
Nonlinear Systems Toolbox
Arthur J Krener

Naval Postgraduate School
Monterey, CA 93943

ajkrener@nps.edu



Modern Control Theory
Modern Control Theory dates back to first International
Federation for Automatic Control (IFAC) World Congress that
took place in Moscow in 1960.

At least three major theoretical accomplishments were reported
there.

• Pontryagin, Bolshanski, Gamkerlidze and Mischenko
presented the Maximum Principle.

• Bellman presented the Dynamic Programming Method and
the Hamilton-Jacobi-Bellman (HJB) PDE.

• Kalman presented the theory of Controllability, Observability
and Minimality for Linear Control Systems.

What did these accomplishments have in common.

They dealt with control and estimation problems in

State Space Form.



Modern Control Theory
Modern Control Theory dates back to first International
Federation for Automatic Control (IFAC) World Congress that
took place in Moscow in 1960.

At least three major theoretical accomplishments were reported
there.

• Pontryagin, Bolshanski, Gamkerlidze and Mischenko
presented the Maximum Principle.

• Bellman presented the Dynamic Programming Method and
the Hamilton-Jacobi-Bellman (HJB) PDE.

• Kalman presented the theory of Controllability, Observability
and Minimality for Linear Control Systems.

What did these accomplishments have in common.

They dealt with control and estimation problems in

State Space Form.



Modern Control Theory
Modern Control Theory dates back to first International
Federation for Automatic Control (IFAC) World Congress that
took place in Moscow in 1960.

At least three major theoretical accomplishments were reported
there.

• Pontryagin, Bolshanski, Gamkerlidze and Mischenko
presented the Maximum Principle.

• Bellman presented the Dynamic Programming Method and
the Hamilton-Jacobi-Bellman (HJB) PDE.

• Kalman presented the theory of Controllability, Observability
and Minimality for Linear Control Systems.

What did these accomplishments have in common.

They dealt with control and estimation problems in

State Space Form.



Modern Control Theory
Modern Control Theory dates back to first International
Federation for Automatic Control (IFAC) World Congress that
took place in Moscow in 1960.

At least three major theoretical accomplishments were reported
there.

• Pontryagin, Bolshanski, Gamkerlidze and Mischenko
presented the Maximum Principle.

• Bellman presented the Dynamic Programming Method and
the Hamilton-Jacobi-Bellman (HJB) PDE.

• Kalman presented the theory of Controllability, Observability
and Minimality for Linear Control Systems.

What did these accomplishments have in common.

They dealt with control and estimation problems in

State Space Form.



Modern Control Theory
Modern Control Theory dates back to first International
Federation for Automatic Control (IFAC) World Congress that
took place in Moscow in 1960.

At least three major theoretical accomplishments were reported
there.

• Pontryagin, Bolshanski, Gamkerlidze and Mischenko
presented the Maximum Principle.

• Bellman presented the Dynamic Programming Method and
the Hamilton-Jacobi-Bellman (HJB) PDE.

• Kalman presented the theory of Controllability, Observability
and Minimality for Linear Control Systems.

What did these accomplishments have in common.

They dealt with control and estimation problems in

State Space Form.



Modern Control Theory
Modern Control Theory dates back to first International
Federation for Automatic Control (IFAC) World Congress that
took place in Moscow in 1960.

At least three major theoretical accomplishments were reported
there.

• Pontryagin, Bolshanski, Gamkerlidze and Mischenko
presented the Maximum Principle.

• Bellman presented the Dynamic Programming Method and
the Hamilton-Jacobi-Bellman (HJB) PDE.

• Kalman presented the theory of Controllability, Observability
and Minimality for Linear Control Systems.

What did these accomplishments have in common.

They dealt with control and estimation problems in

State Space Form.



Modern Control Theory
Modern Control Theory dates back to first International
Federation for Automatic Control (IFAC) World Congress that
took place in Moscow in 1960.

At least three major theoretical accomplishments were reported
there.

• Pontryagin, Bolshanski, Gamkerlidze and Mischenko
presented the Maximum Principle.

• Bellman presented the Dynamic Programming Method and
the Hamilton-Jacobi-Bellman (HJB) PDE.

• Kalman presented the theory of Controllability, Observability
and Minimality for Linear Control Systems.

What did these accomplishments have in common.

They dealt with control and estimation problems in

State Space Form.



Linear State Space Control Theory

The decade of the 1960 witnessed the explosion of linear state
space control theory.

• Linear Quadratic Regulator (LQR)

• Kalman Filtering

• Separation Principle, Linear Quadratic Gaussian (LQG)

• Many other linear results.

It was the time of F,G,H, J if you lived near Stanford and
A,B,C,D if you lived anywhere else.

And there was much lamenting the gap between the linear state
space theory and the linear frequency domain practice.



Linear State Space Control Theory

The decade of the 1960 witnessed the explosion of linear state
space control theory.

• Linear Quadratic Regulator (LQR)

• Kalman Filtering

• Separation Principle, Linear Quadratic Gaussian (LQG)

• Many other linear results.

It was the time of F,G,H, J if you lived near Stanford and
A,B,C,D if you lived anywhere else.

And there was much lamenting the gap between the linear state
space theory and the linear frequency domain practice.



Linear State Space Control Theory

The decade of the 1960 witnessed the explosion of linear state
space control theory.

• Linear Quadratic Regulator (LQR)

• Kalman Filtering

• Separation Principle, Linear Quadratic Gaussian (LQG)

• Many other linear results.

It was the time of F,G,H, J if you lived near Stanford and
A,B,C,D if you lived anywhere else.

And there was much lamenting the gap between the linear state
space theory and the linear frequency domain practice.



Linear State Space Control Theory

The decade of the 1960 witnessed the explosion of linear state
space control theory.

• Linear Quadratic Regulator (LQR)

• Kalman Filtering

• Separation Principle, Linear Quadratic Gaussian (LQG)

• Many other linear results.

It was the time of F,G,H, J if you lived near Stanford and
A,B,C,D if you lived anywhere else.

And there was much lamenting the gap between the linear state
space theory and the linear frequency domain practice.



Linear State Space Control Theory

The decade of the 1960 witnessed the explosion of linear state
space control theory.

• Linear Quadratic Regulator (LQR)

• Kalman Filtering

• Separation Principle, Linear Quadratic Gaussian (LQG)

• Many other linear results.

It was the time of F,G,H, J if you lived near Stanford and
A,B,C,D if you lived anywhere else.

And there was much lamenting the gap between the linear state
space theory and the linear frequency domain practice.



Linear State Space Control Theory

The decade of the 1960 witnessed the explosion of linear state
space control theory.

• Linear Quadratic Regulator (LQR)

• Kalman Filtering

• Separation Principle, Linear Quadratic Gaussian (LQG)

• Many other linear results.

It was the time of F,G,H, J if you lived near Stanford and
A,B,C,D if you lived anywhere else.

And there was much lamenting the gap between the linear state
space theory and the linear frequency domain practice.



Linear State Space Control Theory

The decade of the 1960 witnessed the explosion of linear state
space control theory.

• Linear Quadratic Regulator (LQR)

• Kalman Filtering

• Separation Principle, Linear Quadratic Gaussian (LQG)

• Many other linear results.

It was the time of F,G,H, J if you lived near Stanford and
A,B,C,D if you lived anywhere else.

And there was much lamenting the gap between the linear state
space theory and the linear frequency domain practice.



Linear State Space Control Theory

The decade of the 1960 witnessed the explosion of linear state
space control theory.

• Linear Quadratic Regulator (LQR)

• Kalman Filtering

• Separation Principle, Linear Quadratic Gaussian (LQG)

• Many other linear results.

It was the time of F,G,H, J if you lived near Stanford and
A,B,C,D if you lived anywhere else.

And there was much lamenting the gap between the linear state
space theory and the linear frequency domain practice.



LINPACK

In the early 1970s something happened to change the
conversation.

The Department of Energy funded a project to develop software
for linear algebra applications for what were then called
”supercomputers”.

Four numerical analysts, Dongarra, Bunch, Moler and Stewart
wrote LINPACK in Fortran. LINPACK makes use of the BLAS
(Basic Linear Algebra Subprograms) libraries for performing
basic vector and matrix operations.

In the later 1970s LINPAK and a related package called EISPAK
were replaced and supplanted by LAPACK which also uses
BLAS.



LINPACK

In the early 1970s something happened to change the
conversation.

The Department of Energy funded a project to develop software
for linear algebra applications for what were then called
”supercomputers”.

Four numerical analysts, Dongarra, Bunch, Moler and Stewart
wrote LINPACK in Fortran. LINPACK makes use of the BLAS
(Basic Linear Algebra Subprograms) libraries for performing
basic vector and matrix operations.

In the later 1970s LINPAK and a related package called EISPAK
were replaced and supplanted by LAPACK which also uses
BLAS.



LINPACK

In the early 1970s something happened to change the
conversation.

The Department of Energy funded a project to develop software
for linear algebra applications for what were then called
”supercomputers”.

Four numerical analysts, Dongarra, Bunch, Moler and Stewart
wrote LINPACK in Fortran. LINPACK makes use of the BLAS
(Basic Linear Algebra Subprograms) libraries for performing
basic vector and matrix operations.

In the later 1970s LINPAK and a related package called EISPAK
were replaced and supplanted by LAPACK which also uses
BLAS.



LINPACK

In the early 1970s something happened to change the
conversation.

The Department of Energy funded a project to develop software
for linear algebra applications for what were then called
”supercomputers”.

Four numerical analysts, Dongarra, Bunch, Moler and Stewart
wrote LINPACK in Fortran. LINPACK makes use of the BLAS
(Basic Linear Algebra Subprograms) libraries for performing
basic vector and matrix operations.

In the later 1970s LINPAK and a related package called EISPAK
were replaced and supplanted by LAPACK which also uses
BLAS.



MATLAB

Cleve Moler, the chairman of the computer science department
at the University of New Mexico, started developing MATLAB
in the late 1970s.

He designed it to give his students access to LINPACK and
EISPACK without them having to learn Fortran.

The roots of MATLAB are in pedagogy

Jack Little, a Stanford engineering graduate student, was
exposed to it during a visit Moler made in 1983.

Recognizing its commercial potential, he joined with Moler and
Steve Bangert. They rewrote MATLAB in C and founded
MathWorks in 1984 to continue its development.

MATLAB was first adopted by researchers and practitioners in
control engineering, Little’s specialty, but quickly spread to
many other domains.



MATLAB

Cleve Moler, the chairman of the computer science department
at the University of New Mexico, started developing MATLAB
in the late 1970s.

He designed it to give his students access to LINPACK and
EISPACK without them having to learn Fortran.

The roots of MATLAB are in pedagogy

Jack Little, a Stanford engineering graduate student, was
exposed to it during a visit Moler made in 1983.

Recognizing its commercial potential, he joined with Moler and
Steve Bangert. They rewrote MATLAB in C and founded
MathWorks in 1984 to continue its development.

MATLAB was first adopted by researchers and practitioners in
control engineering, Little’s specialty, but quickly spread to
many other domains.



MATLAB

Cleve Moler, the chairman of the computer science department
at the University of New Mexico, started developing MATLAB
in the late 1970s.

He designed it to give his students access to LINPACK and
EISPACK without them having to learn Fortran.

The roots of MATLAB are in pedagogy

Jack Little, a Stanford engineering graduate student, was
exposed to it during a visit Moler made in 1983.

Recognizing its commercial potential, he joined with Moler and
Steve Bangert. They rewrote MATLAB in C and founded
MathWorks in 1984 to continue its development.

MATLAB was first adopted by researchers and practitioners in
control engineering, Little’s specialty, but quickly spread to
many other domains.



MATLAB

Cleve Moler, the chairman of the computer science department
at the University of New Mexico, started developing MATLAB
in the late 1970s.

He designed it to give his students access to LINPACK and
EISPACK without them having to learn Fortran.

The roots of MATLAB are in pedagogy

Jack Little, a Stanford engineering graduate student, was
exposed to it during a visit Moler made in 1983.

Recognizing its commercial potential, he joined with Moler and
Steve Bangert. They rewrote MATLAB in C and founded
MathWorks in 1984 to continue its development.

MATLAB was first adopted by researchers and practitioners in
control engineering, Little’s specialty, but quickly spread to
many other domains.



MATLAB

Cleve Moler, the chairman of the computer science department
at the University of New Mexico, started developing MATLAB
in the late 1970s.

He designed it to give his students access to LINPACK and
EISPACK without them having to learn Fortran.

The roots of MATLAB are in pedagogy

Jack Little, a Stanford engineering graduate student, was
exposed to it during a visit Moler made in 1983.

Recognizing its commercial potential, he joined with Moler and
Steve Bangert. They rewrote MATLAB in C and founded
MathWorks in 1984 to continue its development.

MATLAB was first adopted by researchers and practitioners in
control engineering, Little’s specialty, but quickly spread to
many other domains.



MATLAB

Cleve Moler, the chairman of the computer science department
at the University of New Mexico, started developing MATLAB
in the late 1970s.

He designed it to give his students access to LINPACK and
EISPACK without them having to learn Fortran.

The roots of MATLAB are in pedagogy

Jack Little, a Stanford engineering graduate student, was
exposed to it during a visit Moler made in 1983.

Recognizing its commercial potential, he joined with Moler and
Steve Bangert. They rewrote MATLAB in C and founded
MathWorks in 1984 to continue its development.

MATLAB was first adopted by researchers and practitioners in
control engineering, Little’s specialty, but quickly spread to
many other domains.



Competitors
With BLAS readily available, several other companies arose to
compete with MathWorks, among them Control-C and
Matrix-X. But they gradually faded away.

There continues to arise new competitors to Matlab like Scilab
but with Matlab’s estabished base and extensive suite of
toolboxes it is hard for them to get market share.

Alan Laub and others wrote the Control Systems Toolbox and
Leonard Ljung wrote the System Identification Toolbox. Both
deal primarily with linear systems.

Other Controls related toolboxes include the Aerospace Toolbox,
the Model Predictive Control Toolbox, the Robotics Toolbox
and the Robust Control Toolbox.

So special purpose software is becoming available for some
nonlinear systems or perhaps more precisely the Jacobi
linearizations of nonlinear system, e.g. the Extended Kalman
Filter.



Competitors
With BLAS readily available, several other companies arose to
compete with MathWorks, among them Control-C and
Matrix-X. But they gradually faded away.

There continues to arise new competitors to Matlab like Scilab
but with Matlab’s estabished base and extensive suite of
toolboxes it is hard for them to get market share.

Alan Laub and others wrote the Control Systems Toolbox and
Leonard Ljung wrote the System Identification Toolbox. Both
deal primarily with linear systems.

Other Controls related toolboxes include the Aerospace Toolbox,
the Model Predictive Control Toolbox, the Robotics Toolbox
and the Robust Control Toolbox.

So special purpose software is becoming available for some
nonlinear systems or perhaps more precisely the Jacobi
linearizations of nonlinear system, e.g. the Extended Kalman
Filter.



Competitors
With BLAS readily available, several other companies arose to
compete with MathWorks, among them Control-C and
Matrix-X. But they gradually faded away.

There continues to arise new competitors to Matlab like Scilab
but with Matlab’s estabished base and extensive suite of
toolboxes it is hard for them to get market share.

Alan Laub and others wrote the Control Systems Toolbox and
Leonard Ljung wrote the System Identification Toolbox. Both
deal primarily with linear systems.

Other Controls related toolboxes include the Aerospace Toolbox,
the Model Predictive Control Toolbox, the Robotics Toolbox
and the Robust Control Toolbox.

So special purpose software is becoming available for some
nonlinear systems or perhaps more precisely the Jacobi
linearizations of nonlinear system, e.g. the Extended Kalman
Filter.



Competitors
With BLAS readily available, several other companies arose to
compete with MathWorks, among them Control-C and
Matrix-X. But they gradually faded away.

There continues to arise new competitors to Matlab like Scilab
but with Matlab’s estabished base and extensive suite of
toolboxes it is hard for them to get market share.

Alan Laub and others wrote the Control Systems Toolbox and
Leonard Ljung wrote the System Identification Toolbox. Both
deal primarily with linear systems.

Other Controls related toolboxes include the Aerospace Toolbox,
the Model Predictive Control Toolbox, the Robotics Toolbox
and the Robust Control Toolbox.

So special purpose software is becoming available for some
nonlinear systems or perhaps more precisely the Jacobi
linearizations of nonlinear system, e.g. the Extended Kalman
Filter.



Competitors
With BLAS readily available, several other companies arose to
compete with MathWorks, among them Control-C and
Matrix-X. But they gradually faded away.

There continues to arise new competitors to Matlab like Scilab
but with Matlab’s estabished base and extensive suite of
toolboxes it is hard for them to get market share.

Alan Laub and others wrote the Control Systems Toolbox and
Leonard Ljung wrote the System Identification Toolbox. Both
deal primarily with linear systems.

Other Controls related toolboxes include the Aerospace Toolbox,
the Model Predictive Control Toolbox, the Robotics Toolbox
and the Robust Control Toolbox.

So special purpose software is becoming available for some
nonlinear systems or perhaps more precisely the Jacobi
linearizations of nonlinear system, e.g. the Extended Kalman
Filter.



Fundamental Problems, Mathematician’s Opinion
What are the fundamental problems of control?

• Finding a feedback that stabilizes a plant to an operating
point.

• Finding an open loop control trajectory that steers a plant
from one state to another.

• Finding a feedforward and feedback that tracks a reference
trajectory.

• Estimating the state of a system from partial and inexact
measurements.

• Identifying a model of a plant from first principles and/or
input-output measurments.

These are fundamental problems for both linear and nonlinear
systems.

For linear systems we have theoretical solutions that are easily
implemented numerically.

For nonlinear systems we have theoretical solutions that usually
cannot be implemented numerically.



Fundamental Problems, Mathematician’s Opinion
What are the fundamental problems of control?

• Finding a feedback that stabilizes a plant to an operating
point.

• Finding an open loop control trajectory that steers a plant
from one state to another.

• Finding a feedforward and feedback that tracks a reference
trajectory.

• Estimating the state of a system from partial and inexact
measurements.

• Identifying a model of a plant from first principles and/or
input-output measurments.

These are fundamental problems for both linear and nonlinear
systems.

For linear systems we have theoretical solutions that are easily
implemented numerically.

For nonlinear systems we have theoretical solutions that usually
cannot be implemented numerically.



Fundamental Problems, Mathematician’s Opinion
What are the fundamental problems of control?

• Finding a feedback that stabilizes a plant to an operating
point.

• Finding an open loop control trajectory that steers a plant
from one state to another.

• Finding a feedforward and feedback that tracks a reference
trajectory.

• Estimating the state of a system from partial and inexact
measurements.

• Identifying a model of a plant from first principles and/or
input-output measurments.

These are fundamental problems for both linear and nonlinear
systems.

For linear systems we have theoretical solutions that are easily
implemented numerically.

For nonlinear systems we have theoretical solutions that usually
cannot be implemented numerically.



Fundamental Problems, Mathematician’s Opinion
What are the fundamental problems of control?

• Finding a feedback that stabilizes a plant to an operating
point.

• Finding an open loop control trajectory that steers a plant
from one state to another.

• Finding a feedforward and feedback that tracks a reference
trajectory.

• Estimating the state of a system from partial and inexact
measurements.

• Identifying a model of a plant from first principles and/or
input-output measurments.

These are fundamental problems for both linear and nonlinear
systems.

For linear systems we have theoretical solutions that are easily
implemented numerically.

For nonlinear systems we have theoretical solutions that usually
cannot be implemented numerically.



Fundamental Problems, Mathematician’s Opinion
What are the fundamental problems of control?

• Finding a feedback that stabilizes a plant to an operating
point.

• Finding an open loop control trajectory that steers a plant
from one state to another.

• Finding a feedforward and feedback that tracks a reference
trajectory.

• Estimating the state of a system from partial and inexact
measurements.

• Identifying a model of a plant from first principles and/or
input-output measurments.

These are fundamental problems for both linear and nonlinear
systems.

For linear systems we have theoretical solutions that are easily
implemented numerically.

For nonlinear systems we have theoretical solutions that usually
cannot be implemented numerically.



Fundamental Problems, Mathematician’s Opinion
What are the fundamental problems of control?

• Finding a feedback that stabilizes a plant to an operating
point.

• Finding an open loop control trajectory that steers a plant
from one state to another.

• Finding a feedforward and feedback that tracks a reference
trajectory.

• Estimating the state of a system from partial and inexact
measurements.

• Identifying a model of a plant from first principles and/or
input-output measurments.

These are fundamental problems for both linear and nonlinear
systems.

For linear systems we have theoretical solutions that are easily
implemented numerically.

For nonlinear systems we have theoretical solutions that usually
cannot be implemented numerically.



Fundamental Problems, Mathematician’s Opinion
What are the fundamental problems of control?

• Finding a feedback that stabilizes a plant to an operating
point.

• Finding an open loop control trajectory that steers a plant
from one state to another.

• Finding a feedforward and feedback that tracks a reference
trajectory.

• Estimating the state of a system from partial and inexact
measurements.

• Identifying a model of a plant from first principles and/or
input-output measurments.

These are fundamental problems for both linear and nonlinear
systems.

For linear systems we have theoretical solutions that are easily
implemented numerically.

For nonlinear systems we have theoretical solutions that usually
cannot be implemented numerically.



Fundamental Problems, Mathematician’s Opinion
What are the fundamental problems of control?

• Finding a feedback that stabilizes a plant to an operating
point.

• Finding an open loop control trajectory that steers a plant
from one state to another.

• Finding a feedforward and feedback that tracks a reference
trajectory.

• Estimating the state of a system from partial and inexact
measurements.

• Identifying a model of a plant from first principles and/or
input-output measurments.

These are fundamental problems for both linear and nonlinear
systems.

For linear systems we have theoretical solutions that are easily
implemented numerically.

For nonlinear systems we have theoretical solutions that usually
cannot be implemented numerically.



Fundamental Problems, Mathematician’s Opinion
What are the fundamental problems of control?

• Finding a feedback that stabilizes a plant to an operating
point.

• Finding an open loop control trajectory that steers a plant
from one state to another.

• Finding a feedforward and feedback that tracks a reference
trajectory.

• Estimating the state of a system from partial and inexact
measurements.

• Identifying a model of a plant from first principles and/or
input-output measurments.

These are fundamental problems for both linear and nonlinear
systems.

For linear systems we have theoretical solutions that are easily
implemented numerically.

For nonlinear systems we have theoretical solutions that usually
cannot be implemented numerically.



Fundamental Problems, Mathematician’s Opinion
What are the fundamental problems of control?

• Finding a feedback that stabilizes a plant to an operating
point.

• Finding an open loop control trajectory that steers a plant
from one state to another.

• Finding a feedforward and feedback that tracks a reference
trajectory.

• Estimating the state of a system from partial and inexact
measurements.

• Identifying a model of a plant from first principles and/or
input-output measurments.

These are fundamental problems for both linear and nonlinear
systems.

For linear systems we have theoretical solutions that are easily
implemented numerically.

For nonlinear systems we have theoretical solutions that usually
cannot be implemented numerically.



Fundamental Problems, Practitioners’ Opinion
Table 1: Results of a survey by the IFAC Industry Committee  
on the current and future impact of PID  
and advanced control technologies  
  

          Current Impact  Future Impact 
Control Technology %  High  Low/No  High  Low/No 
PID control    91%  0%   78%  6% 
System Identification   65%  5%   72%  5% 
Estimation & filtering   64%  11%   63%  3% 
Model-predictive control  62%  11%   85%  2% 
Process data analytics   51%  15%   70%  8% 
Fault detection &  48%  17%   8%  8% 
identification 
Decentralized and/or   29%  33%   54%  11% 
coordinated control 
Robust control    26%  35%   42%  23% 
Intelligent control   24%  38%   59%  11% 
Nonlinear control   21%  44%   42%  15% 
Discrete-event systems   24%  45%   39%  27% 
Adaptive control   18%  38%   44%  17% 
Repetitive control   12%  74%   17%  51% 
Other advanced   11%  64%   25%  39% 
control technology 
Hybrid dynamical   11%  68%   33%  33% 
systems 
Game theory    5%  76%   17%  52% 
	



Control Systems Toolbox

The Control Systems Toolbox for linear systems is

• General Purpose

• Reliable

• Scalable

• Portable

• Easy to Use

• Benchmarked

Can we develop a toolbox with similar properties
that is applicable to a broad class of nonlinear

systems?

I call my attempt the ”Nonlinear Systems Toolbox”



Control Systems Toolbox

The Control Systems Toolbox for linear systems is

• General Purpose

• Reliable

• Scalable

• Portable

• Easy to Use

• Benchmarked

Can we develop a toolbox with similar properties
that is applicable to a broad class of nonlinear

systems?

I call my attempt the ”Nonlinear Systems Toolbox”



Control Systems Toolbox

The Control Systems Toolbox for linear systems is

• General Purpose

• Reliable

• Scalable

• Portable

• Easy to Use

• Benchmarked

Can we develop a toolbox with similar properties
that is applicable to a broad class of nonlinear

systems?

I call my attempt the ”Nonlinear Systems Toolbox”



Control Systems Toolbox

The Control Systems Toolbox for linear systems is

• General Purpose

• Reliable

• Scalable

• Portable

• Easy to Use

• Benchmarked

Can we develop a toolbox with similar properties
that is applicable to a broad class of nonlinear

systems?

I call my attempt the ”Nonlinear Systems Toolbox”



Control Systems Toolbox

The Control Systems Toolbox for linear systems is

• General Purpose

• Reliable

• Scalable

• Portable

• Easy to Use

• Benchmarked

Can we develop a toolbox with similar properties
that is applicable to a broad class of nonlinear

systems?

I call my attempt the ”Nonlinear Systems Toolbox”



Control Systems Toolbox

The Control Systems Toolbox for linear systems is

• General Purpose

• Reliable

• Scalable

• Portable

• Easy to Use

• Benchmarked

Can we develop a toolbox with similar properties
that is applicable to a broad class of nonlinear

systems?

I call my attempt the ”Nonlinear Systems Toolbox”



Control Systems Toolbox

The Control Systems Toolbox for linear systems is

• General Purpose

• Reliable

• Scalable

• Portable

• Easy to Use

• Benchmarked

Can we develop a toolbox with similar properties
that is applicable to a broad class of nonlinear

systems?

I call my attempt the ”Nonlinear Systems Toolbox”



Control Systems Toolbox

The Control Systems Toolbox for linear systems is

• General Purpose

• Reliable

• Scalable

• Portable

• Easy to Use

• Benchmarked

Can we develop a toolbox with similar properties
that is applicable to a broad class of nonlinear

systems?

I call my attempt the ”Nonlinear Systems Toolbox”



Control Systems Toolbox

The Control Systems Toolbox for linear systems is

• General Purpose

• Reliable

• Scalable

• Portable

• Easy to Use

• Benchmarked

Can we develop a toolbox with similar properties
that is applicable to a broad class of nonlinear

systems?

I call my attempt the ”Nonlinear Systems Toolbox”



Polynomial Systems

My Nonlinear Systems Toolbox (nst19) deals with polynomial
systems around an operating point x = 0, u = 0 in continuous
time

ẋ = f(x, u) = Fx+Gu+ f [2](x, u) + · · ·+ f [d](x, u)

y = h(x, u) = Hx+ Ju+ h[2](x, u) + · · ·+ h[d](x, u)

or in discrete time
x+ = f(x, u) = Fx+Gu+ f [2](x, u) + · · ·+ f [d](x, u)

y = h(x, u) = Hx+ Ju+ h[2](x, u) + · · ·+ h[d](x, u)

where x+(t) = x(t = 1) and f [j](x, u) denotes terms of
homogeneous degree j in x, u.

Polynomial systems arise naturally in various contexts, e.g.
chemical reactions, predator prey, or they could be the Taylor
polynomials of more general smooth systems, e.g. pendula.



Polynomial Systems

My Nonlinear Systems Toolbox (nst19) deals with polynomial
systems around an operating point x = 0, u = 0 in continuous
time

ẋ = f(x, u) = Fx+Gu+ f [2](x, u) + · · ·+ f [d](x, u)

y = h(x, u) = Hx+ Ju+ h[2](x, u) + · · ·+ h[d](x, u)

or in discrete time
x+ = f(x, u) = Fx+Gu+ f [2](x, u) + · · ·+ f [d](x, u)

y = h(x, u) = Hx+ Ju+ h[2](x, u) + · · ·+ h[d](x, u)

where x+(t) = x(t = 1) and f [j](x, u) denotes terms of
homogeneous degree j in x, u.

Polynomial systems arise naturally in various contexts, e.g.
chemical reactions, predator prey, or they could be the Taylor
polynomials of more general smooth systems, e.g. pendula.



Polynomial Systems

My Nonlinear Systems Toolbox (nst19) deals with polynomial
systems around an operating point x = 0, u = 0 in continuous
time

ẋ = f(x, u) = Fx+Gu+ f [2](x, u) + · · ·+ f [d](x, u)

y = h(x, u) = Hx+ Ju+ h[2](x, u) + · · ·+ h[d](x, u)

or in discrete time
x+ = f(x, u) = Fx+Gu+ f [2](x, u) + · · ·+ f [d](x, u)

y = h(x, u) = Hx+ Ju+ h[2](x, u) + · · ·+ h[d](x, u)

where x+(t) = x(t = 1) and f [j](x, u) denotes terms of
homogeneous degree j in x, u.

Polynomial systems arise naturally in various contexts, e.g.
chemical reactions, predator prey, or they could be the Taylor
polynomials of more general smooth systems, e.g. pendula.



Polynomial Systems

My Nonlinear Systems Toolbox (nst19) deals with polynomial
systems around an operating point x = 0, u = 0 in continuous
time

ẋ = f(x, u) = Fx+Gu+ f [2](x, u) + · · ·+ f [d](x, u)

y = h(x, u) = Hx+ Ju+ h[2](x, u) + · · ·+ h[d](x, u)

or in discrete time
x+ = f(x, u) = Fx+Gu+ f [2](x, u) + · · ·+ f [d](x, u)

y = h(x, u) = Hx+ Ju+ h[2](x, u) + · · ·+ h[d](x, u)

where x+(t) = x(t = 1) and f [j](x, u) denotes terms of
homogeneous degree j in x, u.

Polynomial systems arise naturally in various contexts, e.g.
chemical reactions, predator prey, or they could be the Taylor
polynomials of more general smooth systems, e.g. pendula.



Fundamental Data Type

The fundamental data type is a polynomial vector field which is
stored as its matrix of coefficients.

For example if the state x and control u dimensions are n and
m respectively then this matrix is of dimension

n×
(
n+m+ d

d

)
The argument and value of a polynomial vector field can be
vectors of vectors.

The quadratic coefficients of f [2](x, u) are grouped as follows,
first the monomials quadratic in x then the monomials bilinear
in x and u and finally the monomials quadratic in u .

Within groups the monomials are stored in lexographic order
with right indices moving faster than left indices.



Fundamental Data Type

The fundamental data type is a polynomial vector field which is
stored as its matrix of coefficients.

For example if the state x and control u dimensions are n and
m respectively then this matrix is of dimension

n×
(
n+m+ d

d

)

The argument and value of a polynomial vector field can be
vectors of vectors.

The quadratic coefficients of f [2](x, u) are grouped as follows,
first the monomials quadratic in x then the monomials bilinear
in x and u and finally the monomials quadratic in u .

Within groups the monomials are stored in lexographic order
with right indices moving faster than left indices.



Fundamental Data Type

The fundamental data type is a polynomial vector field which is
stored as its matrix of coefficients.

For example if the state x and control u dimensions are n and
m respectively then this matrix is of dimension

n×
(
n+m+ d

d

)
The argument and value of a polynomial vector field can be
vectors of vectors.

The quadratic coefficients of f [2](x, u) are grouped as follows,
first the monomials quadratic in x then the monomials bilinear
in x and u and finally the monomials quadratic in u .

Within groups the monomials are stored in lexographic order
with right indices moving faster than left indices.



Fundamental Data Type

The fundamental data type is a polynomial vector field which is
stored as its matrix of coefficients.

For example if the state x and control u dimensions are n and
m respectively then this matrix is of dimension

n×
(
n+m+ d

d

)
The argument and value of a polynomial vector field can be
vectors of vectors.

The quadratic coefficients of f [2](x, u) are grouped as follows,
first the monomials quadratic in x then the monomials bilinear
in x and u and finally the monomials quadratic in u .

Within groups the monomials are stored in lexographic order
with right indices moving faster than left indices.



Fundamental Data Type

The fundamental data type is a polynomial vector field which is
stored as its matrix of coefficients.

For example if the state x and control u dimensions are n and
m respectively then this matrix is of dimension

n×
(
n+m+ d

d

)
The argument and value of a polynomial vector field can be
vectors of vectors.

The quadratic coefficients of f [2](x, u) are grouped as follows,
first the monomials quadratic in x then the monomials bilinear
in x and u and finally the monomials quadratic in u .

Within groups the monomials are stored in lexographic order
with right indices moving faster than left indices.



Alternatives
On could try to manipulate polynomials symbolicaly but this is
only possible in low dimensions and low degrees.

Morover it is impossible to solve even linear equations in
symbolic polynomials.

Another alternative is to forget that multiplication of variables is
commutative and then use Kronecker algebra.

But this greatly increases the dimensions of the matrices
involved.

There are 56 monomials of degree 3 in 6 commuting variables.

There are 216 monomials of degree 3 in 6 noncommuting
variables.

There are 336 monomials of degree 3 in 12 commuting variables.

There are 1728 monomials of degree 3 in 6 noncommuting
variables.



Alternatives
On could try to manipulate polynomials symbolicaly but this is
only possible in low dimensions and low degrees.

Morover it is impossible to solve even linear equations in
symbolic polynomials.

Another alternative is to forget that multiplication of variables is
commutative and then use Kronecker algebra.

But this greatly increases the dimensions of the matrices
involved.

There are 56 monomials of degree 3 in 6 commuting variables.

There are 216 monomials of degree 3 in 6 noncommuting
variables.

There are 336 monomials of degree 3 in 12 commuting variables.

There are 1728 monomials of degree 3 in 6 noncommuting
variables.



Alternatives
On could try to manipulate polynomials symbolicaly but this is
only possible in low dimensions and low degrees.

Morover it is impossible to solve even linear equations in
symbolic polynomials.

Another alternative is to forget that multiplication of variables is
commutative and then use Kronecker algebra.

But this greatly increases the dimensions of the matrices
involved.

There are 56 monomials of degree 3 in 6 commuting variables.

There are 216 monomials of degree 3 in 6 noncommuting
variables.

There are 336 monomials of degree 3 in 12 commuting variables.

There are 1728 monomials of degree 3 in 6 noncommuting
variables.



Alternatives
On could try to manipulate polynomials symbolicaly but this is
only possible in low dimensions and low degrees.

Morover it is impossible to solve even linear equations in
symbolic polynomials.

Another alternative is to forget that multiplication of variables is
commutative and then use Kronecker algebra.

But this greatly increases the dimensions of the matrices
involved.

There are 56 monomials of degree 3 in 6 commuting variables.

There are 216 monomials of degree 3 in 6 noncommuting
variables.

There are 336 monomials of degree 3 in 12 commuting variables.

There are 1728 monomials of degree 3 in 6 noncommuting
variables.



Alternatives
On could try to manipulate polynomials symbolicaly but this is
only possible in low dimensions and low degrees.

Morover it is impossible to solve even linear equations in
symbolic polynomials.

Another alternative is to forget that multiplication of variables is
commutative and then use Kronecker algebra.

But this greatly increases the dimensions of the matrices
involved.

There are 56 monomials of degree 3 in 6 commuting variables.

There are 216 monomials of degree 3 in 6 noncommuting
variables.

There are 336 monomials of degree 3 in 12 commuting variables.

There are 1728 monomials of degree 3 in 6 noncommuting
variables.



Alternatives
On could try to manipulate polynomials symbolicaly but this is
only possible in low dimensions and low degrees.

Morover it is impossible to solve even linear equations in
symbolic polynomials.

Another alternative is to forget that multiplication of variables is
commutative and then use Kronecker algebra.

But this greatly increases the dimensions of the matrices
involved.

There are 56 monomials of degree 3 in 6 commuting variables.

There are 216 monomials of degree 3 in 6 noncommuting
variables.

There are 336 monomials of degree 3 in 12 commuting variables.

There are 1728 monomials of degree 3 in 6 noncommuting
variables.



Alternatives
On could try to manipulate polynomials symbolicaly but this is
only possible in low dimensions and low degrees.

Morover it is impossible to solve even linear equations in
symbolic polynomials.

Another alternative is to forget that multiplication of variables is
commutative and then use Kronecker algebra.

But this greatly increases the dimensions of the matrices
involved.

There are 56 monomials of degree 3 in 6 commuting variables.

There are 216 monomials of degree 3 in 6 noncommuting
variables.

There are 336 monomials of degree 3 in 12 commuting variables.

There are 1728 monomials of degree 3 in 6 noncommuting
variables.



Alternatives
On could try to manipulate polynomials symbolicaly but this is
only possible in low dimensions and low degrees.

Morover it is impossible to solve even linear equations in
symbolic polynomials.

Another alternative is to forget that multiplication of variables is
commutative and then use Kronecker algebra.

But this greatly increases the dimensions of the matrices
involved.

There are 56 monomials of degree 3 in 6 commuting variables.

There are 216 monomials of degree 3 in 6 noncommuting
variables.

There are 336 monomials of degree 3 in 12 commuting variables.

There are 1728 monomials of degree 3 in 6 noncommuting
variables.



Basic Operations of NST

• Directionally differentiate one polynomial vector field in the
direction of another dd.mex

• Compose two polynomial vector fields cmp.mex.

• Compute the Jacobian matrix field of a polynomial vector
field jcbn.mex.
(Matrix fields are converted to vector fields by row
stacking.)

• Multiply a matrix field times another vector or matrix field
mply.mex.

• Given numerical values for arguments of a polynomial vector
field compute the numerical values of all the monomials in
the arguments from a given lower degree to a given upper
degree mon.mex.

• Of course compatiblity conditions must be satisfied



Basic Operations of NST

• Directionally differentiate one polynomial vector field in the
direction of another dd.mex

• Compose two polynomial vector fields cmp.mex.

• Compute the Jacobian matrix field of a polynomial vector
field jcbn.mex.
(Matrix fields are converted to vector fields by row
stacking.)

• Multiply a matrix field times another vector or matrix field
mply.mex.

• Given numerical values for arguments of a polynomial vector
field compute the numerical values of all the monomials in
the arguments from a given lower degree to a given upper
degree mon.mex.

• Of course compatiblity conditions must be satisfied



Basic Operations of NST

• Directionally differentiate one polynomial vector field in the
direction of another dd.mex

• Compose two polynomial vector fields cmp.mex.

• Compute the Jacobian matrix field of a polynomial vector
field jcbn.mex.
(Matrix fields are converted to vector fields by row
stacking.)

• Multiply a matrix field times another vector or matrix field
mply.mex.

• Given numerical values for arguments of a polynomial vector
field compute the numerical values of all the monomials in
the arguments from a given lower degree to a given upper
degree mon.mex.

• Of course compatiblity conditions must be satisfied



Basic Operations of NST

• Directionally differentiate one polynomial vector field in the
direction of another dd.mex

• Compose two polynomial vector fields cmp.mex.

• Compute the Jacobian matrix field of a polynomial vector
field jcbn.mex.
(Matrix fields are converted to vector fields by row
stacking.)

• Multiply a matrix field times another vector or matrix field
mply.mex.

• Given numerical values for arguments of a polynomial vector
field compute the numerical values of all the monomials in
the arguments from a given lower degree to a given upper
degree mon.mex.

• Of course compatiblity conditions must be satisfied



Basic Operations of NST

• Directionally differentiate one polynomial vector field in the
direction of another dd.mex

• Compose two polynomial vector fields cmp.mex.

• Compute the Jacobian matrix field of a polynomial vector
field jcbn.mex.
(Matrix fields are converted to vector fields by row
stacking.)

• Multiply a matrix field times another vector or matrix field
mply.mex.

• Given numerical values for arguments of a polynomial vector
field compute the numerical values of all the monomials in
the arguments from a given lower degree to a given upper
degree mon.mex.

• Of course compatiblity conditions must be satisfied



Basic Operations of NST

• Directionally differentiate one polynomial vector field in the
direction of another dd.mex

• Compose two polynomial vector fields cmp.mex.

• Compute the Jacobian matrix field of a polynomial vector
field jcbn.mex.
(Matrix fields are converted to vector fields by row
stacking.)

• Multiply a matrix field times another vector or matrix field
mply.mex.

• Given numerical values for arguments of a polynomial vector
field compute the numerical values of all the monomials in
the arguments from a given lower degree to a given upper
degree mon.mex.

• Of course compatiblity conditions must be satisfied



Basic Operations of NST

• Directionally differentiate one polynomial vector field in the
direction of another dd.mex

• Compose two polynomial vector fields cmp.mex.

• Compute the Jacobian matrix field of a polynomial vector
field jcbn.mex.
(Matrix fields are converted to vector fields by row
stacking.)

• Multiply a matrix field times another vector or matrix field
mply.mex.

• Given numerical values for arguments of a polynomial vector
field compute the numerical values of all the monomials in
the arguments from a given lower degree to a given upper
degree mon.mex.

• Of course compatiblity conditions must be satisfied



Basic Operations of NST

• Directionally differentiate one polynomial vector field in the
direction of another dd.mex

• Compose two polynomial vector fields cmp.mex.

• Compute the Jacobian matrix field of a polynomial vector
field jcbn.mex.
(Matrix fields are converted to vector fields by row
stacking.)

• Multiply a matrix field times another vector or matrix field
mply.mex.

• Given numerical values for arguments of a polynomial vector
field compute the numerical values of all the monomials in
the arguments from a given lower degree to a given upper
degree mon.mex.

• Of course compatiblity conditions must be satisfied



Some Fundamental PDEs of
Continuous Time Nonlinear Control

Hamilton-Jacobi-Bellman PDE, unkowns c = π(x), u = κ(x)

0 = minu

{
∂π

∂x
(x)f(x, u) + l(x, u)

}
κ(x) = argminu

{
∂π

∂x
(x)f(x, u) + l(x, u)

}

Francis-Byrnes-Isidori PDE of Nonlinear Regulation, unkowns
x = φ(w), u = λ(w)

f(φ(w), λ(w)) =
∂φ

∂w
(w)a(w)

h(φ(w), λ(w)) = 0



Some Fundamental PDEs of
Continuous Time Nonlinear Control

Hamilton-Jacobi-Bellman PDE, unkowns c = π(x), u = κ(x)

0 = minu

{
∂π

∂x
(x)f(x, u) + l(x, u)

}
κ(x) = argminu

{
∂π

∂x
(x)f(x, u) + l(x, u)

}
Francis-Byrnes-Isidori PDE of Nonlinear Regulation, unkowns
x = φ(w), u = λ(w)

f(φ(w), λ(w)) =
∂φ

∂w
(w)a(w)

h(φ(w), λ(w)) = 0



Some Fundamental PDEs of
Continuous Time Nonlinear Control

Feedback Linearization PDE, unkowns x = φ(z), v = α(z, u)

f(x, u) =
∂φ

∂z
(z) (Fz +Gα(z, u))

Kazantzis-Kravaris PDE for an observer with linear error
dynamics, unknowns x = φ(z), β(h(x))

f(x) =
∂φ

∂z
(z)

(
Fφ−1(x) + β(h(x))

)



Some Fundamental PDEs of
Continuous Time Nonlinear Control

Feedback Linearization PDE, unkowns x = φ(z), v = α(z, u)

f(x, u) =
∂φ

∂z
(z) (Fz +Gα(z, u))

Kazantzis-Kravaris PDE for an observer with linear error
dynamics, unknowns x = φ(z), β(h(x))

f(x) =
∂φ

∂z
(z)

(
Fφ−1(x) + β(h(x))

)



Regular Singular Point

What all these PDEs have in common is that we would to solve
them in a neighborhood of a regular singular point.

A first order PDE has a regular singular point at a point where
the coefficient of the first derivative term vanishes.

This implies that the Taylor polynomials of the desired solution
can be computed degree by degree.

The lowest terms of the Taylor polynomials might satisfy a
nonlinear equation but all the higher degree terms will satisfy
linear equations.

Al’brekht did it for HJB PDEs in 1961 and the others were done
later but the basic technique goes back Poincare and even Euler.



Regular Singular Point

What all these PDEs have in common is that we would to solve
them in a neighborhood of a regular singular point.

A first order PDE has a regular singular point at a point where
the coefficient of the first derivative term vanishes.

This implies that the Taylor polynomials of the desired solution
can be computed degree by degree.

The lowest terms of the Taylor polynomials might satisfy a
nonlinear equation but all the higher degree terms will satisfy
linear equations.

Al’brekht did it for HJB PDEs in 1961 and the others were done
later but the basic technique goes back Poincare and even Euler.



Regular Singular Point

What all these PDEs have in common is that we would to solve
them in a neighborhood of a regular singular point.

A first order PDE has a regular singular point at a point where
the coefficient of the first derivative term vanishes.

This implies that the Taylor polynomials of the desired solution
can be computed degree by degree.

The lowest terms of the Taylor polynomials might satisfy a
nonlinear equation but all the higher degree terms will satisfy
linear equations.

Al’brekht did it for HJB PDEs in 1961 and the others were done
later but the basic technique goes back Poincare and even Euler.



Regular Singular Point

What all these PDEs have in common is that we would to solve
them in a neighborhood of a regular singular point.

A first order PDE has a regular singular point at a point where
the coefficient of the first derivative term vanishes.

This implies that the Taylor polynomials of the desired solution
can be computed degree by degree.

The lowest terms of the Taylor polynomials might satisfy a
nonlinear equation but all the higher degree terms will satisfy
linear equations.

Al’brekht did it for HJB PDEs in 1961 and the others were done
later but the basic technique goes back Poincare and even Euler.



Regular Singular Point

What all these PDEs have in common is that we would to solve
them in a neighborhood of a regular singular point.

A first order PDE has a regular singular point at a point where
the coefficient of the first derivative term vanishes.

This implies that the Taylor polynomials of the desired solution
can be computed degree by degree.

The lowest terms of the Taylor polynomials might satisfy a
nonlinear equation but all the higher degree terms will satisfy
linear equations.

Al’brekht did it for HJB PDEs in 1961 and the others were done
later but the basic technique goes back Poincare and even Euler.



Regular Singular Point

Suppose π[d](x) is a polynomial homogeneous of degree d.

Then

π[d](x) 7→
∂π[d]

∂x
(x) (F +GK)x

is a linear operator whose eigenvalues are the sums of d
eigenvalues of F +GK.



Regular Singular Point

Suppose π[d](x) is a polynomial homogeneous of degree d.

Then

π[d](x) 7→
∂π[d]

∂x
(x) (F +GK)x

is a linear operator whose eigenvalues are the sums of d
eigenvalues of F +GK.



Regular Singular Point

Suppose π[d](x) is a polynomial homogeneous of degree d.

Then

π[d](x) 7→
∂π[d]

∂x
(x) (F +GK)x

is a linear operator whose eigenvalues are the sums of d
eigenvalues of F +GK.



Functional Equations

Bellman’s Dynamic Programming Equation is a functional
equation in the unknown functions π(x), κ(x).

π(x) = minu {π(f(x, u)) + l(x, u)}
κ(x) = argminu {π(f(x, u)) + l(x, u)}

The corresponding linear operator is

π[d](x) 7→ π[d](x)− π[d]((F +GK)x)

Its eigenvalues are 1 minus the product of d eigenvalues of
F +GK.



Functional Equations

Bellman’s Dynamic Programming Equation is a functional
equation in the unknown functions π(x), κ(x).

π(x) = minu {π(f(x, u)) + l(x, u)}
κ(x) = argminu {π(f(x, u)) + l(x, u)}

The corresponding linear operator is

π[d](x) 7→ π[d](x)− π[d]((F +GK)x)

Its eigenvalues are 1 minus the product of d eigenvalues of
F +GK.



Functional Equations

Bellman’s Dynamic Programming Equation is a functional
equation in the unknown functions π(x), κ(x).

π(x) = minu {π(f(x, u)) + l(x, u)}
κ(x) = argminu {π(f(x, u)) + l(x, u)}

The corresponding linear operator is

π[d](x) 7→ π[d](x)− π[d]((F +GK)x)

Its eigenvalues are 1 minus the product of d eigenvalues of
F +GK.



Stochastic Optimal Control

The stochastic version of HJB equation is a second order
nonlinear PDE.

It has a regular singular point at the operating point if the
coefficients of the white noise in the Ito equation vanishes at
the operating point.

Hence the Taylor polynomials of the expected optimal cost and
optimal feedback can be computed degree by degree.

In discrete time the stochastic Dynamic Programming equation
for the expected optimal cost and optimal feedback can also be
computed degree by degree if the coefficients of the noise in the
dynamics vanishes at the operating point.



Stochastic Optimal Control

The stochastic version of HJB equation is a second order
nonlinear PDE.

It has a regular singular point at the operating point if the
coefficients of the white noise in the Ito equation vanishes at
the operating point.

Hence the Taylor polynomials of the expected optimal cost and
optimal feedback can be computed degree by degree.

In discrete time the stochastic Dynamic Programming equation
for the expected optimal cost and optimal feedback can also be
computed degree by degree if the coefficients of the noise in the
dynamics vanishes at the operating point.



Stochastic Optimal Control

The stochastic version of HJB equation is a second order
nonlinear PDE.

It has a regular singular point at the operating point if the
coefficients of the white noise in the Ito equation vanishes at
the operating point.

Hence the Taylor polynomials of the expected optimal cost and
optimal feedback can be computed degree by degree.

In discrete time the stochastic Dynamic Programming equation
for the expected optimal cost and optimal feedback can also be
computed degree by degree if the coefficients of the noise in the
dynamics vanishes at the operating point.



Stochastic Optimal Control

The stochastic version of HJB equation is a second order
nonlinear PDE.

It has a regular singular point at the operating point if the
coefficients of the white noise in the Ito equation vanishes at
the operating point.

Hence the Taylor polynomials of the expected optimal cost and
optimal feedback can be computed degree by degree.

In discrete time the stochastic Dynamic Programming equation
for the expected optimal cost and optimal feedback can also be
computed degree by degree if the coefficients of the noise in the
dynamics vanishes at the operating point.



Nonlinear System Toolbox 2019

The Nonlinear Systems Toolbox is a package of MATLAB .m,
.mlx and .mex files for the analysis and synthesis of nonlinear
control systems described by polynomials. Some of these .m files
are implemented by .mex files.

The basic data type is a vector field which is polynomial of
arbitrary degree in a vector which is composed of an arbitrary
number of subvectors.

Of course, memory and speed limitations will implicitly restrict
the degrees of the vector fields and dimensions of vectors.

NST also works with polynomial matrix fields, polynomial higher
order tensor fields and complex fields.



Nonlinear System Toolbox 2019

The Nonlinear Systems Toolbox is a package of MATLAB .m,
.mlx and .mex files for the analysis and synthesis of nonlinear
control systems described by polynomials. Some of these .m files
are implemented by .mex files.

The basic data type is a vector field which is polynomial of
arbitrary degree in a vector which is composed of an arbitrary
number of subvectors.

Of course, memory and speed limitations will implicitly restrict
the degrees of the vector fields and dimensions of vectors.

NST also works with polynomial matrix fields, polynomial higher
order tensor fields and complex fields.



Nonlinear System Toolbox 2019

The Nonlinear Systems Toolbox is a package of MATLAB .m,
.mlx and .mex files for the analysis and synthesis of nonlinear
control systems described by polynomials. Some of these .m files
are implemented by .mex files.

The basic data type is a vector field which is polynomial of
arbitrary degree in a vector which is composed of an arbitrary
number of subvectors.

Of course, memory and speed limitations will implicitly restrict
the degrees of the vector fields and dimensions of vectors.

NST also works with polynomial matrix fields, polynomial higher
order tensor fields and complex fields.



Nonlinear System Toolbox 2019

The Nonlinear Systems Toolbox is a package of MATLAB .m,
.mlx and .mex files for the analysis and synthesis of nonlinear
control systems described by polynomials. Some of these .m files
are implemented by .mex files.

The basic data type is a vector field which is polynomial of
arbitrary degree in a vector which is composed of an arbitrary
number of subvectors.

Of course, memory and speed limitations will implicitly restrict
the degrees of the vector fields and dimensions of vectors.

NST also works with polynomial matrix fields, polynomial higher
order tensor fields and complex fields.



Nonlinear System Toolbox 2019

hjb.m Computes degree by degree the solution to the HJB equations
for a continuous time, infinite horizon optimal control problem.

dpe.m Computes degree by degree the solution to the Dynamic
Programming equation for a discrete time, infinite horizon optimal
control problem.

tay poly.m Compute the Taylor polynomial of a symbolic vector field.

hjb set up.m Takes a symbolic infinite horizon optimal control problem
and computes the Taylor polynomials needed by hjb.m or dpe.m .

fbi.m Computes degree by degree the solution of the
Francis-Byrnes-Isidori PDE of continuous time nonlinear regulation.

d fbi.m Computes degree by degree the solution of the Huang-Lin
functional equation of discrete time nonlinear regulation.

csq.m Extends a polynomial of degrees 2 through d+1 whose
quadratic part is positive definite to a polynomial of degrees 2 through
2d which is a sum of squares.



Nonlinear System Toolbox 2019

hjb.m Computes degree by degree the solution to the HJB equations
for a continuous time, infinite horizon optimal control problem.

dpe.m Computes degree by degree the solution to the Dynamic
Programming equation for a discrete time, infinite horizon optimal
control problem.

tay poly.m Compute the Taylor polynomial of a symbolic vector field.

hjb set up.m Takes a symbolic infinite horizon optimal control problem
and computes the Taylor polynomials needed by hjb.m or dpe.m .

fbi.m Computes degree by degree the solution of the
Francis-Byrnes-Isidori PDE of continuous time nonlinear regulation.

d fbi.m Computes degree by degree the solution of the Huang-Lin
functional equation of discrete time nonlinear regulation.

csq.m Extends a polynomial of degrees 2 through d+1 whose
quadratic part is positive definite to a polynomial of degrees 2 through
2d which is a sum of squares.



Nonlinear System Toolbox 2019

hjb.m Computes degree by degree the solution to the HJB equations
for a continuous time, infinite horizon optimal control problem.

dpe.m Computes degree by degree the solution to the Dynamic
Programming equation for a discrete time, infinite horizon optimal
control problem.

tay poly.m Compute the Taylor polynomial of a symbolic vector field.

hjb set up.m Takes a symbolic infinite horizon optimal control problem
and computes the Taylor polynomials needed by hjb.m or dpe.m .

fbi.m Computes degree by degree the solution of the
Francis-Byrnes-Isidori PDE of continuous time nonlinear regulation.

d fbi.m Computes degree by degree the solution of the Huang-Lin
functional equation of discrete time nonlinear regulation.

csq.m Extends a polynomial of degrees 2 through d+1 whose
quadratic part is positive definite to a polynomial of degrees 2 through
2d which is a sum of squares.



Nonlinear System Toolbox 2019

hjb.m Computes degree by degree the solution to the HJB equations
for a continuous time, infinite horizon optimal control problem.

dpe.m Computes degree by degree the solution to the Dynamic
Programming equation for a discrete time, infinite horizon optimal
control problem.

tay poly.m Compute the Taylor polynomial of a symbolic vector field.

hjb set up.m Takes a symbolic infinite horizon optimal control problem
and computes the Taylor polynomials needed by hjb.m or dpe.m .

fbi.m Computes degree by degree the solution of the
Francis-Byrnes-Isidori PDE of continuous time nonlinear regulation.

d fbi.m Computes degree by degree the solution of the Huang-Lin
functional equation of discrete time nonlinear regulation.

csq.m Extends a polynomial of degrees 2 through d+1 whose
quadratic part is positive definite to a polynomial of degrees 2 through
2d which is a sum of squares.



Nonlinear System Toolbox 2019

hjb.m Computes degree by degree the solution to the HJB equations
for a continuous time, infinite horizon optimal control problem.

dpe.m Computes degree by degree the solution to the Dynamic
Programming equation for a discrete time, infinite horizon optimal
control problem.

tay poly.m Compute the Taylor polynomial of a symbolic vector field.

hjb set up.m Takes a symbolic infinite horizon optimal control problem
and computes the Taylor polynomials needed by hjb.m or dpe.m .

fbi.m Computes degree by degree the solution of the
Francis-Byrnes-Isidori PDE of continuous time nonlinear regulation.

d fbi.m Computes degree by degree the solution of the Huang-Lin
functional equation of discrete time nonlinear regulation.

csq.m Extends a polynomial of degrees 2 through d+1 whose
quadratic part is positive definite to a polynomial of degrees 2 through
2d which is a sum of squares.



Nonlinear System Toolbox 2019

hjb.m Computes degree by degree the solution to the HJB equations
for a continuous time, infinite horizon optimal control problem.

dpe.m Computes degree by degree the solution to the Dynamic
Programming equation for a discrete time, infinite horizon optimal
control problem.

tay poly.m Compute the Taylor polynomial of a symbolic vector field.

hjb set up.m Takes a symbolic infinite horizon optimal control problem
and computes the Taylor polynomials needed by hjb.m or dpe.m .

fbi.m Computes degree by degree the solution of the
Francis-Byrnes-Isidori PDE of continuous time nonlinear regulation.

d fbi.m Computes degree by degree the solution of the Huang-Lin
functional equation of discrete time nonlinear regulation.

csq.m Extends a polynomial of degrees 2 through d+1 whose
quadratic part is positive definite to a polynomial of degrees 2 through
2d which is a sum of squares.



Nonlinear System Toolbox 2019

hjb.m Computes degree by degree the solution to the HJB equations
for a continuous time, infinite horizon optimal control problem.

dpe.m Computes degree by degree the solution to the Dynamic
Programming equation for a discrete time, infinite horizon optimal
control problem.

tay poly.m Compute the Taylor polynomial of a symbolic vector field.

hjb set up.m Takes a symbolic infinite horizon optimal control problem
and computes the Taylor polynomials needed by hjb.m or dpe.m .

fbi.m Computes degree by degree the solution of the
Francis-Byrnes-Isidori PDE of continuous time nonlinear regulation.

d fbi.m Computes degree by degree the solution of the Huang-Lin
functional equation of discrete time nonlinear regulation.

csq.m Extends a polynomial of degrees 2 through d+1 whose
quadratic part is positive definite to a polynomial of degrees 2 through
2d which is a sum of squares.



Nonlinear System Toolbox 2019

ch crds.m

d ch crds.m

dsp.m

fbk lin.m

hji.m

inv mfd.m

obskk.m

zbv.m



Nonlinear System Toolbox 2019

ch crds.m

d ch crds.m

dsp.m

fbk lin.m

hji.m

inv mfd.m

obskk.m

zbv.m



Nonlinear System Toolbox 2019

ch crds.m

d ch crds.m

dsp.m

fbk lin.m

hji.m

inv mfd.m

obskk.m

zbv.m



Nonlinear System Toolbox 2019

ch crds.m

d ch crds.m

dsp.m

fbk lin.m

hji.m

inv mfd.m

obskk.m

zbv.m



Nonlinear System Toolbox 2019

ch crds.m

d ch crds.m

dsp.m

fbk lin.m

hji.m

inv mfd.m

obskk.m

zbv.m



Nonlinear System Toolbox 2019

ch crds.m

d ch crds.m

dsp.m

fbk lin.m

hji.m

inv mfd.m

obskk.m

zbv.m



Nonlinear System Toolbox 2019

ch crds.m

d ch crds.m

dsp.m

fbk lin.m

hji.m

inv mfd.m

obskk.m

zbv.m



Nonlinear System Toolbox 2019

ch crds.m

d ch crds.m

dsp.m

fbk lin.m

hji.m

inv mfd.m

obskk.m

zbv.m



Example Optimal Stabilization



Problems with Al’brekht’s Method

But Al’brekhts method has its limitations including the
following.

• The Taylor polynomial of the optimal cost to degree
d+ 1 > 2 need not be positive definite.

• Al’brekht’s Method cannot handle state and/or control
constraints.

• There is no effective way to compute the domain on which
the Taylor polynomial of the optimal cost is a valid Lyapunov
function for the closed loop dynamics using the Taylor
polynomial of the optimal feedback in dimensions n > 2.

• Increasing the degrees d+ 1, d of the Taylor polynomials
does not necesarily increase the size of this domain.



Problems with Al’brekht’s Method

But Al’brekhts method has its limitations including the
following.

• The Taylor polynomial of the optimal cost to degree
d+ 1 > 2 need not be positive definite.

• Al’brekht’s Method cannot handle state and/or control
constraints.

• There is no effective way to compute the domain on which
the Taylor polynomial of the optimal cost is a valid Lyapunov
function for the closed loop dynamics using the Taylor
polynomial of the optimal feedback in dimensions n > 2.

• Increasing the degrees d+ 1, d of the Taylor polynomials
does not necesarily increase the size of this domain.



Problems with Al’brekht’s Method

But Al’brekhts method has its limitations including the
following.

• The Taylor polynomial of the optimal cost to degree
d+ 1 > 2 need not be positive definite.

• Al’brekht’s Method cannot handle state and/or control
constraints.

• There is no effective way to compute the domain on which
the Taylor polynomial of the optimal cost is a valid Lyapunov
function for the closed loop dynamics using the Taylor
polynomial of the optimal feedback in dimensions n > 2.

• Increasing the degrees d+ 1, d of the Taylor polynomials
does not necesarily increase the size of this domain.



Problems with Al’brekht’s Method

But Al’brekhts method has its limitations including the
following.

• The Taylor polynomial of the optimal cost to degree
d+ 1 > 2 need not be positive definite.

• Al’brekht’s Method cannot handle state and/or control
constraints.

• There is no effective way to compute the domain on which
the Taylor polynomial of the optimal cost is a valid Lyapunov
function for the closed loop dynamics using the Taylor
polynomial of the optimal feedback in dimensions n > 2.

• Increasing the degrees d+ 1, d of the Taylor polynomials
does not necesarily increase the size of this domain.



Problems with Al’brekht’s Method

But Al’brekhts method has its limitations including the
following.

• The Taylor polynomial of the optimal cost to degree
d+ 1 > 2 need not be positive definite.

• Al’brekht’s Method cannot handle state and/or control
constraints.

• There is no effective way to compute the domain on which
the Taylor polynomial of the optimal cost is a valid Lyapunov
function for the closed loop dynamics using the Taylor
polynomial of the optimal feedback in dimensions n > 2.

• Increasing the degrees d+ 1, d of the Taylor polynomials
does not necesarily increase the size of this domain.



Problems with Al’brekht’s Method

But Al’brekhts method has its limitations including the
following.

• The Taylor polynomial of the optimal cost to degree
d+ 1 > 2 need not be positive definite.

• Al’brekht’s Method cannot handle state and/or control
constraints.

• There is no effective way to compute the domain on which
the Taylor polynomial of the optimal cost is a valid Lyapunov
function for the closed loop dynamics using the Taylor
polynomial of the optimal feedback in dimensions n > 2.

• Increasing the degrees d+ 1, d of the Taylor polynomials
does not necesarily increase the size of this domain.



Problems with Al’brekht’s Method

But Al’brekhts method has its limitations including the
following.

• The Taylor polynomial of the optimal cost to degree
d+ 1 > 2 need not be positive definite.

• Al’brekht’s Method cannot handle state and/or control
constraints.

• There is no effective way to compute the domain on which
the Taylor polynomial of the optimal cost is a valid Lyapunov
function for the closed loop dynamics using the Taylor
polynomial of the optimal feedback in dimensions n > 2.

• Increasing the degrees d+ 1, d of the Taylor polynomials
does not necesarily increase the size of this domain.



Completing the Squares

Problem: The Taylor polynomial of the optimal cost to degree
d+ 1 > 2 need not be positive definite.

Solution: Any polynomial of degrees 2 through d+ 1 whose
quadratic part is positive definite can be extended to a
polynomial of degrees 2 through 2d which is a sum of squares
and hence at least nonnegative definite.

We call this technique Completing the Squares.



Completing the Squares

Problem: The Taylor polynomial of the optimal cost to degree
d+ 1 > 2 need not be positive definite.

Solution: Any polynomial of degrees 2 through d+ 1 whose
quadratic part is positive definite can be extended to a
polynomial of degrees 2 through 2d which is a sum of squares
and hence at least nonnegative definite.

We call this technique Completing the Squares.



Completing the Squares

Problem: The Taylor polynomial of the optimal cost to degree
d+ 1 > 2 need not be positive definite.

Solution: Any polynomial of degrees 2 through d+ 1 whose
quadratic part is positive definite can be extended to a
polynomial of degrees 2 through 2d which is a sum of squares
and hence at least nonnegative definite.

We call this technique Completing the Squares.



Model Pedictive Control

Problem: Al’brekht’s Method cannot handle state and/or
control constraints.

Solution: Assuming the constraints are not active at the
operating point, complete the squares of a Taylor polynomial of
the optimal cost and use it as the terminal cost in a Model
Predictive scheme.

Presumably the higher the degree of the Taylor polynomial of
the optimal cost the larger the domain on which the extended
polynomial is a valid control Lyapunov function.

If this is so then a shorter horizon can be used in the Model
Predictive scheme.



Model Pedictive Control

Problem: Al’brekht’s Method cannot handle state and/or
control constraints.

Solution: Assuming the constraints are not active at the
operating point, complete the squares of a Taylor polynomial of
the optimal cost and use it as the terminal cost in a Model
Predictive scheme.

Presumably the higher the degree of the Taylor polynomial of
the optimal cost the larger the domain on which the extended
polynomial is a valid control Lyapunov function.

If this is so then a shorter horizon can be used in the Model
Predictive scheme.



Model Pedictive Control

Problem: Al’brekht’s Method cannot handle state and/or
control constraints.

Solution: Assuming the constraints are not active at the
operating point, complete the squares of a Taylor polynomial of
the optimal cost and use it as the terminal cost in a Model
Predictive scheme.

Presumably the higher the degree of the Taylor polynomial of
the optimal cost the larger the domain on which the extended
polynomial is a valid control Lyapunov function.

If this is so then a shorter horizon can be used in the Model
Predictive scheme.



Model Pedictive Control

Problem: Al’brekht’s Method cannot handle state and/or
control constraints.

Solution: Assuming the constraints are not active at the
operating point, complete the squares of a Taylor polynomial of
the optimal cost and use it as the terminal cost in a Model
Predictive scheme.

Presumably the higher the degree of the Taylor polynomial of
the optimal cost the larger the domain on which the extended
polynomial is a valid control Lyapunov function.

If this is so then a shorter horizon can be used in the Model
Predictive scheme.



Adaptive Horizon Model Pedictive Control
Problem: There is no effective way to compute the domain on
which the extended Taylor polynomial of the optimal cost is a
valid Lyapunov function for the closed loop dynamics using the
Taylor polynomial of the optimal feedback in dimensions n > 2.

Solution: Don’t try to compute this domain. Instead verify in
real time that the endpoint of the optimal trajectory computed
by the solver is in this domain.

We do this by extending the computed optimal trajectory an
additional few times steps under the closed loop dynamics using
the Taylor polynomial of the optimal feedback.

We check that Lyapunov and feasibility conditions are satisfied
on the extension.

If they are we conclude that the current horizon is long enough.

If they are not we conclude that the current horizon is too short
and we increase it.



Adaptive Horizon Model Pedictive Control
Problem: There is no effective way to compute the domain on
which the extended Taylor polynomial of the optimal cost is a
valid Lyapunov function for the closed loop dynamics using the
Taylor polynomial of the optimal feedback in dimensions n > 2.

Solution: Don’t try to compute this domain. Instead verify in
real time that the endpoint of the optimal trajectory computed
by the solver is in this domain.

We do this by extending the computed optimal trajectory an
additional few times steps under the closed loop dynamics using
the Taylor polynomial of the optimal feedback.

We check that Lyapunov and feasibility conditions are satisfied
on the extension.

If they are we conclude that the current horizon is long enough.

If they are not we conclude that the current horizon is too short
and we increase it.



Adaptive Horizon Model Pedictive Control
Problem: There is no effective way to compute the domain on
which the extended Taylor polynomial of the optimal cost is a
valid Lyapunov function for the closed loop dynamics using the
Taylor polynomial of the optimal feedback in dimensions n > 2.

Solution: Don’t try to compute this domain. Instead verify in
real time that the endpoint of the optimal trajectory computed
by the solver is in this domain.

We do this by extending the computed optimal trajectory an
additional few times steps under the closed loop dynamics using
the Taylor polynomial of the optimal feedback.

We check that Lyapunov and feasibility conditions are satisfied
on the extension.

If they are we conclude that the current horizon is long enough.

If they are not we conclude that the current horizon is too short
and we increase it.



Adaptive Horizon Model Pedictive Control
Problem: There is no effective way to compute the domain on
which the extended Taylor polynomial of the optimal cost is a
valid Lyapunov function for the closed loop dynamics using the
Taylor polynomial of the optimal feedback in dimensions n > 2.

Solution: Don’t try to compute this domain. Instead verify in
real time that the endpoint of the optimal trajectory computed
by the solver is in this domain.

We do this by extending the computed optimal trajectory an
additional few times steps under the closed loop dynamics using
the Taylor polynomial of the optimal feedback.

We check that Lyapunov and feasibility conditions are satisfied
on the extension.

If they are we conclude that the current horizon is long enough.

If they are not we conclude that the current horizon is too short
and we increase it.



Adaptive Horizon Model Pedictive Control
Problem: There is no effective way to compute the domain on
which the extended Taylor polynomial of the optimal cost is a
valid Lyapunov function for the closed loop dynamics using the
Taylor polynomial of the optimal feedback in dimensions n > 2.

Solution: Don’t try to compute this domain. Instead verify in
real time that the endpoint of the optimal trajectory computed
by the solver is in this domain.

We do this by extending the computed optimal trajectory an
additional few times steps under the closed loop dynamics using
the Taylor polynomial of the optimal feedback.

We check that Lyapunov and feasibility conditions are satisfied
on the extension.

If they are we conclude that the current horizon is long enough.

If they are not we conclude that the current horizon is too short
and we increase it.



Adaptive Horizon Model Pedictive Control
Problem: There is no effective way to compute the domain on
which the extended Taylor polynomial of the optimal cost is a
valid Lyapunov function for the closed loop dynamics using the
Taylor polynomial of the optimal feedback in dimensions n > 2.

Solution: Don’t try to compute this domain. Instead verify in
real time that the endpoint of the optimal trajectory computed
by the solver is in this domain.

We do this by extending the computed optimal trajectory an
additional few times steps under the closed loop dynamics using
the Taylor polynomial of the optimal feedback.

We check that Lyapunov and feasibility conditions are satisfied
on the extension.

If they are we conclude that the current horizon is long enough.

If they are not we conclude that the current horizon is too short
and we increase it.



Example
We simulated AHMPC with two different terminal costs and
terminal feedbacks. In both cases the Lagrangian was

0.1

2

(
|x|2 + |u|2

)
The first pair π2

f(x), κ
1
f(x) was found by solving the infinite

horizon LQR problem obtained by taking the linear part of the
dynamics around the operating point x = 0 and the quadratic
Lagrangian. Then d = 1, π2

f(x) is a positive definite quadratic

form and κ1
f(x) is linear function.

The second pair π6
f(x), κ

5
f(x) was found using the discrete time

version of Al’brekht’s method to degree d = 5. Then π6
f(x) is

the Taylor polynomial of the optimal cost to degree 6 and κ5
f(x)

is the Taylor polynomial of the optimal feedback to degree 5.
But π6

f(x) is not positive definite so we completed the squares

to get π10
f (x) which is positive definite.



Example
We simulated AHMPC with two different terminal costs and
terminal feedbacks. In both cases the Lagrangian was

0.1

2

(
|x|2 + |u|2

)
The first pair π2

f(x), κ
1
f(x) was found by solving the infinite

horizon LQR problem obtained by taking the linear part of the
dynamics around the operating point x = 0 and the quadratic
Lagrangian. Then d = 1, π2

f(x) is a positive definite quadratic

form and κ1
f(x) is linear function.

The second pair π6
f(x), κ

5
f(x) was found using the discrete time

version of Al’brekht’s method to degree d = 5. Then π6
f(x) is

the Taylor polynomial of the optimal cost to degree 6 and κ5
f(x)

is the Taylor polynomial of the optimal feedback to degree 5.
But π6

f(x) is not positive definite so we completed the squares

to get π10
f (x) which is positive definite.



Example

In all the simulations we imposed the control constraint
|u|∞ ≤ 4 and started at x(0) = (0.9π, 0.9π, 0, 0) with an
initial horizon of T = 50 time steps.

The extended horizon was kept constant at S = 5 .

If the Lyapunov and/or feasibility conditions were violated the
horizon T was increased by 5 and the finite horizon nonlinear
program was solved again without advancing the system.

If after three tries the Lyapunov and/or feasibility conditions
were still not satisfied then the first value of the control
sequence was used, the simulation was advanced one time step
and the horizon was increased by 5.

If the Lyapunov and feasibility conditions were comfortably
satisfied over the extended horizon then the simulation was
advanced one time step and the horizon T was decreased by 1 .



Example

In all the simulations we imposed the control constraint
|u|∞ ≤ 4 and started at x(0) = (0.9π, 0.9π, 0, 0) with an
initial horizon of T = 50 time steps.

The extended horizon was kept constant at S = 5 .

If the Lyapunov and/or feasibility conditions were violated the
horizon T was increased by 5 and the finite horizon nonlinear
program was solved again without advancing the system.

If after three tries the Lyapunov and/or feasibility conditions
were still not satisfied then the first value of the control
sequence was used, the simulation was advanced one time step
and the horizon was increased by 5.

If the Lyapunov and feasibility conditions were comfortably
satisfied over the extended horizon then the simulation was
advanced one time step and the horizon T was decreased by 1 .



Example

In all the simulations we imposed the control constraint
|u|∞ ≤ 4 and started at x(0) = (0.9π, 0.9π, 0, 0) with an
initial horizon of T = 50 time steps.

The extended horizon was kept constant at S = 5 .

If the Lyapunov and/or feasibility conditions were violated the
horizon T was increased by 5 and the finite horizon nonlinear
program was solved again without advancing the system.

If after three tries the Lyapunov and/or feasibility conditions
were still not satisfied then the first value of the control
sequence was used, the simulation was advanced one time step
and the horizon was increased by 5.

If the Lyapunov and feasibility conditions were comfortably
satisfied over the extended horizon then the simulation was
advanced one time step and the horizon T was decreased by 1 .



Example

In all the simulations we imposed the control constraint
|u|∞ ≤ 4 and started at x(0) = (0.9π, 0.9π, 0, 0) with an
initial horizon of T = 50 time steps.

The extended horizon was kept constant at S = 5 .

If the Lyapunov and/or feasibility conditions were violated the
horizon T was increased by 5 and the finite horizon nonlinear
program was solved again without advancing the system.

If after three tries the Lyapunov and/or feasibility conditions
were still not satisfied then the first value of the control
sequence was used, the simulation was advanced one time step
and the horizon was increased by 5.

If the Lyapunov and feasibility conditions were comfortably
satisfied over the extended horizon then the simulation was
advanced one time step and the horizon T was decreased by 1 .



Example

In all the simulations we imposed the control constraint
|u|∞ ≤ 4 and started at x(0) = (0.9π, 0.9π, 0, 0) with an
initial horizon of T = 50 time steps.

The extended horizon was kept constant at S = 5 .

If the Lyapunov and/or feasibility conditions were violated the
horizon T was increased by 5 and the finite horizon nonlinear
program was solved again without advancing the system.

If after three tries the Lyapunov and/or feasibility conditions
were still not satisfied then the first value of the control
sequence was used, the simulation was advanced one time step
and the horizon was increased by 5.

If the Lyapunov and feasibility conditions were comfortably
satisfied over the extended horizon then the simulation was
advanced one time step and the horizon T was decreased by 1 .



Example

The simulations were first run with no noise and the results are
shown in the following figures.

Both methods stabilized the links to straight up in about 80
times steps (8 seconds).

The degree 2d = 10 terminal cost and the degree d = 5
terminal feedback seems to do it a little more smoothly and with
shorter maximum horizon T = 65 versus T = 75 for LQR
d = 1.



Example

The simulations were first run with no noise and the results are
shown in the following figures.

Both methods stabilized the links to straight up in about 80
times steps (8 seconds).

The degree 2d = 10 terminal cost and the degree d = 5
terminal feedback seems to do it a little more smoothly and with
shorter maximum horizon T = 65 versus T = 75 for LQR
d = 1.



Example

The simulations were first run with no noise and the results are
shown in the following figures.

Both methods stabilized the links to straight up in about 80
times steps (8 seconds).

The degree 2d = 10 terminal cost and the degree d = 5
terminal feedback seems to do it a little more smoothly and with
shorter maximum horizon T = 65 versus T = 75 for LQR
d = 1.



Example

Figure: Angles, d = 1 on left, d = 5 on right



Example

Figure: Controls, d = 1 on left, d = 5 on right



Example

Figure: Horizons, d = 1 on left, d = 5 on right



Example

The simulations lasted 100 time steps, 10 seconds.

The simulations were done on this laptop using MATLAB’s
fmincon.m with its default settings.

We did supply fmincon.m the gradients of the objective
functions but we did not give it the Hessians.

The cpu time for the degree 2d = 10 terminal cost and the
degree d = 5 terminal feedback was 5.01 seconds. So using a
faster solver, coding the objective and its gradient in C+ ,
compiling it and with a little tweaking of the algorithm,
supplying Hessians we probably could control the double pendula
in real time.

The cpu time for the LQR terminal cost and terminal feedback
was 24.56 seconds so it not clear that it is possible to control
the double pendula in real time using LQR.



Example

The simulations lasted 100 time steps, 10 seconds.

The simulations were done on this laptop using MATLAB’s
fmincon.m with its default settings.

We did supply fmincon.m the gradients of the objective
functions but we did not give it the Hessians.

The cpu time for the degree 2d = 10 terminal cost and the
degree d = 5 terminal feedback was 5.01 seconds. So using a
faster solver, coding the objective and its gradient in C+ ,
compiling it and with a little tweaking of the algorithm,
supplying Hessians we probably could control the double pendula
in real time.

The cpu time for the LQR terminal cost and terminal feedback
was 24.56 seconds so it not clear that it is possible to control
the double pendula in real time using LQR.



Example

The simulations lasted 100 time steps, 10 seconds.

The simulations were done on this laptop using MATLAB’s
fmincon.m with its default settings.

We did supply fmincon.m the gradients of the objective
functions but we did not give it the Hessians.

The cpu time for the degree 2d = 10 terminal cost and the
degree d = 5 terminal feedback was 5.01 seconds. So using a
faster solver, coding the objective and its gradient in C+ ,
compiling it and with a little tweaking of the algorithm,
supplying Hessians we probably could control the double pendula
in real time.

The cpu time for the LQR terminal cost and terminal feedback
was 24.56 seconds so it not clear that it is possible to control
the double pendula in real time using LQR.



Example

The simulations lasted 100 time steps, 10 seconds.

The simulations were done on this laptop using MATLAB’s
fmincon.m with its default settings.

We did supply fmincon.m the gradients of the objective
functions but we did not give it the Hessians.

The cpu time for the degree 2d = 10 terminal cost and the
degree d = 5 terminal feedback was 5.01 seconds. So using a
faster solver, coding the objective and its gradient in C+ ,
compiling it and with a little tweaking of the algorithm,
supplying Hessians we probably could control the double pendula
in real time.

The cpu time for the LQR terminal cost and terminal feedback
was 24.56 seconds so it not clear that it is possible to control
the double pendula in real time using LQR.



Example

The simulations lasted 100 time steps, 10 seconds.

The simulations were done on this laptop using MATLAB’s
fmincon.m with its default settings.

We did supply fmincon.m the gradients of the objective
functions but we did not give it the Hessians.

The cpu time for the degree 2d = 10 terminal cost and the
degree d = 5 terminal feedback was 5.01 seconds. So using a
faster solver, coding the objective and its gradient in C+ ,
compiling it and with a little tweaking of the algorithm,
supplying Hessians we probably could control the double pendula
in real time.

The cpu time for the LQR terminal cost and terminal feedback
was 24.56 seconds so it not clear that it is possible to control
the double pendula in real time using LQR.



Example

Figure: Taylor Approximations to y = sinx



Rigid Body

We applied Al’brekht’s method to the stabilzation of rigid body.
The state dimension is 12 and the control dimension is 6.

Using MATLAB’ symbolic engine, hjb set up.m computed the
Taylor polynomial of the dynamics to degree 3 in about 90 sec.

hjb.m computed the Taylor polynomials of the optimal cost and
the optimal feedback to degrees 4 and 3 in less than 5 sec.

MATLAB couldn’t compute the Taylor polynomial to degree 5.

hjb.m computed the Taylor polynomials of the optimal cost and
the optimal feedback to degrees 6 and 5 in about 27 minutes.

There are 33648 monomials of degrees 1 though 5 and 134577
monomials of degrees 2 though 6 in 18 variables.

The infinity norm of the residual of the first HJB equation is
2.2666e− 12



Rigid Body

We applied Al’brekht’s method to the stabilzation of rigid body.
The state dimension is 12 and the control dimension is 6.

Using MATLAB’ symbolic engine, hjb set up.m computed the
Taylor polynomial of the dynamics to degree 3 in about 90 sec.

hjb.m computed the Taylor polynomials of the optimal cost and
the optimal feedback to degrees 4 and 3 in less than 5 sec.

MATLAB couldn’t compute the Taylor polynomial to degree 5.

hjb.m computed the Taylor polynomials of the optimal cost and
the optimal feedback to degrees 6 and 5 in about 27 minutes.

There are 33648 monomials of degrees 1 though 5 and 134577
monomials of degrees 2 though 6 in 18 variables.

The infinity norm of the residual of the first HJB equation is
2.2666e− 12



Rigid Body

We applied Al’brekht’s method to the stabilzation of rigid body.
The state dimension is 12 and the control dimension is 6.

Using MATLAB’ symbolic engine, hjb set up.m computed the
Taylor polynomial of the dynamics to degree 3 in about 90 sec.

hjb.m computed the Taylor polynomials of the optimal cost and
the optimal feedback to degrees 4 and 3 in less than 5 sec.

MATLAB couldn’t compute the Taylor polynomial to degree 5.

hjb.m computed the Taylor polynomials of the optimal cost and
the optimal feedback to degrees 6 and 5 in about 27 minutes.

There are 33648 monomials of degrees 1 though 5 and 134577
monomials of degrees 2 though 6 in 18 variables.

The infinity norm of the residual of the first HJB equation is
2.2666e− 12



Rigid Body

We applied Al’brekht’s method to the stabilzation of rigid body.
The state dimension is 12 and the control dimension is 6.

Using MATLAB’ symbolic engine, hjb set up.m computed the
Taylor polynomial of the dynamics to degree 3 in about 90 sec.

hjb.m computed the Taylor polynomials of the optimal cost and
the optimal feedback to degrees 4 and 3 in less than 5 sec.

MATLAB couldn’t compute the Taylor polynomial to degree 5.

hjb.m computed the Taylor polynomials of the optimal cost and
the optimal feedback to degrees 6 and 5 in about 27 minutes.

There are 33648 monomials of degrees 1 though 5 and 134577
monomials of degrees 2 though 6 in 18 variables.

The infinity norm of the residual of the first HJB equation is
2.2666e− 12



Rigid Body

We applied Al’brekht’s method to the stabilzation of rigid body.
The state dimension is 12 and the control dimension is 6.

Using MATLAB’ symbolic engine, hjb set up.m computed the
Taylor polynomial of the dynamics to degree 3 in about 90 sec.

hjb.m computed the Taylor polynomials of the optimal cost and
the optimal feedback to degrees 4 and 3 in less than 5 sec.

MATLAB couldn’t compute the Taylor polynomial to degree 5.

hjb.m computed the Taylor polynomials of the optimal cost and
the optimal feedback to degrees 6 and 5 in about 27 minutes.

There are 33648 monomials of degrees 1 though 5 and 134577
monomials of degrees 2 though 6 in 18 variables.

The infinity norm of the residual of the first HJB equation is
2.2666e− 12



Rigid Body

We applied Al’brekht’s method to the stabilzation of rigid body.
The state dimension is 12 and the control dimension is 6.

Using MATLAB’ symbolic engine, hjb set up.m computed the
Taylor polynomial of the dynamics to degree 3 in about 90 sec.

hjb.m computed the Taylor polynomials of the optimal cost and
the optimal feedback to degrees 4 and 3 in less than 5 sec.

MATLAB couldn’t compute the Taylor polynomial to degree 5.

hjb.m computed the Taylor polynomials of the optimal cost and
the optimal feedback to degrees 6 and 5 in about 27 minutes.

There are 33648 monomials of degrees 1 though 5 and 134577
monomials of degrees 2 though 6 in 18 variables.

The infinity norm of the residual of the first HJB equation is
2.2666e− 12



Rigid Body

We applied Al’brekht’s method to the stabilzation of rigid body.
The state dimension is 12 and the control dimension is 6.

Using MATLAB’ symbolic engine, hjb set up.m computed the
Taylor polynomial of the dynamics to degree 3 in about 90 sec.

hjb.m computed the Taylor polynomials of the optimal cost and
the optimal feedback to degrees 4 and 3 in less than 5 sec.

MATLAB couldn’t compute the Taylor polynomial to degree 5.

hjb.m computed the Taylor polynomials of the optimal cost and
the optimal feedback to degrees 6 and 5 in about 27 minutes.

There are 33648 monomials of degrees 1 though 5 and 134577
monomials of degrees 2 though 6 in 18 variables.

The infinity norm of the residual of the first HJB equation is
2.2666e− 12



Verification and Benchmarks

One nice thing about polynomial approximations to the optimal
cost and optimal feedback is that one can compute infinity norm
of the residual of the first HJB equation.

Another approach is to integrate the closed loop dynamics and
Lagrangian forward from a random initial condition and check
that the losed loop dynamics is feasible and asymptotically
stable and that the integral of the Lagrangian approximates the
value of the computed optimal cost.

We have very few truly nonlinear optimal control problems
where the true solution is known. But if we know the exact
solution to LQRs. If we make a nonlinear change of coordinates
and nonlinear invertible feedback to an LQR we get a nonlinear
problem where the exact solution is known exactly.

We need more benchmark problems.



Verification and Benchmarks

One nice thing about polynomial approximations to the optimal
cost and optimal feedback is that one can compute infinity norm
of the residual of the first HJB equation.

Another approach is to integrate the closed loop dynamics and
Lagrangian forward from a random initial condition and check
that the losed loop dynamics is feasible and asymptotically
stable and that the integral of the Lagrangian approximates the
value of the computed optimal cost.

We have very few truly nonlinear optimal control problems
where the true solution is known. But if we know the exact
solution to LQRs. If we make a nonlinear change of coordinates
and nonlinear invertible feedback to an LQR we get a nonlinear
problem where the exact solution is known exactly.

We need more benchmark problems.



Verification and Benchmarks

One nice thing about polynomial approximations to the optimal
cost and optimal feedback is that one can compute infinity norm
of the residual of the first HJB equation.

Another approach is to integrate the closed loop dynamics and
Lagrangian forward from a random initial condition and check
that the losed loop dynamics is feasible and asymptotically
stable and that the integral of the Lagrangian approximates the
value of the computed optimal cost.

We have very few truly nonlinear optimal control problems
where the true solution is known. But if we know the exact
solution to LQRs. If we make a nonlinear change of coordinates
and nonlinear invertible feedback to an LQR we get a nonlinear
problem where the exact solution is known exactly.

We need more benchmark problems.



Verification and Benchmarks

One nice thing about polynomial approximations to the optimal
cost and optimal feedback is that one can compute infinity norm
of the residual of the first HJB equation.

Another approach is to integrate the closed loop dynamics and
Lagrangian forward from a random initial condition and check
that the losed loop dynamics is feasible and asymptotically
stable and that the integral of the Lagrangian approximates the
value of the computed optimal cost.

We have very few truly nonlinear optimal control problems
where the true solution is known. But if we know the exact
solution to LQRs. If we make a nonlinear change of coordinates
and nonlinear invertible feedback to an LQR we get a nonlinear
problem where the exact solution is known exactly.

We need more benchmark problems.



Conclusions
Polynomial systems are natural extensions of linear systems.

Many real world plants lend themselves to modeling by
polynomial systems. Others arise as the Taylor expansions of
smooth systems.

Many control related PDEs and Functional Equations have a
regular singular point at the origin and hence the Taylor
polynomials of their solutions can be found degree by degree.

Higher degree Taylor polynomials are more accurate locally
around the operating point but they may diverge rapidly away
from it.

Taylor polynomials can be used as a warm start for grid based
methods and thereby reduce the number of grid points.

Adaptive Horizon Model Predictive Control combines the Taylor
polynomials of the optimal cost and feedback with Model
Predictive Control to overcome their respective weaknesses.



Conclusions
Polynomial systems are natural extensions of linear systems.

Many real world plants lend themselves to modeling by
polynomial systems. Others arise as the Taylor expansions of
smooth systems.

Many control related PDEs and Functional Equations have a
regular singular point at the origin and hence the Taylor
polynomials of their solutions can be found degree by degree.

Higher degree Taylor polynomials are more accurate locally
around the operating point but they may diverge rapidly away
from it.

Taylor polynomials can be used as a warm start for grid based
methods and thereby reduce the number of grid points.

Adaptive Horizon Model Predictive Control combines the Taylor
polynomials of the optimal cost and feedback with Model
Predictive Control to overcome their respective weaknesses.



Conclusions
Polynomial systems are natural extensions of linear systems.

Many real world plants lend themselves to modeling by
polynomial systems. Others arise as the Taylor expansions of
smooth systems.

Many control related PDEs and Functional Equations have a
regular singular point at the origin and hence the Taylor
polynomials of their solutions can be found degree by degree.

Higher degree Taylor polynomials are more accurate locally
around the operating point but they may diverge rapidly away
from it.

Taylor polynomials can be used as a warm start for grid based
methods and thereby reduce the number of grid points.

Adaptive Horizon Model Predictive Control combines the Taylor
polynomials of the optimal cost and feedback with Model
Predictive Control to overcome their respective weaknesses.



Conclusions
Polynomial systems are natural extensions of linear systems.

Many real world plants lend themselves to modeling by
polynomial systems. Others arise as the Taylor expansions of
smooth systems.

Many control related PDEs and Functional Equations have a
regular singular point at the origin and hence the Taylor
polynomials of their solutions can be found degree by degree.

Higher degree Taylor polynomials are more accurate locally
around the operating point but they may diverge rapidly away
from it.

Taylor polynomials can be used as a warm start for grid based
methods and thereby reduce the number of grid points.

Adaptive Horizon Model Predictive Control combines the Taylor
polynomials of the optimal cost and feedback with Model
Predictive Control to overcome their respective weaknesses.



Conclusions
Polynomial systems are natural extensions of linear systems.

Many real world plants lend themselves to modeling by
polynomial systems. Others arise as the Taylor expansions of
smooth systems.

Many control related PDEs and Functional Equations have a
regular singular point at the origin and hence the Taylor
polynomials of their solutions can be found degree by degree.

Higher degree Taylor polynomials are more accurate locally
around the operating point but they may diverge rapidly away
from it.

Taylor polynomials can be used as a warm start for grid based
methods and thereby reduce the number of grid points.

Adaptive Horizon Model Predictive Control combines the Taylor
polynomials of the optimal cost and feedback with Model
Predictive Control to overcome their respective weaknesses.



Conclusions
Polynomial systems are natural extensions of linear systems.

Many real world plants lend themselves to modeling by
polynomial systems. Others arise as the Taylor expansions of
smooth systems.

Many control related PDEs and Functional Equations have a
regular singular point at the origin and hence the Taylor
polynomials of their solutions can be found degree by degree.

Higher degree Taylor polynomials are more accurate locally
around the operating point but they may diverge rapidly away
from it.

Taylor polynomials can be used as a warm start for grid based
methods and thereby reduce the number of grid points.

Adaptive Horizon Model Predictive Control combines the Taylor
polynomials of the optimal cost and feedback with Model
Predictive Control to overcome their respective weaknesses.



Think Mathematically

Act Computationally



Think Mathematically

Act Computationally



Thank You

Questions



Thank You

Questions


