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Numerical Weather Prediction Power System
- ECMWEF Global Model - Eastern Interconnection

" 8 x 107 model variables are up- A simplified model has more
@-“-“E\ dated every 6-12 hours using than 25K buses, 28K lines, 8K
4 1.3 x 10" observations transformers, 1,000 generators.
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Challenges
hies
power consumption.

Covariance Matrix
dimension vs RAM size
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Dimension

High-Dimensional Systems

The scalability of algorithms is limited by several factors: computational
load, 1/O overhead and required memory size, degree of parallelism, and

Quantitative Change
Becomes Qualitative
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e
| Variational methods

® Motivated by optimal control theory (Sasaki 1958)
e 3D-Var
® 4D-Var
Bayesian estimation methods
e Kalman filter gain based on ensembles
° EnKF
e LETKF
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Goal: Characterize the shape of error covariance

® P is approximately
sparse.

® The decay rate seems =
to be faster than
exponential. ‘

e Additional constraints
should be deduced
from observation model
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System model

Nl y(t) = Cx(t) + D (1)

x € R" — state variable

y € R™ — observation variable

w, v — zero mean Gaussian white noise with identity covariance
g Q = BB — covariance of model uncertainty

4% R =DD" — covariance of observation noise

The Kalman-Bucy filter

S &(t) = AR(t) + K(£)(y(t) — Cx(t))
?uy.‘ K(t) = P(t)CTR™!
P(t) = AP(t) + P(t)AT + Q — K(t)RK(t)”
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x(t) = Ax(t) + Bw(t)

}....h x(t) = A%(t) + K(t)(y(t) — Cx(t))
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x(t) = Ax(t) + Bw(t)

o x(t) = AR(t) + K(t)Dv(t)
o

ik
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" Two controllability Gramians

| For the model:  x(t) = Ax(t) + Bw(t)

t
Gc(t):/ eA(t_"')QeAT(t_T)dT
0

g For the filter:  %X(t) = AX(t) + K(t)Dv(t)
i 4y

t
GC(t) = / AT K(r)RKT (1) (=7 dr
0
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Proposition: In the Kalman-Bucy filter,
P(t) = " P(0)e? t + GC(t) — GC(¢t)
" and

0<P(t) < eAtP(O)eATt + G(t) (upper bound)

Remark A more controllable model uncertainty input tends to enlarge
error; a more controllable KF results in larger correction, thus smaller
error.
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Theorem (A. Iserles 2000). Let E = e”, where A € R"™" is a banded
* | matrix of bandwidth s > 1. Let

p=_max {|Aj;l},

0<ij<n
| then
li—jl—1
—j (i =jl/s)™ -
g ‘E’,J|<hp7|’_./|/s) el’ il/s _ Z ’ |I_J|>L7
m — m
m=0
‘ﬁ for some integer L < n, where
(" X
) h(a, x) = a—, a>0,x>0.
XX

i
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.~ Theorem. Suppose that A, the matrix of a linear system, is banded
with a bandwidth s > 1. Let

= A
p=max {|4ijl}

g Suppose Q is also banded. Then
%

(G)ij| < Mh(pe T, (| — il — L)/s), if|j—i]>2L

for some constant M > 0 and some integer L > 0.

o

W

‘i\ Remark. e < h(a,x) < e .
‘“"‘l"

i
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.~ Proposition. Consider the dual system

2(1) = —ATz(7), z€R"
yi(r) = BTZ(T), yZ e R"

the dual system at t. More specifically, if zj(7) and z;(7) are

g The controllability Gramian, G (t), equals the observability Gramian of
Wi trajectories of the dual system satisfying zi(t) = e; and zj(t) = ¢;, then

X

i‘ﬁ (GC(t)),-j:/0 ZiT(T)BBTZj(T)dT,
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s -
| Decay rate - fitting the curve

(6)31 < Mh(a, (Ij — il + B)/7)

' the value of parameters are computed as follows

g
(M.c,7) =arg min 3~ (Mh(a,afe+ (= il/2) - (69);)

i€eZjeg
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e Upper bound
P(t) < e*P(0)e” ™t + G (1)

¢ Decay rate
Suppose A and Q are banded matrices, h(a, x) = i‘—j then

(G%)yj < Mh(a, (lj =il + 8)/7), M, a,B,7 are parameters

e Covariance constrained by observation

(P5)ii < (Ri)ir, if yie = (xk)i
kot (PH)il < V(Re)iiMe., 1<j<n, j#i
"Fu‘ul

?f{‘ Remark. e < h(a, x) < e .

.
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Model
—2.4680  —0.7236 0.1301  —0.2498  —0.2450
0.7227 —2.2126 0.7261 0.6476 0.6578 ..
0.4485 —0.0722 —2.7618 —0.1565 —0.7478 .-+ .- random value
. . . banded matrix
bandwidth = 8
150 % 150
1.00 1.00 0.50 0.33 0.25 0 0 0
1.00 1.00 1.00 0.50 0.33 0.25 0 0
0.50 1.00 1.00 1.00 0.50 0.33 0.25 0

0.33 0.50 1.00 1.00 1.00 0.50 0.33 0.25
0.25 0.33 0.50 1.00 1.00 1.00 0.50 0.33
0 025 033 050 1.00 1.00 1.00 0.50
0 0 025 0.33 0.50 1.00 1.00 1.00
0 0 0 025 0.33 0.50 1.00 1.00

0.0102  0.0098  0.0044  0.0110

~0.0083 —0.0088  0.0028 —0.0014
y=[»x s x0 xso J+Dv(0), D=1| _g007 00034 —00103 —0.0035
0.0047 —0.0080  0.0067 —0.0102
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Covariance constrained by observation
ol (PH)i < (Re)iis (Pl < v/ (R)iiMp
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Covariance constrained by observation
ol (PH)i < (Re)iis (Pl < v/ (R)iiMp
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GC - diagonal
P(t) < e*tP(0)e” t + GC(t)

-
B
E

)
A
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GC - diagonal

ﬁ P(t) < eAtP(0)eAt + GE(t)

§ —
o B - P
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Decay rate
(69 < Mh(a, (Ij = il + B)/7)

(M) =arg min 5= (Mh(a,a/e+ (1 = i)/7) - (6°);)°
TieT jes
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Decay rate
(6%)j < Mh(e, (lj — il + B)/)

(M) =arg min 5= (Mh(a,a/e+ (1 = i)/7) - (6°);)°
TieT jes
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Decay rate
(6%)j < Mh(e, (lj — il + B)/)

(M) =arg min 5= (Mh(a,a/e+ (1 = i)/7) - (6°);)°
TieT jes
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The shape of covariance matrix
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The shape of covariance matrix
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Lorenz-96 Model
dx;
dt -
y = |: X1 X3 Xg - j| + Dv

I ~n=40, At=0.05 F=38.

-Q=BB" isbanded s=2, R=DD" is diagonal.

= (Xi41 — Xi—2)Xi-1 — Xi + F+ Bw, i=1,2,--- n,

S - T = 1000 time steps.
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Lorenz-96 Model
| - Error covariance is computed using UKF .
- 10° random initial states uniformly distributed in x; € [-1,1].
- 6 x 10* numerical experimentations.
The maximum value of each entry in P

% “
0 ®

\ 2 ——
5 s n B
it 5 10
| I 11 5 i
(0



B R apunrs More Examples

¢/ scHOOL

The KdV equation

ou ou  Au

9t Tugs T ass 70

- ODE model: n=57, 2"-order finite difference approximation.
- U|i—g = 3Asech?(VA(s — 50)/2), so =5, A= 1.
- dt = 0.0156, ds = 0.25, T = 6400 filter steps.
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The KdV equation

- n, = 10 observation locations.
" | - Q=BBT isbanded s =1, R = DD is diagonal.
- Gaussian model uncertainty and observation noise.
- 3,750 numerical experimentations.

The maximum value of each entry in P
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. The shallow Water Equation

oh  Ouh
"’3'1-' e _— = 0
ot o0x
O(uh) ~ O(u?h+ 0.5gh?)
+ =0
ot ox

" - Discretization: DG and 3rd-order RK, n=180.
& - hlt—o = 0.1exp(—8(x — 0.5)) + 0.2, u|t=o = 0.
- dt =0.00125, T = 400 filter steps.

03
§ o
H 03
5 02
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The shallow water equation
- n, = 18 observation locations.

" | - Q=BB" isbanded s =2, R = DD is diagonal.
- Gaussian model uncertainty and observation noise.

- 400 numerical experimentations.

The maximum value of each entry in P

More Examples
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Conclusions and future work
| Spar.sity pattern is characterized for linear systems using controllability
Gramian.
® Error covariance is bounded by controllability Gramians.
® If Ais banded, the decay rate of GC(t) is h(c, x), faster than
exponential.
e Covariance satisfies constraints deduced from observation model.
® The computation is component-based using duality and
curve-fitting.
® For nonlinear systems, numerical experimentations show almost
sparse error covariance.
e Future work: the difference between G€(t) and GC(t), nonlinear
systems, parallel and distributed computation, NWP applications,




