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Introductions
• In this work, we apply a new splitting method based on the Primal Dual

Hybrid Gradient algorithm (a.k.a. Chambolle-Pock) to nonlinear optimal
control (OC) and differential games (DG) problems, based on using the direct
collocation method, but with a Hamiltonian twist.

• This allow us to compute solutions at specified points directly, i.e. without
the use of grids in space. And it also gives us the ability to create trajectories
directly.

• Thus we are able to lift the curse of dimensionality a bit, and therefore com-
pute solutions in much higher dimensions than before. And in our numerical
experiments, we actually observe that our computations scale polynomially
in time. Furthermore, this new algorithm is embarrassingly parallelizable.

Hamilton-Jacobi, Optimal Control, and Differential Games

• The goal of optimal control is to find a control policy that will drive a system
while optimizing a criterion. This is mathematically defined as the ODE,{

ẋ(s) = f(x(s),α(s), s), t < s < T
x(t) = x

(1)

where x is the initial point, T is the terminal time, and u is the control. And
the functional we want to optimize is

Jx,t[u] := g(x(T )) +

∫ T

t

L(x(s),u(s), s) ds.

where J is a cost, which we minimize. Then we define the value function

ϕ(x, t) = min
α(·)∈A

Jx,t[u].

Under mild conditions on f, g, and L, this value function satisfies the
terminal-valued Hamilton-Jacobi PDE (HJ PDE){

∂tϕ(x, t) +H(x,∇xϕ(x, t), t) = 0, (x, t) ∈ Rn × (0, T )
ϕ(x, T ) = g(x).

where H(x, p, t) = mina∈A {〈f(x, a, t), p〉+ L(x, a, t)}.

• A (two-person, zero-sum) differential game now has competing controls:{
ẋ(s) = f(x(s),u(s),β(s), s), t < s < T
x(t) = x

and the performance function,

Jx,t[u,β] := g(x(T )) +

∫ T

t

L(x(s),u(s),β(s), s) ds.

and the value function,

ϕ(x, t) = inf
Ψ[·]∈B(t)

sup
u(·)∈A(t)

Jx,t[u,Ψ[u]]

and the HJE PDE (which satisfies the min max = max min condition),{
∂tϕ(x, t) + maxa∈A minb∈B {〈f(x, a, b, t),∇xϕ(x, t)〉+ L(x, a, b, t)} = 0
ϕ(x, T ) = g(x)

Primal-Dual Optimization Splitting

The PDHG algorithm [5, 3], which also goes by the name Chambolle-Pock [1],
attempts to solve problems of the form

min
x∈X

f(Ax) + g(x)

PDHG takes the Lagrangian dual formulation and seeks to find a saddle point:

min
x∈X

max
y∈Y
〈Ax, y〉+ g(x)− f∗(y)

where f∗(y) = supx∈X {〈x, y〉 − f(y)} is the convex conjugate of f . PDHG is also
an alternating minimization technique that uses proximal operators. It iterates: yk+1 = (I + σ∂f∗)−1(yk + σAx̄k)

xk+1 = (I + τ∂g)−1(xk − σA∗yk+1)
x̄k+1 = xk+1 + θ(xk+1 − xk).

where σ, τ > 0 satisfy στ‖A‖2 < 1, and θ ∈ [0, 1]. In practice, we put θ = 1.

Collocation on OC and DG, with a Hamiltonian Twist

• We start by discretizing the value function. This is the procedure followed
in [2]: We have the value function equals

ϕ(x, t) = min
x(·),u(·)

{
g(x(0)) +

∫ t

0

L(x(s),u(s), s) ds

}
where x(·) and u(s) satisfy the ODE (1),

min
{xj},{uj}

g(x0) + δ
N∑
j=1

L(xj , uj , sj) | {xj − xj−1 = δf(xj , uj , sj)}Nj=1


As usual in constrained optimization problems, we compute the Lagrangian
function (i.e. Lagrange multipliers) to get:

g(x0) + δ
N∑
j=1

L(xj , uj , sj) +
N∑
j=1

〈pj , xj − xj−1 − δf(xj , uj , sj)〉+ 〈pN , x− xN 〉

Note that the constraint xN = x is trivially unneeded in the Lagrangian
function. Then we minimize over {xj}Nj=0, while maximizing over {pj}Nj=1,
and by moving the minimiziation with respect to {uj}Nj=1 we get,

max
{pj}

min
{xk}

g(x0) +
N∑
j=1

〈pj , xj − xj−1〉+ 〈pN , x− xN 〉 − δ
N∑
j=1

H(xj , pj , sj)


• There is tremendous advantage in having a Hamiltonian. This is because if

we want to instead perform optimization of the value function directly, we
will be solving for the controls and this requires a constrained optimization
technique.

The miraculous advantage of having a Hamiltonian for optimization pur-
poses is it encodes information from both the running cost function L, as
well as the dynamics ẋ(s) = f(x(s),u(s), s). And now we are free to perform
unconstrained optimization. Plus, we lower the dimension of the numerical
optimization by analytically minimizing over u, and conjuring the Hamilto-
nian.

Numerical Results

Linear scaling of computation time
versus dimension.

Seven-dimensional differential games
problem

Twelve-dimensional quadcopter problem
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