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Linear System

z(t) = A(r)z(t) + B(r)u(t), t>0;, z(0)==z

@ A(r) generates a Co-semigroup on a Hilbert space Z
e B(r) bounded from U to Z
@ Design actuator location/shape as well as controller

@ Design variable r € Q where Q is compact in some topological
space
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Common objective: Linear Quadratic (LQ) Control

inf )/0 (C2(t), Cz(2)) + (u(t), u(t))dt

u€ Ly (0,00,

J(u,z0)

Optimal control

If the infinum is finite, then there exists a unique 1 > 0 such that
for all z € D(A),

(MA+ AN+ C*C—-MNBB* M)z=0

Algebraic Riccati Equation(ARE)

@ Optimal cost infu€L2(07oo;u) J(U,Zg) = <Zo, |_|Zo>
e Optimal control u(t) = —Kz(t) where K = B*Tl




LQ-optimal design
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LQ-optimal design

u€L(0,00;U)

inf /oo ||z(t)||2dt |C:|, B=0: total energy
0
—_—

Jr(u,zp)



Introduction Actuator design-linear Actuator design: semi-linear

LQ-optimal design

it /0 (C2(t), C2(2)) + (u(t), u(t))dt

/

Jr(usz)

e for each r, optimal cost is ((r)zo, zg) where IM(r) solves ARE.

@ minimize response to the worst z(0)

max (M(r)zo, z0) = |[N(r)]]
Z20EZ
llzoll=1

Cost function

fi= inf ||N
p= inf IN(r)]
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Existence of min,cq Hl_l(r)H

Theorem 1
Assume that for some r € Q
o (A(r), B(r)) is stabilizable;
o (A(r), C) is detectable, uniformly in r.

e Q is compact in a topological space

e for any sequence r, — r in § and any z € Z,
||etA('")z — etA(r)zH — 0
||etA(r,,)*Z o etA(r)*Z

1B(ra) = B(r)| = .

| =0

Then, there exists r* € Q such that

NG = inf 0]
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Outline of Proof

@ compactness of {2 = convergent minimizing sequence
@ strong convergence of (r,) to M(r*)

@ Riccati equation satisfied by M(r*)

Generalizes earlier results:

e (Fahroo—lto 1997): no control operator, exponentially stable
second-order systems

@ (Morris 2011): A independent of r
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Some other related work

@ Minimization of H,, Hy, cost (Kasinathan—Morris
2014,Morris—Demetriou—Yang 2015)

@ Maximization of the decay rate in a string w.r.t. the damping
distribution (Cox—Zuazua 1994, Freitas 1998, Cox 1998,
Hébrard—Henrot 2003, Miinch-Pedregal-Periago 2006. .. )

e Optimization of observability constant: (Privat-Trélat-Zuazua
2013)

@ Optimization of minimal time control w.r.t actuator domain,
heat equation: (Zheng—Guo—Ali 2015)
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Example: Optimal Spatial Distribution of Damping

’w 0w ow
W—FW r(x)E—O, w C [0,1]

w(0,t) =0,w(1,t) =0.

What is best choice of damping a(x)?
Different ways to measure “best”

@ decay rate
o for small mass of damping, constant damping best (Cox &
Zuazua)

o r(x) = kxw(x), small k optimum for N modes is at node of
N + 1st and is bad choice (Hebrard & Henrot)

@ minimize energy of the system



Example: Vibrating string with viscous damping

Design viscous damping r(x)

Wit — W + r(xX)we =0, t>0, 0<x<1
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Example: Vibrating string with viscous damping
Design viscous damping r(x) / \ )

th—WXX+r(X)Wt:O, t>0,0<X<1

0 |
A(r) = <8XX —r(x)|> . B=0
Z = H§(0,1) x L3(0,1)

0= {r(x) € 1°(0,1),0 < ro < r(x) < rl,/ol r(x)dx < M}

compact in L>°(0, 1) in the weak-star topology

‘There exists an optimal damping distribution. ‘ J
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Optimal damping; cost is energy (C=I)

N = number of modes
r(x) € Span{1, cos(mx), ..., cos((N — 1)mx)}

Cost

14000

Cost as a function of the approximation order
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LQ-optimal actuator location (||M,]]), viscously damped pinned beam C =/

Optimal actuator locations: viscous damping, C=I
T T T
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Optimal damping; cost with C = [/ 0]

Cost (total energy) as a function of the approximation order
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Optimal damping with C = [/ 0] in cost

Optimal damping distribution found for different orders of approximation N
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Optimal controller/actuator design: semi-linear PDEs

z(t) = Az(t) + F(z(t)) + B(r)u(t), z(0)=z € Z. (IVP)

e A with domain D(A) generates a strongly continuous
semigroup T(t) on a separable Hilbert space Z.

@ F(-) is locally Lipschitz continuous on Z
e input u(t) € U,qg in a Hilbert space U,
Uag = {u € LP(O, T U) : [|ull, < R}
@ actuator r € K,g C K in a topological space K

@ For each r € K,g, B(r) € L(U, Z), and there exists Mg such
that for all r € Kug. ||B(r)|| < Mg
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Example: Nonlinear waves

2W
LU (€,1) = Aw(E, 1) + F(w(E. 1) + r(€)ult)
w(€,0) = wo(€), Te(E,0) = w(c), €9
w(&, t) =0, (& t) €Tl x]0,00), S
ow 0 < e
5(5’ t)=0, ({&t)elx[0,00). "

o

o F(¢) € C3(R)
o There exist ag > 0 and b > 1/2; |F"(¢)| < ao(1 + [¢|?)
e F(w) =sin(w) in the Sine-Gordon equation;
F(w) = |w|*w, k > 2 in the Klein-Gordon equation
0 Kag={re CHQ):|rlla <1} C L3(Q)
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Cost Function

]
I, 7 20) = /0 o(2(8) + v(u(t) dt,  (Cost)

where ¢(-) and )(-) are weakly lower semi-continuous positive
functionals on Z and U, respectively. The optimization problem is

(min  J(u, r; z)

st z(t) = Az(t) + F(z(t)) + B(r)u(t), forallte (0, T]
z(0) =29
u € Uy,
r e K.
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Existence of an Optimizer

Theorem 1 (Edaletzadeh & Morris, 2018b)

Assume that
@ T is such that the PDE has solution for all admissible u and r.

e F(x) is weakly continuous

@ Let K,y be a convex set, compact in K. For all rp € K,q,

lim (|B(r) — B(ro)ll s, zy = O-

r—n

Then there exists a control input u® € U,y together with an
actuator location r° € K,q4, that solve the optimization problem.
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Outline of Proof

@ J(u,r; xp) is bounded below, and thus it has a finite infimum,
say j(xg). There is a sequence of inputs u, € U,y and
actuator location r, € K,4 such that

lim J(up, ry; xo0) — j(x0)-
n—oo
@ U,y is a convex closed bounded subset of LP(0, 7;U),

1 < p < o0, and so there is a subsequence u, — u° € U,yq,
weakly, also indicated by u,,.

@ Compactness of K,4 implies that there is a subsequence of
r, — r° € K,q, also indicated by r,.
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Outline of Proof (cont.)

@ By assumption, r, — r° implies

1B(rn) = B(ro)ll s,z — O

@ Every continuous linear map is weakly continuous and this can
be used to show weak convergence of

/0 T(t —s)B(rn)un(s)ds

in C(0,7; 2).
o Use weak continuity of F and existence of mild solution to
show convergence of costs.
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Characterizing the Optimum

Assumption 1

@ F(-) is Gateaux differentiable on Z. Indicate its derivative at
z by F..

@ The mapping z — F. is bounded, i.e., bounded sets in Z are
mapped into bounded sets in L(Z).

@ B(r) is Gateaux differentiable with respect to r in L(U, Z).
Indicate derivative of B(r) at r by Bj.

Q@ Z, U, K are Hilbert spaces.

Q J(u,rzn)= fOT (Qz,z) + (Ru, u) dt,
where Q € L(Z,Z2), R € L(U,U), @ >0, R > 0.
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Optimality Conditions

Corollary 2 (Edaletzadeh & Morris, 2018b)

With additional Assumption 1, if (u®, r®) is an interior point of
U.g X Kaqg, with optimal trajectory z°, initial condition zy, for cost

s r) = [ (x(0). X(0) + (Ru(t),u(o)) .
if
5(8) = (A" + Flig)p(8) — Q°(8),  p°(T) = 0
w(t) = —RLB"(r°)p°(1)
/(B,ou *p°(t) dt = 0.
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Generalization

Non-linear parabolic PDES (Edaletzadeh & Morris 2019)
includes Kuramoto-Sivashinsky,

°
°
@ actuator design space a Banach space
°

linear PDEs
o Hy-control (known disturbance) (Morris, Demetriou & Yang
2015)
o Hoo-control (unknown disturbance) (Kasinathan & Morris
2014)

o boundary control (work with M. Tucsnak)
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Optimality equations for single-input linear system, R =1

If
@ the PDE is linear,
e single input: B(r)u = b(r)u with b(r) € Z depending on r
@ quadratic cost with @ >0, R =1,

the optimality equations reduce to z°(t) solves the PDE, and
letting I(t) indicate the solution to the associated differential
Riccati equation,
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Numerical Example: Railway Tracks

,oa 7+ 852(El‘9 + Cd3g2at)+:“ + kw + aw? = b(&; r)u(t),
W(f,O) = WO(&)? %(an) = VU(g)a
w(O, t) = w(/, t) = 0,

i WY o W s | JamY
D770 7777770707707

Figure: Force-deflection relationship is nonlinear for railway track beams.
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Numerical Example: Railway Tracks

258 + 22 (EI1 5% + Casy) + ne + kw + aw® = b(&; r)u(t),
W(f,O) = W0(£)7 W(Evo) = Vo(g)a
w(0,t) = w(/,t) =0,

2
E/%gg (0,t) + Cdagzat(o t) = E/ (0 t) + Cdagzat(e t) = 0.

b(&;r)u

/M

@ | ®

e
1]
)

=
\4

Figure: Schematic of flexible beam
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Well-posedness of model

@ The dynamics with state (w, w) are well-posed on
Z = H?(0,£) N H3(0, ) x L%(0,0)
L 0 : . : :
@ nonlinearity F(w,v) = [—O‘W3} is continuously differentiable

pa
and weakly sequentially continuous on Z
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Well-posedness of model

@ The dynamics with state (w, w) are well-posed on

Z = H?(0,£) N H3(0, ) x L%(0,0)

L 0 : . : :
@ nonlinearity F(w,v) = [—O‘W3} is continuously differentiable
pa

and weakly sequentially continuous on Z

@ example actuator design problems
o actuator location: r € R, Ky = [0,1] C R.

e b(r) = xr, r meas. subset of [0,1], r € K,q,

Koo = {x, € BV(0,1) : Var{x,(x)} <V, |r] = c} C L1(0,1).
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Convergence of Approximate Optimal Control
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a) Cost
100 (2) T
2nd order
= 4th order Parameters
; (8531 orjer ET 1
T - 1 order 1
= 90r 10th order 1 ’f 1
2/ O optimizer a 10
= ©w 0.1
Cy 107
0 I I I I 4 1
0 0.2 0.4 0.6 0.8 1| & | sx107*
- T 10
L o) T
(b)‘ Optimal 1nPut = P

u’(t; r°)

2nd order
4th order
6th order
- - - - 8th order

10th order =

Modal approximations (Edalatzadeh)

10
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Optimal Control at Optimal Location vs Center Location

(b) Deflection

0.4 4
02 ] Parameters
= El 1
s 0 \ pa 1
3 k 1
-0.2 " 01
0.4 d Cy 104
a 10
0 2 4 6 8 10 0 1
¢ s | sx107*
T 10
T = o T
r0) | |

- -=-=-atr=05

Figure: Comparison of optimal control when the actuator is located at
the optimal location and at the center.
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Linear vs Nonlinear Control

J(u(r), 75 70)

Figure: Cost function and optimal input for linear

Actuator design: semi-linear

(b) Cost
100 T
o =100
_ Parameters
----a=0
O optimizer El 1
50 , ] pa 1
L’ k 1
1 0.1
-l O --""Tt-ilg---- Cq 1074
4 1
0 : ; —4
0 0.2 0.4 0.6 0.8 1| & | 5x10
r T 10
Q z
R

and nonlinear beam.
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Admissible actuator designs

e generally K,4 is not naturally a Hilbert space; e.g. b(r) = x,,
r meas. subset of [0,1], r € K,q,

Kag == {xr € BV(0,1) : Var{x,(x)} <V, |r] = c} C L1(0,1).

e optimality condition fOT(B:.o u°(t))*p°(t)dt =0
@ possible computational approaches

e finite-dimensional basis for shape and optimize over coefficients
e satisfy optimality condition for subset of variations
o link with topological derivative (Kalise)



Numerical result with linear beam

Actuator
o
)

o 0.2 0.4 0.6 0.8 1

T

Figure: LQ-optimal actuator. Initial condition w(x, 0) = sin(3mx),
v(x,0) = 0, volume constraint of 40% of domain (Kalise)
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(c) Optimal controller

Figure: Closed-loop performance of the optimal actuator against optimal
1-piece actuator ws = [0.2,0.6] with same volume.
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Another problem with non-parabolic equation

Actnator
o
)

o
IS

e
)

T

Figure: N = 40. With only viscous damping, the optimal actuator splits into
multiple components as the number of modes increase.
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Summary

actuator location/choice is part of controller design
optimal actuator/controller design approach established
explicit optimality equations

numerical algorithm for linear systems exists

no convergence theory for nonlinear PDEs

shape design numerics not straightforward

e 6 6 6 o6 o o

computation for non-parabolic PDEs open problem
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