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Main Points: Computation for Nonlinear Control

@ Max-plus curse-of-dimensionality-free methods (Akian, Dower, Fleming,
Gaubert, Mc, Qu, et al.).

o Exceptionally well-suited to high-dimensional, “lower-complexity”
problems (< 15-dimensional).

o Orignally conceived for first-order HJ PDE.

o Extension to second-order HJ PDE requires max-plus distributive
property, which induces a much-higher “curse of complexity” and
significantly reduced performance.

@ Fundamental solution approaches (Dower, Mc, et al.).

o A single object is generated. Solutions for varying problem data do not
require re-propagation of the solution.

o Employed in two-point boundary value problems in the classic n-body
domain.

e Semi-convex and “stat” duality are employed on the
fundamental-solution object to generate solutions to particular data.



Main Points: Second-Order vs. First-Order HJ PDE

@ First-order HJ PDE:

0 0=W,; +min,crn{f(x,v)" W, + L(x,v)}.

Systems with ODE dynamics.
Information travels along (generalized) characteristics at a finite rate,

modulo shocks and rarefaction waves.
Nonsmooth solutions.

@ Second-order HJ PDE:
o 0= W, + tr(AW,) + min,epn{f(x,v)T W, + L(x, v)}.

e Systems driven by Brownian motion (SDE dynamics).

Information travels as an infinite-rate. )
o Nondegenerate diffusion matrix implies smooth solutions.

@ In general, these two classes require significantly different numerical
techniques.

@ We wil convert second-order HJ PDE problems within a certain class into
fundamental-solution first-order HJ PDE problems.



Section 1:
Staticization



Staticization

Need to search for stationary (static) points of action functionals.

@ Terminology: Staticization, statica (analogous to minimization, minima).

@ Let ¥ € Gy where Gy is an open subset of a Hilbert space. We say

y € argstat F(y) if limsup w

= =0,
y€Gy y—7,y€Gy ‘y - )/|

If f is differentiable and Gy is open, then
argstat, cg, F(y) = {y € Gy | Fy(y) = 0}.

Define set-valued stat by

Statyeqy F(y) = {F(7) |7 € argstat (F(y)) b if argstat{F(y) |y € Gy} # 0.
yevy

If there exists a s.t. staty,cg, F(y) = {a}, then

stat F =¥
P (v)



Staticization: Simple Examples

argstat=(-13131, 0.18182, 11111}
5, 0.083737, -1.0684)

stat does not exist. stat exists.

atat avicte atat does not evist



Staticization-Based Representation for the Gravitational

Potential

@ Classic gravitational potential energy
expression for bodies at x and origin
with masses m and myg:

Gmgom

—V(x) =

Ix]

@ Inverse norm is difficult.

@ Additive inverse of potential as optimized quadratic (with G= (3/2)3/2G).

a N 31,2
—V(x) = Cmom _ Gmom sup {a _ oo }
|X‘ a€[0,00) 2

@ Argument is convex cubic on [0, 00); replace sup with stat:

~ ad|x|?
_V = G stat , — G
(X) A a;[Oflx) {(Y 2 }



Coulomb potential

@ Can extend Coulomb potential from R" to C".

@ Additive inverse of Coulomb/gravitational potential over C:

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

imaginary part o couomb poential




Staticization-based extension of Coulomb potential to C3

@ Note that although min and max are valid only for real-valued functionals,
staticization is valid for complex-valued functionals.

@ The Coulomb potential, extended to C3 may be generated similarly to the
stat representation of the gravitational potential.

@ Let the Coulomb potential on R* be given by —V/(y) = pc/|y|. Then, the

. s . 1313/2
extension to x € C3 is (with fic = (3)™p):
He
—V(x) =
() xTx
5 stat a3(xTx)
= [ stat @ — ———=
#ozEHJr 2 '

where
HY ={a=re’|r>00¢(-n/2,7/2] }.



Legendre Transform and Stat-Quad Duality
@ Stat-duality (Legendre): A, B open; ¢ € C1(A; R); [Dg]~t € CL(B; A).
o(u) = stGaBt[a(v) + (v, u)] VueA,
a(v) = Steaj[gb(u) — (v, u)] VveRB.

@ Example: A=B=R"\ {0}
$(u) =1/lul,  a(v) =2Jv|*/%
@ Stat-quad duality: A, B open; C € L(U;U), symmetric and invertible;
n~! e CY(B; A) with n(u) = Dp(u) — Cu.
qf)(u):svteal;c [a(v) + (v — u, C(v — v))] VueA,
a(v) :Ste&bt\ [¢(u) — 3(v — u, C(v — u))] VveB.

@ Example: A,B = R"; P, C, P — C symmetric, nonsingular.

o(u) = Lu'Pu, a(v) = 3v/C(C—P) *Pv.



Mass-Spring Example

@ Using stationary action to obtain a differential

P(t) = R(t) =

@ Naive use of closed-form solution past
asymptotes yields correct stationary
action, and solution to TPBVP.

@ Propagation aided via stat-quad duality:

Q(t) =

Riccati equation, the solution is

cosec(wt)
-

Geometric Concept of Semiconvex Duality

4(1.5)+(x,1.5)

= o5 o 05 1 15 2

@ Stat-quad dual of quadratics corresponding to P(t), Q(t), R(t), obtained from

following (with using duality matrix C):

a(t)= C - C[C+ P(1)]'C,
B(t) = C[C + P1)] ' Q(2),
1(t) = R(t) = @T(1)[C + P(1)] 7' Q(¢).



Propagation Through Asymptotes

@ Propagation through stat-quad duality:

Primal and Dual (complementary asymptote locations)

@ Stat-dual satisfies:

a(t) = —a(t)[DH 4+ CBC a(t),

B(t) = —a(t)[D™" + CT'BCT'B(t)
+ BCT'B(t),

A(t) = =BT (t)[D™! + C'BCTMB(t).

a()=r(t)

CR I T B S
@ Locations of asymptotes may be different between primal and dual.
@ Propagation recipe:

© Propagate primal [dual] Riccati until approaching asymptote.
@ Switch to dual [primal] Riccati until approaching dual [primal]
asymptote, and return to step 1.



The Theory of Iterated Staticization

@ When is

stat stat F(u, ) =  stat  F(u,«) = statstat F(u, @) ?
ueld acA (u,a)eUx A acA ueld

@ This is a surprisingly deep question.

dF _ d*F _ ddF|)

o (Definitely not - 9= = =0 = -9

@ Counterexample on Y = A= R: F(u,a) = u(a? —1).

o statoeastatycy F(u, ) = 0 = stat(, a)cux.a F(u, ).
o stat,cy statoea F(u, ) does not exist.

M_1(u)
@ Letting M;(u) = argstat,cy, F(u,v), the
underlying condition is that d(v, Mj(u)) /
grow at most at a Lipschitz rate in -
neighborhood of (7, V) € argstat(, ) F(u, v). o { o

Vv space



Iterated Staticization Problem

@ The semi-quadratic case:

F(u,0) = fi(a) + (f(a), uyy + 3 (Bs(a)u, u)y.

o Boundedness condition on Moore-Penrose pseudo-inverse, Bf(a), and
additional technical conditions.

@ Then, if the former exists,

stat stat F(u, ) =  stat  F(u, ).
acA ueld (u,)eUX A

@ The uniformly locally Morse case:
@ Very roughly: F is Morse if F, (8, &) = 0 implies F.o (8, &) is invertible.
@ Then, if the former exists,

stat  F(u, ) = stat stat F(u, «).
(u,)eUX A ac A ueld



Gravitational N-Body Problem (Motivation for the Above)

@ Dynamics: £ =u, £(0)=x=(x},x2,...xN), veu =Lk

@ Action functional (with all masses set to 1):

t 1.0\3| g J0oN2
J7(t, x, u;z):/ Hu(r )2 + G stat [a ij_ M} dr
0 acAgy i

+9>(4(1), 2)
t L . .
— stat LA 1 ES™ [ofd _ @PIEN-E0r 4
AT CCEDN e
+ P> (&(1), z)} (A — measurable o components in (0,00))

@ Value function:

W™(t,x; z) = stat stat {/ (N + GZ M] dr

uell a(-)eA

(e}



The N-Body Problem (Motivation)

@ J™(t,x,u,a*; z) is semi-quadratic in u.
@ J(t,x,u,«q;z) is locally uniformly Morse in .
@ Hence

Woo(t,x;z) = stat stat {/ (N> + GZ M] dr

ueU af-)eA

HUR(E(0.) )
stat stat JZ(t, x, u, ; z)
ueU af-)eA

= stat statJ°°(t X, U, Q; Z)
a()eA ueld

= stat W™(t, x; z).
acA

@ For each a € A, W*®(t, x; z) is solution of an LQ control problem.



The N-Body Fundamental Solution as a Set (Motivation)

@ We have
WO (t, x; z) = % [XTP;X’ (a)x + QZTQfO (a)x + zT:‘:\’;>O (a)z + re (a)]
where P, Q°, RY® are solutions of Riccati equations and r® is an integral.
@ The game value function is:
W™(t,x;z) = (slteaj% [xTPX(a)x + 227 Q°(a)x + 2T R (a)z + r°(av)]

— stat % [XTPX+22TQX+ZTRz+r] .
(P,Q,R,r)€G:
@ The set e - . -
Gr ={P (), Q%(a), R (), r®(a) | a € A}
represents the fundamental solution of n-body TPBVPs.



Schrodinger Similarity

@ The Schrodinger equation case is similar.

J(s,x,u,0) = E{/ gufur - V(@)drw(&)},

where

_ 1+i
d&, = u, dr + V1 dB;,.

@ The stat operations will be over complex-valued, stochastic processes.



Part 2:
Converting the Second-Order HJ PDE Problem
into a First-Order HJ PDE Problem
and Associated Ramifications



Stochastic Control Problem

@ SDE dynamics:
dé-t = f(ft,ut) dt+MdBt7 gs =X c Rn.
@ Payoff:
. T
T (5, %, u) = E{ [ L(Er, ue) dt + w(gT)}.
@ Can use a stat-quad duality representation for a variety of terminal costs:
= 2 1 o T n/ o = .
W(x) = stat {5(2) + 30x = 2)TM(x - 2)} = stat{u(x 2)},
A g Sl
3(2) = stat {W(x) - 3(x — 2) M(x - 2)},
@ Then,
= stat{J : ,
J (s, x, u) %eaz{ (s,x,u;2)}

.
J(s,x, u;2) = E{ [ L(&e, ue) dt +(Er z)}.

@ We will henceforth focus on J(s, x, u; z).



Dynamic Programming and Stat-Quad Duality

@ Value function:
W(s,x;z) = stat J(s, x, u; z).
ueUs

@ Making the standard assumptions for existence of solution of HJ PDE, and
verification theorem for traditional optimization (plus a bit more if the
staticization is not optimization).

@ Associated HJ PDE problem (with A = oo T):
S T 1
0= W, +stat {f(x,v) W+ L(x, v)} + 3 tr[ AWy

= W, + Ho(x, Wi) + Qo(x, W) + 5 tr[AW,],
W(T,x;z) =v(x; z).
Qo is a quadratic function; putting all the non-linear/quadratic terms in Hp.)
o Stat-quad duality (with Q(x,p,a, 8) = $|x — al* + Z|p — 8] and |1, ||
sufficiently large):

Ho(x,p) = stat |Go(a, S Py, B,
ox.p) =, stat. [Go(a ) + Qlx. .0 )

Go(a, B) = stat_ [Ho(x,p) — Q(x, p,, B)].

(x.p)ER?"



Recall Examples

@ Additive inverse of the gravitational potential (with G= (3/2)3/2G).

Gmom ad|x|?
-V =—=G tat = .
(x) x| momag[(%oo) {a 2

@ Extension of the Coulomb potential to C3:

mmmmmmmmmmmmmmmmmmmmmmmm

mmmmmmmmmmmmmmmmmmm




@ These examples include the stat-quad duality in the gradient variable as well.

@ Simple example where Ho(x, p) = f—;.

4
G (B)isdualof H_(p)=p /12
Ho(p).p‘nz ® o(B) ledualofH, (g]=p

o =) = E £ 9ae
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Dynamic Programming and Stat-Quad Duality

@ Revised HJ PDE problem (with A= ooT):

0= W + L tr[AW,]

et {Go(a, B) + Q(x, Wi, a, B) + Qo(x, Wi) },

W(T,x; z) = ¥(x; 2).

@ Note that aside from the staticization over the newly introduced parameters
a, 3, the Hamiltonian is quadratic.

@ The HJ PDE is
0= W, + 1 tr[AW,,]

G, 2, €502 T T
+(%sﬁt)a€utR2n{Go(a.,/3)+5|a| +§\/3| + ko' x + kST Wi + Q1(x, Wi)},

where Q;(x, W) is quadratic.



HJ PDE and lterated Staticization

@ Use a stat-quad dual of the quadratic, Q; to get it in a control form, yielding
0= W, + 1 tr[AW,]
o Stat A{Go(a, B) + = = |a\2 = %lﬁ\z + k" x + kBT W
+ Msl‘éé};cn [(Biw + Bo) T Wy + 2w Tiw + IxTTox + BY x + k3] }.

@ Using one of the iterated staticization results, this is
0 = Wt + L tr[AWXX]
+ o qstat {Go(, 8) + —1|a\2 + %lﬁF + kiaTx + kT W,

+ (Biw + Bo) T Wy + 2w Tiw + Ix"Tox + B x + ks }.



Dynamic Programming and Iterated Staticization

@ The associated control problem is

dée = (koBr + Biws + Ba) dt + 0 dB:, £ =X,

T
Jf(S’X’ W7O[75; Z) = / Lf(gta Wi, Olt, Bf) dt + ¢(§tv Z)a

Wi(s,x;z) = stat_ I (s, x,w,a, B; 2),
(a.,B.,w.)€O0sxWs

. c c
L (x, w,, 8) = Go(a, B) + |af + S |5
+ %WTrlw + %XTFQX + (ki + B3) T x + ks.

o O, is a space of stochastic, adapted, right-continuous, square-integrable
controls.

@ Using iterated staticization again (now over infinite-dimensional spaces),
Wfsx;z = stat stat Jf (s, x, w, 4
(s,x:2) (0. ,B.)EO, w.EW, (5%, w, 0, 52)

i( Sﬁt%,to WP (s, x; z).
a.,B.)e0s



Dynamic Programming and Iterated Staticization

@ The HJ PDE associated to value function W5 is
0= W, + 3 tr[AW,]
+ Go(at, Be) + %\a,ﬁ + %lBtP + (ki + B3) "x + 3xTTox + ks
+ (kaBe + B2) Wy — W T3 W,
W(T,x;z) =v(x; z).

@ This is a linear-quadratic problem, indexed by «., (..

@ The solution has the form
WP = % ()z<)T Mg (>z() + ﬂ—tT ()z<) + 4¢(2),

where T1. satisfies a differential Riccati equation, and ., ~. satisfy ODEs
with appropriate initial data.

@ That was a key step!



Fundamental Reformulation

@ The value function W®# is generated by deterministic, fundamental
control problem (noting suppressed initial data).

@ The dynamics are differential Riccati equation (DRE) and linear ODEs

I;|t = F-l(rlt)a T = 'E2(nt77rtaat75t)7 Ve = ﬁ3(nt,77t>ata5t)~
@ The initial conditions are

n=i= M W, ==r=00" %=4@

@ The (terminal-cost) payoff and value function are

- _ T

J(s, N7 7 x,2) = 5 (3) N7 (3) +77 (3) +7(2),

W'(s, 11,7, 7:x,2) = W'(s,x, 2)

= stat WP (s,x;z)= stat J(s,M,7
(a.,8.)€0s

Vi X,Z).
(a.,8.)€0, i x,2)
@ Os = L,. x is now a parameter.



Final Fundamental Reformulation

T . .
Note that 1 (3) " M1 (Z) is an additive, uncontrolled term.

°
o Let
W(t,ﬁ,ﬁ'ﬂ;x,z) = wWf(t,N,7,7,x,2) — 5( ) FIT( )
z/v)(w,y;x,z) = (z) + .
@ W is the value function of the deterministic, terminal-cost,

fundamental control problem given by

W(s,ﬁﬁﬁ;x,z) stat {gb mr(a., 8.), (., ﬁ.);x,z)}

(ee.,B.)E
:( Sgat {J5|'|7T'y7 ,5xz)}

@ The dynamics are linear ODEs
T = ﬁz(nt,ﬂnat,ﬁt), ’.Yt = ’E3(nta7rtvoétvﬁt)'

The initial conditions are: 75 =7 = (0,0)7, ~s =4(2).

@ The stochastic control problem has been converted to a deterministic
control problem.



Newly Available Approaches (Max-Plus)

The above formulation as a terminal-cost deterministic problem has an
associated HJ PDE

0= VT/,_»+( %tatRz {FB(N, 7, a,B) - Wy + F3(N,7,a, )W, }
a,B)ER?"

W(Tvrhﬂ-a,y;)(?z):ﬂ- (Z)+Fy

This is a first-order HJ PDE over n+ 1 dimensional state space ().

F,, F3 are linear in 7, indepedent of v, quadratic in x, z.
Low complexity; well below the quantum-spin example.
Appopriate for max-plus curse-of-dimensionality-free methods.

Recall that

W (s, 7,7 x,2) = W(s, 0,7, 7:x,2) + +3 (3) N7 (3).



Newly Available Approaches (Fundamental Solutions)

@ Recall payoff
J(s N, 7,7, o, B;x; z) = IZ(FT(OA,,B‘),’y(a‘,ﬁ‘);X,Z).

o Differentiate J wrt a., B. to obtain argstat.

@ Obtain an n-dimensional subset of O, G, that is a fundamental solution set
sufficient for computation of solution for any specific x,z € R".



Thank you.



