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Hierarchical Basis
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Hier. Basis Functions in Higher Dimensions

d-dimensional piecewise d-linear functions

φl ,j(x) :=
d∏

t=1

φlt ,jt (xt)

hierarchical difference space Wl (et is t-th unit vector)

Wl := Vl \
d⋃

t=1

Vl−et ,

hier. diff. space represented by Wl = span{φl ,j | j ∈ Bl} with

Bl :=

{
j ∈ Nd

∣∣∣∣ jt = 1, . . . , 2lt − 1, jt odd, t = 1, . . . , d , if lt > 1,
jt = 0, 1, 2, t = 1, . . . , d , if lt = 1

}
.

full grid space in hierarchical basis

V s
n :=

⊕
|l |∞≤n

Wl
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Hierarchical Subspaces Wl
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Sparse Grids

we define the sparse grid function space V s
n ⊂ Vn as

V s
n :=

⊕
|l |1≤n+d−1

Wl

every f ∈ V s
n can now be represented as

f sn (x) =
∑

|l |1≤n+d−1

∑
j∈Bl

αl ,jφl ,j(x)

approximation property in H2
mix

||f − f sn ||2 = O(h2
n log(h−1

n )d−1)

sparse grid needs O(h−1
n (log(h−1

n ))d−1) points
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Sparse Tensor Decomposition

sparse grids introduced by Zenger, 1991

original idea can be identified in work of Smolyak, 1963

other related approaches using construction exists as well

overview from Bungartz and Griebel in Acta Numerica 2004

tutorial introduction in G. 2013

truncated tensor construction can be used for ”any” multi-resolution representation
polynomials
B-splines
wavelets
Fourier series (hyperbolic cross approximation)
multi-level Monte Carlo (different resolutions for random variables as well as discretizations)
time vs. space discretization

sparsity pattern can be generalized from simplex or can be dimension-adaptive

SG++-library from Dirk Pflüger (U. Stuttgart) with Matlab and Python-bindings

in UQ-context and for numerical integration further libraries exist
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Problems with Sparse Grids for HJB: Monotonicity

interpolation of peaked Gaussian fct. with sparse grid of level n = 2

f (x1, x2) := exp
(
−100(x1 − 0.5)2

)
∗ exp

(
−100(x2 − 0.5)2

)

sparse grid interpolation does not preserve positivity
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Problems with Sparse Grids for HJB: Monotonicity

problem persists for monotonically increasing (strictly) concave functions, e.g.

f (x , y) =
−1

1 + 10x + 10y
+ 50.

function is similar to value functions arising for heterogenous agent models in economics

function plot of f interpolation plot of f
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Spatially Adaptive Sparse Grids

spatially adaptive grids can be used when functions
do not fulfil smoothness condition or
strongly vary due locally large derivatives

adaptivity helps to some degree to cope with non-monotonicity
refine one grid point by creating all children (middle)
to keep grid consistent, missing parents are created (right)

usually hierarchical surplus αl ,j is used as refinement indicator
in case of monotonically increasing concave functions one could check for negative derivatives
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Optimal Feedback Control

optimal feedback control of a dynamical system
min
u∈Uad

J(u) =

∫ T

0
l(y(t), u(t)) dt, s.t.

ẏ(t) = f (y(t), u(t)), t > 0

y(0) = y0

state y(t) ∈ Rd , initial state y0 ∈ Rd

control u(t) ∈ Um ⊂ Rm (often called action)
Lipschitz continuous dynamics f : Rd ×Rm → Rd

running cost with polynomial growth l : Rd ×Rm → R
set of admissible controls

Uad = {u ∈ L2([0,T ];Um) | Um ⊂ Rm compact}
aim: feedback law u∗ = K(t, y∗(t))
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Basic Sparse Grid Semi-Lagrangian Scheme

evaluate for x ∈ QI , ∆t > 0, K = T/∆t, k = K − 1, . . . , 0,vk(x) = min
u∈U

(
∆tl(x , u) + vk+1(yx(∆t))

)
,

vk(x) = 0

yx(∆t) state obtained by time discretization scheme from x
minimization either by comparing vk+1 values over finite set, nonlinear optimization, or gradient ∇v
Algorithm 1: Adaptive SL-SG scheme

Data: refinement constant ε, coarsening constant η
Result: sequence of adaptive sparse grid solutions vk ∈ VI(k)

initialize I(K )
for k = K − 1, . . . , 0 do . iterate in time with ∆t = T/K

initialize I(k − 1) with I(k)
adaptively interpolate minu∈U

(
vk(yx(∆t)) + ∆tl(x , u)

)
. compute vk−1

coarsen vk−1 ∈ VI(k−1)

see Bokanowski, G., Griebel, and Klompmaker (2013)
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Example 2D: Simplified Semi-Discrete Wave Equation

semi-discrete PDE control problem (following Kröner, Kunisch, Zidani (2015))

formulate as first order system in time with y1 = y , y2 = ẏ

dynamics f (x , u) = Ax + Bu
with running cost l(x , u) := βxx

T
1 Mx1 + βuu

Tu

Hamilton-Jacobi Bellman equation with dimension 2d

first consider a simplified example based on harmonic oscillator

βx = 2, βu = 0.1, T = 1, ∆t = 0.01,

A =

(
0 1
−1 0

)
, B =

(
0
1

)
,

initial data x ∈ R2, domain Q = [−1, 1]2, U = [−3.5, 3.5].

reference solution computed with a higher order FD code on very fine mesh

further details in G., Kröner (2017)
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Example 2D: Convergence of value function
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101 102 103 104

10−3

10−2

10−1

−0.96

−0.57

nodes (end)

‖v
−
v
∗ ‖

L
2

normal hat (adaptive)
fold out hat (adaptive)
normal hat (regular)
fold out hat (regular)
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Example 2D: Value function
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Figure: adaptive sparse grid with normal and fold out hat functions
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Example 2D: Convergence in the Trajectory
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(b) L∞ error in the trajectory vs. nodes
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Example 2D: Convergence in the Control

10−410−310−210−1
10−3

10−2

10−1

100

0.52

0.56

ε

‖u
−
u
∗ ‖

L
∞

normal hat (gradient)
fold out hat (gradient)
normal hat (compare)
fold out hat (compare)

(c) L∞ error in the control vs. ε
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Example: Semi-Discrete Wave Equation (4D)

now wave equation as first order system in time

ẏ(t) = fw(y(t), u(t)), t > 0, y(0) = y0

with dynamics

fw : R2d ×Rm → R, fw(x , u) := Ax + Bu

where

A :=

(
0 Id

−cM−1A 0

)
, B :=

(
0
b

)
, b ∈ Rm×d , y0 ∈ R2d

cost lw (x , u) := βxx
T
1 Mx1 + βuu

Tu

consider setup

βx = 2, βu = 0.1, T = 4, ∆t = 0.01, c = 0.05.

compute reference trajectories in state space and control space using a Riccati approach
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Example: Convergence in the Control (4D)
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Example: semi-discrete wave equation (4D)
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Figure: components of optimal state y and optimal control u
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Example: semi-discrete wave equation (6D)
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need to decrease time step to ∆t = 0.0025 (larger entries in stiffness matrix)
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Example: semi-discrete wave equation (8D)
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need to decrease time step to ∆t = 0.00125 (larger entries in stiffness matrix)
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Higher Order Runge-Kutta Methods

look at control formulation min
u∈Uad

J(u) =

∫ T

0
l(y(t), u(t)) dt, s.t.

ẏ(t) = f (y(t), u(t)), t > 0, y(0) = y0

we need time discretisation for y(t) and

quadrature rule to evaluate minu∈Uad J(u)

with higher order RK-scheme this could look like (misusing notation)

vk(x) = min
u1,u2,u3,...

(
∆t
∑
i

ci l(x
τi , ui ) + vk+1(ŷx(∆t))

)
where ŷx takes into account actions ui and RK-scheme with intermediate steps τi

therefore RK4 would have O(d4
c ) complexity if complexity for computing one control is dc

see also Falcone, Ferretti (1994)
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Structure Preserving Runge-Kutta Methods

observe that for explicit or diagonally implicit RK schemes, the last element uns of discrete control
vector affects only the last RK-stage ks
formulate condition on RK-coeff., s.t. control optimization is applied separately to each stage

idea is to mimic Dynamic Programming property within single step of semi-Lagrangian scheme

class of RK methods fulfilling this: diagonally implicit symplectic Runge-Kutta (DISRK) schemes

originally developed for long time integration of Hamiltonian systems

“re-use” implicit collocation RK-scheme for quadrature

DISRK are equivalent to composition of implicit midpoint schemes Ψh = Φγsτ ◦ · · · ◦ Φγ2τ ◦ Φγ1τ

we can construct a SL scheme, which has O(dc · s) complexity for the minimization problem

for example DISRK5 is a method of order 4 using 5 steps

γ1 = γ2 = γ4 = γ5 =
1

4− 41/(p+1)
, γ3 = − 41/(p+1)

4− 41/(p+1)
(1)

observe for s > 1 DISRK goes backwards in time for some steps !

details in G., Kalmykov (2018)
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Harmonic Oszillator as Simplified Semi-Discrete Wave -
Revisited

consider again the simplified example based on harmonic oscillator

βx = 2, βu = 0.1, T = 0.1, ∆t = 0.01,

A =

(
0 1
−1 0

)
, B =

(
0
1

)
,

initial data x ∈ R2, domain Q = [0, 1]2, U = [−3.5, 3.5].

control space discretization is denoted by A∆

use sparse grids with linear and 3rd order B-Splines, both with fold out ansatz (SG++-library)

equation for stage k of Implicit Mipoint Rule is solved with standard Newton algorithm

obtain a reference solution from continuous time Riccati differential equation

computation of error estimates is performed on a domain Ωref = [0.25, 0.75]2
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Simplified Semi-Discrete Wave - Revisited with DISRK1
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Simplified Semi-Discrete Wave
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results using Sparse Grids with B-Splines
using DISRK1, measure error on smaller domain
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Finite Differences on Sparse Grids

finite differences on sparse grids were introduced by [Griebel.Schiekofer:1998]

there, finite difference operators are a composition of three partial operators
1 a basis transformation from nodal to hierarchical basis in all dimensions but the dimension j in which we

aim to use the finite difference stencil
2 application of a finite difference stencil in dimension j , where mesh size is given as local step size to the

neighboring grid point in dimension j
3 a basis transformation from hierarchical to nodal basis in all dimensions but dimension j

consistency proofs can be given for elliptic PDE model problems

we investigate an alternative from [Ahn.2017], where additional ghost nodes are used

instead of using function values on the sparse grid points, one interpolates on ghost nodes

therefore, one does not need to use specific basis transformations and one can simply take any
sparse grid library, such as SG++ [Pflüger:2010]
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Finite Differences on Sparse Grids Using Ghost Nodes

we define the ghost node step size hgj in dimension j , 1 ≤ j ≤ n, for a grid point xl,i by

hgj := 2−kj where kj denotes the maximal level used in dimension j

for a grid point xl,i in which we aim to compute the finite differences in dimension j , 1 ≤ j ≤ d ,
we define the corresponding forward difference ghost node by

gF ,j
l,i := (xl1,i1 , . . . , xlj ,ij + hgj , . . . , xld ,id )

for backward difference corresponding backward difference ghost nodes are defined accordingly

left: ghost node (red) that is used for sparse grid forward FD in x-dimension in green grid point

right: all forward difference ghost nodes that are used for the sparse grid are drawn in red
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Finite Differences on Sparse Grids Using Ghost Nodes

with interpolation operator on the sparse grid

Is :
l⊕

k=1

Wk → Vl.

and interpolation operator for the by hgj shifted sparse grid (grid of ghost nodes)

IFhgj
:

l⊕
k=1

Wk → Vl and IBhgj
:

l⊕
k=1

Wk → Vl.

where IFhgj
is the forward difference and IBhgj

the backward difference in dimension j , 1 ≤ j ≤ d

we can defne the sparse grid backward difference operator D̃S ,B
j by

D̃S ,B
j := Is − IBhgj

:
l⊕

k=1

Wk → Vl.

for sparse grids in 2D up to level 3 we confirmed the equivalence to [Griebel.Schiekofer:1998]
an extended version of [Ahn:2017] will cover the relation of the two FD approaches in more detail
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Economic Model Problem from [Kaplan.Moll.Violante:2019]

want to solve the maximization problem

max
{ct ,dt}t≥0

E0

∫ ∞
0

e−ρtu(ct)dt (2)

subject to
ḃt = wztr

b(bt)bt − dt − χ(dt , at)− ct ȧt = raat + dt

zt = Poisson with intensities λ(z , z ′) bt ≥ b, at ≥ 0.
(3)

bt denotes liquid assets and at illiquid assets, respective returns on these assets are rb and ra

we have consumption ct , deposits dt , transaction cost function χ and wage w

idiosyncratic productivity zt follows a Poisson process with intensities λ(z , z ′)

Constant Relative Risk Aversion utility function u is strictly convex, strictly monotone increasing

use policy iteration, i.e. solve a corresponding linear equation system for fixed policy

high(er) dimensionality by number of assets and number of skills resulting in productivity

for details see G., Ruttscheidt (2019)
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2D model problem
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reference solution is computed on a 600× 600 full grid
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4D model problem
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reference solution is on sparse grid of level 8 (largest computable in reasonable time)
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6D model problem
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errors for value function and one deposit policy functions for adaptive sparse grids
reference solution is on sparse grid of level 6 (largest computable in reasonable time)
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Conclusion

use SL-scheme on sparse grids for HJB equations

investigate model reduction for optimal feedback control PDE problems leading to HJB equations

suitable for examples in higher dimensions seen up to 8d

somewhat more complicated function we treated with sparse grids for front propagation models in
Bokanowksi, G., Griebel, Klompmaker (2013)

large scale parallel studies for economic problem in up to 20D by Brumm, Scheidegger (2017)

higher order time schemes and higher order discretisation can be effective for smooth problems

sparse grids with B-splines converge ”nicer“
but have higher computing costs due to need to solve a linear equation system

investigate FD on sparse grids for economic problems using policy iteration
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