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Optimization-based state estimation—Introduction

System model

x+ = f (x ,w)

y = h(x) + v

State x ∈ Rn

Output y ∈ Rp

Process noise w ∈ Rg

Output noise v ∈ Rp
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Full information estimation—optimal control problem

Solve a nonlinear program with objective function Vk(·) that, e.g.,
serves as a surrogate for the likelihood function

min
χ(0),ω

Vk(χ(0),ω; x0, y) := |χ(0)− x0|2P−1
0

+
k−1∑

j=0

|ω(j)|2Q−1 + |ν(j)|2R−1

subject to: χ+ = f (χ, ω) y = h(χ) + ν

For each time k ∈ I≥0, a sequence of state estimates
(x̂(0|k), x̂(1|k), . . . , x̂(k |k)), state disturbance estimates
(ŵ(0|k), . . . , ŵ(k − 1|k)), and measurement disturbance estimates
(v̂(0|k), . . . , v̂(k − 1|k)) are generated, with optimal cost
V 0
k (x0, y)
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Robust stability of estimation—the steady-state Kalman
filter—what do we know

Linear system.

x+ = Ax + Gw

y = Cx + v

If (A,C ) is detectable, (A,G ) is
stabilizable, P0,Q,R > 0, then
steady-state KF error satisfies k

x(k)

x̂(k|k)

|xk − x̂k | ≤ c |x0 − x0|λk +
c |G |
1− λ ‖w‖0:k−1 +

c |L|
1− λ ‖v‖0:k−1

using the sup norm over the sequence, ‖w‖0:k−1 := maxj∈0:k−1 |w(j)|
The goal of this talk is to extend this robust exponential stability
result to the nonlinear case
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Assumption: Regularity

Assumption 1 (Continuity)

The functions f (·) and h(·) are continuous.

Assumption 2 (Positive definite costs)

The matrices Q, R, and P0 are positive definite.

Under these assumptions, the FIE problem has a solution for all
k ∈ I≥0.
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Assumption: Detectability

Definition 3 (Exponential incremental input/output-to-state stability)

A system is exponentially incrementally input/output-to-state stable (exp
i-IOSS) if there exist λ ∈ (0, 1) and cx , cw , cy > 0 such that

|x1(k)− x2(k)| ≤ cx |x1(0)− x2(0)|λk + cw ‖w1 −w2‖0:k−1
+ cy ‖y1 − y2‖0:k−1

for every x1(0), x2(0) ∈ X, w1,w2 ∈W, and k ∈ I≥0.

Definition 4 (Exponential i-IOSS Lyapunov function)

A function Λ : X× X→ R≥0 is an exp i-IOSS Lyapunov function if there
exist σ > 0 and c1, c2, c3, cw , cy > 0 such that

c1 |x1 − x2|σ ≤ Λ(x1, x2) ≤ c2 |x1 − x2|σ

Λ(x+1 , x
+
2 ) ≤ Λ(x1, x2)− c3 |x1 − x2|σ + cw |w1 − w2|σ + cy |y1 − y2|σ
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Assumption: Exponential Detectability

Theorem 5

A system is exp i-IOSS if and only if it admits an exp i-IOSS Lyapunov
function.

Assumption 6 (Detectability)

The system is exp i-IOSS, and thus admits an exp i-IOSS Lyapunov
function of the form

c1 |x1 − x2|2 ≤ Λ(x1, x2) ≤ c2 |x1 − x2|2

Λ(x+1 , x
+
2 ) ≤ Λ(x1, x2)− c3 |x1 − x2|2 + |w1 − w2|2Q−1 + |y1 − y2|2R−1

in which Q and R come from the stage cost.
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Assumption: Incremental Stabilizability

Assumption 7 (Stabilizability)

The system x+ = f (x ,w) is incrementally
exponentially stabilizable if there exists c > 0
such that for every initial state x ∈ X, every
reference state xr ∈ X, and reference input
sequence wr , there exists an input sequence w
such that

∞∑

k=0

|w(k)− wr (k)|2Q−1 + |y(k)− yr (k)|2R−1

≤ c |x − xr |2

in which x+ = f (x ,w), y = h(x),
x+r = f (xr ,wr ), and yr = h(xr ).

x

x
xr

k

w

w
wr
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Comparison of assumptions to past work

The sort of system regularity assumptions are standard in
optimization-based state estimation literature

i-IOSS is a common nonlinear detectability assumption

The introduction of the i-IOSS Lyapunov function as an analysis tool
for FIE is a novel contribution

Stabilizability has been largely absent from prior work on nonlinear
FIE and MHE, but the use of an additive state disturbance,
x+ = f (x) + w , can be viewed as a tacit, unnecessarily strong
assumption of controllability
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Nominal Stability

Definition 8 (Exponentially Stable Estimator)

A state estimator is exponentially stable if there exists λ ∈ (0, 1) and
C > 0 such that its estimates x̂(k) satisfy

|x̂(k)− x(k)| ≤ C |x0 − x(0)|λk

for all k , in which x0 is the prior information on the initial state.

To present the new analysis, we first consider the nominal stability of
FIE, i.e., when w(k) = v(k) = 0 for all k ∈ I≥0, but x0 6= x(0)

Analysis of this type first appeared in Allan and Rawlings (2019)
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Infinite-horizon problem

The choice χ(0) = x(0), ω(j) = 0, and ν(j) = 0 is feasible for the FIE
problem at time k, and as a result V 0

k ≤ |x0 − x(0)|2
P−1
0

for all k (the

dependence of V 0
k (·) on x0 and y has been suppressed for brevity)

Because the sequence (V 0
1 ,V

0
2 , . . . ) is nondecreasing and bounded

above, it converges to some V 0
∞ ≤ |x0 − x(0)|2

P−1
0

It can be shown (Keerthi and Gilbert, 1985) that there exists some
sequences x̂(∞), ŵ(∞), and v̂(∞) such that

V∞(x̂(∞), ŵ(∞), v̂(∞)) = V 0
∞
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Turning the problem on its head

In standard regulation, we have a sequence of optimal costs that are
nonincreasing and bounded below

In FIE, we instead have a nondecreasing sequence bounded above

If we define
Z (k) := V 0

∞ − V 0
k

then we have a sequence nonincreasing and convergent to zero

By the principle of optimality,

V 0
k ≤ V 0

k+1 − |ŵ(k|k + 1)|2Q−1 − |v̂(k |k + 1)|2R−1

so we have

Z (k + 1)−Z (k) = V 0
k −V 0

k+1 ≤ − |ŵ(k|k + 1)|2Q−1 −|v̂(k|k + 1)|2R−1

as a descent condition

As a result, we know that ŵ(k|k + 1) and v̂(k |k + 1) converge to zero
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Inadequacy of descent condition

k k + 1k + 2Time

S
en

so
rs

(y
)

There are two problems using this descent condition
1 No rate of convergence is given for ŵ(k|k + 1) and v̂(k|k + 1)
2 x̂(k + 1) 6= f (x̂(k), ŵ(k|k + 1))

For every new measurement, the entire state trajectory must be
reconstructed

In order to apply detectability condition, a trajectory must satisfy the
system evolution equation x+ = f (x ,w)
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Second time index

Alternative: compute a cost decrease condition within a trajectory
x̂(k)

Introduce partial sum of trajectory

V 0(j |k) := |x̂(0|k)− x0|2P−1
0

+

j−1∑

i=0

|ŵ(i |k)|2Q−1 + |v̂(i |k)|2R−1

Similarly, add the second time index j to Z (·)

Z (j |k) := V 0
∞ − V 0(j |k)

Obtaining a descent condition in j is easy

Z (j+1|k)−Z (j |k) = V 0(j |k)−V 0(j+1|k) = − |ŵ(j |k)|2Q−1−|v̂(j |k)|2R−1

(Note: an equality, not even an inequality)
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Tail reoptimization
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Obtain upper bound for V 0
∞ by reoptimizing trajectory from x̂(j |k)

V 0
∞ ≤ V 0(j |k) + min

ω,ν

∞∑

i=j

|ω(i)|2Q−1 + |ν(i)|2R−1

subject to χ(i + 1) =f (χ(i), ω(i))

y(i) =h(χ(i)) + ν(i)

χ(j) =x̂(j |k)
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Optimal control problem

Let’s examine the optimization problem

min
ω,ν

∞∑

i=j

|ω(i)|2Q−1 + |ν(i)|2R−1

subject to χ(i + 1) =f (χ(i), ω(i))

χ(j) = x̂(j |k) y(i) =h(χ(i)) + ν(i)

Because χ(j) is not a degree of freedom, it is an infinite-horizon
tracking problem with initial state x̂(j |k)

The stabilizability assumption gives an upper bound

min
ω,ν

∞∑

i=j

|ω(i)|2Q−1 + |ν(i)|2R−1 ≤ c |x̂(j |k)− x(j)|2
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Upper and lower bounds

We thus have that

Z (j |k) = V 0
∞ − V 0(j |k) ≤ c |x̂(j |k)− x(j)|2

Furthermore, because V 0(j |k) ≤ V 0(k |k) ≤ V 0
∞, we have that

Z (j |k) ≥ 0

Z (·) has a semidefinite lower bound and semidefinite cost decrease

Z (j+1|k)−Z (j |k) = V 0(j |k)−V 0(j+1|k) = − |ŵ(j |k)|2Q−1−|v̂(j |k)|2R−1
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Applying detectability assumption

The i-IOSS Lyapunov function allows us to turn these semidefinite
bounds to fully definite bounds (see Grimm et al. (2005) for a similar
idea in regulation). Let

Q(j |k) := Λ(x̂(j |k), x(j)) + Z (j |k)

We immediately have

c1 |x̂(j |k)− x(j)|2 ≤ Q(j |k) ≤ c2 |x̂(j |k)− x(j)|2

in which c2 := c2 + c
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Strict descent

Finally, the supply rate in the dissipation inequality

Λ(x̂(j + 1|k), x(j + 1)) ≤Λ(x̂(j |k), x(j))− c3 |x̂(j |k)− x(j)|2

+ |ŵ(j |k)|2Q−1 + |v̂(j |k)|2R−1

cancels with the descent condition for Z (·)

Z (j + 1|k) ≤ Z (j |k)− |ŵ(j |k)|2Q−1 − |v̂(j |k)|2R−1

to obtain
Q(j + 1|k) ≤ Q(j |k)− c3 |x̂(j |k)− x(j)|2

Now Q(·) looks like a full Lyapunov function
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Standard Lyapunov argument

By combining upper bound on Q(·) and descent condition, we obtain

Q(j + 1|k) ≤ Q(j |k)− (c3/c2)Q(j |k)

Let σ := (1− c3/c2) ∈ (0, 1).

Q(j + 1|k) ≤ σ(Q(j |k))

Iterate to obtain
Q(k |k) ≤ σkQ(0|k)

Thus, by applying the lower and upper bounds, we have that

|x̂(k |k)− x(k)| ≤
√

c2/c1 |x̂(0|k)− x(0)|σk
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Uniform upper bound for |x̂(0|k)− x(0)|
Unfortunately x̂(0|k) is recalculated at every time k
So need an upper bound for |x̂(0|k)− x(0)|
Let λ0 andλ0 be the largest and smallest eigenvalues of P0,
respectively. For any vector a

(1/λ0) |a|2 ≤ |a|2
P−1
0
≤ (1/λ0) |a|2

Because χ(0) = x(0), ω = ν = 0 is feasible

1

λ0
|x̂(0|k)− x0|2 ≤ |x̂(0|k)− x0|2P−1

0
≤ V 0

k ≤ V 0
∞ ≤

1

λ0
|x0 − x(0)|2

Apply the triangle inequality

|x̂(0|k)− x(0)| ≤ |x̂(0|k)− x0|+ |x0 − x(0)|
To obtain

|x̂(k |k)− x(k)| ≤
√

c2/c1
(

1 +
√
κ(P0)

)
|x0 − x(0)|σk

and FIE is exponentially stable.
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Q-function summary

Definition 9

A function Q(j |k ; x0, y) is an exponential Q-function if there exist
C0,C1,C2,C3 > 0 such that

Q(0|k) ≤ C0 |x0 − x(0)|2 k ∈ I≥0
C1 |x̂(j |k)− x(j)|2 ≤ Q(j |k) ≤ C2 |x̂(j |k)− x(j)|2 j ≤k ∈ I≥0

Q(j + 1|k) ≤ Q(j |k)− C3 |x̂(j |k)− x(j)|2 j ≤k − 1 ∈ I≥0

Theorem 10

If a state estimation scheme admits an exponential Q-function, then it is
exponentially stable.
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From stability to robustness

k k + 1k + 2Time
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The main difference between regulation and estimation is that the
entire state trajectory is reestimated at every time

This difference matters even more when disturbances are
involved—future disturbances can throw off smoothed estimates of
past states
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Infinite-horizon cost—what now?

Time (j)

S
en

so
rs

(y
)

j = k

With persistent disturbances, there is no bounded infinite horizon cost

Instead, base a sequence of infinite horizon costs V 0
∞(k) on a

sequence of outputs ỹ(k) in which disturbances end at time k
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Upper bound with disturbances

In addition to accommodating the estimation error x̂(j |k)− x(j), we
must also accommodate upcoming disturbances

Leads to upper bounds

Q(0|k) ≤ C0,x |x(0)− x0|2 + C0,d

k−1∑

i=0

|w(i)|2Q−1 + |v(i)|2R−1

for initial cost and

Q(j |k) ≤ C2,x |x̂(j |k)− x(j)|2 + C2,d

k−1∑

i=j

|w(i)|2Q−1 + |v(i)|2R−1

for subsequent costs
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Cost decrease becomes dissipation

Because we now have disturbances, we no longer have a simple cost
decrease, but a dissipation inequality with a supply rate

Q(j +1|k) ≤ Q(j |k)−C3,x |x̂(j |k)− x(j)|2+C3,w |w(j)|2+C3,v |v(j)|2

Definition 11

A function Q(j |k ; x0, y) is a robust exponential Q-function if there exist
C0,C1,C2,C3 > 0 such that

Q(0|k) ≤ C0,x |x0 − x(0)|2 + C0,d

k−1∑

i=0

|w(i)|2Q−1 + |v(i)|2R−1

Q(j |k) ≥ C1 |x̂(j |k)− x(j)|2

Q(j |k) ≤ C2,x |x̂(j |k)− x(j)|2 + C2,d

k−1∑

i=j

|w(i)|2Q−1 + |v(i)|2R−1

Q(j + 1|k) ≤ Q(j |k)− C3,x |x̂(j |k)− x(j)|2 + C3,w |w(j)|2 + C3,v |v(j)|2
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Robustness result

Theorem 12

If an estimator admits a robust exponential Q function, then it is robustly
exponentially stable, i.e., there exist Cx ,Cw ,Cv > 0 and λ ∈ (0, 1) such
that

|x̂(k |k)− x(k)| ≤ Cx |x0 − x(0)|λk + Cw ‖w‖0:k−1 + Cv ‖v‖0:k−1

for all k ≥ 0.

Note that this is the same(!) result as the steady-state Kalman filter
for f (x ,w) = Ax +Gw with (A,C ) detectable and (A,G ) stabilizable.

This result does not guarantee anything about the asymptotic
behavior of the smoothed estimates x̂(j |k) for all j ≤ k

But it does cover stability of the fixed-lag smoother x̂(k − p|k) for
any fixed p ≤ k .
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Application to MHE

TT − N0

x(T )

moving horizon

full information

x(T − N)

y(T )y(T − N)

In MHE, only the N most recent measurements are used

min
χ(k−N),ω,ν

Vk := |χ(k − N)− x(k − N)|2
P−1
k−N

+
k−1∑

j=k−N
|ω(j)|2Q−1 + |ν(j)|2R−1

subject to χ+ =f (χ, ω) y = h(χ) + ν
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Previous results for MHE

MHE was shown to be robustly stable for observable systems in Rao
et al. (2003)

I Problem: bound on |x̂(k |k)− x(k)| gets worse with increasing horizon
length N

For locally exponentially detectable systems, MHE was shown to be
robustly stable in Müller (2017)

I Requires several difficult-to-interpret assumptions
I Because bound on |x̂(k|k)− x(k)| gets worse with increasing horizon

length N, a delicate balancing act is necessary when choosing estimator
design parameters

Special case of MHE was shown to be robustly stable for
exponentially detectable systems in Knüfer and Müller (2018)

I This result depends on both exponentially discounting past
measurements and using an `1 cost function

I Also requires additive w
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Results for MHE

Theorem 13

If MHE is performed on a system satisfying our assumptions with a
filtering prior and constant weighting Pk−N = P, there exists a horizon N∗

such that, if N ≥ N∗, MHE is robustly stable.

In short—for exponentially detectable systems, MHE works so long as
the horizon is long enough

Critically, the bound on |x̂(k |k)− x(k)| gets better with increasing
horizon length N

Areas of further research:
I Smart ways of updating Pk−N to shorten the horizon and reduce online

computation
I Extension to asymptotically detectable MHE and more general stage

cost
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