
On Hamilton-Jacobi partial differential
equation and architecctures of neural

networks

Jérôme Darbon

Division of Applied Mathematics, Brown University

Third Monterey Workshop on Computational Issues in Nonlinear Control
October 9, 2019

Joint work with Tingwei Meng and Gabriel Provencher Langlois
Work supported by NSF DMS 1820821

J. Darbon, Monterey, October 2019 1 / 19



Context and motivation

Consider the initial value problem
∂S
∂t

(x , t) + H(∇x S(x , t), x , t) = ε4S(x , t), in Rn × (0,+∞)

S(x , 0) = J(x) ∀x ∈ Rn.

Goals: compute the viscosity solution for a given (x , t)

evaluate S(x , t) and ∇xS(x , t)
very high dimension, possibly n ≥ 106

fast to allow applications requiring real-time
low memory and low energy for embedded system

Several approaches to mitigate/overcome the curse of differentiability: e.g.,
Max-plus methods, tensor decomposition methods, sparse grids, optimization
techniques via representation formulas, . . .

More recently, there is a significant trend in using Machine Learning and Neural
Network techniques for solving PDEs
→ leverage universal approximation theorems

J. Darbon, Monterey, October 2019 2 / 19



Neural Network: a computational point of view

Pros and cons of Neural Networks for evaluating solutions
It seems to be hard to find Neural Networks that are interpretable,
generalization that yield reproducible results
Huge computational advantage

dedicated hardware for NN is now available: e.g., Xilinx AI (FPGA +
silicon desing), Intel AI (FPGA + new CPU assembly instructions), and
many other (startup) companies
high throughput / low latency (more precise meaning of “fast”)
low energy requirement (e.g., a few Watts)

→ suitable for embedded computing and data centers

Can we leverage these computational resources for high-dimensional H-J PDEs?

How can we mathematically certify that Neural Networks (NNs) actually computes
a solution?

⇒ Establish new connections between NN architectures and representation formulas
of H-J PDE solutions
→ the physics of some H-J PDEs can be encoded by NN architecture
→ the parameters of the NN define Hamiltonians and initial data
→ no approximation: exact evaluation of S(x , t) and ∇xS(x , t)
→ suggests an interpretation of some NN architectures in terms of H-J

PDE
J. Darbon, Monterey, October 2019 3 / 19



Outline

1. Shallow NN architectures and representation of solution of H-J PDEs

1 A class of first-order H-J
2 Associated conservation law (1D)
3 A class of second order H-J

2. (Briefly) “Deep” NN architectures for other H-J PDEs

3. Some conclusions

J. Darbon, Monterey, October 2019 4 / 19



A first shallow network architecture

Architecture: fully connected layer followed by the activation function “max-pooling”

This network defines a function f : Rn × [0,+∞)→ R

f (x , t ; {pi , θi , γi}m
i=1) = max

i∈{1,...,m}
{〈pi , x〉 − tθi − γi}.

Goal: Find conditions on the parameters such that f satisfies a PDE, and
find the PDE

J. Darbon, Monterey, October 2019 5 / 19



Assumption on the parameters

Recall: the network f (x , t ; {pi , θi , γi}m
i=1) = maxi∈{1,...,m}{〈pi , x〉 − tθi − γi}

We adopt the following assumptions on the parameters:

(A1) The parameters {pi}m
i=1 are pairwise distinct, i.e., pi 6= pj if i 6= j .

(A2) There exists a convex function g : Rn → R such that g(pi ) = γi .
(A3) For any j ∈ {1, . . . ,m} and any (α1, . . . , αm) ∈ Rm that satisfy

(α1, . . . , αm) ∈ ∆m with αj = 0,∑
i 6=j αipi = pj ,∑
i 6=j αiγi = γj ,

there holds
∑

i 6=j αiθi > θj .

where ∆m denotes the unit simplex of dimension m

(A1) and (A3) are NOT strong assumptions.
- (A3) simply states the each “neuron” should contribute to the definition of f .
- If (A3) is not satisfied, then it means that some neurons can be removed and the
NN still define the same function f

J. Darbon, Monterey, October 2019 6 / 19



Define initial data and Hamiltonians from parameters

Recall: the network f

f (x , t ; {pi , θi , γi}m
i=1) = max

i∈{1,...,m}
{〈pi , x〉 − tθi − γi} (1)

Define the initial data J using the NN parameters {pi , γi}m
i=1

f (x , 0) = J(x) := max
i∈{1,...,m}

{〈pi , x〉 − γi} (2)

Then, J : Rn → R is convex, and its Legendre transform J∗ reads

J∗(p) =

min(α1,...,αm)∈∆m∑m
i=1 αi pi =p

{∑m
i=1 αiγi

}
, if p ∈ conv ({pi}

m
i=1),

+∞, otherwise.

Denote by A(p) is the minimizers in the above optimization problem.

Define the Hamiltonian H : Rn → R ∪ {+∞} by

H(p) :=

{
infα∈A(p)

{∑m
i=1 αiθi

}
, if p ∈ dom J∗,

+∞, otherwise.
(3)

J. Darbon, Monterey, October 2019 7 / 19



NN computes viscosity solutions

Theorem

Assume (A1)-(A3) hold. Let f be the neural network defined by Eq. (1) with
parameters {(pi , θi , γi )}m

i=1. Let J and H be the functions defined in Eqs. (2) and (3),
respectively, and let H̃ : Rn → R be a continuous function. Then the following two
statements hold.

(i) The neural network f is the unique uniformly continuous viscosity solution to the
Hamilton–Jacobi equation{

∂f
∂t (x , t) + H(∇x f (x , t)) = 0, x ∈ Rn, t > 0,
f (x , 0) = J(x), x ∈ Rn.

(4)

Moreover, f is jointly convex in (x ,t).

(ii) The neural network f is the unique uniformly continuous viscosity solution to the
Hamilton–Jacobi equation{

∂f
∂t (x , t) + H̃(∇x f (x , t)) = 0, x ∈ Rn, t > 0,
f (x , 0) = J(x), x ∈ Rn.

(5)

if and only if H̃(pi ) = H(pi ) for every i = 1, . . . ,m and H̃(p) > H(p) for every
p ∈ dom J∗.

J. Darbon, Monterey, October 2019 8 / 19



NN computes viscosity solutions

The network the computes viscosity solution for H and J given by parameters

Hamiltonians are not unique. However, among all possible Hamiltonians, H is
the smallest one.

In addition, ∇x S(x , t) (when it exists) is given by the element that realizes the
maximum is the “max-pooling”

J. Darbon, Monterey, October 2019 9 / 19



Architecture for that gradient map

This NN architecture computes the spatial gradient of the solution
(i.e., the momemtum)
Consider u : Rn × [0,+∞)→ Rn defined by

∇x f (x , t) = pj , where j ∈ arg max
i∈{1,...,m}

{〈pi , x〉 − tθi − γi}. (6)

J. Darbon, Monterey, October 2019 10 / 19



NN architecture and 1D conservation laws

Theorem

Consider the one-dimensional case, i.e., n = 1. Suppose assumptions (A1)-(A3)
hold. Let u := ∇x f be the function from R× [0,+∞) to R defined in Eq. (6). Let J
and H be the functions defined in Eqs. (2) and (3), respectively, and let H̃ : R→ R be
a locally Lipschitz continuous function. Then the following two statements hold.

(i) The neural network u is the entropy solution to the conservation law{
∂u
∂t (x , t) +∇x H(u(x , t)) = 0, x ∈ R, t > 0,
u(x , 0) = ∇J(x), x ∈ R.

(7)

(ii) The neural network u is the entropy solution to the conservation law{
∂u
∂t (x , t) +∇x H̃(u(x , t)) = 0, x ∈ R, t > 0,
u(x , 0) = ∇J(x), x ∈ R,

(8)

if and only if there exists a constant C ∈ R such that H̃(pi ) = H(pi ) + C for
every i ∈ {1, . . . ,m} and H̃(p) > H(p) + C for any p ∈ conv {pi}m

i=1.

J. Darbon, Monterey, October 2019 11 / 19



Another shallow architecture

Replace “max-pooling” by “smooth max pooling”.

This network defines a function f : Rn × [0,+∞)→ R

fε(x , t) := ε log

(
m∑

i=1

e(〈pi ,x〉−tθi−γi )/ε

)
.

J. Darbon, Monterey, October 2019 12 / 19



Specialize this architecture

Specialize the parameters: θi = −1
2‖pi‖22 for i = 1, . . . ,m

This network defines a function f : Rn × [0,+∞)→ R

fε(x , t) := ε log

(
m∑

i=1

e(〈pi ,x〉+ t
2‖pi‖

2
2−γi)/ε

)
. (9)

J. Darbon, Monterey, October 2019 13 / 19



NN computes viscosity solutions of some second
order H-J PDEs

Theorem

Let fε defined by (9) with parameters {pi , θi , γi}m
i=1 and let θi = − 1

2 ‖pi‖
2
2 for

i ∈ {1, . . . ,m}. For every ε > 0, the neural network fε ≡ ε log (wε) is the
unique smooth solution to the second-order Hamilton–Jacobi equation{

∂fε(x,t)
∂t − 1

2 ‖∇x fε(x , t)‖2
2 = ε

24x fε(x , t) in Rn × (0,+∞),

fε(x ,0) = ε log
(∑m

i=1 e(〈pi ,x〉−γi )/ε
)

∀x ∈ Rn.
(10)

Moreover, fε is jointly convex in (x , t) the following holds

lim
ε→0
ε>0

fε(x , t) = max
i∈{1,...,m}

{〈pi ,x〉+
t
2
‖pi‖

2
2 − γi} (11)

holds for every x ∈ Rn and t > 0. Finally, if assumptions (A1)-(A3) hold, then
the right hand side of (11) solves the first-order Hamilton–Jacobi equation
(5) with H̃ := − 1

2 ‖·‖
2
2.

J. Darbon, Monterey, October 2019 14 / 19



Summary and extension to other PDEss

We have exhibited classes of network architecture that represents viscosity
solution of some H-J PDEs

Initial data and Hamiltonians are induced by the parameters of the network

These architectures can be extended to cope with other PDEs
We briefly present architectures and ideas for other PDEs

(similar) architectures to multi-time H-J PDEs
“Deep” ResNet-based architecture and method of characteristics

J. Darbon, Monterey, October 2019 15 / 19



Extension to Multi-time H-J PDE

The network defines a function f : Rn × [0,+∞)N → R which satisfies the
following multi-time H-J PDE

∂f
∂ti

(x , t) + Hi (∇x f (x , t)) = 0 for i = 1, . . . ,N

f (x , 0, . . . , 0) = J(x) for every x ∈ Rn

Not necessarily a viscosity solution. It depends if the semi-groups associated to
each time commute.

J. Darbon, Monterey, October 2019 16 / 19



ResNet Variants, Generalized Moreau-Yosida
identities and Lax-Oleinik formula

Generalized Moreau identity (convex case): x = u(x , t) + t∇H(p(x , t))
→ p is a maximizer of the Hopf formula
→ u is a miminizer of the Lax-Oleinik formula

The network defines the map u : Rn × (0,+∞)→ Rn

Therefore all information for the characteristics
J. Darbon, Monterey, October 2019 17 / 19



A Deep NN architecture

We can fixed a sequence of time ti and Hamiltonian Hi and iterates the previous
map. This gives the following “deep” ResNet-based NN (2 layers)

So we have x − t1∇H(p1)− t2∇H(p2) = u2(x , t)

Under appropriate assumptions these architectures compute the characteristics
and can be used for solving some H-J PDE with certain Hamiltonian with state
and time dependence.

J. Darbon, Monterey, October 2019 18 / 19



Conclusion

Some NN architectures represent viscosity solutions of certain H-J PDEs in
very high-dimensions

Hamiltonian and initial data are given by the parameters

“Chaining” these architectures + ResNet pave the way to cope with more
general Hamiltonians

We also used these NN architectures for “solving” some inverse problems
involving H-J PDEs (not presented here)
→ “learning” corresponds to solving non-convex optimization problem
→ Implementation using TensorFlow
→ Numerical results show that “standard” optimization methods (e.g., ADAM)
can provide excellent or terrible results

J. Darbon, Monterey, October 2019 19 / 19


