Onboard Trajectory Planning for a New Class of Hybrid Aircraft

*V.N., Dobrokhodov

C., Walton, I.I., Kaminer, K.D., Jones

Mechanical and Aerospace Engineering department, Naval Postgraduate School,

3rd AFOSR Workshop on "Computational Issues in Nonlinear Control" Monterey, CA
October 7-9, 2019

Outline

- Motivation - energy efficiency
- Approach:
- *intelligent control
- a/c design \& new instrumentation \& novel propulsion
- OC task formulation \& control synthesis
- Results:
- "Synthetic" weather
- COAMPS weather
- Computational bottlenecks:
- Existing solutions
- Desired but Missing "pieces"
- What is achievable today

Motivation - "Multi-Day Endurance of a Group 2 UAS Utilizing Pacific Energy Sources"

Motivation - enhance current mission effectiveness via advanced energy behavior (DOD Operational Energy)

Approach - integrate the latest advances in energy storage, harvesting, and recovery technologies in the novel onboard software capable of rapid energy optimal global path planning (GPP).

Objective - advance operational energy strategy:

- Increase future UAV capability via adaptable use of various sources of energy
- Enhance current mission effectiveness via predictive energy forecast and optimal routing
- Identify and reduce risk of energy shortage via robust adaptive mission replanning and intelligent control

Concept - demonstrate synergistic range and endurance benefits by integrating fuel cell propulsion, soaring, solar harvesting, and optimal path planning.

Solution - minimum energy/fuel solution obtained by utilizing classical Pontryagin optimal control approach. Key Deliverable - previously not feasible routes (CA-HI) can be optimally flown and rapidly recomputed onboard.

Patent: U.S. PTO 16/155,968, U.S. PCT PCT/US18/55144

Existing Constraints \& Desired Features

Desired features of the GPP solution:

- Completeness - need qurantees of complete exploration of given domain
- Optimality - need analytical guarantees of optimality of the solution
- Feasibility - practically feasible to implement onboard
- feasibility of CPU load
- feasibility of memory allocation
- ability to monitor the solver as it runs

Constraints of many of the existing methods:

- NO closed-form solution for complex dynamics of aircraft
- FAIL in complex and dynamic environment (time-varying wind, obstacles, etc)
- INFEASIBLE for online onboard implementation
- LACK of convergence for stiff ODEs
- Initial guess - problematic
- "SURVEI OF NUMERICAL METHODS FOR TRAJECTORY OPTIMIZATION," by John Betts, Journal of Guidance, Control, and Dynamics, vol. 21 , \#2, March-April 1998.
- "OPTIMAL CONTROL AND NUMERICAL SOFTWARE: AN OVERVIEW" by H.S. Rodrigues, M.T. Monteiro, D.M. Torres, in 'Systems Theory: Perspectives, Applications and Developments', Nova Science Publishers, Editor: Francisco Miranda, Jan 2014.
- "A SURVEY OF NUMERICAL METHODS FOR OPTIMAL CONTROL" by Anil V. Rao, AAS 09-334
- "OPTIMAL PATH PLANNING AND POWER ALLOCATION FOR LONG ENDURANCE SOLAR-POWERED UAV," by S.Hosseini, R.Dai, M. Mesbahi, in proceedings of ACC2013, Washington, DC, June 17-19, 2013

Mission Planning

- Practical objective - maximum endurance by minimizing the waste of constrained energy resource onboard
- Challenges:
- Weather:

- time-varying weather = $\{$ wind, local thermals, solar irradiance\}
- stochastic nature diverging with time
- limited fidelity
- Limited communication and computational resources
- Approach:
- Global route - GPP
- Local route - LPP
- GPP is a "reference to follow" for the LPP

Key Components of GPP

- Aircraft

- Aerodynamics C_{L}, C_{D}
- Fuel consumption dynamics vs thrust
- Solar efficiency
- "Battery" efficiency (minor now, big potential)

- Weather prediction model - COAMPS NRL/MRY
- 3D wind components as functions of LLA \& Time
- Solar flux => essential chunk of energy
- PBL => essential chunk of hybrid power
- Variability of weather => confidence

- Time

- Defines non-autonomous nature
- Optimizes the entire mission => start of the mission
- "Convolution parameter" of Energy\&Dynamics of flight

Plant Model

- Aircraft :

$$
\begin{aligned}
& \dot{x}=V \cos \psi+W_{x}(x, y, t) \\
& \dot{y}=V \sin \psi+W_{y}(x, y, t) \\
& \dot{\psi}=\frac{g \tan \varphi}{V_{g}} ; V_{g}=\sqrt{\dot{x}^{2}+\dot{y}^{2}} \\
& \begin{array}{l}
u_{1}=\varphi(t)-\text { bank angle } \\
u_{2}=V(t)-\text { airspeed }
\end{array}
\end{aligned}
$$

- Power loss due to drag

$$
\left.\begin{array}{l}
C_{L}=\frac{2 W}{\rho V^{2} S \cos \varphi} \\
C_{D}=C_{D_{0}}+K \cdot C_{L}^{2} \\
D=\frac{\rho V^{2}}{2} S \cdot C_{D} \\
T=D \\
P_{\text {drag }}=\frac{T \cdot V}{\eta_{\text {prop }}}
\end{array}\right\}
$$

- Separating controls (φ and V) from the parameterized model

$$
\begin{aligned}
& P_{\text {drag }}=\frac{T \cdot V}{\eta_{\text {prop }}}=\frac{\rho V^{3}}{2 \eta_{\text {prop }}} S \cdot\left(C_{D_{0}}+K_{p} \cdot C_{L}^{2}\right)= \\
& =\frac{\rho V^{3}}{2 \eta_{\text {prop }}} S \cdot C_{D_{0}}+\frac{\rho V^{3}}{2 \eta_{\text {prop }}} S \cdot K_{p} \cdot C_{L}^{2}=\frac{\rho V^{3}}{2 \eta_{\text {prop }}} S \cdot C_{D_{0}}+\frac{\rho V^{3}}{2 \eta_{\text {prop }}} S \cdot K_{p} \cdot \frac{4 W^{2}}{\rho^{2} V^{4} S^{2} \cos ^{2} \varphi}= \\
& =\frac{\rho \cdot S \cdot C_{D_{0}}}{2 \eta_{\text {prop }}} \cdot V^{3}+2 \frac{K_{p} S(W / S)^{2}}{\rho \eta_{\text {prop }}} \cdot \frac{1}{V \cos ^{2} \varphi}=K_{p 1} \cdot V^{3}+K_{p 2} \cdot \frac{1}{V \cos ^{2} \varphi}
\end{aligned}
$$

Plant Model

- Power gain due to solar photovoltaics

$$
\cos (i)=\cos (\varphi) \sin (E l)-\cos (E) \sin (A z-\psi) \sin (\varphi)
$$

$A z(t), E l(t)$ - azimuth and elevation of Sun

$$
P_{\text {solar }}=\eta_{\text {solar }} P_{\text {sflux }} A_{P V} \cos (i)
$$

$$
E_{\text {solar }}=\int_{t_{\text {soart }}}^{t_{f}} P_{\text {solar }}(\varphi, V, t) d t
$$

- Fuel consumption model

$$
\begin{aligned}
& P_{\text {net }}(\varphi, V, t)=\left|P_{\text {drag }}-P_{\text {solar }}\right| \\
& \dot{m}_{F}=F C 1 \cdot P_{\text {net }}^{2}+F C 2 \cdot P_{\text {net }}+F C 3
\end{aligned}
$$

$$
m_{F}=\int_{t_{\text {soor }}}^{t_{f}} \dot{m}_{F}(\varphi, V, t) d t
$$

$\delta=0.2 \mathrm{e}-3=>\varepsilon=172 \mathrm{~g}$ over 24 hours period=> 17 hours of flight; $\sim 10 \mathrm{~g} /$ hour

Minimum Energy Optimum Control

Find the optimal airspeed V^{*} and bank angle φ^{*} control functions that minimize

$$
\boldsymbol{J}^{*}=\min _{\varphi^{*}, V^{*}} \int_{t_{0}}^{t_{f}} P_{n e t} d t
$$

subject to the states and costates dynamics

$$
\begin{array}{ll}
\dot{x}=V \cos (\psi)+W_{x}(x, y, t) & \dot{\lambda}_{x}=-\partial H / \partial x=-\lambda_{x} \frac{\partial W_{x}(x, y, t)}{\partial x}-\lambda_{y} \frac{\partial W_{y}(x, y, t)}{\partial x}-\lambda_{\psi} \frac{\partial \dot{\psi}}{\partial x} \\
\dot{y}=V \sin (\psi)+W_{y}(x, y, t) & \dot{\lambda}_{y}=-\frac{\partial H}{\partial y}=-\lambda_{x} \frac{\partial W_{x}(x, y, t)}{\partial y}-\lambda_{y} \frac{\partial W_{y}(x, y, t)}{\partial y}-\lambda_{\psi} \frac{\partial \dot{\psi}}{\partial y} \\
\dot{\psi}=g \tan (\varphi) / V_{g}, V_{g}=\sqrt{\dot{x}^{2}+\dot{y}^{2}} & \dot{\lambda}_{\psi}=-\frac{\partial H}{\partial \psi}=\lambda_{x} V \sin (\psi)-\lambda_{y} V \cos (\psi)+K_{s} \sin (\phi) \cos (e) \cos (a-\psi)-\lambda_{\psi} \frac{\partial \dot{\psi}}{\partial \psi} \\
\dot{\tau}=1, \tau=t / t_{f} & \dot{\lambda}_{z}=-\frac{\partial H}{\partial \tau}=-\lambda_{x} \frac{\partial W_{x}(x, y, t)}{\partial \tau}-\lambda_{y} \frac{\partial W_{y}(x, y, t)}{\partial \tau}-\lambda_{\psi} \frac{\partial \dot{\psi}}{\partial \tau}
\end{array}
$$

, where

$$
H=V^{3} K_{p 1}+K_{p 2} / V \cos ^{2}(\varphi)-K_{s} \cos \left(\theta_{i}\right)+\lambda_{x} \dot{x}+\lambda_{y} \dot{y}+\lambda_{\psi} \dot{\psi}+\lambda_{\tau}
$$

and the associated boundary conditions

$$
\begin{aligned}
& x\left(t_{0}\right)=x_{0} ; y\left(t_{0}\right)=y_{0} \\
& x\left(t_{f}\right)=x_{f} ; y\left(t_{f}\right)=y_{f} \\
& \psi\left(t_{0}\right)=\psi_{0} ; \psi\left(t_{f}\right)=\psi_{f} \quad+\quad H\left(x, y, \psi, \tau, \lambda_{x}, \lambda_{y}, \lambda_{\psi}, \lambda_{\tau}\right)_{t_{f}}=0 \\
& \tau\left(t_{0}\right)=0 ; \tau\left(t_{f}\right)=1
\end{aligned}
$$

Synthesis

A1: Aaircraft is equipped with a stabilizing autopilot that effectively eliminates the nonlinear flight dynamics from consideration.
A2: The bank angle φ is small.

$$
\begin{aligned}
& \frac{\partial H}{\partial \varphi}=\frac{2 K_{P 2}}{V} \tan \varphi\left(\operatorname{tg}^{2} \varphi+1\right)+K_{\mathrm{s}} \sin \varphi\left(\sin (e)+\frac{\cos (e) \sin (a-\psi)}{\tan \varphi}\right)+\lambda_{\psi \psi} \frac{g}{V_{g}} \frac{1}{\cos ^{2} \varphi}=0 \\
& \frac{\partial H}{\partial V}=3 V^{2} K_{P 1}-\frac{1}{V^{2}} K_{P 2}\left(\tan ^{2} \varphi+1\right)+\lambda_{x} \cos \psi+\lambda_{y} \sin \psi=0
\end{aligned}
$$

Results:

$$
\begin{aligned}
& \tan \left(\varphi^{*}\right)=-\frac{V}{V_{g}} \frac{\lambda_{\psi} g+V_{g} K_{s} \cos (e) \sin (a-\psi)}{2 K_{P 2}+V \cdot K_{s} \sin (e)} \\
& V^{* 2}=\sqrt{\frac{4 \rho^{2} C_{D D}}{}\left(\frac{m g}{S}\right)^{2}+\frac{\eta_{\text {prop }}}{18 \rho S C_{D 0}} \Lambda^{2}}-\frac{\eta_{\text {prop }}}{3 \rho S C_{D 0}} \Lambda \\
& \Lambda=\lambda_{x} \cos \psi+\lambda_{y} \sin \psi
\end{aligned}
$$

$$
V_{\min P}^{2}=\frac{2 m g}{\rho S} \sqrt{\frac{K}{3 C_{D 0}}}
$$

the optimal speed to fly for the minimum required power $V_{\text {minP }}$ in horizontal flight

OC Analysis

$$
\tan \left(\varphi^{*}\right)=-\frac{V}{V_{g}} \frac{\lambda_{\psi} g+V_{g} K_{s} \cos (e) \sin (a-\psi)}{2 K_{P 2}+V \cdot K_{s} \sin (e)}
$$

OC Analysis

$$
V^{* 2}=\sqrt{\frac{4 K}{3 \rho^{2} C_{D 0}}\left(\frac{m g}{S}\right)^{2}+\frac{\eta_{\text {prop }}}{18 \rho S C_{D 0}} \Lambda^{2}}-\frac{\eta_{\text {prop }}}{3 \rho S C_{D 0}} \Lambda
$$

Solving BVP

- Challenge - sensitivity to the initial guess:
- Scaling
- Continuation
- Homotopy methods
design and solve a sequence of problems starting with a trivial one, and then use the previous solution as an initial guess for the next one.
- Solution - when there is no wind $=>W_{\text {scale }}=0=>$ the resulting trajectory is necessarily a straight line

Synthetic Wind :: Night

c - the airspeed V and the ground speed $V g$

b- ϕ control

- Synthesized OC closely approximates minT solution of Zermelo task
- BVP solver is fast => seconds

Synthetic Wind :: Day

- Synthesized OC is sufficiently different however can be 'initialized' by minT

Single Shot vs Continuation (BVP5C)
CPU time reduced by ~ 4.7 times

CPU time reduced by 26 times

t, sec; $\mathrm{T}_{\text {ratio }}=0.9999$

t, sec; RelTol=5.52e-03

t , sec; $\mathrm{T}_{\text {ratio }}=0.99993$
t , sec; RelTol=7.72e-08
Improve precision
Continuation -Con̄tínuation + Scaling

Single Shot vs Scaling+Continuation (BVP5C)

CPU time reduced by 127 times

BVP4C vs BVP5C in Scaling+Continuation
CPU time is ~ 2 times less

t , sec; $\mathrm{T}_{\text {ratio }}=0.99994$

t, sef; RelTol=2.73e-05

t , sec; $\mathrm{T}_{\text {ratio }}=0.99993$

t , sec RelTol=7.72e-08

Precision is the price,

Continuation + Scaling
Continuation + Scaling
Discretization $=100$, the same for both methods

Analysis

NOTE - keep in mind that there is NO interpolation

- Continuation:
- improves convergence properties of bvp solver by parameterizing the task when a single shot solution is not guaranteed.
- significantly simplifies the choice of an initial guess of states and co-states of the dynamic system.
- reduces the computational time by a factor of $\sim \underline{5}$.
- Scaling of ODE
- Reduces sensitivity of the BVP solver to nonlinearities.
- Reduces the computational time by a factor of $\sim \underline{20}$.
- Combination of ODE Scaling and Continuation:
- Combines the benefits of both.
- Reduces computational time by more than a factor of $\underline{100}$.
- What is next:
- Use Scaling+Continuation result of minTime task as an initial guess of minEnergy \& minFuel. Already prototyped with good promise.
- Solve the GPP task with interpolated COAMPS data.

COAMPS Wind

- Height levels: zonal, meridional, vertical winds, relative humidity
- Single levels: PBL height, incoming solar radiation, theta star (buoyancy meassure)

Solid red line -- great circle from SNDHNL

- Dashed lines represent a path ~200 km on each side of great circle.
- Path width is adjustable
- COAMPS data interpolated to regular grid along the path

Fast interpolation of vectorized queries is one of the heaviest computational tasks.

Interpretation od COAMPS-based results

Strong headwind
Color-coding should capture:

- Magnitude of wind
- Direction of wind w.r.t. the "reference" direction
$|\bar{\omega}|$ - wind
$\overline{V_{g}}$ - ground speed

Moderate crosswind sailing

Moderate tailwind sailing

Strong tailwind

OC over Time-Varying COAMPS

Comparison of the optimal and great circle routes/controls at $\mathrm{H}=2550 \mathrm{~m}$

Robustness

Cumulative Results

Comparison of Great Circle vs Optimal

June-August, 2017

- Va_cmd along GC matches the best airspeed for power
- Max achievable Time \& Fuel benefits - up to ~ 11 hours or $\sim 280 \mathrm{~g} \mathrm{H}_{2}$

- It is really hard to compete with optimal control !!!

Questions ?

Hurdles of Parallel Processing

Log of Height Search with Fuel Tolerance = 10 gram (Ubuntu i7)

Synthetic Wind :: Hessian

Road Map

