th IEEE International Conference on Control and Automation, 98-103, 2016.

• M. Lazar, M. Tetteroo, IFAC Papers Online 51(20) (2018), pp. 141-146
• S. Lucia, P. Rumschinski, A. J. Krener, R. Findeisen, IFAC Papers Online 48(23) (2015), pp. 254-259

V (x(k)) =min
u

ψ(zl ,vl ) +  Ψ(zN )
l=0

N

∑

s.t.
zl+1 = f (zl ,vl ))

z0 = x(k),  zl ∈ X ,  vl ∈U , zN ∈ X f ,

==> u(k) = v0 ,  Set  k = k +1



Terminal Cost Based on LQR

• Terminal cost ! becomes infinite horizon cost for linearized system
• " found from Ricatti equation 

• Computing terminal region #$ is equivalent to finding region where LQR 
stabilizes nonlinear system

• Terminal region can be derived from Lyapunov function descent ==> provides 
bound on system nonlinearities 

• To bound nonlinearities, method must scale to many states

%&

Infinite horizon bounded by !, 
valid in %&



• Apply scalable method (off-line)

• Sample one-step CL-LQR simulations
• Apply Taylor’s Theorem
• Simple and effective for large systems

• !" computed from # and $:

Bounding nonlinearities

& ', −*' − +' + -*' = / ' ≤ # ' 1

• increases weight of LQR costs: 
• Cost to go 2 and gain * satisfy the Lyapunov equation for the LQR
• Terminal region given by !" = ' ' ≤ 3"}

• is the maximum singular value of                                and
• Satisfies assumptions on terminal region/cost formulation for asymptotic stability

gy gy



Robust QIH-NMPC Reformulation

• Penalty weight ! chosen sufficiently large to inherit nominal stability
• Formulation satisfies MFCQ (feasible search direction exists)
• GSSOSC holds if ",$ large enough
• Thus %&' is uniformly continuous ==> Input-to-state stability (ISS) holds 



Distillation Example

R.B. Leer. Self-optimizing control structures for active constraint regions of a sequence of distillation
columns. Master's thesis, Norwegian University of Science and Technology, 2012.

• Separation of three component mixture A,B,C - maintain product purities
• 246 States - tray holdups and compositions at 41 trays in each column
• 8 Controls - reflux, boilup, distillate flow, bottoms flow
• ~ 10000 variables, 200 dofs

Inputs
Manipulated variables
Controlled variables 



Terminal Regions for Distillation

! ", −%" − &" + (%" = * " ≤ , " -

Nonlinearity bound• Nonlinearity bound set with q= 1.8
and , = 0.0743

• 10,000 one-step simulations under 
LQR (10 CPU min done offline)

• State and control constraints 
imposed independently 

• Terminal region size and NMPC 
performance compared as function 
of terminal cost weight 56

,|"|-



Distillation Results

• Terminal region given by !" = $% |$%| ≤ ("}
• LQR cost given by 1 + ,- (/ + 012 0)
• Terminal region size increases with terminal cost weight, but plateaus 
• Tracking performance degrades with large terminal cost weight
• ==> choose moderate weights 

Terminal region size NMPC performance with N=10

,-

,-



Adaptive Horizon NMPC: How long is N? 

• Horizon length ! balances computation and robustness 
• ! too long: long solve times ⇒ delayed control actions 
• ! too short: limited robustness ⇒ unstable or infeasible 
• Practical applications must use conservatively long horizon lengths 

• Magnitude of trade-off changes with system state
• Longer horizon necessary further from steady state

• Adaptively choose N in real time 

• D. W. Griffith, S. C. Patwardhan and LTB,  Journal of Process Control , 70, pp. 109{122 (2018)
• A. J. Krener, ArXiv:1062.08619 (2016)



Horizon Length Selection
• NLP Sensitivity provides fast updates for perturbations to 

parametric NLPs

• Fast (~1 sec) estimates to NMPC problems obtained online by 
treating initial condition as parameter, as in asNMPC

• Approach: use sIpopt to predict the time step !" at which the 
NMPC solution will reach #$

• Pirnay, H., Lopez-Negrete, R., LTB. (2012). Optimal sensitivity based on Ipopt. Math. Prog. Comp., 4, 307-331.
• Zavala, V.M., LTB. (2009). The advanced-step NMPC controller: Optimality, stability, and robustness. Automatica, 45, 86-93.

#$



Adaptive Horizon Algorithm
Solve 

NMPC("#)

Determine %&
'#() = %& + ',
- = - + 1

Determine 
'/01 and '2

'3 = '/01
- = 0

567 ∈ 9:?'#() = '/01
- = - + 1

; – NMPC problem
;2 – Sensitivity update
'# – Horizon at time -
'/01 – guarantees feasibility 
', – safety factor  
<= – Time step at which the solution reaches the terminal region
"# – system state at time -
567– sensitivity prediction of terminal state at time -

No

Yes

Solve 
asNMPC("#())



Distillation Example with Noise 

276/1/2018

• Noise: 10% variance in feed flow and composition
• Horizon selection is robust, all problems are feasible 
• Tracking performances similar to noise-free case 
• AH-NMPC contracts horizon as the setpoint is approach, similar 

performance as with N = 25
• Feasible horizons chosen despite noise

Setpoint changes

State trajectories Horizon lengths 

Adaptive Horizon NMPC



Solve Times with Noise

286/1/2018

(Off-line) Solve Times
• NMPC average solve time 97 CPU s 
• AH-NMPC, average 17 CPU s
• Application of asNMPC --> additional on-line computational savings

Horizon lengths Solve times

Adaptive Horizon NMPC



Conclusions
• Robust NLP reformulations 

• Uniform continuity/sensitivity  of NLP guaranteed by KKT conditions and 
CQs (SSOSC, MFCQ, LICQ)

• Soft output constraints lead to robustly stable NMPC

• Advanced Step NMPC

• Fast off-line solutions

• Virtually no on-line computation

• Leads to ISS Stability

• Terminal conditions for large scale systems

• Allows for reachability analysis and ultimately shorter horizons

• Based on LQR control in Xf, and applying Taylor expansions

• Easily embedded in NMPC formulation

• Adaptive Horizon NMPC

• Faster solve times via horizon length adaption utilizing sIPOPT

• Robustness stability properties retained



Current and Future Work
• Advanced Step Moving Horizon State Estimation

V. M. Zavala, and LTB, “Optimization-Based Strategies for the Operation of Low-Density Polyethylene
Tubular Reactors: Moving Horizon Estimation," Computers and Chemical Engineering , 33, pp. 379-
390 (2009)



Current and Future Work
• Advanced Step Moving Horizon State Estimation
• Embedded discrete decisions for nonsmooth dynamics

• A. Gopalakrishnan, LTB, “Economic Nonlinear Model Predictive Control for the Periodic Optimal Operation 
of Gas Pipeline Networks," Computers and Chemical Engineering , 52, pp. 90-99, (2013)

• Kai Liu, Saif R. Kazi, LTB, Bingjian Zhang,, Qinglin Chen, “Dynamic optimization for gas blending in pipeline 
networks with gas interchangeability control,” submitted for publication (2019)



Current and Future Work
• Advanced Step Moving Horizon State Estimation
• Embedded discrete decisions for nonsmooth dynamics
• Multi-stage Stochastic formulations for NMPC with 

uncertainties and recourse variables 
Scenario Generation: effect of uncertainty  while optimizing control input 
[Maxd gi(d)] ≤ ": Find worst-case scenarios for feasibility and prune tree

Tree Pruning: leads to much smaller problem with little performance loss

xk+3

xk

xk+1

xk+2

(dk, uk)

(dk+1, uk+1)
(dk+2, uk+2)

…
...

…
...

…

...

Scenario branching: effect of uncertainty  while optimizing control 
input 

Non-anticipativity: control inputs from same node set equal until uncertainty is 
realized 

xk+3

xk

xk+1

xk+2

(dk, uk)

(dk+1, uk+1)
(dk+2, uk+2)

…
...

…
...

…

...

F. Holtorf, A. Mitsos, LTB, “Multistage NMPC with on-line generated scenario trees: Application
to a semi-batch polymerization process," Journal of Process Control , 80, pp. 167-179 (2019)



Current and Future Work

• Larger, more challenging applications 
• Big data in MHE (spectral measurements)
• PDEs as process models
• Exploit multiple time scales (ODEs --> DAEs)

Spectroscopic	
data	(D)	

Species	absorbances	(S)	

Concentration	
profiles(C)		

Process	model	(θ)		

M. Short, C. Schenk, D. Thierry, J. S. Rodriguez, LTB, S. Garcia-Munoz, “KIPET, An Open Source Kinetic Parameter Estimation Toolkit," 
Proc. 9 Intl Conference on Foundations of Computer-Aided Process Design, 293-302, (2019)



Current and Future Work

• CAPRESE: Python/Pyomo framework for asNMPC/asMHE
and Sufficient horizon lengths found via sIPOPT

D. M. Thierry, LTB, “Dynamic Real-time Optimization for a CO2 Capture Process," AIChE J. , 65, 7, pp. 1-11 (2019)



Current and Future Work
• Advanced Step Moving Horizon State Estimation
• Embedded discrete decisions for nonsmooth dynamics
• Multi-stage Stochastic formulations for NMPC with 

uncertainties and recourse variables 
• Structured Dynamic Decompositions for Newton Steps in 

IPOPT
• Larger, more challenging applications 
• Big data in MHE (spectral measurements)
• PDEs as process models
• Exploit multiple time scales

• CAPRESE: Python/Pyomo framework for asNMPC/asMHE
and Sufficient horizon lengths found via sIPOPT


