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The effectiveness of the search is given by

, y t, ω)) =
t, ω

where Φ is the standard normal cumulative distribution function, is the scan oppor-
tunity rate, is the figure of merit, and reflects the variability in the signal excess.
In the simulation we use the values = 1, = 20, = 20, = 1, and = 10. For
more information about the formulation of this model, see [ 14 15 30 31]. The
problem then becomes to minimize the functional

(7.8) exp
75

, y t, ω))dt

)]

subject to the dynamics (7.7), where is the uniform distribution on Ω. It is easily
seen that this problem can be transformed into the form (1.1).

Due to the irregular shape of the parameter space Ω, this problem would be
particularly challenging if we were to apply quadrature-based methods. However,
the proposed framework is easily implemented with sampling carried out using the
acceptance-rejection method. Using 54 nodes in the time domain and = 5000, we
obtain the searcher trajectory in Figure . We note that the figure shows only 10 of
the 5000 target trajectories.

−20 −15 −10 −5 0 5 10 15 20
−10

−5

0

5

10
t = 0 − t = 37.5

 

 

Searcher Trajectory

Target Trajectories

−20 −15 −10 −5 0 5 10 15 20
−10

−5

0

5

10
t = 37.5 − t =75

 

 

Searcher Trajectory

Target Trajectories

Fig. 8 Computed trajectory for a searcher attempting to detect an intruder in the channel for

= 5000. For reference, 10 possible target trajectories are shown. The target moves right to left

down the channel, and the searcher starts at (0 0) at time = 0. The arrows in the figure indicate

the orientation of the trajectories.

In this section we demonstrate that the numerical method proposed in this paper
can be used to control a system with stochastic parameters either with or without
pointwise control constraints. In addition, we assess the validity of the numerically
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Maximize probability of HVU survival

ET AL. 11

be solved using

a variety of available software packages (Gill et al., 2005;

& Biegler, 2006). As the problems are generally non-

of the method, how-

as Walton et al. (2014) and Chung et al. (2011) and

in the next section, demonstrate that the

as an illustration of the potential for uti-

to optimize motion plans given complex

as well as

by experimental data. However, they demon-

to construct detailed optimization problems

on specified capabilities and dynamics.

a situation which can arise in

as missile

In this scenario, the goal is to optimally protect a

in this case is a

as a base or population center. The attack-

as we might see with a guided missile

or small UAV attack. Attacker fire is directed entirely toward

no fire to spare for self-defense.

to protect the HVU at time = 0. The single-

of the attacker means that the survival of the

is not in danger, however their survival is not the

is to minimize the probability that the HVU is

10 diagrams the attrition interactions.

F I G U R E 10 of HVU-focused attack [Color figure can

be viewed at wileyonlinelibrary.com]

As automated systems, each attacker has deterministic

to intel. But we have

of the attackers are distributed in a ring around the

an average radius of 100 but with the exact ini-

of each attacker an uncertain parameter

in balls of radius 10 around

= [ . . . , has the joint

on initial attacker locations = [ . . . is

by . It is given in this scenario by the single-

0, in the multi-agent

in Equation (14). This metric means that if the

to get a single shot past defenses, the HVU

be destroyed. The expected probability of destruction at

of attacker locations is given

of the scenario is to minimize this quantity given

of the defenders in this scenario are able to

in two ways. The first

is through their firing capabilities, as specified by their

in turn decreases damages incurred by the HVU.

is through

to “herd” the attackers away from the HVU. Herd-

of kinematic predator–prey dynamics,

to avoid the defenders. Herd-

to guide attackers

of HVU

by influencing positions rather than applying force.

on in the following subsections.

be followed by a formal statement of the result-

a discussion of a

r properties

of the

is given by:

))

Walton, Lambrianides, Kaminer, Royset & Gong, “Optimal Motion Planning in

Rapid-Fire Combat Situations with Attacker Uncertainty,” Naval Research

Logistics, 2018
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Maximize probability of HVU survival
ET AL. 17

F I G U R E 15 7 defenders solution. Size of attacker icon decreases with their probability of survival [Color figure can be viewed

at wileyonlinelibrary.com]

in incorporating information

in implementation is the construction of a functional

As can be seen by Figure 12, computation

in this article are still on the order

of hours. This is too slow for most scenarios if the strat-

is simply to re-compute plans after information update.

to be to utilize these trajectories which aver-

by the parameter uncertainty as the

in a two-stage strategy. Defenders can

on this trajectory and collect several observations. These

be used to remove the parameter uncer-

to negligible

We note that there is no requirement for the attri-

of Section 2 to be attached to the parameter

of Section 3. Without uncertainty, the attrition

be used to construct a nonlinear, relatively

an order of magnitude smaller due to the lack of additional

of magnitude reduction reduces

to minutes or less. While not real-time yet,

to seconds is an achievable computational gap

to cross soon, for example by using more efficient software

in the scenarios of Figures 14

of attackers arriv-

of defenders,

to what size

of periphery to establish. While they are establishing this, the

Walton, Lambrianides, Kaminer, Royset & Gong, “Optimal Motion Planning in

Rapid-Fire Combat Situations with Attacker Uncertainty,” Naval Research

Logistics, 2018
4 / 29



Setting for presentation

(X , d) metric space
f ν , f : X → [−∞,∞], usually lower semicontinuous (lsc)

Actual problem: minimize
x∈X

f (x)

Approximating problem: minimize
x∈X

f ν(x)

Constraints often handled abstractly:
Setting objective function to ∞ if x infeasible (wlog)
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Setting for presentation

(X , d) metric space
f ν , f : X → [−∞,∞], usually lower semicontinuous (lsc)

Actual problem: minimize
x∈X

f (x)

Approximating problem: minimize
x∈X

f ν(x)

Constraints often handled abstractly:
Setting objective function to ∞ if x infeasible (wlog)

What constitutes a consistent approximation?

Level 0: convergence of minimizers, minima

Level 1: convergence of first-order stationary points
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Would pointwise convergence suffice?

1

X

2

= =

Pointwise convergence not sufficient for convergence of minimizers
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What about uniform convergence?

f

( )
( )

argmin { | ( ) }
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What about uniform convergence?

f

( )
( )

( )
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Uniform “approximation,” but large error in argmin

f

( )

argmin { | ( ) 0 }

( )
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Passing to epigraphs of the effective functions

epiepi

=
if ( ) 0

otherwise
=

if ( ) 0

otherwise
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Epi-convergence

epi

X

epi

eeeeeeeeeeeeeepppppppppppppppppppppppiiiiiiiiiii

eeeeeeeeeeeepppppppppppppppppppppppppiiiiiiiiiiiiii

f ν epi-converges to f ⇐⇒ epi f ν set-converges to epi f

Main consequence:

f ν epi-converges to f and xν ∈ argmin f ν → x̄ =⇒ x̄ ∈ argmin f
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Approximation of constraints

1

X

1

=
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Approximation of constraints

1

X

1

=

If C ν set-converges to C and f0 continuous, then

f ν(x) =

{

f0(x) if x ∈ C ν

∞ otherwise
epi-conv to f (x) =

{

f0(x) if x ∈ C

∞ otherwise
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Approximation of constraints

1

X

1

=

If C ν set-converges to C and f0 continuous, then

f ν(x) =

{

f0(x) if x ∈ C ν

∞ otherwise
epi-conv to f (x) =

{

f0(x) if x ∈ C

∞ otherwise

Example: C 1,C 2, . . . dense in C = X =⇒ C ν set-converges to C
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Recall failure under uniform convergence

What can be done in this case?

f

( )
( )

( )
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Constraint softening

minimize
x∈X

f0(x) subject to gi (x) ≤ 0, i = 1, . . . , q

sup
x∈X

|f ν0 (x)− f0(x)| ≤ αν and sup
x∈X

max
i=1,...,q

|gν

i (x) − gi (x)| ≤ αν
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Constraint softening

minimize
x∈X

f0(x) subject to gi (x) ≤ 0, i = 1, . . . , q

sup
x∈X

|f ν0 (x)− f0(x)| ≤ αν and sup
x∈X

max
i=1,...,q

|gν

i (x) − gi (x)| ≤ αν

minimize
x∈X ,y∈Rq

f ν0 (x)+θν
q

∑

i=1

yi subject to gν

i (x) ≤ yi , 0 ≤ yi , i = 1, . . . , q
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Constraint softening

minimize
x∈X

f0(x) subject to gi (x) ≤ 0, i = 1, . . . , q

sup
x∈X

|f ν0 (x)− f0(x)| ≤ αν and sup
x∈X

max
i=1,...,q

|gν

i (x) − gi (x)| ≤ αν

minimize
x∈X ,y∈Rq

f ν0 (x)+θν
q

∑

i=1

yi subject to gν

i (x) ≤ yi , 0 ≤ yi , i = 1, . . . , q

f0 continuous
gi lsc, i = 1, . . . , q
θν → ∞, αν → 0, θναν → 0

Then, approximation epi-converges to actual
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Epi-convergence under sampling and forward Euler
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The effectiveness of the search is given by

, y t, ω)) =
t, ω

where Φ is the standard normal cumulative distribution function, is the scan oppor-
tunity rate, is the figure of merit, and reflects the variability in the signal excess.
In the simulation we use the values = 1, = 20, = 20, = 1, and = 10. For
more information about the formulation of this model, see [ 14 15 30 31]. The
problem then becomes to minimize the functional

(7.8) exp
75

, y t, ω))dt

)]

subject to the dynamics (7.7), where is the uniform distribution on Ω. It is easily
seen that this problem can be transformed into the form (1.1).

Due to the irregular shape of the parameter space Ω, this problem would be
particularly challenging if we were to apply quadrature-based methods. However,
the proposed framework is easily implemented with sampling carried out using the
acceptance-rejection method. Using 54 nodes in the time domain and = 5000, we
obtain the searcher trajectory in Figure . We note that the figure shows only 10 of
the 5000 target trajectories.
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Fig. 8 Computed trajectory for a searcher attempting to detect an intruder in the channel for

= 5000. For reference, 10 possible target trajectories are shown. The target moves right to left

down the channel, and the searcher starts at (0 0) at time = 0. The arrows in the figure indicate

the orientation of the trajectories.

In this section we demonstrate that the numerical method proposed in this paper
can be used to control a system with stochastic parameters either with or without
pointwise control constraints. In addition, we assess the validity of the numerically
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minimize J(ξ, u) =E
[

F (x(1, ω), ω)
]

subject to ẋ(t, ω) =f (x(t), u(t), ω), x(0, ω) = ξ + x0(ω), ∀ω

Sampling and Forward Euler result in epi-convergence

Phelps, Royset & Gong, “Optimal Control of Uncertain Systems using Sample

Average Approximations,” SIAM J. Control and Optimization, 2016
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Truncated Hausdorff distance between sets

For C ,D ⊂ X (metric space)

C

D

exs

B ( )

dl̂ρ(C ,D) = max
{

exs
(

C ∩ BX (ρ);D
)

, exs
(

D ∩ BX (ρ);C
)

}
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Consequence for minima and near-minimizers

For f , g : X → [−∞,∞],

| inf f − inf g | ≤ dl̂ρ(epi f , epi g)

exs
(

ε- argmin g ∩ BX (ρ); δ- argmin f
)

≤ dl̂ρ(epi f , epi g)

if δ > ε+ 2dl̂ρ(epi f , epi g)

(product metric is used on X ×R and ρ large enough)

Replace > by ≥ when f and g lsc and X has compact balls

17 / 29



Bounds are sharp

exs
(

ε- argmin g ∩ BX (ρ); δ- argmin f
)

≤ dl̂ρ(epi f , epi g)

if δ ≥ ε+ 2dl̂ρ(epi f , epi g)

epi

1

1

1 2

epi 
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What about minimizers?
When f (x)− inf f ≥ g(dist(x , argmin f )) ∀x ∈ X for incr g

exs
(

argmin f ν ∩ BX (ρ), argmin f
)

≤dl̂ρ(epi f , epi f
ν)

+ g−1
(

2dl̂ρ(epi f , epi f
ν)
)

t

( ) inf

( )
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Sharpness of bound on minimizers
dl̂ρ(epi f , epi f

ν) = η = 1/2; f has growth g(t) = t2

+ 2
=

exs
(

argmin f ν ∩ BX (ρ), argmin f
)

≤ η + g−1
(

2η
)
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Computing distances for compositions

For κ-Lipschitz f : Y → R and F ,G : X → Y ,

dl̂ρ
(

epi(f ◦ F ), epi(f ◦ G )
)

≤ max{1, κ}dl̂ ρ̄(gph F , gphG )

provided that ρ̄ large enough

21 / 29



Distances for sums

fi , gi : X → [−∞,∞], i = 1, 2,

f1, g1 are Lipschitz continuous with common modulus κ

dl̂ρ
(

epi(f1 + f2), epi(g1 + g2)
)

≤ supAρ
|f1 − g1|

+
(

1 + κ
)

dl̂ ρ̄(epi f2, epi g2)

provided that epi(f1 + f2) and epi(g1 + g2) are nonempty,

Aρ = {f1 + f2 ≤ ρ} ∪ {g1 + g2 ≤ ρ} ∩ BX (ρ),

ρ̄ ≥ ρ+max{0,− infBX (ρ) f1,− infBX (ρ) g1}

22 / 29



Convergence of stationary points

First-order conditions for minimizex∈X f (x):

Oresme Rule: df (x ;w) ≥ 0 ∀w ∈ X

Fermat Rule: 0 ∈ ∂f (x)
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More generally:

For set-valued mapping S : X →→ Y and point y⋆ ∈ Y

Generalized equation y⋆ ∈ S(x) has solution set S−1(y⋆)
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Convergence of stationary points

First-order conditions for minimizex∈X f (x):

Oresme Rule: df (x ;w) ≥ 0 ∀w ∈ X

Fermat Rule: 0 ∈ ∂f (x)

More generally:

For set-valued mapping S : X →→ Y and point y⋆ ∈ Y

Generalized equation y⋆ ∈ S(x) has solution set S−1(y⋆)

If gphSν set-conv to gph S , yν → y⋆, and xν ∈ (Sν)−1(yν) → x⋆,
then x⋆ ∈ S−1(y⋆)

23 / 29



Convergence for Oresme Rule
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The effectiveness of the search is given by

, y t, ω)) =
t, ω

where Φ is the standard normal cumulative distribution function, is the scan oppor-
tunity rate, is the figure of merit, and reflects the variability in the signal excess.
In the simulation we use the values = 1, = 20, = 20, = 1, and = 10. For
more information about the formulation of this model, see [ 14 15 30 31]. The
problem then becomes to minimize the functional

(7.8) exp
75

, y t, ω))dt

)]

subject to the dynamics (7.7), where is the uniform distribution on Ω. It is easily
seen that this problem can be transformed into the form (1.1).

Due to the irregular shape of the parameter space Ω, this problem would be
particularly challenging if we were to apply quadrature-based methods. However,
the proposed framework is easily implemented with sampling carried out using the
acceptance-rejection method. Using 54 nodes in the time domain and = 5000, we
obtain the searcher trajectory in Figure . We note that the figure shows only 10 of
the 5000 target trajectories.
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Fig. 8 Computed trajectory for a searcher attempting to detect an intruder in the channel for

= 5000. For reference, 10 possible target trajectories are shown. The target moves right to left

down the channel, and the searcher starts at (0 0) at time = 0. The arrows in the figure indicate

the orientation of the trajectories.

In this section we demonstrate that the numerical method proposed in this paper
can be used to control a system with stochastic parameters either with or without
pointwise control constraints. In addition, we assess the validity of the numerically
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minimize J(ξ, u) =E
[

F (x(1, ω), ω)
]

subject to ẋ(t, ω) =f (x(t), u(t), ω), x(0, ω) = ξ + x0(ω), ∀ω

Sampling: Convergence of Oresme stationary points

Phelps, Royset & Gong, “Optimal Control of Uncertain Systems using Sample

Average Approximations,” SIAM J. Control and Optimization, 2016
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Solutions of generalized equations

For ε ≥ 0, the set of ε-solutions is defined as

S−1
(

BY (y
⋆, ε)

)

=
⋃

y∈BY (y⋆,ε)

S−1(y)
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Solutions of generalized equations

For ε ≥ 0, the set of ε-solutions is defined as

S−1
(

BY (y
⋆, ε)

)

=
⋃

y∈BY (y⋆,ε)

S−1(y)

Example: Optimality conditions for minimizing f over C

0 ∈ ∂f (x) + NC (x)

With S = ∂f + NC and y⋆ = 0, the set of ε-solutions becomes

S−1
(

BRn(ε)
)

=
{

x ∈ R
n | 0 ∈ ∂f (x) + NC (x) + BRn(ε)

}

25 / 29



Solution estimates for generalized equations

For metric spaces X and Y , suppose that S ,T : X →→ Y have
nonempty graphs, 0 ≤ ε ≤ ρ < ∞, and y⋆ ∈ BY (ρ− ε)

Then,

exs
(

S−1
(

BY (y
⋆, ε)

)

∩BX (ρ); T
−1

(

BY (y
⋆, δ)

)

)

≤ dl̂ρ(gph S , gphT )

provided that δ > ε+ dl̂ρ(gph S , gphT )
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Solution estimates for generalized equations

For metric spaces X and Y , suppose that S ,T : X →→ Y have
nonempty graphs, 0 ≤ ε ≤ ρ < ∞, and y⋆ ∈ BY (ρ− ε)

Then,

exs
(

S−1
(

BY (y
⋆, ε)

)

∩BX (ρ); T
−1

(

BY (y
⋆, δ)

)

)

≤ dl̂ρ(gph S , gphT )

provided that δ > ε+ dl̂ρ(gph S , gphT )

If X and Y have compact balls and gphT is closed, then the result
also holds for δ = ε+ dl̂ρ(gph S , gphT )
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Example: KKT solutions

minimize f0(x) subject to fi (x) ≤ 0 for i = 1, . . . ,m (smooth)

(x , y) ∈ R
n+m KKT solution if and only if 0 ∈ S(x , y)
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Example: KKT solutions

minimize f0(x) subject to fi (x) ≤ 0 for i = 1, . . . ,m (smooth)

(x , y) ∈ R
n+m KKT solution if and only if 0 ∈ S(x , y)

where S : Rn+m →→ R
3m+n has

S(x , y) =







































[f1(x),∞)
...

[fm(x),∞)
(−∞, y1]

...
(−∞, ym]
{y1f1(x)}

...
{ymfm(x)}

{∇f0(x) +
∑m

i=1 yi∇fi(x)}
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Estimates of KKT solutions

Let g0, . . . , gm define T : Rn+m →→ R
3m+n similarly to S

Then,
dl̂ρ(gph S , gphT ) ≤ max

{

δ, ρδ, (1 +mρ)η
}

,

where

δ = max
i=0,...,m

sup
‖x‖∞≤ρ

|fi (x)− gi (x)|

η = max
i=0,...,m

sup
‖x‖∞≤ρ

‖∇fi (x)−∇gi (x)‖∞

KKT system is stable while optimization problem may not be

28 / 29
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