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Motivation

Comnsider the nonlinear optimal feedback control problem

e . )
( rgin) F(x(ty)) —|—/ f [h(z(7)) + u(r, z(7)) Wu(r, z(r))] dr
< subject to:
. _ open-loop: wu(t)
\ V=gl el el)=s feedback: u(t,ac(t)))

For each initial condition « specified at time ¢, we define the value function (or cost-to-go)

V(t,x) = inf {F(a:(tf)) +/t f [h(x(7)) + u(r, z(7)) ! Wu(r,z(1))] dT} (x state at time t)

u

Optimal feedback control
It can be shown that the value function V (¢, x) allows 1

us to compute the optimal feedback control u(t, x) as: u” (b, x) = —§W_1GT(w)VV(t, )
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Hamilton-Jacobi-Bellmann (HJB) equation

The value function V (¢, x) satisfies the following HJB equation (here we set W = I

oV (t
(t,2)

ot

h(z) + f(x) - VV(t, )

- HGT )WV (t,x ||2

V(ts,x) = F()

This equation can be solved pointwise by using the method of characteristics

/

Two-point boundary
value problem

-

9

(7)
A(7)

0(7)

\

F(@) — 5G(@) G (@)

—Vh(x) —

= h(x)

1

T (Vi@ - 5VE@ET @)A)

+ ATG(2)GT ()

4

x(0) = xq

A(ty) = VE(z(ty))

v(0) =0

Here v(t) and A(t) represent, respectively, the value function and its gradient along the curve x(¢, xg)

A(t)

= VV (t,x(t,xq))
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Outline

Hierarchical tensor expansions of high-dimensional functions

e Tensor-train format

Dynamically orthogonal tensor methods for nonlinear PDEs

e DO-TT propagator

e Numerical applications to hyperbolic and parabolic PDE

A. Dektor and D. Venturi, “Dynamically orthogonal tensor methods for high-dimensional nonlinear PDEgs”,

arXiv 1907.05924, 2019, pp. 1-39.
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Hierarchical bi-orthogonal decomposition of functions in separable measure spaces

Let us consider a domain 2 C R defined as a Cartesian product of d > 2 one-dimensional sets

Q=0 x---xQy O, CR

On 2 we define the scalar field u: {2 — R, which we assume to be an element of the Sobolev space

H Q) ={ue Li(Q) : D% € Li(Q) for all |of <k}, k=0,1,2,...

olely
Dau: ol = . e e o
S .. 0xg o = o0 oo

We equip H*(€)) with the inner product

Fahiney = 3 [ D(@)Dg(@) o) - pales) da

|| <k w(x) (separable measure)

4-22



Hierarchical bi-orthogonal decomposition of functions in separable measure spaces

The Sobolev space H*(Q) is separable

HFNQ) = HY Q) @@ H¥(Q4q)

The inner product within each subspace H*(Q,,) can be defined as

0*f 0%g
(s @) ara,) = Z/ o7 Ydx frg € H*(Q,).

(x
Ox® Or Hp

More generally, the inner product in H*(, ,), where 2, , = Q, X -+ x Q, can be defined as

aap+...+aqf aap+...+aqg
<f7 >H B(Qp.q) — Z / 8xap axaq axap 8xaq :up(xp) ce /’Lq(xq)dajp . dCCq
p e q Do

apt-Fag,<k 9
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Hierarchical bi-orthogonal decomposition of functions in separable measure spaces

A representation of the function w(z1,...,xq) in the space H*(Q1) ® --- ® H¥(Q4) takes the form

u(xy, ..., xq) = Z ail...idgoz(.ll)(zvl) e goz(-j)(:cd) gogf)(a:k) orthonormal

A truncation to r modes yields an expansion with 7?¢ degrees of freedom (number of entries in a;,...;,)

d=6 r=30 = 4 =590.49 x 10>  (73.81 TB)

To develop a more effective series expansion, we perform a sequence of bi-orthogonal decompositions as
follows

HY Q) =H" (") @ H" (9% x --- x Q%)
=H" (") @ [H" (9%) @ H* (2® x --- x Q)]
=H" (01) @ [H* (0%) @ [H* (2°) @ H* (@1 x -+ x 0?)]]

(Tensor train format)
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Tensor-train format

In practice, we recursively single out one variable at a time until we obtain a product of 1D functions

u(ry,...,x Z )\le(l)

21—

(2,...6) _ Z @)
¢¢1 _ A@1@2¢1122 21’62
'LQ—
E : (3)
zlzg >‘21@2’63¢11i213¢111213
Z3—
(4,..6) _ Z (4) .(5.6)
¢’i1’ig’i3 _ )\11@2@3@4¢zl’i2i3i4¢i1i2’i3’i4
24—

(5,6) E : ,,,,, (5) (6)
¢i1i2i3i4 - >\711'02713'L4’L5¢i1i2i3i4i5wi1i2i3i4i5

'L5—

{331,33273337334733571‘16}

{iCQ,Ig, T4,X5, 1'6}

{@1}

{x3, x4, 5, 26}

{x2}

{x4, 5,76}

{z3}
(1) U

{zs} {ze}

Binary tree representing the Tensor
Train decomposition of a 6D function
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Tensor-train format

This yields the following expansion

5 ' 5 ) 1),,(2) ., (3) (4) (5) (6)
u(x:[? )\7/1 11172 211223>\11121324)\i1i2i3i4i5w wiligwiligigwi1’i2i3’i4w’i1’i2i3i4i5wi1’i2’i3i4i5

'Lll ’L51

The eigenvalues A;,...;, and the 1D tensor modes zp,gf), are obtained by solving a hierarchy of eigenvalue

problems -
Eigenvalue problem 1 Eigenvalue problem 2
1D kernel b = (U, w) fk (0 o) l(2) <¢ ----- 6)7%(12 ,,,, 6)>Hk(93,6)
- 1) (1) _ 2 (D) l l
1D elgenprOblem <l( )’ w’h >Hk(91) o Ailwil <lz(12)7¢z(122)2>Hk(Q2) - AZ21%2¢§12Z?2
. 1
projection %(12 6) — x( ¢(1)>Hk(91 wzm )\Z Z W i) %(12@)2>Hk(92)
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Tresholding the TT expansion

The eigenvalue A;;...;,

We begin by setting some treshold o

level 1: keep all eigenvalues \;;, > o

level 2: keep all eigenvalues \;,;, > 0/,

In this way, we guarantee that the the energy of each 6D mode
is above the threshold o

)\il >\i1’£2 >\’i17:2?;3 >\7:1?;2’i3’i4 Ai1i2i3i4i5 >0

represents the energy of the 1D tensor mode @D,L(f)%

{1, %2, 23, T4, 75, T6}
{172, r3,T4,Is5, 513'6}
{33'3, L4, X5, flf6}

{z2}

{x4, 25,76}

{z3}
{1} U

{5} {ze}

Binary tree representing the Tensor
Train decomposition of a 6D function
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TT decomposition: An example

Consider the 3D function

U — esm(wl—|—2m2—|—3m3) + Tom3
r1 T2(r1)

11=1 12=1

By using the tresholding method we obtain
o=10"°
r = 9

ro(r1) = [11,11,11,11,11,11, 10,6, 0]

100 L

1

1075

3
2
1
0]
14
12
10
. i
: 6
) 4
2
5 10
i

{331, x2, 553}
{w2, 23}
{z1}
{w2} {z3}
Niyis
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Outline

Dynamically orthogonal tensor methods for nonlinear PDEs

e DO-TT propagator

e Numerical application to hyperbolic and parabolic PDE

A. Dektor and D. Venturi, “Dynamically orthogonal tensor methods for high-dimensional nonlinear PDEgs”,

arXiv 1907.05924, 2019, pp. 1-39.
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Dynamically orthogonal tensor methods

Consider the nonlinear autonomous evolution equation

ou(x,t)
ot

= G(u) u(x,0) = up(x) xrecQcR?

Here G is a nonlinear operator which may incorporate boundary conditions. We look for a representation
of the solution in the form

I DRI N VN () R VI () LSl € L ()RR S N (O YA ()
11=1 1d—1=Td—1

(Time-dependent T'T expansion)

We assume that the time-dependent tensor modes satisfy

(Q)
@ 9%

(", o — 1Ty — (Dynamic orthogonality condition)
iy

Note that: {¥,,, (0)} L = {¥, (O} 1

11 Zk

12-22



A substitution of the time-dependent T'T expansion into the nonlinear PDE and subsequent projection

onto the T'T modes yields

DO-TT propagator

(j+1,...,d) )
8\111{;71“% L (System of 1D nonlinear PDESs)
e —Vkyo ok )
Tj (7)
Z awkl'-k:, 1% <\Ij(j+1 ,d) \Ij(j+1""’d)>
at k'J 113 kl---kj
i;=1
:<Nkf]_"'kfj_]_7qj(j+1 Zwkl - 1zj N(J, 3)1’ (J-H d)w(]) - 171j>
=l
Here
i+1,..., 1,. 2,...,d 1 i+1,....d ood
U = e O Y N = (GG N = (T el

The DO-TT propagator allows us to compute the solution of the PDE on a smooth tensor manifold
with constant rank.
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One-step truncation algorithms vs DO-TT propoagators

Approximating the nonlinear PDE with respect to the space variables yields the system of ODEs

where w: [0, T] — R™ **"d ig the solution tensor.

ut = uf + % 3G(u") — G(u*1)] (AB2 integrator)

The iterated application of this scheme increases the tensor rank at each time step. In other words the
rank of u*T! is larger than then rank of w” and w*~!. Hence, if we are interested in computing the
solution on a tensor manifold with constant rank, we need to retract the solution back to such tensor
manifold:

rank truncation operator

E+1 k+1
u' T =T, (uT) (e.g. high-order SVD)

A. Rodgers and D. Venturi, “Stability analysis of hierarchical tensor methods for time-dependent PDEs”, arXiv

1908.09803, 2019, pp. 1-20.
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Four-dimensional hyperbolic PDE

Consider the following initial value problem defined in the periodic hypercube [0, 27]*

Thresholding the TT decomposition of the initial condition with o = 107° yields

r1 T2(r1) r3(r2)

DD IRA

21 1 12 1 lg 1

Mirizis (0647 (0)) 0y

2122

—

m=9 rp=|122 2 2 2 2 2 2] rg=

-
(NOR V)
(\OR V)
(\OR V)
(NOR V)

0y

(Ou(x,t) 1 ou(x,t) 1 | ou(x,t) ou(x,t) 1 | ou(x,t)
— = cos(2 _ = — cos(4 -
5 5 cos(2x3) 921 3s1n(3:133) . cos(4xy) e + 5 sin(x1) 971
<
u(x,0) = exp T sin(xy + z2 + x3 + x4)
\

(0)

(NOR )
(NOR V)
(\OR )
(NOR V)
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characteristics

DO-TT propagator

Four-dimensional hyperbolic PDE

global L?(Q) error

Time snapshots of 2D slide (xz1 = 2.95, x5 = 2.95) of the DO-TT and semi-analytical solution.

1.1 1.1 1.1 10°
1.05 1.05 1.05 10-1 1
1 1 1 10-2
0.95 0.95 0.95

10-3

10+ : : : :

0 0.2 04 06 08 1
t
pointwise error t = 1
1.1 1.1 1.1 0.04
1.05 1.05 1.05 0.03
1 1 1 0.02
0.95 0.95 0.95 0.01
.
0 T 27
I3
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Four-dimensional parabolic PDE

Consider the following initial value problem defined in the periodic hypercube [0, 27]*

2

8 1) =
j=1 .7

.
L .
u(x,0) = exp T sin(xy + z2 + x3 + x4)
\
9 Adaptive tensor mode removal 108 Time-dependent relative error
8ll g
% 1078
7— E
~
‘:l B - @10—10
_H
5 ] E
| 10712
4 . =
3 L L - ]_0_14
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
i i
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Fifty-dimensional hyperbolic PDE

Consider the following initial value problem defined in the periodic hypercube [0, 27]%°

ou(z,t) L du(z,t) _ N (4)
5 —;] o0z U(w’O)_jl;{wO (z5)

The analytical solution to this problem is easily obtained as

H w(])

Note that the analytical solution is rank-one at each time. Hence, we look for a rank-one T'T representation
of the solution as

50

u(a,t) =~ [ [+ @)

J=1
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Fifty-dimensional hyperbolic PDE

The DO-TT propagator is

A N WIC) G, 009 RGN WIC) (Y (50)
ot —J aazj _Jw < Oxj w > ot _Zj< 8£Bj w >w
71=1
sin(x ; . :
Wz, = %]) (j=1,...,49) 59 (350) = 107(3 + sin(zs0))
g4 global L2(Q) error
g10718
R
3
ilo—ls
102 . . -
0 0.5 1 1.5 2
t
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Fifty-dimensional parabolic PDE

Consider the following initial value problem defined in the periodic hypercube [0, 27]%°

l\D

50
Z uz, u(z,0) = [T &5 (x;)

M
Q.
I
—_

The analytical solution to this problem is easily obtained as

H w(ﬂ) o~ 50t

Note that the analytical solution is rank-one at each time. Hence, we look for a rank-one T'T representation
of the solution as

50

u(a,t) =~ [ [+ @)

J=1
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Fifty-dimensional hyperbolic PDE

The DO-TT propagator is

oY@ §2p0) @ 524 () @ oy 19 92qp0) () (50)

o~ o ) o~ 2 T
]:1 J

(gﬂ:% (j=1,...,49) 159 — 107 sin(z50)

$(25) (1) global L?() error
) . . .
1.5
w1
iA
0 A 10—14 | | |
0 m 0 0.5 1 1.5 2

T
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Summary

. I presented a new method to compute the numerical solution of high-dimensional nonlin-
ear PDEs on low-rank tensor manifolds with no need for computational expensive rank
reduction techniques.

. The new method relies on a hierarchical decomposition of the solution space in terms of
sequences of nested subpaces of smaller dimensions, which can be conveniently visualized
in terms of binary trees.

. By enforcing dynamic orthogonality on the tensor modes at each level of the binary tree,
it is possible to obtain coupled evolutions equations - i.e., a system of nonlinear PDE -
representing the dynamics of solution on a smooth tensor manifold with constant rank.

. I demonstrated the accuracy of the new dynamically orthogonal tensor method in prototype
applications involving simple parabolic and hyperbolic linear PDEs.

Thank you for your attention
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