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Outline

• Motivation – energy efficiency
• Approach:

• *intelligent control
• a/c design & new instrumentation & novel propulsion

• OC task formulation & control synthesis
• Results:

• “Synthetic” weather
• COAMPS weather

• Computational bottlenecks:
• Existing solutions
• Desired but Missing “pieces” 

• What is achievable today
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Motivation – “Multi-Day Endurance of a Group 2 UAS 
Utilizing Pacific Energy Sources”

Objective – advance operational energy strategy:

• Increase future UAV capability via adaptable use of 
various sources of energy

• Enhance current mission effectiveness via predictive 
energy forecast and optimal routing

• Identify and reduce risk of energy shortage via robust 
adaptive mission replanning and intelligent control

Concept – demonstrate synergistic range and endurance 
benefits by integrating fuel cell propulsion, soaring, solar 
harvesting, and optimal path planning. 

Approach – integrate the latest advances in energy 
storage, harvesting, and recovery technologies in the 
novel onboard software capable of rapid energy optimal 
global path planning (GPP).

Motivation – enhance current mission effectiveness via 
advanced energy behavior (DOD Operational Energy)

430 W PV Array with 23% 
Efficient GaAs Cells

53 L H2 Fuel Tank

PEM Fuel Cell & 
Controls

Payload

Energy Management 
& Optimization Systems

Brushless DC Motor w/
Variable Pitch Propeller Laminar Flow 

Wing with Co-
Cured PV Array

DoD weather
forecast

Fuel Cell & H2 
Fuel Storage

Miniature 
CPU

Solution – minimum energy/fuel solution obtained by 
utilizing classical Pontryagin optimal control approach.
Key Deliverable - previously not feasible routes (CA-HI) can 
be optimally flown and rapidly recomputed onboard.

Enable GPP re-calc at will
Optimal route can save up to  25-50% 
fuel relative to the great circle route.

Great Circle route is not feasible for 
any state of the art UAV systems

“Unfolded” wind

Solar

San
Diego

Barking
Sands

Great Circle, 73 hours

GPP Optimized Route, 59 hours

• Tailwind
• Headwind

NRL designed Hybrid Tiger UAV COAMPS

Patent: U.S. PTO 16/155,968, U.S. PCT PCT/US18/55144



Existing Constraints & Desired Features
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Desired features of the GPP solution:
• Completeness - need qurantees of complete exploration of given domain
• Optimality – need analytical guarantees of optimality of the solution 
• Feasibility – practically feasible to implement onboard

• feasibility of CPU load
• feasibility of memory allocation
• ability to monitor the solver as it runs

Constraints of many of the existing methods:
• NO closed-form solution for complex dynamics of aircraft 
• FAIL in complex and dynamic environment (time-varying wind, obstacles, etc)
• INFEASIBLE for online onboard implementation
• LACK of convergence for stiff ODEs 
• Initial guess - problematic

• “SURVEI OF NUMERICAL METHODS FOR TRAJECTORY OPTIMIZATION,” by John Betts, Journal of Guidance, Control, and Dynamics, vol. 21, #2, March-April 1998.
• “OPTIMAL CONTROL AND NUMERICAL SOFTWARE: AN OVERVIEW” by H.S. Rodrigues, M.T. Monteiro, D.M. Torres, in ‘Systems Theory: Perspectives, Applications 

and Developments’, Nova Science Publishers, Editor: Francisco Miranda, Jan 2014.
• “A SURVEY OF NUMERICAL METHODS FOR OPTIMAL CONTROL” by Anil V. Rao, AAS 09-334
• “OPTIMAL PATH PLANNING AND POWER ALLOCATION FOR LONG ENDURANCE SOLAR-POWERED UAV,” by S.Hosseini, R.Dai, M. Mesbahi, in proceedings of 

ACC2013, Washington, DC, June 17-19, 2013



Mission Planning
• Practical objective – maximum 

endurance by minimizing the waste 
of constrained energy resource 
onboard

• Challenges:
– Weather:

• time-varying weather = {wind, local 
thermals, solar irradiance}

• stochastic nature diverging with time
• limited fidelity

– Limited communication and 
computational resources

• Approach:
– Global route – GPP
– Local route – LPP
– GPP is a “reference to follow” for the LPP
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Key Components of GPP
• Aircraft

• Aerodynamics CL , CD

• Fuel consumption dynamics vs thrust

• Solar efficiency

• “Battery” efficiency (minor now, big potential)

• Weather prediction model – COAMPS NRL/MRY
• 3D wind components as functions of LLA & Time

• Solar flux => essential chunk of energy

• PBL => essential chunk of hybrid power

• Variability of weather => confidence

• Time
• Defines non-autonomous nature

• Optimizes the entire mission => start of the mission

• “Convolution parameter” of Energy&Dynamics of flight

Lift/Drag

Vair

Energy

Distance

Fuel
Time
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Plant Model
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• Separating controls (ϕ and V) from the parameterized model



Plant Model
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Minimum Energy Optimum Control
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Find the optimal airspeed 𝑉𝑉∗ and bank angle 𝜑𝜑∗ control 
functions that minimize
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Synthesis
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A1: Aaircraft is equipped with a stabilizing autopilot that effectively eliminates the 
nonlinear flight dynamics from consideration.
A2: The bank angle 𝜑𝜑 is small.

Results:

𝑉𝑉∗2 =
4𝐾𝐾

3𝜌𝜌2𝐶𝐶𝐷𝐷𝐷
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𝑆𝑆

2
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the optimal speed to fly for the minimum 
required power 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 in horizontal flight



OC Analysis
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a. airspeed a. sun elevation a. sun azimuth
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OC Analysis
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Solving BVP

• Challenge - sensitivity to the initial guess:
– Scaling
– Continuation
– Homotopy methods
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design and solve a sequence of problems starting 
with a trivial one, and then use the previous 
solution as an initial guess for the next one.

• Solution – when there is no wind => 𝑊𝑊scale = 0 =>the 
resulting trajectory is necessarily a straight line

𝑊𝑊𝑥𝑥 𝑥𝑥,𝑦𝑦, 𝑡𝑡 = −ℎ𝑦𝑦 ⋅ 𝑦𝑦,𝑊𝑊𝑦𝑦 𝑥𝑥, 𝑦𝑦, 𝑡𝑡 = 0
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Synthetic Wind :: Night
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a – trajectories
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• Synthesized OC closely 
approximates minT solution of 
Zermelo task

• BVP solver is fast => seconds



Synthetic Wind :: Day
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a – trajectories

b – the airspeed c – the ground airspeed Vg
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• Synthesized OC is sufficiently different however can be ‘initialized’ by minT
V.Dobokhodov



Single Shot vs Continuation (BVP5C)

ContinuationSingle shot

CPU time reduced by ~4.7 times

Same precision
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Continuation vs Scaling+Continuation (BVP5C)

Continuation +ScalingContinuation

CPU time reduced by 26 times

Improve precision

10/10/2019 V.Dobokhodov 17



Single Shot vs Scaling+Continuation (BVP5C)

Continuation +ScalingSingle shot

CPU time reduced by 127 times

Improve precision
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BVP4C vs BVP5C in Scaling+Continuation

Continuation +Scaling

CPU time is ~2 times less

Precision is the price,
however “1e-3” is more than enough

Discretization = 100, the same for both methods

Continuation +Scaling
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NOTE – keep in mind that there is NO interpolation
• Continuation:

• improves convergence properties of bvp solver by parameterizing the task 
when a single shot solution is not guaranteed.

• significantly simplifies the choice of an initial guess of states and co-states of 
the dynamic system.

• reduces the computational time by a factor of ~ 5. 
• Scaling of ODE

• Reduces sensitivity of the BVP solver to nonlinearities.
• Reduces the computational time by a factor of ~20.

• Combination of ODE Scaling and Continuation:
• Combines the benefits of both.
• Reduces computational time by more than a factor of ~100.

• What is next:
• Use Scaling+Continuation result of minTime task as an initial guess of 

minEnergy & minFuel.  Already prototyped with good promise.
• Solve the GPP task with interpolated COAMPS data.

Analysis
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COAMPS Wind
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Solid red line -- great circle from SND-
HNL 
• Dashed lines represent a path ~200 

km on each side of great circle.
• Path width is adjustable
• COAMPS data interpolated to 

regular grid along the path

PBL Height

Relative Humidity 1.5 km ASL

Zonal Wind 3 km ASL

• Height levels: zonal, meridional, vertical winds, 
relative humidity

• Single levels: PBL height, incoming solar radiation, 
theta star (buoyancy meassure) 70Mb/72hour

Fast interpolation of vectorized queries is one of the heaviest computational tasks.



Interpretation od COAMPS-based results

10/10/2019 V.Dobokhodov 22

WPi

WPi-1

|𝜔𝜔|

𝑉𝑉𝑔𝑔

𝜓𝜓

Color-coding should capture:
• Magnitude of wind
• Direction of wind w.r.t. the “reference” 
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Strong tailwind 

Moderate tailwind -
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Moderate crosswind -
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Strong headwind

Free ride

Moderate 
burn rate

Moderate 
burn rate

High burn 
rate

|𝜔𝜔| - wind

𝑉𝑉𝑔𝑔 - ground speed



OC over Time-Varying COAMPS
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Comparison of the optimal and great circle routes/controls at H=2550 m



Robustness
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Cumulative Results
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• It is really hard to compete 
with optimal control !!!



Questions ?
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Log of Height Search with Fuel Tolerance = 10 gram (Ubuntu i7)

he
ig

ht

Fu
el

 m
et

ric

# Height, m Cost Fuel, kg
1 2215.03 3148.08 0.874
2 3274.97 3396.22 0.943
3 1559.95 3003.83 0.834
4 1155.08 2921.9 0.812
5 904.863 2872.45 0.798
6 750.219 2849.51 0.792
7 654.644 2835.86 0.788
8 595.575 2827.79 0.785
9 559.069 2822.96 0.784

10 536.506 2820.9 0.784
11 522.562 2819.34 0.783
12 513.944 2818.03 0.783
13 508.618 2817.32 0.783
14 505.285 2817.11 0.783 Height, m

It takes 8.25 min on i7( ~times 5 in Odroid)
Can we afford or Do we want this higher 
precision for the price of longer CPU time?

Hurdles of Parallel Processing
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Synthetic Wind :: Hessian
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Road Map
Objectives

Flight Experiment

Formulation 
of OC task Explore variety 

of approaches

Indirect OC 
formulation

minT//Eng//Fuel

U*=Air.speed & 
Course/Bank

Autonomous & 
Non-Autonomous

States//Constraints
/Metrics

Direct//Indirect 
/AI-Sampling 

Solver & fund. 
propeties of solution

TPBVP

COAMPS 
Interpolation

Resololution// 
Precision /Speed

Transition to 
onboard ROS

Python & ROS

Scaling & Continuation

Onboard 
Integration

NRL- done

Ground-based
GPP

Flying at APG

HPC batch 
processing
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