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What is Optimal Control?

• Not just LQR, LQG …

• Everything is nonlinear == conference theme

— Sample Problem:
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Why Optimal Control?

• Optimal control is the foundational science for:

— Nonlinear control

— Machine learning; deep learning.

• TOE

— Economics

— Pharmacology

— Physics

— Management science

— …

• Optimal control is also an emerging foundational science 
for:

— Nonlinear programming problems

— Traveling salesman problems and beyond NO! That’s 

NOT the conference 

theme!
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Outline: Three Part Theory + One Part Tool

1. Computational optimal control vs nonlinear programming

2. Optimal control programming

• Non-introduction introduction

3. Birkhoff methods for optimal control

• Very brief intro to some seemingly magical properties

4. MATLAB Toolbox for optimal control

• How to solve hard problems easily That’s 

the conference 

theme!



3rd MRY Workshop Brief

KEY ASSUMPTION

Necessary conditions are actually necessary!
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Optimal Control = Large Scale NLP?

• Optimal control theory has an 
“infinitely” rich amount of 
information via:

— “Convexity” of time

— Diffuse measure

— “Infinite” differentiability wrt time

Optimal Control Problem discretize “Large Scale” NLP

Krener’s High-Order 

Maximum Principle

Diff-Alg BVP discretize Generalized Eqn

NLP 

Theory?

• NLP theory can have “at most” 
countably infinite information.

— Conjecture: Impossible to close 
the information gap

— There are no “Krener-type” 
conditions in NLP theory

• Unlikely to discover one

“Theorem” of 

Impossibility

“Proof”

Necessary 

Condition
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• Big Questions:

1. Is it possible to automate Krener?

• No formulas for Krener’s higher-order variations 

— Start with automatic Pontryagin; graduate to “low-Fi” Krener

• Low-Fi Krener = Generalized Goh-Robbins condition – requires 
“automatic” high order differentiation

2. How to solve the generalized equation?

Optimal Control Programming: Big Pic Idea

Optimal Control Problem discretize “Large Scale” NLP

Automate 

Krener

Diff-Alg BVP discretize Generalized Eqn

Solve This

Not This

“User” Input

Computer code

Saaay … 

Isn’t that’s what 

I said?
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Extra, Extra: Read All About It Here!

Yes, Shameless

Advertisement
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Introduction To A Sacrilegious Idea

• What is the best way to discretize a nonlinear ODE?

• What if?

• DAE: Differential Algebraic Equation (= horror of horrors?)

Best way to discretize this?!



MRY Workshop, 2019 Ross10

A Quick Pontryagin Math for Sacrilegiousness
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Nonlinear Adjoint Equation 

Unnecessary 

equation
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“Create” A New “Flat ♪” Set of Primal-Dual 
Eqns

Discretize and 

Solve this 

Generalized Eqn

via “Arzela-

Ascoli” 

Sequencing

DAE Galore:

“Inescapable” 

DAE
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Low-Fi Auto-Krener Via Birkhoff

Outline of the idea/result:

B B♪

B

B♪

B♪

B♪N

B♪N

Birkhoff

B
ir

k
h

o
ff

Low-FiKrener/

Pontryagin ?
Cotangent 

Barrier
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Brief Intro to Birkhoff Interpolation

• Birkhoff generalizes Lagrange/Hermite:

— Example from Wang, Samson, Zhao, SISC, 36 (3); 2014
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Yet Another Birkhoff “Magic”

Birkhoff

Collocation

Lagrange 

Collocation

Condition 

Number

107

MS Thesis 

of Capt Nick 

Koeppen

First 

results by 

Samson, 

Wang & 

Zhao, 2014
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A “Turing Test” for Optimal Control Programming

B B♪

B

B♪

B♪

B♪N

B♪N

Krener/

Pontryagin

User Input

This is DIDO©: A MATLAB® Toolbox for 

Solving Optimal Control Problems

Not so shameless ad: proof of 

existence that this is do-able.
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Illustrative Problem –1 

Gong’s Challenge Problem:

Solution via 

“Low-Fi” 

Krener:



MRY Workshop, 2019 Ross18

Solution Via Birkhoff

Numerics

by Ron 

Proulx
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“Solution” via Runge-Kutta

Numerics

by Qi Gong

Converges 

in Lebesgue, 

not Sobolev

norm
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Illustrative Problem –215 

• A DAE Challenge Problem

— Betts, Campbell et al (2016, 2018)

• Not solvable via several software (e.g., SOCX)

— INDEPENDENTLY VERIFIED

“Index 3 DAE”



MRY Workshop, 2019 Ross21

“Low-Fi” Krener Conditions for the “DAE” Problem

• The DAE challenge problem is also singular

— Krener-type necessary conditions can be easily derived:

— Repeated diff … GLC,  “Goh-Robbins”  

𝒅𝒌

𝒅𝒕𝒌
𝝏𝒖𝑯 = 𝟎

Sample singular 

integral of motion

One of many reasons why 

we want convergence in 

Sobolev spaces
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Solution via DIDO w/ Independent V&V

• DIDO requires no a priori “index reduction” 

— DIDO solution agrees w/ SOCX solution generated after a laborious process of index 
reduction

Independent primal 

feasibility test: propagate 

uDIDO thru ODE

Dual feasibility tests

Proof of the possible!

Numerics by 

Mark Karpenko

uDIDO
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Do The Principles Hold For “Regular” Problems?

• Short answer is yes!

— Krener’s HMP was an “easy way” to prove flaws in some arguments

• Pontryagin’s Principle (non-singular problems)

— Hamiltonian minimization condition

• = NLP within the collection of necessary conditions

• Pointwise condition

— Discretization generates necessary conditions for a necessary condition!

• Via KKT

• Vast number of “nuances” that separate optimal control from “large 
scale NLPs”

— HMC

— States and controls must be treated differently; NLP is agnostic to this
distinction

— 𝑥𝑘+1 and 𝑥𝑘 are “near each other” via Lipschitz; in NLP they are “random”

— Scaling each 𝑥𝑘 generates “additional” dynamics that are not in the optimal 
control problem

• Scaling and balancing in optimal control problems

— Scaling 𝑢𝑘 can generate accuracy problems in optimality

— Many more!
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Take Aways

• A significant body of work beyond NLP theory/tools remains to be done

— A vast number of theoretical issues are open 

• PhD topics (& beyond) for research!

• “Turing software” based on some/many necessary conditions are 
possible

— DIDO = proof of the possible

• Presented theory and tools are actively used by NASA, DoD and some 
industrial sectors

— Certificate program at the Naval Postgraduate School (Cert # 299)

• “Hard” problems are not as hard (as advertised)

— Practical problems are mathematically rich: “singular,” “high-index DAEs,” “highly 
constrained” etc.

• Computational optimal control based on necessary conditions is 
unquestionably better than one without it

— Necessary conditions might actually be necessary!
Thank You!


