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Full information estimation—optimal control problem

@ Solve a nonlinear program with objective function V() that, e.g.,

serves as a surrogate for the likelihood function

k—1

min Vi (x(0).wiX0,y) = [x(0) — Xolp1 + D [w(i)lg-r + vz

0
x(0),w o

subject to: xT = f(x,w) y=h(x)+v

@ For each time k € [, a sequence of state estimates
(%(0]k),X(1]k), ..., %(k|k)), state disturbance estimates

(w(0|k),...,w(k — 1|k)), and measurement disturbance estimates
(0(0|k), ..., V(k — 1|k)) are generated, with optimal cost
Vo (%o, y)
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Optimization-based state estimation—Introduction
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xT = f(x,w) é v é v
y=h(x)+v | |mmmmmmmmmmmmmmmmmmmmmmmmmmmmooed
1
o R
State x € R” \/(1,1.1[1) .:L-3
Output y e RP 2| Fo,wo) _/
Process noise w € R& x. f(x2,w))
o 2
Output noise v € RP Y
To
k
Robustness of nonlinear state estimation 2/31

Robust stability of estimation—the steady-state Kalman
filter—what do we know

@ Linear system.

xT = Ax + Gw
y=Cx+v

e If (A, C) is detectable, (A, G) is
stabilizable, Py, @, R > 0, then
steady-state KF error satisfies L

c

- — \k, clG] L]
Xk — Ric| < ¢ [x0 — Xo| A" + T IWllg—1 + 77— X IVllo:k—1

using the sup norm over the sequence, [|w||.,_; := maXjeo:k—1 |W())|

@ The goal of this talk is to extend this robust exponential stability
result to the nonlinear case
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Assumption: Regularity

Assumption 1 (Continuity)

The functions f(-) and h(-) are continuous.

Assumption 2 (Positive definite costs)

The matrices Q, R, and Py are positive definite.

@ Under these assumptions, the FIE problem has a solution for all
k € ]120.
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Assumption: Exponential Detectability

Theorem 5

A system is exp i-lOSS if and only if it admits an exp i-IOSS Lyapunov
function.

Assumption 6 (Detectability)

The system is exp i-10SS, and thus admits an exp i-IOSS Lyapunov
function of the form

clxg — X2|2 < A(x1,%) < o lx — X2|2

AN, x3) < Nxa, xe) — c3 x1 — ol + [wi — wol 51 + |y1 — vz

in which @ and R come from the stage cost.
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Assumption: Detectability

Definition 3 (Exponential incremental input/output-to-state stability)

A system is exponentially incrementally input/output-to-state stable (exp
i-lOSS) if there exist A € (0,1) and ¢, cw, ¢, > 0 such that

i (k) = xa(K)| < e [x1(0) — x2(0)| X + e [lwa — wallg,y_s

+ ¢ llyr — ¥2llok—1

for every x1(0),x2(0) € X, wi,wp € W, and k € I[>g.

Definition 4 (Exponential i-lOSS Lyapunov function)

A function A : X x X — R is an exp i-lOSS Lyapunov function if there
exist o > 0 and c1, &, ¢3, ¢y, ¢, > 0 such that

calx1 — x|” < A(x,x) < o |xi — xo|”

/\(x1+7x2+) < A(x1,x0) — a3 |x1 — x2|” + cw w1 — wo|” 4+ ¢ [y1 — yo|”
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Assumption: Incremental Stabilizability

Assumption 7 (Stabilizability)

The system x* = f(x, w) is incrementally
exponentially stabilizable if there exists € > 0
such that for every initial state x € X, every
reference state x, € X, and reference input
sequence W,, there exists an input sequence w
such that

— 2
< Tlx — x|
in which x™ = f(x, w), y = h(x),
x;t = f(xr, w,), and y, = h(x,).
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Comparison of assumptions to past work Nominal Stability

@ The sort of system regularity assumptions are standard in Definition 8 (Exponentially Stable Estimator)

optimization-based state estimation literature A state estimator is exponentially stable if there exists A € (0,1) and

@ i-lOSS is a common nonlinear detectability assumption C > 0 such that its estimates X(k) satisfy

@ The intfoduction of the. i—IQSS Lyapunov function as an analysis tool 1%(k) — x(k)| < C|xo — x(0)| A¥
for FIE is a novel contribution
@ Stabilizability has been largely absent from prior work on nonlinear for all k, in which X is the prior information on the initial state.
FIE and MHE, but the use of an additive state disturbance,
xt = f(x) + w, can be viewed as a tacit, unnecessarily strong @ To present the new analysis, we first consider the nominal stability of
assumption of controllability FIE, i.e., when w(k) = v(k) = 0 for all k € I, but Xg # x(0)

@ Analysis of this type first appeared in Allan and Rawlings (2019)
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Infinite-horizon problem Turning the problem on its head

@ In standard regulation, we have a sequence of optimal costs that are
nonincreasing and bounded below

e The choice x(0) = x(0), w(j) = 0, and v(j) = 0 is feasible for the FIE @ In FIE, we instead have a nondecreasing sequence bounded above
problem at time k, and as a result V? < |Xo — X(O)ﬁrl for all k (the o If we define
dependence of V() on Xo and y has been suppressecoi for brevity) Z(k) = Vg — V¥

@ Because the sequence (V, V2, ...) is nondecreasing and bounded then we have a sequence nonincreasing and convergent to zero

. - 2 . L
above, it converges to some V2 < |xo — x(0)|P0-1 @ By the principle of optimality,

@ It can be shown (Keerthi and Gilbert, 1985) that there exists some

0 0y 2 e 2
sequences X(o0), w(oo), and V(oo) such that Vi < Vier = [w(klk + Dfg-s = [0(klk + 1)l

Vae(R(50). (o), 9(0)) = V2 o we have

Z(k+1)=Z(k) = VP = V0,1 < —|W(k|k +1)|-1 — [0(k|k + 1)| g
as a descent condition

@ As a result, we know that w(k|k +1) and V(k|k + 1) converge to zero
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Inadequacy of descent condition Second time index

. @ Alternative: compute a cost decrease condition within a trajectory

~ A, (k)

~ °

2 \/./‘\‘\\/‘\/.—‘ ° @ Introduce partial sum of trajectory

5 .

"] ° ° ° j—1

° 0y - . a — 2 AL 2 AL 2
VO(ilk) = |%(0lk) = Xolpa + > IW(ilk)Ig-r + [9(ilK) |z
i=0
Time kk+R+ @ Similarly, add the second time index j to Z(-)

@ There are two problems using this descent condition ] 0 0
is gi ; 0 Z(jlk) = Voo — VE(jlk)

© No rate of convergence is given for w(k|k 4+ 1) and V(k|k + 1) 0
Q R(k +1) # f(X(k), w(klk + 1))

@ For every new measurement, the entire state trajectory must be

@ Obtaining a descent condition in j is easy

reconstructed 0 0 ) )
@ In order to apply detectability condition, a trajectory must satisfy the Z(j+1lk)=2Z(jlk) = V=(jlk)=V"(+1lk) = — |W(J|k)‘Q*1_’V(J|k)|R*1
. . + _
system evolution equation x™ = f(x, w) (Note: an equality, not even an inequality)
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Tail reoptimization Optimal control problem
o @ Let's examine the optimization problem

Sla AN : .

- ° . . 2 - 2

: : min > ()G + ()

(2] ° ° ° 1=y

subject to  x(i 4+ 1) =f(x(/),w(i))
x_ w x() = &Ulk)  y(i) =h(x(i)) + v (i)
Time J k

@ Because x(j) is not a degree of freedom, it is an infinite-horizon

@ Obtain upper bound for V2 by reoptimizing trajectory from X(j|k
PP oo DY TEOP g trel Y Ulk) tracking problem with initial state X(j|k)

Vgo < Vo(j|k) 4 T'B Z |w(i)|%?_1 T \V(i)ﬁ?_l @ The stabilizability assumption gives an upper bound
i=j 00
subject to (i + 1) =F(x(i), (7)) min » _ |w(i)[g-1 + 1()lz-1 < €I%Glk) = x()I®
i=j

y(i) =h(x(1) + v (/)
x() =%(lk)
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Upper and lower bounds Applying detectability assumption

@ We thus have that @ The i-10SS Lyapunov function allows us to turn these semidefinite

bounds to fully definite bounds (see Grimm et al. (2005) for a similar

Z(jlk) = Va = VOGlk) < € [*GIK) = x()P° idea in regulation). Let

0(; 0 0
e Furthermore, because V°(jlk) < V®(k|k) < V., we have that QUIK) = ARGIK), x(7) + Z(1K)

Z(jlk) = 0 o We immediately have

@ Z(-) has a semidefinite lower bound and semidefinite cost decrease a [RGilK) — x(j)|2 < QjlK) < & |R(iIK) — x(j)\z

Z(+11k)~Z(jlK) = VO(IK) = VOG+11k) = — [W(ilk) B~ 001K 2o i wahich € i o 1€
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Strict descent Standard Lyapunov argument

o Finally, the supply rate in the dissipation inequality @ By combining upper bound on Q(-) and descent condition, we obtain

of: . ap . oy . [+ 11k) < Q(j|k) — c | k
NG + 1K), x(G + 1) SNRGIK)x0)) = & 1%G1K) = x()P QUK = QUI ~ (/@) QUlK)
+ Wi K) -1 + |00 k)R- o Let 0 = (1—c3/c2) € (0,1).
cancels with the descent condition for Z(+) QU + 1lk) < a(Q(jlk))
Z(j+11k) < Z(jlk) — [@(i|Kk)5-1 — [0(i]K) |2 e lterate to obtain
. Q(k|k) < " Q(0]k)
to obtain .
QU + 1[k) < QUIK) — 3 |R(i|K) — x(j)|2 @ Thus, by applying the lower and upper bounds, we have that

@ Now Q(-) looks like a full Lyapunov function %(k|k) — x(k)| < \/T2/c1 |R(0]k) — x(0)| o
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Uniform upper bound for [X(0|k) — x(0)| Q-function summary

@ Unfortunately X(0|k) is recalculated at every time k
® So need an upper bound for [£(0[k) — x(0)| o
@ Let A\g and); be the largest and smallest eigenvalues of Py, Definition 9
respectively. For any vector a A function Q(j|k;Xo,y) is an exponential Q-function if there exist
5V Co, C1, Go, G3 > 0 such that
(1/%0) |2 < [alp1 < (1/20) |af” 0>+, 52, &3 = Bsuch tha
@ Because x(0) = x(0), w = v = 0 is feasible Q(0lk) < Colx%o — x(0)[? k € I>o
0 " 2 QU + 1K) < QUik) — G5 1%(lKk) — x()? j <k —1 € Ing
@ Apply the triangle inequality
|%(0]k) — x(0)| < [X(0]k) — Xo| + |x0 — x(0)| Theorem 10
e To obtain If a state estimation scheme admits an exponential Q-function, then it is

exponentially stable.

%(k[K) = x(K)| < V/ea/er (1+ V/5(Po) ) [0 — x(0) | o*

and FIE is exponentially stable.
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From stability to robustness Infinite-horizon cost—what now?
. i
—_ 1
> I =
. : — |® ° P =k
] ° = 1
2 = ]
n L ° o} o ! ®
X 2 o
° . ° L% ° :
Time kk+A/+ E
1
@ The main difference between regulation and estimation is that the Time (j)

entire state trajectory is reestimated at every time

@ This difference matters even more when disturbances are e With persistent disturbances, there is no bounded infinite horizon cost
involved—future disturbances can throw off smoothed estimates of

e Instead, base a sequence of infinite horizon costs V2 (k) on a
past states

sequence of outputs y(k) in which disturbances end at time k
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Upper bound with disturbances

@ In addition to accommodating the estimation error X(j|k) — x(j), we
must also accommodate upcoming disturbances

@ Leads to upper bounds

k—1
Q(O[K) < Cox x(0) —Xof* + Coa Y [w(i)l g1 + V(i)
i=0

for initial cost and
k—1
QUIK) < Coe [%(j1k) = x()* + Coa D Iw(i) -1 + V(i)
i=j

for subsequent costs
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Robustness result

Theorem 12

If an estimator admits a robust exponential @ function, then it is robustly

exponentially stable, i.e., there exist Cy, Cy, C, >0 and X\ € (0,1) such
that

[R(K[k) = x(K)| < Cx [x0 = x(0)| X + Cu [|Wllg.e—1 + Co IVllox1

for all k > 0.

o Note that this is the same(!) result as the steady-state Kalman filter

for f(x,w) = Ax + Gw with (A, C) detectable and (A, G) stabilizable.

@ This result does not guarantee anything about the asymptotic
behavior of the smoothed estimates X(j|k) for all j < k

@ But it does cover stability of the fixed-lag smoother X(k — p|k) for
any fixed p < k.
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Cost decrease becomes dissipation

@ Because we now have disturbances, we no longer have a simple cost
decrease, but a dissipation inequality with a supply rate

QU +1[k) < Q(jlk) — Ca.x X(ilKk) — x() P+ Caw W(i)1>+ Ca v V()P

Definition 11

A function Q(jlk;Xo,y) is a robust exponential Q-function if there exist
Co, C1, G5, CG3 > 0 such that

k—1
Q(0]k) < Cox [¥o — x(0)* + Co.a Y _ Iw(i)G1 + V(i)
i=0
QUjlk) > Ci|%(jlk) — x()I?
k—1
QUIK) < Co (1K) = ()P + Cag D [W(i) o1 + V(i) 7
i=j
QU + 1lk) < Q(jlk) — Gax I2(ilk) — x()I* + Caw IW()I* + Cav V()
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Application to MHE

A y(T —N) ¥(T)

moving horizon

full information
|
T

|

1

%

0 T—N T

o In MHE, only the NN most recent measurements are used

k-1
min ~ Vi=|x(k— N) = x(k = N)[51 + w(j)| -1 + |v()[5-
e Ve k= ) (k- M 4 D W)+ ) e
j=k—N
subject to X =f(x,w) y =h(x)+v
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Previous results for MHE

@ MHE was shown to be robustly stable for observable systems in Rao
et al. (2003)

» Problem: bound on |X(k|k) — x(k)| gets worse with increasing horizon
length N

@ For locally exponentially detectable systems, MHE was shown to be
robustly stable in Miiller (2017)
» Requires several difficult-to-interpret assumptions
» Because bound on |%(k|k) — x(k)| gets worse with increasing horizon
length N, a delicate balancing act is necessary when choosing estimator
design parameters

@ Special case of MHE was shown to be robustly stable for
exponentially detectable systems in Kniifer and Miiller (2018)
» This result depends on both exponentially discounting past
measurements and using an {; cost function
» Also requires additive w
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Results for MHE

Theorem 13

If MHE is performed on a system satisfying our assumptions with a
filtering prior and constant weighting Px_pn = P, there exists a horizon N*
such that, if N > N*, MHE is robustly stable.

@ In short—for exponentially detectable systems, MHE works so long as
the horizon is long enough

e Critically, the bound on |%(k|k) — x(k)| gets better with increasing
horizon length N
@ Areas of further research:

» Smart ways of updating Px_p to shorten the horizon and reduce online
computation

» Extension to asymptotically detectable MHE and more general stage
cost
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