Conversion of Second-Order HJB PDE Problems into First-Order HJB PDE Problems

Monterey
October, 2019

W.M. McEneaney, UC San Diego
Collaborator: P. Dower, U. Melbourne

Main Points: Computation for Nonlinear Control

- Max-plus curse-of-dimensionality-free methods (Akian, Dower, Fleming, Gaubert, Mc, Qu, et al.).
- Exceptionally well-suited to high-dimensional, "lower-complexity" problems (≤ 15-dimensional).
- Orignally conceived for first-order HJ PDE.
- Extension to second-order HJ PDE requires max-plus distributive property, which induces a much-higher "curse of complexity" and significantly reduced performance.
- Fundamental solution approaches (Dower, Mc, et al.).
- A single object is generated. Solutions for varying problem data do not require re-propagation of the solution.
- Employed in two-point boundary value problems in the classic n-body domain.
- Semi-convex and "stat" duality are employed on the fundamental-solution object to generate solutions to particular data.

Main Points: Second-Order vs. First-Order HJ PDE

- First-order HJ PDE:
- $0=W_{t}+\min _{v \in R^{n}}\left\{f(x, v)^{T} W_{x}+L(x, v)\right\}$.
- Systems with ODE dynamics.
- Information travels along (generalized) characteristics at a finite rate, modulo shocks and rarefaction waves.
- Nonsmooth solutions.
- Second-order HJ PDE:
- $0=W_{t}+\operatorname{tr}\left(A W_{x x}\right)+\min _{v \in R^{n}}\left\{f(x, v)^{T} W_{x}+L(x, v)\right\}$.
- Systems driven by Brownian motion (SDE dynamics).
- Information travels as an infinite-rate.
- Nondegenerate diffusion matrix implies smooth solutions.
- In general, these two classes require significantly different numerical techniques.
- We wil convert second-order HJ PDE problems within a certain class into fundamental-solution first-order HJ PDE problems.

Section 1:

Staticization

Staticization

- Need to search for stationary (static) points of action functionals.
- Terminology: Staticization, statica (analogous to minimization, minima).
- Let $\bar{y} \in \mathcal{G}_{y}$ where \mathcal{G}_{y} is an open subset of a Hilbert space. We say

$$
\bar{y} \in \underset{y \in \mathcal{G}_{y}}{\operatorname{argstat}} F(y) \text { if } \limsup _{y \rightarrow \bar{y}, y \in \mathcal{G}_{y}} \frac{|F(y)-F(\bar{y})|}{|y-\bar{y}|}=0,
$$

- If f is differentiable and \mathcal{G}_{y} is open, then
$\operatorname{argstat}_{y \in \mathcal{G}_{\mathcal{Y}}} F(y)=\left\{y \in \mathcal{G}_{\mathcal{Y}} \mid F_{y}(y)=0\right\}$.
- Define set-valued $\overline{\text { stat }}$ by

$$
\overline{\operatorname{stat}}_{y \in \mathcal{G}_{\mathcal{y}}} F(y) \doteq\left\{F(\bar{y}) \mid \bar{y} \in \underset{y \in \mathcal{G}_{\mathcal{y}}}{\operatorname{argstat}}\{F(y)\}\right\} \text { if } \operatorname{argstat}\left\{F(y) \mid y \in \mathcal{G}_{y}\right\} \neq \emptyset .
$$

- If there exists a s.t. $\overline{\operatorname{stat}}_{y \in \mathcal{G}_{y}} F(y)=\{a\}$, then

$$
\operatorname{stat}_{y \in \mathcal{G}_{y}} F(y) \doteq a
$$

Staticization: Simple Examples

stat does not exist.

stat pxictc

stat exists.

stat dnec nnt exict

Staticization-Based Representation for the Gravitational

Potential

- Classic gravitational potential energy expression for bodies at x and origin with masses m and m_{0} :

$$
-V(x)=\frac{G m_{0} m}{|x|} .
$$

- Inverse norm is difficult.

- Additive inverse of potential as optimized quadratic (with $\widehat{G} \doteq(3 / 2)^{3 / 2} G$).

$$
-V(x)=\frac{\widehat{G} m_{0} m}{|x|}=\widehat{G} m_{0} m \sup _{\alpha \in[0, \infty)}\left\{\alpha-\frac{\alpha^{3}|x|^{2}}{2}\right\} .
$$

- Argument is convex cubic on $[0, \infty)$; replace sup with stat:

$$
-V(x)=\widehat{G} m_{0} m \underset{\alpha \in[0, \infty)}{\operatorname{stat}}\left\{\alpha-\frac{\alpha^{3}|x|^{2}}{2}\right\} .
$$

Coulomb potential

- Can extend Coulomb potential from \boldsymbol{R}^{n} to \mathbb{C}^{n}.
- Additive inverse of Coulomb/gravitational potential over \mathbb{C} :

imaginary part of coulamb poential

Staticization-based extension of Coulomb potential to \mathbb{C}^{3}

- Note that although min and max are valid only for real-valued functionals, staticization is valid for complex-valued functionals.
- The Coulomb potential, extended to \mathbb{C}^{3} may be generated similarly to the stat representation of the gravitational potential.
- Let the Coulomb potential on R^{3} be given by $-V(y)=\mu_{c} /|y|$. Then, the extension to $x \in \mathbb{C}^{3}$ is (with $\hat{\mu}_{c} \doteq\left(\frac{3}{2}\right)^{3 / 2} \mu$):

$$
\begin{aligned}
-V(x) & =\frac{\mu_{c}}{\sqrt{x^{\top} x}} \\
& =\hat{\mu} \operatorname{stat}_{\alpha \in \mathcal{H}^{+}}\left[\alpha-\frac{\alpha^{3}\left(x^{T} x\right)}{2}\right]
\end{aligned}
$$

where

$$
\mathcal{H}^{+} \doteq\left\{\alpha=r e^{i \theta} \mid r>0, \theta \in(-\pi / 2, \pi / 2]\right\} .
$$

Legendre Transform and Stat-Quad Duality

- Stat-duality (Legendre): \mathcal{A}, \mathcal{B} open; $\phi \in C^{1}(\mathcal{A} ; R) ;[D \phi]^{-1} \in C^{1}(\mathcal{B} ; \mathcal{A})$.

$$
\begin{array}{ll}
\phi(u)=\operatorname{statat}_{v \in \mathcal{B}}[a(v)+\langle v, u\rangle] & \forall u \in \mathcal{A}, \\
a(v)=\operatorname{stat}_{u \in \mathcal{A}}[\phi(u)-\langle v, u\rangle] & \forall v \in \mathcal{B} .
\end{array}
$$

- Example: $\mathcal{A}=\mathcal{B}=\boldsymbol{R}^{n} \backslash\{0\}$.

$$
\phi(u)=1 /|u|, \quad a(v)=2|v|^{1 / 2}
$$

- Stat-quad duality: $\mathcal{A}, \hat{\mathcal{B}}$ open; $C \in \mathcal{L}(\mathcal{U} ; \mathcal{U})$, symmetric and invertible; $\eta^{-1} \in C^{1}(\hat{\mathcal{B}} ; \mathcal{A})$ with $\eta(u) \doteq D \phi(u)-C u$.

$$
\begin{aligned}
\phi(u)=\operatorname{stat}_{v \in \mathcal{B}}\left[a(v)+\frac{1}{2}\langle v-u, C(v-u)\rangle\right] & \forall u \in \mathcal{A}, \\
a(v)=\operatorname{stat}_{u \in \mathcal{A}}\left[\phi(u)-\frac{1}{2}\langle v-u, C(v-u)\rangle\right] & \forall v \in \mathcal{B} .
\end{aligned}
$$

- Example: $\mathcal{A}, \hat{\mathcal{B}}=\boldsymbol{R}^{n} ; P, C, P-C$ symmetric, nonsingular.

$$
\phi(u)=\frac{1}{2} u^{\prime} P u, \quad a(v)=\frac{1}{2} v^{\prime} C(C-P)^{-1} P v .
$$

Mass-Spring Example

- Using stationary action to obtain a differential Riccati equation, the solution is

$$
P(t)=R(t)=\frac{-\cot (\omega t)}{\gamma}
$$

$$
Q(t)=\frac{\operatorname{cosec}(\omega t)}{\gamma}
$$

Geometric Concept of Semiconvex Duality

- Naive use of closed-form solution past asymptotes yields correct stationary action, and solution to TPBVP.
- Propagation aided via stat-quad duality:

- Stat-quad dual of quadratics corresponding to $P(t), Q(t), R(t)$, obtained from following (with using duality matrix C):

$$
\begin{aligned}
\alpha(t) & =C-C[C+P(t)]^{-1} C \\
\beta(t) & =C[C+P(t)]^{-1} Q(t) \\
\gamma(t) & =R(t)-Q^{T}(t)[C+P(t)]^{-1} Q(t)
\end{aligned}
$$

Propagation Through Asymptotes

- Propagation through stat-quad duality:
- Stat-dual satisfies:

$$
\begin{aligned}
\dot{\alpha}(t)= & -\alpha(t)\left[D^{-1}+C^{-1} B C^{-1}\right] \alpha(t) \\
\dot{\beta}(t)= & -\alpha(t)\left[D^{-1}+C^{-1} B C^{-1}\right] \beta(t) \\
& +B C^{-1} \beta(t) \\
\dot{\gamma}(t)= & -\beta^{T}(t)\left[D^{-1}+C^{-1} B C^{-1}\right] \beta(t)
\end{aligned}
$$

- Locations of asymptotes may be different between primal and dual.
- Propagation recipe:
(1) Propagate primal [dual] Riccati until approaching asymptote.
(2) Switch to dual [primal] Riccati until approaching dual [primal] asymptote, and return to step 1.

The Theory of Iterated Staticization

- When is

$$
\operatorname{stat~stat}_{u \in \mathcal{U}}^{\alpha \in \mathcal{A}} \boldsymbol{\operatorname { s t a t }} F(u, \alpha)=\operatorname{stat}_{(u, \alpha) \in \mathcal{U} \times \mathcal{A}} F(u, \alpha)=\operatorname{stat}_{\alpha \in \mathcal{A}} \operatorname{stat}_{u \in \mathcal{U}} F(u, \alpha) ?
$$

- This is a surprisingly deep question.
- (Definitely not $\frac{d}{d u} \frac{d F}{d \alpha}=\frac{d^{2} F}{d u d \alpha}=\frac{d}{d \alpha} \frac{d F}{d u}!$)
- Counterexample on $\mathcal{U}=\mathcal{A}=\boldsymbol{R}: F(u, \alpha)=u\left(\alpha^{2}-1\right)$.
- $\operatorname{stat}_{\alpha \in \mathcal{A}} \operatorname{stat}_{u \in \mathcal{U}} F(u, \alpha)=0=\operatorname{stat}_{(u, \alpha) \in \mathcal{U} \times \mathcal{A}} F(u, \alpha)$.
- $\operatorname{stat}_{u \in \mathcal{U}}$ stat $_{\alpha \in \mathcal{A}} F(u, \alpha)$ does not exist.
- Letting $\mathcal{M}_{1}(u) \doteq \operatorname{argstat}_{v \in \mathcal{V}} F(u, v)$, the underlying condition is that $d\left(\bar{v}, \mathcal{M}_{1}(u)\right)$ grow at most at a Lipschitz rate in neighborhood of $\bar{u}, \bar{v}) \in \operatorname{argstat}_{(u, v)} F(u, v)$.

v space

Iterated Staticization Problem

- The semi-quadratic case:

$$
F(u, \alpha) \doteq f_{1}(\alpha)+\left\langle f_{2}(\alpha), u\right\rangle_{\mathcal{U}}+\frac{1}{2}\left\langle\bar{B}_{3}(\alpha) u, u\right\rangle_{\mathcal{U}} .
$$

- Boundedness condition on Moore-Penrose pseudo-inverse, $\bar{B}_{3}^{\#}(\alpha)$, and additional technical conditions.
- Then, if the former exists,

$$
\operatorname{stat}_{\alpha \in \mathcal{A}} \operatorname{stat}_{u \in \mathcal{U}} F(u, \alpha)=\operatorname{stat}_{(u, \alpha) \in \mathcal{U} \times \mathcal{A}} F(u, \alpha) .
$$

- The uniformly locally Morse case:
- Very roughly: F is Morse if $F_{\alpha}(\hat{u}, \hat{\alpha})=0$ implies $F_{\alpha \alpha}(\hat{u}, \hat{\alpha})$ is invertible.
- Then, if the former exists,

$$
\operatorname{stat}_{(u, \alpha) \in \mathcal{U} \times \mathcal{A}} F(u, \alpha)=\operatorname{stat}_{\alpha \in \mathcal{A}} \operatorname{stat}_{u \in \mathcal{U}} F(u, \alpha) .
$$

Gravitational N-Body Problem (Motivation for the Above)

- Dynamics: $\dot{\xi}=u, \xi(0)=x=\left(x^{1}, x^{2}, \ldots x^{N}\right), u \in \mathcal{U}=L_{2}^{\text {loc }}$.
- Action functional (with all masses set to 1):

$$
\begin{aligned}
\bar{J}^{\infty}(t, x, u ; z)= & \int_{0}^{t} \frac{1}{2}|u(r)|^{2}+\hat{G} \operatorname{stat}_{\alpha \in \mathcal{A}_{0}} \sum_{i, j}\left[\alpha^{i, j}-\frac{\left(\alpha^{i, j}\right)^{3}\left|\xi^{i}(r)-\xi^{j}(r)\right|^{2}}{2}\right] d r \\
= & +\psi^{\infty}(\xi(t), z) \\
\operatorname{stat}_{\alpha(\cdot) \in \mathcal{A}}\{ & \int_{0}^{t} \frac{1}{2}|u(r)|^{2}+\hat{G} \sum_{i, j}\left[\alpha^{i, j}-\frac{\left(\alpha^{i, j}\right)^{3}\left|\xi^{i}(r)-\xi^{j}(r)\right|^{2}}{2}\right] d r \\
& \left.+\psi^{\infty}(\xi(t), z)\right\}(\mathcal{A}-\text { measurable } \alpha \text { components in }(0, \infty))
\end{aligned}
$$

- Value function:

$$
\begin{aligned}
\bar{W}^{\infty}(t, x ; z)=\operatorname{stat}_{u \in \mathcal{U}} \operatorname{stat}_{\alpha(\cdot) \in \mathcal{A}}\{ & \int_{0}^{t} \frac{1}{2}|u(r)|^{2}+\hat{G} \sum_{i, j}\left[\alpha^{i, j}-\frac{\left(\alpha^{i, j}\right)^{3}\left|\xi^{i}(r)-\xi^{j}(r)\right|^{2}}{2}\right] d r \\
& \left.+\psi^{\infty}(\xi(t), z)\right\}
\end{aligned}
$$

The N-Body Problem (Motivation)

- $J^{\infty}\left(t, x, u, \alpha^{*} ; z\right)$ is semi-quadratic in u.
- $J^{\infty}(t, x, u, \alpha ; z)$ is locally uniformly Morse in α.
- Hence

$$
\begin{aligned}
\bar{W}^{\infty}(t, x ; z)= & \operatorname{stat}_{u \in \mathcal{U}} \operatorname{stat}_{\alpha(\cdot) \in \mathcal{A}}\left\{\int_{0}^{t} \frac{1}{2}|u(r)|^{2}+\hat{G} \sum_{i, j}\left[\alpha^{i, j}-\frac{\left(\alpha^{i, j}\right)^{3}\left|\xi^{i}(r)-\xi^{j}(r)\right|^{2}}{2}\right] d r\right. \\
& \left.+\psi^{\infty}(\xi(t), z)\right\} \\
= & \operatorname{stat}_{u \in \mathcal{U}} \operatorname{stat}_{\alpha(\cdot) \in \mathcal{A}} J^{\infty}(t, x, u, \alpha ; z) \\
= & \operatorname{stat}_{\alpha(\cdot) \in \mathcal{A}} \operatorname{stat}_{u \in \mathcal{U}} J^{\infty}(t, x, u, \alpha ; z) \\
= & \operatorname{stat}_{\alpha \in \mathcal{A}} \mathcal{W}^{\alpha, \infty}(t, x ; z)
\end{aligned}
$$

- For each $\alpha \in \mathcal{A}, \mathcal{W}^{\alpha, \infty}(t, x ; z)$ is solution of an LQ control problem.

The N-Body Fundamental Solution as a Set (Motivation)

- We have

$$
\mathcal{W}^{\alpha, \infty}(t, x ; z)=\frac{1}{2}\left[x^{T} P_{t}^{\infty}(\alpha) x+2 z^{T} Q_{t}^{\infty}(\alpha) x+z^{T} R_{t}^{\infty}(\alpha) z+r_{t}^{\infty}(\alpha)\right]
$$

where $P_{t}^{\infty}, Q_{t}^{\infty}, R_{t}^{\infty}$ are solutions of Riccati equations and r_{t}^{∞} is an integral.

- The game value function is:

$$
\begin{aligned}
\bar{W}^{\infty}(t, x ; z) & =\operatorname{stat}_{\alpha \in \mathcal{A}} \frac{1}{2}\left[x^{T} P_{t}^{\infty}(\alpha) x+2 z^{T} Q_{t}^{\infty}(\alpha) x+z^{T} R_{t}^{\infty}(\alpha) z+r_{t}^{\infty}(\alpha)\right] \\
& =\underset{(P, Q, R, r) \in \mathcal{G}_{t}}{\operatorname{stat}} \frac{1}{2}\left[x^{T} P x+2 z^{T} Q x+z^{T} R z+r\right] .
\end{aligned}
$$

- The set

$$
\mathcal{G}_{t} \doteq\left\{P_{t}^{\infty}(\alpha), Q_{t}^{\infty}(\alpha), R_{t}^{\infty}(\alpha), r_{t}^{\infty}(\alpha) \mid \alpha \in \mathcal{A}\right\}
$$

represents the fundamental solution of n-body TPBVPs.

Schrödinger Similarity

- The Schrödinger equation case is similar.

$$
\bar{J}(s, x, u, \alpha) \doteq \mathrm{E}\left\{\int_{s}^{t} \frac{m}{2} u_{r}^{T} u_{r}-V\left(\xi_{r}\right) d r+\phi\left(\xi_{t}\right)\right\}
$$

where

$$
d \xi_{r}=u_{r} d r+\sigma \frac{1+i}{\sqrt{2}} d B_{r}
$$

- The stat operations will be over complex-valued, stochastic processes.

Part 2:
 Converting the Second-Order HJ PDE Problem into a First-Order HJ PDE Problem and Associated Ramifications

Stochastic Control Problem

- SDE dynamics:

$$
d \xi_{t}=f\left(\xi_{t}, u_{t}\right) d t+\mu d B_{t}, \quad \xi_{s}=x \in \boldsymbol{R}^{n} .
$$

- Payoff:

$$
\mathcal{J}(s, x, u) \doteq \mathrm{E}\left\{\int_{s}^{T} L\left(\xi_{t}, u_{t}\right) d t+\Psi\left(\xi_{T}\right)\right\} .
$$

- Can use a stat-quad duality representation for a variety of terminal costs:

$$
\begin{aligned}
& \Psi(x) \doteq \operatorname{stat}_{z \in R^{n}}\left\{\hat{\gamma}(z)+\frac{1}{2}(x-z)^{T} \bar{M}(x-z)\right\} \doteq \operatorname{stat}_{z \in R^{n}}\{\psi(x ; z)\}, \\
& \hat{\gamma}(z) \doteq \operatorname{stat}_{x \in R^{n}}\left\{\Psi(x)-\frac{1}{2}(x-z)^{T} \bar{M}(x-z)\right\},
\end{aligned}
$$

- Then,

$$
\begin{aligned}
& \mathcal{J}(s, x, u) \doteq \operatorname{stat}_{\zeta \in \mathcal{Z}}\{J(s, x, u ; z)\}, \\
& J(s, x, u ; z) \doteq \mathrm{E}\left\{\int_{s}^{T} L\left(\xi_{t}, u_{t}\right) d t+\psi\left(\xi_{T} ; z\right)\right\} .
\end{aligned}
$$

- We will henceforth focus on $J(s, x, u ; z)$.

Dynamic Programming and Stat-Quad Duality

- Value function:

$$
W(s, x ; z)=\operatorname{stat}_{u \in \mathcal{U}_{s}} J(s, x, u ; z)
$$

- Making the standard assumptions for existence of solution of HJ PDE, and verification theorem for traditional optimization (plus a bit more if the staticization is not optimization).
- Associated HJ PDE problem (with $A \doteq \sigma \sigma^{T}$):

$$
\begin{aligned}
& 0=W_{t}+\operatorname{stat}_{v \in U}\left\{f(x, v)^{T} W_{x}+L(x, v)\right\}+\frac{1}{2} \operatorname{tr}\left[A W_{x x}\right] \\
& \doteq W_{t}+H_{0}\left(x, W_{x}\right)+\mathcal{Q}_{0}\left(x, W_{x}\right)+\frac{1}{2} \operatorname{tr}\left[A W_{x x}\right] \\
& W(T, x ; z)=\psi(x ; z) .
\end{aligned}
$$

\mathcal{Q}_{0} is a quadratic function; putting all the non-linear/quadratic terms in H_{0}.)

- Stat-quad duality (with $\mathcal{Q}(x, p, \alpha, \beta) \doteq \frac{c_{1}}{2}|x-\alpha|^{2}+\frac{c_{2}}{2}|p-\beta|^{2}$ and $\left|c_{1}\right|,\left|c_{2}\right|$ sufficiently large):

$$
\begin{aligned}
& H_{0}(x, p)=\underset{(\alpha, \beta) \in R^{2 n}}{\operatorname{stat}_{0}}\left[G_{0}(\alpha, \beta)+\mathcal{Q}(x, p, \alpha, \beta)\right] \\
& G_{0}(\alpha, \beta)=\operatorname{stat}_{(x, p) \in R^{2 n}}\left[H_{0}(x, p)-\mathcal{Q}(x, p, \alpha, \beta)\right]
\end{aligned}
$$

Recall Examples

- Additive inverse of the gravitational potential (with $\widehat{G} \doteq(3 / 2)^{3 / 2} G$).

$$
-V(x)=\frac{\widehat{G} m_{0} m}{|x|}=\widehat{G} m_{0} m \underset{\alpha \in[0, \infty)}{\operatorname{stat}}\left\{\alpha-\frac{\alpha^{3}|x|^{2}}{2}\right\} .
$$

- Extension of the Coulomb potential to \mathbb{C}^{3} :

$$
-V(x)=\frac{\mu_{c}}{\sqrt{x^{\top} x}}=\hat{\mu} \operatorname{stat}_{\alpha \in \mathcal{H}^{+}}\left[\alpha-\frac{\alpha^{3}\left(x^{T} x\right)}{2}\right] .
$$

Another Example

- These examples include the stat-quad duality in the gradient variable as well.
- Simple example where $H_{0}(x, p)=\frac{p^{4}}{12}$.

Dynamic Programming and Stat-Quad Duality

- Revised HJ PDE problem (with $A \doteq \sigma \sigma^{T}$):

$$
\begin{aligned}
0= & W_{t}+\frac{1}{2} \operatorname{tr}\left[A W_{x x}\right] \\
& +\underset{(\alpha, \beta) \in R^{2 n}}{\operatorname{stat}}\left\{G_{0}(\alpha, \beta)+\mathcal{Q}\left(x, W_{x}, \alpha, \beta\right)+\mathcal{Q}_{0}\left(x, W_{x}\right)\right\}, \\
W & (T, x ; z)=\psi(x ; z) .
\end{aligned}
$$

- Note that aside from the staticization over the newly introduced parameters α, β, the Hamiltonian is quadratic.
- The HJ PDE is

$$
\begin{aligned}
0= & W_{t}+\frac{1}{2} \operatorname{tr}\left[A W_{x x}\right] \\
& +\operatorname{stat}_{(\alpha, \beta) \in R^{2 n}}\left\{G_{0}(\alpha, \beta)+\frac{c_{1}}{2}|\alpha|^{2}+\frac{c_{2}}{2}|\beta|^{2}+k_{1} \alpha^{T} x+k_{2} \beta^{T} W_{x}+\mathcal{Q}_{1}\left(x, W_{x}\right)\right\},
\end{aligned}
$$

where $\mathcal{Q}_{1}\left(x, W_{x}\right)$ is quadratic.

HJ PDE and Iterated Staticization

- Use a stat-quad dual of the quadratic, \mathcal{Q}_{1} to get it in a control form, yielding

$$
\begin{aligned}
0= & W_{t}+\frac{1}{2} \operatorname{tr}\left[A W_{x x}\right] \\
& +\underset{(\alpha, \beta) \in R^{2 n}}{\operatorname{stat}}\left\{G_{0}(\alpha, \beta)+\frac{c_{1}}{2}|\alpha|^{2}+\frac{c_{2}}{2}|\beta|^{2}+k_{1} \alpha^{T} x+k_{2} \beta^{T} W_{x}\right. \\
& \left.+\underset{w \in R^{n}}{\operatorname{statat}_{w}}\left[\left(B_{1} w+B_{2}\right)^{T} W_{x}+\frac{1}{2} w^{T} \Gamma_{1} w+\frac{1}{2} x^{T} \Gamma_{2} x+B_{3}^{T} x+k_{3}\right]\right\} .
\end{aligned}
$$

- Using one of the iterated staticization results, this is

$$
\begin{aligned}
0= & W_{t}+\frac{1}{2} \operatorname{tr}\left[A W_{x x}\right] \\
& +\underset{(\alpha, \beta, w) \in R^{3 n}}{\operatorname{stat}}\left\{G_{0}(\alpha, \beta)+\frac{c_{1}}{2}|\alpha|^{2}+\frac{c_{2}}{2}|\beta|^{2}+k_{1} \alpha^{T} x+k_{2} \beta^{T} W_{x}\right. \\
& \left.+\left(B_{1} w+B_{2}\right)^{T} W_{x}+\frac{1}{2} w^{T} \Gamma_{1} w+\frac{1}{2} x^{T} \Gamma_{2} x+B_{3}^{T} x+k_{3}\right\} .
\end{aligned}
$$

Dynamic Programming and Iterated Staticization

- The associated control problem is

$$
\begin{aligned}
& d \xi_{t}=\left(k_{2} \beta_{t}+B_{1} w_{t}+B_{2}\right) d t+\sigma d B_{t}, \quad \xi_{s}=x, \\
& J^{f}(s, x, w, \alpha, \beta ; z)=\int_{s}^{T} L^{f}\left(\xi_{t}, w_{t}, \alpha_{t}, \beta_{t}\right) d t+\psi\left(\xi_{t} ; z\right), \\
& \begin{aligned}
W^{f}(s, x ; z)= & \operatorname{stat}_{(\alpha, \beta, w .) \in \overline{\mathcal{O}}_{s} \times \mathcal{W}_{s}} J^{f}(s, x, w, \alpha, \beta ; z), \\
L^{f}(x, w, \alpha, \beta) \doteq & G_{0}(\alpha, \beta)+\frac{c_{1}}{2}|\alpha|^{2}+\frac{c_{2}}{2}|\beta|^{2} \\
\quad & \quad+\frac{1}{2} w^{T} \Gamma_{1} w+\frac{1}{2} x^{T} \Gamma_{2} x+\left(k_{1} \alpha+B_{3}\right)^{T} x+k_{3} .
\end{aligned}
\end{aligned}
$$

- $\overline{\mathcal{O}}_{s}$ is a space of stochastic, adapted, right-continuous, square-integrable controls.
- Using iterated staticization again (now over infinite-dimensional spaces),

$$
\begin{aligned}
W^{f}(s, x ; z) & =\underset{(\alpha ., \beta .) \in \mathcal{O}_{s}}{\operatorname{stat}} \operatorname{stat}_{w} J^{f}(s, x, w, \alpha, \beta ; z) \\
& \doteq \underset{(\alpha ., \beta .) \in \mathcal{O}_{s}}{\operatorname{stat}} W^{\alpha ., \beta .}(s, x ; z)
\end{aligned}
$$

Dynamic Programming and Iterated Staticization

- The HJ PDE associated to value function $W^{\alpha, \beta}$. is

$$
\begin{aligned}
0= & W_{t}+\frac{1}{2} \operatorname{tr}\left[A W_{x x}\right] \\
& +G_{0}\left(\alpha_{t}, \beta_{t}\right)+\frac{c_{1}}{2}\left|\alpha_{t}\right|^{2}+\frac{c_{2}}{2}\left|\beta_{t}\right|^{2}+\left(k_{1} \alpha_{t}+B_{3}\right)^{T} x+\frac{1}{2} x^{T} \Gamma_{2} x+k_{3} \\
& +\left(k_{2} \beta_{t}+B_{2}\right)^{T} W_{x}-\frac{1}{2} W_{x}^{T} \Gamma_{3} W_{x}, \\
W & (T, x ; z)=\psi(x ; z) .
\end{aligned}
$$

- This is a linear-quadratic problem, indexed by α., β.
- The solution has the form

$$
W^{\alpha, \beta .}=\frac{1}{2}\binom{X}{Z}^{T} \Pi_{t}\binom{X}{Z}+\pi_{t}^{T}\binom{X}{Z}+\hat{\gamma}_{t}(z),
$$

where Π. satisfies a differential Riccati equation, and π., γ. satisfy ODEs with appropriate initial data.

- That was a key step!

Fundamental Reformulation

- The value function $W^{\alpha, \beta}$. is generated by deterministic, fundamental control problem (noting suppressed initial data).
- The dynamics are differential Riccati equation (DRE) and linear ODEs

$$
\dot{\Pi}_{t}=\bar{F}_{1}\left(\Pi_{t}\right), \quad \dot{\pi}_{t}=\bar{F}_{2}\left(\Pi_{t}, \pi_{t}, \alpha_{t}, \beta_{t}\right), \quad \dot{\gamma}_{t}=\bar{F}_{3}\left(\Pi_{t}, \pi_{t}, \alpha_{t}, \beta_{t}\right)
$$

- The initial conditions are

$$
\Pi_{s}=\bar{\Pi} \doteq\left[\begin{array}{cc}
M & -M \\
-M & M
\end{array}\right], \quad \pi_{s}=\bar{\pi}=(0,0)^{T}, \quad \gamma_{s}=\hat{\gamma}(z) .
$$

- The (terminal-cost) payoff and value function are

$$
\begin{aligned}
& \bar{J}(s, \bar{\Pi}, \bar{\pi}, \bar{\gamma} ; x, z)=\frac{1}{2}\binom{x}{z}^{T} \Pi_{T}\binom{x}{z}+\pi_{T}^{T}\binom{x}{z}+\gamma_{T}(z), \\
& W^{f}(s, \bar{\Pi}, \bar{\pi}, \bar{\gamma} ; x, z)=W^{f}(s, x, z) \\
& =\operatorname{stat}_{(\alpha,, \beta .) \in \mathcal{O}_{s}} W^{\alpha ., \beta \cdot}(s, x ; z)=\operatorname{stat}_{(\alpha,, \beta .) \in \mathcal{O}_{s}} \bar{J}(s, \bar{\Pi}, \bar{\pi}, \bar{\gamma} ; x, z) .
\end{aligned}
$$

- $\mathcal{O}_{s}=L_{2} . x$ is now a parameter.

Final Fundamental Reformulation

- Note that $\frac{1}{2}\binom{X}{Z}^{T} \Pi_{T}\binom{X}{Z}$ is an additive, uncontrolled term.
- Let

$$
\begin{aligned}
& \breve{W}(t, \bar{\Pi}, \bar{\pi}, \bar{\gamma} ; x, z) \doteq W^{f}(t, \bar{\Pi}, \bar{\pi}, \bar{\gamma} ; x, z)-\frac{1}{2}\binom{x}{z}^{T} \Pi_{T}\binom{x}{z}, \\
& \breve{\psi}(\pi, \gamma ; x, z) \doteq \pi^{T}\binom{x}{z}+\gamma .
\end{aligned}
$$

- \breve{W} is the value function of the deterministic, terminal-cost, fundamental control problem given by

$$
\begin{aligned}
\breve{W}(s, \bar{\Pi}, \bar{\pi}, \bar{\gamma} ; x, z) & =\operatorname{stat}_{(\alpha,, \beta .) \in \mathcal{O}_{s}}\left\{\breve{\psi}\left(\pi_{T}(\alpha ., \beta .), \gamma(\alpha ., \beta .) ; x, z\right)\right\} \\
& =\operatorname{stat}_{(\alpha,, \beta .) \in \mathcal{O}_{s}}\{\breve{J}(s, \bar{\Pi}, \bar{\pi}, \bar{\gamma}, \alpha, \beta ; x ; z) .\} .
\end{aligned}
$$

- The dynamics are linear ODEs

$$
\dot{\pi}_{t}=\bar{F}_{2}\left(\Pi_{t}, \pi_{t}, \alpha_{t}, \beta_{t}\right), \quad \dot{\gamma}_{t}=\bar{F}_{3}\left(\Pi_{t}, \pi_{t}, \alpha_{t}, \beta_{t}\right)
$$

- The initial conditions are: $\pi_{s}=\bar{\pi}=(0,0)^{T}, \quad \gamma_{s}=\hat{\gamma}(z)$.
- The stochastic control problem has been converted to a deterministic control problem.

Newly Available Approaches (Max-Plus)

- The above formulation as a terminal-cost deterministic problem has an associated HJ PDE

$$
\begin{aligned}
& 0=\breve{W}_{t}+\underset{(\alpha, \beta) \in R^{2 n}}{\operatorname{stat}^{2}}\left\{\bar{F}_{2}(\Pi, \pi, \alpha, \beta) \cdot \breve{W}_{\pi}+\bar{F}_{3}(\Pi, \pi, \alpha, \beta) \breve{W}_{\gamma}\right\} \\
& \breve{W}(T, \Pi, \pi, \gamma ; x, z)=\pi^{T}\binom{x}{z}+\gamma .
\end{aligned}
$$

- This is a first-order HJ PDE over $n+1$ dimensional state space (π, γ).
- \bar{F}_{2}, \bar{F}_{3} are linear in π, indepedent of γ, quadratic in x, z.
- Low complexity; well below the quantum-spin example.
- Appopriate for max-plus curse-of-dimensionality-free methods.
- Recall that

$$
W^{f}(s, \bar{\Pi}, \bar{\pi}, \bar{\gamma} ; x, z)=\breve{W}(s, \bar{\Pi}, \bar{\pi}, \bar{\gamma} ; x, z)++\frac{1}{2}\binom{x}{z}^{T} \Pi_{T}\binom{x}{z} .
$$

Newly Available Approaches (Fundamental Solutions)

- Recall payoff

$$
\breve{J}(s, \bar{\Pi}, \bar{\pi}, \bar{\gamma}, \alpha, \beta ; x ; z) \doteq \breve{\psi}\left(\pi_{T}(\alpha ., \beta .), \gamma(\alpha ., \beta .) ; x, z\right)
$$

- Differentiate \breve{J} wrt α., β. to obtain argstat.
- Obtain an n-dimensional subset of $\mathcal{O}_{s}, \mathcal{G}_{s}$, that is a fundamental solution set sufficient for computation of solution for any specific $x, z \in \boldsymbol{R}^{n}$.

Thank you.

October 31, 2019

