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Main Points: Computation for Nonlinear Control

Max-plus curse-of-dimensionality-free methods (Akian, Dower, Fleming,
Gaubert, Mc, Qu, et al.).

Exceptionally well-suited to high-dimensional, “lower-complexity”
problems (≤ 15-dimensional).

Orignally conceived for first-order HJ PDE.

Extension to second-order HJ PDE requires max-plus distributive
property, which induces a much-higher “curse of complexity” and
significantly reduced performance.

Fundamental solution approaches (Dower, Mc, et al.).

A single object is generated. Solutions for varying problem data do not
require re-propagation of the solution.

Employed in two-point boundary value problems in the classic n-body
domain.
Semi-convex and “stat” duality are employed on the
fundamental-solution object to generate solutions to particular data.
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Main Points: Second-Order vs. First-Order HJ PDE

First-order HJ PDE:

0 = Wt + minv∈IRn{f (x , v)TWx + L(x , v)}.
Systems with ODE dynamics.
Information travels along (generalized) characteristics at a finite rate,
modulo shocks and rarefaction waves.
Nonsmooth solutions.

Second-order HJ PDE:

0 = Wt + tr(AWxx) + minv∈IRn{f (x , v)TWx + L(x , v)}.
Systems driven by Brownian motion (SDE dynamics).
Information travels as an infinite-rate.
Nondegenerate diffusion matrix implies smooth solutions.

In general, these two classes require significantly different numerical
techniques.

We wil convert second-order HJ PDE problems within a certain class into
fundamental-solution first-order HJ PDE problems.
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Section 1:

Staticization
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Staticization

Need to search for stationary (static) points of action functionals.

Terminology: Staticization, statica (analogous to minimization, minima).

Let ȳ ∈ GY where GY is an open subset of a Hilbert space. We say

ȳ ∈ argstat
y∈GY

F (y) if lim sup
y→ȳ ,y∈GY

|F (y)− F (ȳ)|
|y − ȳ |

= 0,

If f is differentiable and GY is open, then
argstaty∈GY F (y) = {y ∈ GY |Fy (y) = 0}.

Define set-valued stat by

staty∈GYF (y)
.

=
{
F (ȳ)

∣∣∣ ȳ ∈ argstat
y∈GY

{F (y)}
}

if argstat{F (y) | y ∈ GY} 6= ∅.

If there exists a s.t. staty∈GYF (y) = {a}, then

stat
y∈GY

F (y)
.

= a.
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Staticization: Simple Examples

stat does not exist. stat exists.

stat exists. stat does not exist.
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Staticization-Based Representation for the Gravitational

Potential

Classic gravitational potential energy
expression for bodies at x and origin
with masses m and m0:

−V (x) =
Gm0m

|x |
.

Inverse norm is difficult.
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Additive inverse of potential as optimized quadratic (with Ĝ
.

= (3/2)3/2G ).

−V (x) =
Ĝm0m

|x |
= Ĝm0m sup

α∈[0,∞)

{
α− α3|x |2

2

}
.

Argument is convex cubic on [0,∞); replace sup with stat:

−V (x) = Ĝm0m stat
α∈[0,∞)

{
α− α3|x |2

2

}
.
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Coulomb potential

Can extend Coulomb potential from IRn to Cn.

Additive inverse of Coulomb/gravitational potential over C:
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Staticization-based extension of Coulomb potential to C3

Note that although min and max are valid only for real-valued functionals,
staticization is valid for complex-valued functionals.

The Coulomb potential, extended to C3 may be generated similarly to the
stat representation of the gravitational potential.

Let the Coulomb potential on IR3 be given by −V (y) = µc/|y |. Then, the

extension to x ∈ C3 is (with µ̂c
.

=
(

3
2

)3/2
µ):

−V (x) =
µc√
xT x

= µ̂ stat
α∈H+

[
α− α3(xT x)

2

]
,

where

H+ .
=
{
α = re iθ | r > 0, θ ∈ (−π/2, π/2]

}
.
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Legendre Transform and Stat-Quad Duality

Stat-duality (Legendre): A,B open; φ ∈ C 1(A; IR); [Dφ]−1 ∈ C 1(B;A).

φ(u) = stat
v∈B

[a(v) + 〈v , u〉] ∀ u ∈ A,

a(v) = stat
u∈A

[φ(u)− 〈v , u〉] ∀ v ∈ B.

Example: A = B = IRn \ {0}.

φ(u) = 1/|u|, a(v) = 2|v |1/2.

Stat-quad duality: A, B̂ open; C ∈ L(U ;U), symmetric and invertible;

η−1 ∈ C 1(B̂;A) with η(u)
.

= Dφ(u)− Cu.

φ(u) = stat
v∈B

[
a(v) + 1

2 〈v − u,C (v − u)〉
]

∀ u ∈ A,

a(v) = stat
u∈A

[
φ(u)− 1

2 〈v − u,C (v − u)〉
]

∀ v ∈ B.

Example: A, B̂ = IRn; P,C ,P − C symmetric, nonsingular.

φ(u) = 1
2u
′Pu, a(v) = 1

2v
′C (C − P)−1Pv .
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Mass-Spring Example

Using stationary action to obtain a differential Riccati equation, the solution is

P(t) = R(t) =
− cot(ωt)

γ
, Q(t) =

cosec(ωt)

γ
.

Naive use of closed-form solution past
asymptotes yields correct stationary
action, and solution to TPBVP.

Propagation aided via stat-quad duality:

Stat-quad dual of quadratics corresponding to P(t), Q(t), R(t), obtained from
following (with using duality matrix C):

α(t) = C − C [C + P(t)]−1C ,

β(t) = C [C + P(t)]−1Q(t),

γ(t) = R(t) − QT (t)[C + P(t)]−1Q(t).
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Propagation Through Asymptotes

Propagation through stat-quad duality:

Stat-dual satisfies:

α̇(t) = −α(t)[D−1 + C−1BC−1]α(t),

β̇(t) = −α(t)[D−1 + C−1BC−1]β(t)

+ BC−1β(t),

γ̇(t) = −βT (t)[D−1 + C−1BC−1]β(t).

Locations of asymptotes may be different between primal and dual.

Propagation recipe:

1 Propagate primal [dual] Riccati until approaching asymptote.
2 Switch to dual [primal] Riccati until approaching dual [primal]

asymptote, and return to step 1.

October 31, 2019 12 / 32



The Theory of Iterated Staticization

When is

stat
u∈U

stat
α∈A

F (u, α) = stat
(u,α)∈U×A

F (u, α) = stat
α∈A

stat
u∈U

F (u, α) ?

This is a surprisingly deep question.

(Definitely not d
du

dF
dα = d2F

du dα = d
dα

dF
du !)

Counterexample on U = A = IR: F (u, α) = u(α2 − 1).

statα∈A statu∈U F (u, α) = 0 = stat(u,α)∈U×A F (u, α).
statu∈U statα∈A F (u, α) does not exist.

Letting M1(u)
.

= argstatv∈V F (u, v), the
underlying condition is that d(v̄ ,M1(u))
grow at most at a Lipschitz rate in
neighborhood of (ū, v̄) ∈ argstat(u,v) F (u, v).

M_1(u)

M_1(u)

v

V space
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Iterated Staticization Problem

The semi-quadratic case:

F (u, α)
.

= f1(α) + 〈f2(α), u〉U + 1
2 〈B̄3(α)u, u〉U .

Boundedness condition on Moore-Penrose pseudo-inverse, B̄#
3 (α), and

additional technical conditions.

Then, if the former exists,

stat
α∈A

stat
u∈U

F (u, α) = stat
(u,α)∈U×A

F (u, α).

The uniformly locally Morse case:

Very roughly: F is Morse if Fα(û, α̂) = 0 implies Fαα(û, α̂) is invertible.

Then, if the former exists,

stat
(u,α)∈U×A

F (u, α) = stat
α∈A

stat
u∈U

F (u, α).
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Gravitational N-Body Problem (Motivation for the Above)

Dynamics: ξ̇ = u, ξ(0) = x = (x1, x2, . . . xN), u ∈ U = Lloc2 .

Action functional (with all masses set to 1):

J
∞

(t, x , u; z) =

∫ t

0

1
2 |u(r)|2 + Ĝ stat

α∈A0

∑
i,j

[
αi,j − (αi,j )3|ξi (r)−ξj (r)|2

2

]
dr

+ ψ∞(ξ(t), z)

= stat
α(·)∈A

{∫ t

0

1
2 |u(r)|2 + Ĝ

∑
i,j

[
αi,j − (αi,j )3|ξi (r)−ξj (r)|2

2

]
dr

+ ψ∞(ξ(t), z)

}
(A – measurable α components in (0,∞))

Value function:

W
∞

(t, x ; z) = stat
u∈U

stat
α(·)∈A

{∫ t

0

1
2 |u(r)|2 + Ĝ

∑
i,j

[
αi,j − (αi,j )3|ξi (r)−ξj (r)|2

2

]
dr

+ ψ∞(ξ(t), z)

}
.
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The N-Body Problem (Motivation)

J∞(t, x , u, α∗; z) is semi-quadratic in u.

J∞(t, x , u, α; z) is locally uniformly Morse in α.

Hence

W
∞

(t, x ; z) = stat
u∈U

stat
α(·)∈A

{∫ t

0

1
2 |u(r)|2 + Ĝ

∑
i,j

[
αi,j − (αi,j )3|ξi (r)−ξj (r)|2

2

]
dr

+ ψ∞(ξ(t), z)

}
.

= stat
u∈U

stat
α(·)∈A

J∞(t, x , u, α; z)

= stat
α(·)∈A

stat
u∈U

J∞(t, x , u, α; z)

= stat
α∈A
Wα,∞(t, x ; z).

For each α ∈ A, Wα,∞(t, x ; z) is solution of an LQ control problem.
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The N-Body Fundamental Solution as a Set (Motivation)

We have

Wα,∞(t, x ; z) = 1
2

[
xTP∞t (α)x + 2zTQ∞t (α)x + zTR∞t (α)z + r∞t (α)

]
where P∞t ,Q∞t ,R∞t are solutions of Riccati equations and r∞t is an integral.

The game value function is:

W
∞

(t, x ; z) = stat
α∈A

1
2

[
xTP∞t (α)x + 2zTQ∞t (α)x + zTR∞t (α)z + r∞t (α)

]
= stat

(P,Q,R,r)∈Gt
1
2

[
xTPx + 2zTQx + zTRz + r

]
.

The set
Gt

.
= {P∞t (α),Q∞t (α),R∞t (α), r∞t (α) |α ∈ A}

represents the fundamental solution of n-body TPBVPs.

October 31, 2019 17 / 32



Schrödinger Similarity

The Schrödinger equation case is similar.

J̄(s, x , u, α)
.

= E

{∫ t

s

m

2
uTr ur − V (ξr ) dr + φ(ξt)

}
,

where

dξr = ur dr + σ 1+i√
2
dBr .

The stat operations will be over complex-valued, stochastic processes.
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Part 2:
Converting the Second-Order HJ PDE Problem

into a First-Order HJ PDE Problem
and Associated Ramifications
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Stochastic Control Problem

SDE dynamics:

dξt = f (ξt , ut) dt + µ dBt , ξs = x ∈ IRn.

Payoff:

J (s, x , u)
.

= E
{ T

∫
s
L(ξt , ut) dt + Ψ(ξT )

}
.

Can use a stat-quad duality representation for a variety of terminal costs:

Ψ(x)
.

= stat
z∈IRn

{
γ̂(z) + 1

2 (x − z)T M̄(x − z)
} .

= stat
z∈IRn
{ψ(x ; z)},

γ̂(z)
.

= stat
x∈IRn

{
Ψ(x)− 1

2 (x − z)T M̄(x − z)
}
,

Then,

J (s, x , u)
.

= stat
ζ∈Z
{J(s, x , u; z)},

J(s, x , u; z)
.

= E
{ T

∫
s
L(ξt , ut) dt + ψ(ξT ; z)

}
.

We will henceforth focus on J(s, x , u; z).
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Dynamic Programming and Stat-Quad Duality

Value function:
W (s, x ; z) = stat

u∈Us
J(s, x , u; z).

Making the standard assumptions for existence of solution of HJ PDE, and
verification theorem for traditional optimization (plus a bit more if the
staticization is not optimization).

Associated HJ PDE problem (with A
.

= σσT ):

0 = Wt + stat
v∈U

{
f (x , v)TWx + L(x , v)

}
+ 1

2 tr[AWxx ]

.
= Wt + H0(x ,Wx) +Q0(x ,Wx) + 1

2 tr[AWxx ],

W (T , x ; z) = ψ(x ; z).

Q0 is a quadratic function; putting all the non-linear/quadratic terms in H0.)

Stat-quad duality (with Q(x , p, α, β)
.

= c1

2 |x − α|
2 + c2

2 |p − β|
2 and |c1|, |c2|

sufficiently large):

H0(x , p) = stat
(α,β)∈IR2n

[
G0(α, β) +Q(x , p, α, β)

]
,

G0(α, β) = stat
(x,p)∈IR2n

[
H0(x , p)−Q(x , p, α, β)

]
.
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Recall Examples

Additive inverse of the gravitational potential (with Ĝ
.

= (3/2)3/2G ).

−V (x) =
Ĝm0m

|x |
= Ĝm0m stat

α∈[0,∞)

{
α− α3|x |2

2

}
.

Extension of the Coulomb potential to C3:

−V (x) =
µc√
xT x

= µ̂ stat
α∈H+

[
α− α3(xT x)

2

]
.

imaginary axis
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Another Example

These examples include the stat-quad duality in the gradient variable as well.

Simple example where H0(x , p) = p4

12 .
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Dynamic Programming and Stat-Quad Duality

Revised HJ PDE problem (with A
.

= σσT ):

0 = Wt + 1
2 tr[AWxx ]

+ stat
(α,β)∈IR2n

{
G0(α, β) +Q(x ,Wx , α, β) +Q0(x ,Wx)

}
,

W (T , x ; z) = ψ(x ; z).

Note that aside from the staticization over the newly introduced parameters
α, β, the Hamiltonian is quadratic.

The HJ PDE is

0 = Wt + 1
2 tr[AWxx ]

+ stat
(α,β)∈IR2n

{
G0(α, β) +

c1

2
|α|2 +

c2

2
|β|2 + k1α

T x + k2β
TWx +Q1(x ,Wx)

}
,

where Q1(x ,Wx) is quadratic.
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HJ PDE and Iterated Staticization

Use a stat-quad dual of the quadratic, Q1 to get it in a control form, yielding

0 = Wt + 1
2 tr[AWxx ]

+ stat
(α,β)∈IR2n

{
G0(α, β) +

c1

2
|α|2 +

c2

2
|β|2 + k1α

T x + k2β
TWx

+ stat
w∈IRn

[
(B1w + B2)TWx + 1

2w
TΓ1w + 1

2x
TΓ2x + BT

3 x + k3

]}
.

Using one of the iterated staticization results, this is

0 = Wt + 1
2 tr[AWxx ]

+ stat
(α,β,w)∈IR3n

{
G0(α, β) +

c1

2
|α|2 +

c2

2
|β|2 + k1α

T x + k2β
TWx

+ (B1w + B2)TWx + 1
2w

TΓ1w + 1
2x

TΓ2x + BT
3 x + k3

}
.
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Dynamic Programming and Iterated Staticization

The associated control problem is

dξt = (k2βt + B1wt + B2) dt + σ dBt , ξs = x ,

J f (s, x ,w , α, β; z) =

∫ T

s

Lf (ξt ,wt , αt , βt) dt + ψ(ξt ; z),

W f (s, x ; z) = stat
(α·,β·,w·)∈Ōs×Ws

J f (s, x ,w , α, β; z),

Lf (x ,w , α, β)
.

= G0(α, β) +
c1

2
|α|2 +

c2

2
|β|2

+ 1
2w

TΓ1w + 1
2x

TΓ2x + (k1α + B3)T x + k3.

Ōs is a space of stochastic, adapted, right-continuous, square-integrable
controls.

Using iterated staticization again (now over infinite-dimensional spaces),

W f (s, x ; z) = stat
(α·,β·)∈Os

stat
w·∈Ws

J f (s, x ,w , α, β; z)

.
= stat

(α·,β·)∈Os

W α·,β·(s, x ; z).
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Dynamic Programming and Iterated Staticization

The HJ PDE associated to value function W α·,β· is

0 = Wt + 1
2 tr[AWxx ]

+ G0(αt , βt) +
c1

2
|αt |2 +

c2

2
|βt |2 + (k1αt + B3)T x + 1

2x
TΓ2x + k3

+ (k2βt + B2)TWx − 1
2W

T
x Γ3Wx ,

W (T , x ; z) = ψ(x ; z).

This is a linear-quadratic problem, indexed by α·, β·.

The solution has the form

W α·,β· = 1
2

(x
z
)T

Πt

(x
z
)

+ πT
t

(x
z
)

+ γ̂t(z),

where Π· satisfies a differential Riccati equation, and π·, γ· satisfy ODEs
with appropriate initial data.

That was a key step!
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Fundamental Reformulation

The value function W α·,β· is generated by deterministic, fundamental
control problem (noting suppressed initial data).

The dynamics are differential Riccati equation (DRE) and linear ODEs

Π̇t = F̄1(Πt), π̇t = F̄2(Πt , πt , αt , βt), γ̇t = F̄3(Πt , πt , αt , βt).

The initial conditions are

Πs = Π̄
.

=
[
M −M
−M M

]
, πs = π̄ = (0, 0)T , γs = γ̂(z).

The (terminal-cost) payoff and value function are

J̄(s, Π̄, π̄, γ̄; x , z) = 1
2

(x
z
)T

ΠT

(x
z
)

+ πT
T

(x
z
)

+ γT (z),

W f (s, Π̄, π̄, γ̄; x , z) = W f (s, x , z)

= stat
(α·,β·)∈Os

W α·,β·(s, x ; z) = stat
(α·,β·)∈Os

J̄(s, Π̄, π̄, γ̄; x , z).

Os = L2. x is now a parameter.
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Final Fundamental Reformulation

Note that 1
2

(x
z
)T

ΠT

(x
z
)

is an additive, uncontrolled term.

Let

W̆ (t, Π̄, π̄, γ̄; x , z)
.

= W f (t, Π̄, π̄, γ̄; x , z)− 1
2

(x
z
)T

ΠT

(x
z
)
,

ψ̆(π, γ; x , z)
.

= πT
(x
z
)

+ γ.

W̆ is the value function of the deterministic, terminal-cost,
fundamental control problem given by

W̆ (s, Π̄, π̄, γ̄; x , z) = stat
(α·,β·)∈Os

{
ψ̆(πT (α·, β·), γ(α·, β·); x , z)

}
= stat

(α·,β·)∈Os

{
J̆(s, Π̄, π̄, γ̄, α, β; x ; z).

}
.

The dynamics are linear ODEs

π̇t = F̄2(Πt , πt , αt , βt), γ̇t = F̄3(Πt , πt , αt , βt).

The initial conditions are: πs = π̄ = (0, 0)T , γs = γ̂(z).

The stochastic control problem has been converted to a deterministic
control problem.
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Newly Available Approaches (Max-Plus)

The above formulation as a terminal-cost deterministic problem has an
associated HJ PDE

0 = W̆t + stat
(α,β)∈IR2n

{
F̄2(Π, π, α, β) · W̆π + F̄3(Π, π, α, β)W̆γ

}
W̆ (T ,Π, π, γ; x , z) = πT

(x
z
)

+ γ.

This is a first-order HJ PDE over n + 1 dimensional state space (π, γ).

F̄2, F̄3 are linear in π, indepedent of γ, quadratic in x , z .

Low complexity; well below the quantum-spin example.

Appopriate for max-plus curse-of-dimensionality-free methods.

Recall that

W f (s, Π̄, π̄, γ̄; x , z) = W̆ (s, Π̄, π̄, γ̄; x , z) + + 1
2

(x
z
)T

ΠT

(x
z
)
.
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Newly Available Approaches (Fundamental Solutions)

Recall payoff

J̆(s, Π̄, π̄, γ̄, α, β; x ; z)
.

= ψ̆(πT (α·, β·), γ(α·, β·); x , z).

Differentiate J̆ wrt α·, β· to obtain argstat.

Obtain an n-dimensional subset of Os , Gs , that is a fundamental solution set
sufficient for computation of solution for any specific x , z ∈ IRn.
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Thank you.
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