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ABSTRACT:
In addition to dissipation of acoustic energy in the seabed, bottom-interacting normal modes are attenuated by radia-

tion of shear waves into soft sediments, where shear speed is small compared to the sound speed in water. The shear-

wave contribution and the dissipation have distinct frequency dependencies, and their relative magnitude affects the

observed frequency dependence of mode attenuation. Previous studies suggested that the shear-wave contribution to

the attenuation is proportional to the cube of the small ratio of the shear and sound speeds. Here, coupling of com-

pressional and shear waves in layered soft sediments is analyzed. Besides the well-known, third-order contribution

to the attenuation due to shear-wave generation at the water-sediment interface, a stronger, first-order, contribution

is found to occur due to compressional-to-shear wave conversion at interfaces within the sediment. First-order effects

of weak shear on mode travel times are also identified. Stratification of the sediment density and interference of shear

waves reflected within the seabed control the frequency dependence of the shear-wave contribution to sound attenua-

tion. With the shear-wave contribution being larger than previously estimated, its effect on the experimentally mea-

sured frequency dependence of the sound dissipation may need to be re-assessed.
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I. INTRODUCTION

Coupling to shear waves in solids or viscous (vorticity)

waves in fluids is a well-known mechanism of energy loss

(attenuation) of compressional waves.1–3 Unlike the intrinsic

absorption (conversion of mechanical energy to heat), the

coupling occurs only in inhomogeneous or bounded solids

and viscous fluids. In underwater waveguides, shear-wave

contributions to sound attenuation4,5 are most significant for

bottom-interacting normal modes that propagate over a sea-

bed, where shear speed is less than the phase speed of the

mode. In propagating normal modes, compressional waves

become evanescent in the seabed and carry acoustic energy

horizontally as long as dissipation is negligible. In contrast,

shear waves are not evanescent and transport energy deep

into the seabed. In the absence of dissipation, coupling to

shear waves is the only mechanism of exponential attenua-

tion of propagating normal modes in range-independent

waveguides.

The shear-wave speed is much smaller than the com-

pressional wave speed and the sound speed in water in many

types of marine sediments,4,6 while the evanescent compres-

sional wave field in propagating modes is often negligible

deep in the seabed, where the shear speed is large. Under

these conditions, the seabed is typically described as a strati-

fied fluid in the sound propagation modeling,5,7 with the

shear-wave effects presumably included via “effective” val-

ues of the sound speed, the density, and the attenuation coef-

ficient of compressional waves in the fluid bottom.

Understanding and accurate evaluation of the shear-

wave contributions to sound attenuation are necessary for

modeling and interpretation of the sound transmission loss

in shallow-water waveguides and for sonar performance pre-

dictions from low to mid-frequencies.5,8 Quantifying the

shear-wave contributions to attenuation of normal modes is

important for modeling and interpretation of the power spec-

tra, modal content, and vertical directionality of low-

frequency ambient sound in shallow water9–13 as well as in

applications of noise interferometry to passive remote sens-

ing of the coastal ocean.14,15 An accurate prediction of the

shear-wave contribution to sound attenuation at different

frequencies is required8,16,17 to interpret the empirical mod-

els of the linear4,6 and power-law with a fractional exponent

j, 1.6 < j < 2,18,19 frequency dependencies of the attenua-

tion and evaluate applicability17,20 of the physics-based

models of wave propagation in the porous seabed, such as

Biot theory and its extensions21–24 and Buckingham’s vis-

cous grain shearing theory.25,26

Shear-wave contributions to sound attenuation in the

seabed have been studied theoretically with the bottom mod-

eled as a homogeneous solid half-space.5,16,27,28 When the

shear speed ct is small compared to the compressional wave

speed cl, the sound attenuation due to conversion to shear

waves was found to be proportional to the third power of the

small parameter ct/cl. Corrections to the phase and group

speeds of the normal modes were found to be of the second

order in ct/cl.
16,27,29 Pierce and Carey17 and Carey et al.8

argued that the same cubic dependence of the attenuation on

ct extends to the stratified seabed. The standard perturbation

theory for normal modes in solid and fluid-solida)Electronic mail: oagodin@nps.edu, ORCID: 0000-0003-4599-2149.

3586 J. Acoust. Soc. Am. 149 (5), May 2021 0001-4966/2021/149(5)/3586/13/$30.00

ARTICLE...................................

https://doi.org/10.1121/10.0004999
mailto:oagodin@nps.edu
http://crossmark.crossref.org/dialog/?doi=10.1121/10.0004999&domain=pdf&date_stamp=2021-05-26


waveguides30–32 also suggests that weak shear rigidity of the

bottom changes the normal mode wavenumbers by quantities

of the second and higher orders in the shear-wave speed ct.

The analyses in Refs. 5, 8, 16, 17, and 27 account for

the shear-wave generation at the water-sediment interface

but overlook the strongest contribution to the compres-

sional-to-shear wave conversion, which occurs within the

stratified seabed, e.g., at interfaces between sediment layers

of distinct composition. In this paper, the effect of weak

shear rigidity on dispersion of acoustic normal modes and

the shear-wave contributions to sound attenuation are stud-

ied using a simple model of the seabed as a viscoelastic

solid layer overlying a viscoelastic half-space. No restric-

tions are imposed on the water column properties other than

the waveguide being range independent. It is demonstrated

that coupling between compressional and shear waves in the

bottom with density stratification results in significant, first-

order contributions to sound attenuation and first-order

changes in the normal mode dispersion.

The remainder of the paper is organized as follows. An

explicit expression is derived in Sec. II A for the mode wave-

number perturbations in terms of the bottom impedance per-

turbations due to variations in the physical properties of the

seabed. Thus, the problem of characterizing the effects of

weak shear rigidity on mode dispersion and attenuation in an

arbitrary range-independent waveguide is reduced to calcula-

tion of the acoustic impedance of the bottom. Coupling of

plane compressional and shear waves at solid-solid and fluid-

solid interfaces is discussed in Sec. II B, and simple

equations are obtained for the reflection, transmission, and

transformation coefficients at interfaces involving soft solids.

Leading-order asymptotic contributions of weak shear rigid-

ity to the input impedance of two-layered seabed are derived

analytically in Sec. II C. Using symbolic computations, a

compact expression for the effect of weak shear rigidity is

obtained from the algebraically complex exact equation for

the impedance of a stratified solid bottom. Theoretical results

of Sec. II are illustrated in Sec. III for several geoacoustic

models, including calculation of the apparent sound attenua-

tion caused by the coupling between compressional and shear

waves in a stratified seabed with small shear speed. Section

IV points out the limitations of the standard perturbation the-

ory for modes in solid waveguides30–32 when applied to strat-

ified soft solids. Implications of our theoretical results for

measurements of sound attenuation and the frequency depen-

dence of the intrinsic compressional wave dissipation in soft

marine sediments are also discussed in Sec. IV. Section V

summarizes our findings.

II. THEORY

We consider sound propagation in a range-independent

underwater waveguide with an arbitrarily stratified water

column and a seabed composed of a homogeneous sediment

layer overlying a homogeneous half-space (sub-bottom).

The seabed will be modeled as either a fluid or an isotropic

(viscoelastic) solid. Introduce a Cartesian coordinate system

(x, y, z) with the vertical coordinate z increasing downward.

x-, y-, and z-components of the particle displacement vector

u ¼ (u1, u2, u3) and other vectors will be denoted by sub-

scripts 1, 2, 3. A pressure-release ocean surface is located at

z ¼ –H, the seafloor is at z ¼ 0, and the interface between

the sediment layer and sub-bottom is at z¼ h [Fig. 1(a)].

Acoustic properties of the seabed as sensed by a normal

mode will be characterized by impedance of the seafloor

defined as the ratio of acoustic pressure to the vertical com-

ponent of particle velocity at z ¼ 0 in the normal mode.

A. Perturbation of normal modes by a change in the
seafloor impedance

Changes in the physical parameters of the seabed lead to

variations in the phase speed and/or attenuation of the bottom-

interacting normal modes. Here, we derive a simple quantita-

tive relation between small variations, or perturbations, of the

normal mode wave number and acoustic impedance of the

seabed in a generic range-independent waveguide.

The vertical dependence of the acoustic pressure pj in a

monochromatic normal mode satisfies the one-dimensional

reduced wave equation3,33

@

@z

1

qw

@pj

@z

� �
þ x2

c2
w

� n2
j

 !
pj

q
¼ 0; (1)

where x and nj are the wave frequency and the mode wave

number, and cw(z) and qw(z) are the sound speed and density

profiles in the water column. The index j ¼ 1, 2 distin-

guishes acoustic fields in two waveguides with different sea-

bed properties. At the sea surface pj(–H)¼ 0. At the seafloor

z ¼ 0 the acoustic pressure satisfies the boundary condition

Zj x; nj

� � @pj

@z
� ixqwpj ¼ 0; z ¼ �0; (2)

where Zj is the acoustic impedance of the seabed. Arbitrary

fluid or solid horizontally stratified seabed can be character-

ized by the appropriate dependence of its input acoustic

impedance on wave frequency and the horizontal wave

number nj. In Eq. (2) and below, z ¼ –z0 and z ¼ þz0

denote, respectively, points just above and just below the

horizontal interface z ¼ z0.

We want to compare the wave numbers nj, j ¼ 1, 2, of

the normal modes of the same order that propagate in two

range-independent waveguides, which share the same water

column properties but have different bottoms and, hence,

distinct impedances Z1(x, n) and Z2(x, n). By subtracting

the product of p2 and Eq. (1) with j ¼ 1 from the product of

p1 and Eq. (1) with j ¼ 2, one obtains

@

@z

p1

qw

@p2

@z
� p2

qw

@p1

@z

� �
¼ n2

2 � n2
1

� � p1p2

qw

: (3)

Integrating Eq. (3) over depth and taking into account the

boundary conditions at the ocean surface and bottom, Eq.

(2), gives
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ixp1 �0ð Þp2 �0ð Þ 1

Z2 x; n2ð Þ �
1

Z1 x; n1ð Þ

� �

¼ n2
2 � n2

1

� � ð0

�H

dz

qw

p1p2: (4)

No approximations have been made in derivation of Eq. (4).

When Z1 represents an unperturbed seabed, and small

variations of its parameters change the bottom impedance to

Z2 ¼ Z1(x, n) þ dZ(x, n) and the mode wave number from

n1 to n2 ¼ n1(x) þ dn(x), the perturbations dZ/Z and dn are

small; p2! p1 in the limit dZ! 0. Linearization of Eq. (4)

with respect to small perturbations of the acoustic pressure,

bottom impedance, and mode wave number gives

dn ¼ �ixdZ

Z2
1

�
2n1

p2
1 �0ð Þ

ð0

�H

dz

qw

p2
1 þ

ix

Z2
1

@Z

@n

" #					
n¼n1

: (5)

Alternatively, one can write Eq. (4) in terms of the input

acoustic admittances, Yj ¼ 1/Zj, j ¼ 1, 2, of the seabed.

When the admittance difference dY ¼ Y2 – Y1 is small, line-

arization of Eq. (4) with respect to perturbations gives

dn ¼ ixdY

�
2n1

p2
1 �0ð Þ

ð0

�H

dz

qw

p2
1 � ix

@Y1

@n

" #					
n¼n1

: (6)

The right-hand sides in Eqs. (5) and (6) are evaluated at the

unperturbed value n ¼ n1 of the modal wavenumber. Note

that knowledge of only the acoustic field in the unperturbed

waveguide is needed to calculate the mode wavenumber

perturbation with Eq. (5) or (6). The impedance may equal

zero [e.g., at a pressure-release surface; see also Fig. 1(b)]

or become infinite (e.g., at a rigid surface or at mode cutoff

frequencies in a Pekeris waveguide). Equations (5) and (6)

are generally equivalent, but Eq. (6) is more convenient in

the vicinity of singularities of Z1(x, n), and Eq. (5) is more

convenient in the vicinity of nulls of Z1(x, n). Following

the derivation of the normal mode perturbation theory in

Refs. 33 and 34, one can readily extend the result given by

FIG. 1. (Color online) Acoustic impedance of soft solid seabed. (a) Geometry of the problem. (b) Comparison of the frequency dependences of the normal-

ized impedance of fluid bottom (lines 2 and 4) and solid bottom with the shear speed ct ¼ 200 m/s in the top sediment layer (lines 1 and 3). The real and

imaginary parts of the impedance are shown by lines 1 and 2 and lines 3 and 4, respectively. (c) The fine structure of the frequency dependence of the real

part of the normalized impedance of the solid seabed is shown in a narrow frequency band for three values of the shear speed in the top sediment layer: ct

¼ 50 m/s (1), 100 m/s (2), and 200 m/s (3). The exact and first-order approximate results are depicted by solid and dashed lines, respectively. (d) Same as (c)

but for the imaginary part of the difference between the impedances of solid and fluid bottoms. In (b)–(d), the layer thickness h ¼ 10 m. The ratio of densities

in the half-space and in the layer is m ¼ 2; the ratio of shear speeds in the layer and the half-space is n ¼ 0.5. Compressional wave speeds are cl ¼ 1500 m/s

in the layer and cl1 ¼ 1900 m/s in the half-space. Normal mode phase speed is 1700 m/s. Impedances are normalized by the absolute value of the frequency-

independent impedance of the fluid half-space with compressional speed and density of the half-space z> h.
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Eqs. (5) and (6) to waveguides in moving fluids and to

acoustic-gravity waves. These extensions are not required,

though, for the purposes of this paper.

For the same unperturbed seabed structure and its per-

turbations, different perturbations in the modal phase speed

and attenuation occur, depending on the water depth and the

sound speed profile in water. By using the input impedance

Z or admittance Y to characterize the seafloor and calculat-

ing modal perturbations from Eqs. (5) and (6), one can iso-

late the effects of the water column and seabed effects.

In the absence of dissipation, the mode wave number n1

and normalized mode shape function p1(z)/p1(–0) are real-

valued in propagating (as opposed to evanescent) normal

modes.33 It follows from the impedance definition Eq. (2)

that acoustic impedance of the seabed is purely imaginary for

propagating normal modes. When Eqs. (5) and (6) are used

to describe a perturbation of a propagating normal mode,

ImdZ and ImdY contribute to the real part of the perturbed

mode wave number and, hence, are responsible for the mode

phase speed perturbation. Real parts of dZ and dY are respon-

sible for Imdn and, thus, contribute to mode attenuation.

In the particular case of a waveguide with the bottom

impedance Zb(x, n) and constant sound speed cw and density

qw in water, modal wavenumbers n can be found by solving

the explicit dispersion equation35

xqw tan awHð Þ ¼ iawZb; (7)

where aw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2c�2

w � n2
q

. Because of the boundary condi-

tions at the pressure-release boundary z ¼ – H, the vertical

variation of acoustic pressure in the normal mode is

p n; zð Þ ¼ p n;�0ð Þsin awzþ awHð Þ= sin awH;

� H < z < 0: (8)

The mode wavenumber n, which satisfies the dispersion

equation (7), depends on the impedance Zb. Let n1 and n1

þ dn satisfy Eq. (7) with Zb ¼ Z1(x, n) and Zb ¼ Z1(x, n)

þ dZ (x, n), respectively. Then, by differentiating both sides

of Eq. (7) with respect to n, we find

dn ¼ �ixdZ

Z2
1

�
n1 2awH � sin 2awHð Þ

2awqw sin2awH
þ ix

Z2
1

@Z

@n

" #					
n¼n1

(9)

to first order in dZ. Using Eq. (8), it is straightforward to

verify that the general Eq. (5) agrees with the explicit result

(9) in this particular case.

Below, we focus on characterizing the difference dZ
between the acoustic impedances of a fluid bottom and a

solid seabed with weak shear rigidity. The impedance change

is caused by coupling of the shear and compressional waves.

B. Conversion between compressional and shear
waves at an interface

This paper considers sound propagation over a seabed,

where top layers are “soft,” i.e., the shear-wave speed ct is

small compared to compressional wave speed cl. For brev-

ity, these speeds will be referred to as shear and compres-

sional speeds, respectively. The seabed will be considered

as an isotropic, horizontally stratified solid, where the den-

sity q and Lam�e parameters l ¼ qc2
t and k ¼ q(c2

l – 2 c2
t )

depend only on the vertical coordinate z. The shear modulus

is small in soft sediments: l� k. Soft sediments are alterna-

tively referred to as almost incompressible solids because

the same condition, l� k, can be met when l is fixed and k
is very large.

Phase speeds Vn of acoustic normal modes are compa-

rable to the sound speed cw in water and compressional

speeds in the seabed and are large compared to the shear

speeds. Hence, the modal wavenumber nn ¼ x/Vn is small

compared to the wavenumber kt ¼ x/ct of shear waves.

Shear waves propagate almost vertically in the seabed,

making the angle ht ¼ arcsinðnn=ktÞ with the z coordinate

axis. The angle ht is of the first order in the dimensionless

small parameter e defined as the ratio of typical values of ct

and cl. Only vertically polarized, or SV, shear waves are

coupled to acoustic waves in layered media.3 Shear waves

are transverse, and therefore the ratio of vertical and hori-

zontal components of particle displacement u3=ðu2
1 þ u2

2Þ
1=2

¼ OðeÞ in SV waves.

Consider coupling of compressional, or P, and SV
waves at an interface of two homogeneous solids. Within

each solid, the P and SV waves are described in terms of the

scalar, u, and vector, w, potentials, respectively. Particle

displacement u equals u ¼ ruþr� w. The dependence

exp(inx –ixt) of the wave field on the horizontal coordinates

x, y and time t will be assumed and suppressed. Then the

particle displacement in P–SV waves has no y-component: u

¼ (u1, 0, u3), and the only non-zero component of the vector

potential is along the y axis: w ¼ (0, w, 0).3

Reflection, transmission, and conversion coefficients of

plane waves at a solid-solid interface are rather cumbersome

and can be found in various forms in many publications. We

work with the thoroughly tested equations presented in Ref. 3.

Let us introduce five axillary quantities D0, D1, …, D4.:

D1 ¼ n2 � mþ mn2k2
t

2n2
;

D2 ¼
n
b

n2 � mþ m� 1ð Þn2k2
t

2n2

" #
;
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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a1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2k2

t � n2
q D2

3 þ
b
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þ m
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a
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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A n4k4

t

4n4
: (10)
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Here, m and n are the ratios, respectively, of densities and

shear-wave wave numbers below and above the interface

[Fig. 1(a)]; a ¼ ðx2=c2
l � n2Þ1=2

and a1 ¼ ðx2=c2
l1 � n2Þ1=2

are the vertical components of the P wave wave vector

above and below the interface; b is the vertical component

of the S wave wave vector above the interface. The branch

of the square roots is chosen in such a way that a, a1, b, and

ðn2k2
t � n2Þ1=2

are either real non-negative or, when com-

plex, have a positive imaginary part.

Let either P or SV plane wave be incident on the interface

from above. The reflection coefficients Vll and Vtt of compres-

sional and shear waves and the transformation coefficients

from incident compressional to reflected shear waves, Vlt,

from incident shear to reflected compressional waves, Vtl, and

from of the incident compressional wave to transmitted shear

wave, Wlt, are defined as ratios of the values that respective

scalar and/or vector potentials u and w in reflected (or, for

Wlt, transmitted) and incident waves take at the interface.

These coefficients are given by the following equations:3

Vll ¼
1

D0

D2
1 �

b
a

D2
1 þ

a1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2k2

t � n2
q D3D4

0
@

1
A; (11)

Vlt ¼
�2
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D1D2 þ
a1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2k2
t � n2

q D3D4

 !
;

Vtl ¼ �
b
a

Vlt; (12)

Vtt ¼
1
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a1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2k2

t � n2
q D2

3 �
b
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D2
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� �
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1 �
b
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D2
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a
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2k2

t � n2
q
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0
@

1
A n4k4

t

4n4

3
75; (13)

Wlt ¼
n2k2

t

n2D0

D2 þ
a1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2k2
t � n2

q D3

 !
: (14)

Equations (11)–(14) are exact. These equations simplify

in the case of soft solids. In the limit of small e, we find

Vl l ¼
ma� a1

maþ a1

� 2m m� 1ð Þ2an2

mþ nð Þ maþ a1ð Þ2kt

þ O e2ð Þ; (15)

Vl t ¼ �
2m m� 1ð Þan

mþ nð Þ maþ a1ð Þkt
þ O e2ð Þ; (16)

Vt l ¼
2m m� 1ð Þn

mþ nð Þ maþ a1ð Þ
þ O eð Þ; (17)

Vt t ¼
m� n

mþ n
� 2m m� 1ð Þ2n2

mþ nð Þ maþ a1ð Þkt
þ O e2ð Þ; (18)

and

Wl t ¼ �
2 m� 1ð Þan

mþ nð Þ maþ a1ð Þkt
þ O e2ð Þ: (19)

As expected, Vlt and Wlt vanish and Vll reduces to plane wave

reflection coefficient at a fluid-fluid interface, when ct ! 0;

see Eqs. (15), (16), and (19). Equations (16) and (19) show

that reflection of a P wave with unit amplitude creates SV
waves with potential w ¼ O(e) above and below the interface,

when the density ratio m 6¼ 1. In contrast, reflection of an SV
wave with unit amplitude creates reflected P and SV waves

with O(1) potentials according to Eqs. (17) and (18). When m
¼ 1, the dominant term in Eq. (17) and all linear terms in the

shear speed ct ¼ x/kt vanish in Eqs. (15), (16), (18), and (19),

and coupling between P and SV waves becomes much weaker.

Linear dependence of the magnitude of the shear-wave

reflection coefficient Vtt, Eq. (13), and other reflection and

transmission coefficients at solid-solid interface on ct was

previously reported36 in the related problem where 0� ct/cl
� 1 but the ratio ct1/cl1 is not small.

In the case of a plane sound wave reflection from a

fluid-solid interface, weak shear rigidity results in the

second-order corrections, O(e2), in the reflection coefficient;

the transmission coefficient Wlt ¼ O(e2).3,37 When compres-

sional waves in the solid are evanescent (Rea1 ¼ 0), shear-

induced changes in the absolute value and phase of the

reflection coefficient are, respectively, O(e3) and O(e2).3,37

Note that the effect of weak shear rigidity on wave reflection

and transmission is generally much stronger at the solid-

solid interface with m 6¼ 1 than at the fluid-solid interface or

solid-solid interface without density contrast.

C. Leading-order shear-induced perturbation of the
wave field in a layer

In the solid layer 0< z< h, the vertical dependence of

the scalar and vector potentials is given by

u ¼ u1eiaz þ u2e�iaz; w ¼ w1eibz þ w2e�ibz; (20)

where u2, u1 and w2, w1 are complex amplitudes of the up-

and down-propagating plane P and SV waves, respectively.

The scalar potential u is non-zero, when l ¼ 0, and is

slightly perturbed by weak shear rigidity. Since b ¼ O(e�1),

the vector potential should be small, w ¼ O(e), for the com-

ponent u1 ¼ inu – @w/@z of the particle displacement to

remain bounded at e! 0.

In terms of the potentials, for the vertical displacement and

two components of the stress tensor rjs at z¼ 0, we have3

u3 ¼ ia u1 � u2ð Þ þ in w1 þ w2ð Þ; (21)

r13 ¼ l k2
t � 2n2

� �
w1 þ w2ð Þ � 2na u1 � u2ð Þ

h i
; (22)

r33 ¼ l 2n2 � k2
t

� �
u1 þ u2ð Þ � 2nb w1 � w2ð Þ

h i
: (23)

The boundary conditions at fluid-solid interface require con-

tinuity of u3 and r33 and that r13 ¼ 0. Because of the latter
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boundary condition, the quantity in the square brackets

in the right side of Eq. (22) is exactly zero and, therefore, w1

þ w2 ¼ O(e2). Then Eqs. (21) and (23) give

Zin ¼
r33

ixu3

				
z¼0

¼ xq u1 þ u2ð Þ
a u1 � u2ð Þ

þ O e2ð Þ: (24)

Consider now the interface z¼ h between the solid

layer and solid half-space. According to Eq. (20), we have

incident compressional and shear waves with amplitudes

u1 and w1, respectively, and reflected waves with ampli-

tudes u2 and w2. In terms of the reflection and transforma-

tion coefficients at solid-solid interface, the amplitudes of

incident and reflected waves are related by two exact

equations,

u2e�iah ¼ Vl lu1eiah þ Vt lw1eibh; (25)

w2e�ibh ¼ Vl tu1eiah þ Vt tw1eibh: (26)

The factors exp ð6iahÞ and exp ð6ibhÞ in Eqs. (25) and

(26) account for the values that the potentials in incident

and reflected waves take at the boundary z¼ h. Recalling

that w2 ¼ �w1 þ Oðe2Þ and neglecting terms of the second

order in e, the ratio w1/u1 is found from Eq. (26). [This

ratio is O(e), and, hence, weak shear rigidity results in

strong, O(e0) perturbations in the horizontal particle dis-

placement in the bottom. Perturbations in u3 and r33 remain

small according to Eqs. (21) and (23).] Then u2/u1 is found

from Eq. (25). By substitution of u2/u1 into Eq. (24), we

obtain the impedance of the seabed: Zin ¼ Z0ð1þ CÞ
þOðe2Þ; where

Z0 ¼
ixq am� ia1 tan ahð Þ
a am tan ahþ ia1ð Þ (27)

coincides with the impedance of the fluid bottom,3 and C is

a correction of the first order in e,

C ¼ �2am m� 1ð Þ2n2k�1
t = mcotbh� inð Þ

a2m2 þ a2
1

� �
sin 2ahþ 2imaa1 cos 2ah

: (28)

Approximate Eqs. (15)–(18) for the reflection and transfor-

mation coefficients have been used in this derivation.

When compressional wave dissipation is negligible, a1

¼ ija1j in normal modes, and the fluid bottom impedance Z0,

Eq. (27), is purely reactive (imaginary) whether P waves are

propagating (a is real) or evanescent (a is purely imaginary)

in the layer. The first-order correction C, Eq. (28), has gen-

erally non-zero real and imaginary parts and, according to

Eq. (5), leads to first-order attenuation of normal modes and

first-order perturbations in their phase speed. First-order per-

turbations in the phase speed translate into first-order pertur-

bations in the group speed and the normal mode travel

times.33 Note that the correction C vanishes, and only

weaker, second- and higher-order effects of shear rigidity

remain, at m ¼ 1, i.e., when there is no density variation

within the seabed.

When m 6¼ 1, the first-order correction C, Eq. (28), also

vanishes at discrete frequencies such that sinbh¼ 0. This is

caused by destructive interference of SV waves that are gen-

erated at the boundary z¼ h with the SV waves that are

reflected from the solid-fluid boundary at z ¼ 0. To first

order in e, the shear-wave reflection coefficient at the fluid-

solid boundary equals –1.

Derivation of Eq. (28) is based on an analysis of waves

in the layer 0< z< h. First-order contributions to mode

attenuation and their dependence on the density variation

within the seabed can also be anticipated from analysis of

shear waves in the half-space z> h. Equation (19) shows

that, due to coupling at a solid-solid interface with m 6¼ 1,

compressional waves in the layer generate shear waves with

the vector potential w ¼ O(e) in the half-space. The shear-

wave vertical power flux density,3 i.e., the power carried to

infinity by the shear waves per unit area of the interface

z¼ h, is J3 ¼ 0:5xImðr�13u1 þ r�33u3Þ ¼ 0:5x3mqðn2k2
t

�n2Þ1=2jwj2. The power flux density and, hence, mode atten-

uation are of the first order in e, when m 6¼ 1 and w ¼ O(e).
When m ¼ 1, the vector potential w ¼ O(e2). Then the

power flux density I3 and mode attenuation are of the third

order in e, as was previously found16,27 in the case of a

homogeneous solid seabed.

The above findings on the effects of weak shear rigidity

of the seabed on its input impedance are confirmed and

extended in Sec. II D by using a different, more formal

approach to calculation of the impedance.

D. Impedance of a layered seabed

An exact expression3 for the input acoustic impedance

of the seabed that is composed of a solid layer overlaying a

solid half-space is given by the following simple but cum-

bersome equations:

Zin ¼ ix�1E3=E2; (29)

where

Ej ¼ a1Mj2 � ix2qm 1� 2n2

k2
t

 !
Mj3 �

2an
k2

t

Mj4

" #

�q nMj2 � ix2qm
2nb
k2

t

Mj3 � 1� 2n2

k2
t

 !
Mj4

 !" #
;

j ¼ 2; 3: (30)

Equation (30) corrects two misprints in the signs in Eq.

(4.3.21) of Ref. 3. The quantities q and Mjs in Eq. (30) are

expressed in terms of the elements Ajs of the matrix propa-

gator3 A,

Mjs ¼ Ajs � Aj1A4s=A41; j ¼ 2; 3; s ¼ 2; 3; 4;

(31)
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q ¼
A41 �

a1

n
A42 þ

ix2qm

n
1� 2n2

n2k2
t

 !
A43 �

2ix2qma1

n2k2
t

A44

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2k2

t � n2
q

A41

n
� A42 þ

2ix2qm

n2k2
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2k2

t � n2

q
A43 þ

ix2qm

n
1� 2n2

n2k2
t

 !
A44

: (32)

The matrix propagator is a 4� 4 matrix, which expresses the values of u1, u3, r33, and r13 at z¼ h in terms of the values that

these characteristics of the wave field take at z ¼ þ 0. For a homogeneous solid layer,

A ¼ L � diag eiah; e�iah; eibh; e�ibh
 �

� L�1; (33)

where diag[�] stands for a diagonal matrix, and

L ¼

in in �ib ib

ia �ia in in

2n2k�2
t � 1

� �
qx2 2n2k�2

t � 1
� �

qx2 �2bnk�2
t qx2 2bnk�2

t qx2

�2ank�2
t qx2 2ank�2

t qx2 1� 2n2k�2
t

� �
qx2 1� 2n2k�2

t

� �
qx2

0
BBBBBBB@

1
CCCCCCCA
: (34)

Explicit expressions for Ajs can be found in Ref. 3.

When h ! 0, the matrix propagator Eq. (33) differs

from the identity matrix by small terms O(h), and Eqs.

(29)–(34) give Zin ¼ ZS þ O(h), where

ZS ¼
xmq
a1

1� 4n2

n4k4
t

n2k2
t � n2 � a1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2k2

t � n2

q� �" #
:

(35)

Inspection shows that ZS coincides with the input acoustic

impedance3 of the solid half-space with density q1 ¼ mq
and the speeds ct1 ¼ ct/n and cl1 of shear and compressional

waves.

Equations (29)–(34) are exact. However, the physical

properties of the input impedance of the seabed with weak

shear rigidity are obscured by the algebraic complexity of

the equations. In addition, the matrix propagator Eq. (33)

contains sinbh and cosbh, which do not have limits at

ct! 0 in the absence of dissipation.

By fixing n, sinbh, and cosbh and developing the other

terms in powers of kt
�1, we find Zin ¼ Z0 þ dZin, where Z0 is

given by Eq. (27) and dZin ! 0 when e ! 0. As expected,

Z0 coincides with the input impedance of the fluid seabed,3

where ct ¼ ct1 ¼ 0. In the absence of dissipation, q and a2

are real-valued, and a1 ¼ ija1j for propagating normal

modes. Then the right side of Eq. (27) is purely imaginary

whether the compressional waves are propagating (a is real)

or inhomogeneous (a is imaginary) in the sediment layer

0< z< h.

When m 6¼ 1,

dZin ¼
qctm m� 1ð Þ2n2 tan bh

am sin ahþ ia1 cos ahð Þ2 imþ n tan bhð Þ
þO e2ð Þ:

(36)

Equation (36) and Eqs. (40) and (41) below have been

derived from the exact Eq. (29) by using the symbolic com-

putation capability of MATHEMATICA.38 The magnitude of the

dominant term, Eq. (36), of the impedance correction

depends on the layer thickness h via cosah, sinah, and

tanbh because of reflections at z ¼ 0 and z¼ h and interfer-

ence of compressional and shear waves in the layer. It

follows from Eqs. (27) and (36) that, in the absence of

dissipation,

ReZin ¼
qctnm m� 1ð Þ2n2 tan2bh

jam sin ahþ ia1 cos ahj2 m2 þ n2 tan2bhð Þ
þ O e2ð Þ;

(37)

when a1 ¼ ija1j and compressional waves are evanescent

at z> h. The real part of the impedance is non-negative.

Hence, the vertical component of the time-averaged

acoustic power flux3 J3 ¼ 0:5Reðpv�3Þ ¼ 0:5jv2
3jReZin at

z ¼ 0 is positive. As expected, acoustic energy always

flows into the seabed, regardless of the conditions of inter-

ference of compressional and shear waves in the layer

0< z< h.

When shear wavelength is small compared to the sed-

iment layer thickness h, tanbh rapidly oscillates with fre-

quency. Neglecting changes of the other, gradually

varying quantities in the right side of Eq. (37) over a sin-

gle period of rapid oscillations and using the elementary

integral

ðp

0

n tan2U dU
m2 þ n2 tan2U

¼ p
mþ n

; (38)

where m > 0 and n > 0, we obtain
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hReZini ¼
qctm m� 1ð Þ2n2

jam sin ahþ ia1 cos ahj2 mþ nð Þ
þ O e2ð Þ (39)

for the average over the narrow frequency band equal to the

period of rapid oscillations. Note that, despite the factor n in

the numerator in the right side of Eq. (37), the average of

ReZin does not vanish in the limit n ! þ0 because of the

singularity of the integrand in Eq. (38) at U ¼ p/2.

When m ¼ 1, there is no density variation in the seabed.

Then

dZin ¼
2qc2

t n
2 2aa1 n�2� 1þ cos2ahð Þ� i a2þ a2

1

� �
sin2ah

h i
xa a sinahþ ia1 cosahð Þ2

þO e3ð Þ: (40)

Note that, to the accuracy of Eq. (40), impedance correction

is independent of n and the phase advance bh of shear waves

in the layer. There are no first-order terms in e in the right

side of Eq. (40). In the absence of dissipation, the second-

order term is purely imaginary for propagating normal

modes, whether a is real or purely imaginary. Hence, the

correction to the real part of the impedance is O(e3), while

the correction to the imaginary part of the impedance is of

the second order in e.
For comparison, when there are no interfaces within the

seabed (n¼m ¼ 1, a ¼ a1), and the seabed is a homoge-

neous, almost incompressible solid half-space, we obtain

Zin ¼ xq
1

a
� 4n2

ak2
t

þ 4n2

k3
t

 !
þ O e4ð Þ (41)

from Eq. (35). Then, for propagating normal modes, correc-

tions due to shear rigidity to ImZin and, hence, to modal

phase speeds are of the second order in e, while corrections

to ReZin and mode attenuation are of the third order.

Equation (40) is consistent with Eq. (41). Equations (40)

and (41) confirm the finding of Sec. II C that first-order per-

turbations in the scalar and vector potentials and in the input

impedance arise from compressional-to-shear wave conver-

sion only when there is a density change across a solid-solid

interface.

III. RESULTS

This section illustrates predictions of the theory devel-

oped in Secs. II B–II D. Figure 1(b) compares impedances of

a fluid and a soft solid seabed with the same layer thickness,

layer and sub-bottom densities, and compressional speeds

and negligible dissipation. The impedances are given by

Eqs. (27) and (29), respectively. In Figs. 1 and 2, the impe-

dances are normalized by the absolute value of the

frequency-independent impedance of the fluid half-space

with compressional speed and density of the sub-bottom.

This normalization does not distort the frequency depen-

dence of the plotted quantities, renders the normalized

impedance dimensionless, and simplifies comparison of the

perturbations to a representative value of the magnitude of

the unperturbed impedance. Impedance of the fluid bottom

is purely imaginary, i.e., reactive, and gradually varies with

frequency due to interference of compressional waves

caused by their reflection at z¼ h [Fig. 1(b)]. Shear rigidity

adds a non-negative real, i.e., active, component of the

impedance. It represents the energy that is continuously

removed from the acoustic field and carried to z ! 1 by

shear waves. The real and imaginary parts of the impedance

of the solid seabed oscillate rapidly with frequency in a

quasi-periodic manner [Fig. 1(b)] due to interference of SV
waves, to first approximation, the SV waves that are gener-

ated at z¼ h and reflected at z ¼ 0. The quasi-period of

the frequency dependence of the impedance is close to Df
¼ ct/2h and is very small in soft sediments. Narrow fre-

quency bands are chosen in Fig. 1(b) and other figures to

reveal these rapid oscillations.

Figures 1(c) and 1(d) compare the exact calculations to

the first-order perturbation theory, Eq. (36). The perturba-

tion theory correctly reproduces qualitative details of the

frequency dependence and is rather accurate quantitatively,

when shear speeds are small. As the shear speed increases

and reaches ct1 ¼ 400 m/s in the sub-bottom, discrepancies

between the exact and first-order calculations become sig-

nificant, especially for ImZin [Figs. 1(c) and 1(d)], because

the second- and higher-order terms in e are no longer negli-

gible. Figures 1(c) and 1(d) show a near-linear dependence

of the perturbations of the active and reactive components

of the impedance on shear speed in a seabed with density

stratification. Dependence of the real part of the seafloor

impedance and, hence, of mode attenuation on the seabed

parameters is illustrated in more detail in Fig. 2.

Using exact Eq. (29), Figs. 2(a)–2(c) compare the active

component of the seafloor impedance in three scenarios,

which differ only by the contrast in the shear speeds and

density across the interface z¼ h. Common impedance nor-

malization is applied in all the scenarios. It uses the sub-

bottom parameters from scenario (c), which is illustrated in

Fig. 2(c). In Fig. 2(a), the shear speed and density in the

sub-bottom are the same as in the sediment layer. In this

case, ReZin is frequency-independent and is proportional to

ct
3. This is the same behavior as predicted by Eq. (41) for

homogeneous solid seabed, where P–SV coupling occurs

only at the seafloor z ¼ 0. The similarity stems from the fact

that P and SV waves propagate without coupling in stratified

solids with constant density and shear rigidity, regardless of

compressional speed variation.39

Density of the seabed is constant, but there is a shear

speed jump across the interface z¼ h in scenario (b). In con-

trast to Fig. 2(a), Fig. 2(b) demonstrates rapid oscillations of

the active component of the impedance with frequency. This

is a result of interference of shear waves generated and

reflected at z ¼ 0 and z¼ h. Quasi-period of the ReZin oscil-

lations in Fig. 2(b) increases with ct, as expected. The mag-

nitude of the active component of the impedance remains

proportional to ct
3, as in Fig. 2(a), but is considerably larger

than in scenario (a), even after averaging over frequency.
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The increase in ReZin in scenario (b) can be attributed to

shear-wave generation by P waves at an additional interface

and to increase in the sub-bottom shear speed compared to

scenario (a).

Scenario (c) [Fig. 2(c)] represents a generic situation

where there are significant changes in both density and shear

speed across an interface in the seabed. Shear-wave interfer-

ence and ReZin oscillations with frequency of the same

nature as in scenario (b) are evident in Fig. 2(c). The shape

of ReZin peaks in Fig. 2(c) differs from those in Fig. 2(b)

because, as discussed in Sec. II C, P-SV coupling at the

boundary z¼ h dominates when m 6¼ 1. The most significant

distinction of the results in scenario (c) from those in scenar-

ios (a) and (b) is that ReZin (and, hence, the shear-wave

contribution to normal mode attenuation) is orders of mag-
nitude larger than in the absence of density stratification

within the solid seabed [cf. Fig. 2(c) to Figs. 2(a) and 2(b)].

In Fig. 2(c), relative changes of the impedance due to shear

exceed 0.6 when the shear speeds cl ¼ 100 m/s and

c1 ¼ 200 m/s remain relatively small. When c1 � 200 m/s,

the magnitude of ReZin in Fig. 2(c) tends to vary linearly

with the shear speeds, in agreement with the theory in Secs.

II C and II D. An important corollary of the linear depen-

dence, as opposed to the cubic one in Figs. 2(a) and 2(b), is

that the seafloor impedance is predicted to have a non-

negligible active component even for very soft sediments

[see, e.g., 0.1–0.2 peak values of the normalized active

impedance in Fig. 2(c) for cl ¼ 25 m/s].

We have so far disregarded wave energy dissipation in

Sec. III. A viscoelastic seabed can be treated by attributing

imaginary parts to Lam�e parameters or, equivalently, by

replacing compressional and shear speeds with complex

quantities clð1� i=QlÞ; ctð1� i=QtÞ; and so forth.3,40 Here,

cl, ct, Ql, and Qt are real and positive. Ql and Qt have the

meaning of the quality factors for compressional and shear

waves, respectively; usually Ql > Qt � 1.6,40 In homoge-

neous viscoelastic solids, the quality factor is related to the

attenuation coefficient a of the respective wave in dB per

wavelength by a ¼ 20pQ�1= ln 10 	 27:3Q�1. In soft sedi-

ments, attenuation of shear waves is much larger than atten-

uation of compressional waves over the same path because

of the much shorter wavelength of the shear waves.

Figure 2(d) illustrates the effect of dissipation on the active

component of the seafloor impedance in the generic model of

two-layer soft solid seabed. In this scenario (d), the shear-wave

quality factor Qt ¼ Qt1 ¼ 50, and dissipation of P waves

is negligible. The ratio n ¼ ctð1� i=QtÞ=ct1ð1� i=Qt1Þ
remains real. Aside from the shear dissipation, all other

parameters are the same in scenarios (c) and (d). To interpret

the results shown in Fig. 2(d), we note first that tanbh ! i
when Im(bh)� 1, i.e., when shear waves are strongly attenu-

ated within the top sediment layer. Substitution of i for tanbh
in Eq. (36) gives

dZin ¼
qctm m� 1ð Þ2n2

jam sin ahþ ia1 cos ahj2 mþ nð Þ
þ O e2ð Þ: (42)

According to Eq. (42), the shear-induced perturbation of the

acoustic impedance of the seafloor is purely real and coin-

cides with the narrowband frequency average in the absence

of dissipation, Eq. (39). When shear waves are strongly

attenuated while crossing the layer 0< z< h, SV waves gen-

erated by P waves at the interface z¼ h do not reach the

interface z ¼ 0, and there is no interference with SV waves

FIG. 2. (Color online) Active compo-

nent of the acoustic impedance of a

two-layer solid bottom with weak

shear. (a) Real part of the normalized

impedance is shown as a function of

frequency for four values of the shear

speed in the top layer: ct ¼ 25 m/s (1),

50 m/s (2), 100 m/s (3), and 200 m/s

(4), when there is neither density nor

shear speed variation with depth (n ¼ 1,

m ¼ 1). The other geoacoustic parame-

ters, cl, cl1, and h, and the impedance

normalization are the same as in Fig. 1.

(b) Same as in (a) but with different

shear speeds above and below the inter-

face z¼ h; n ¼ 0.5. (c) Same as in (a)

but with different shear speeds and den-

sities above and below the interface

z¼ h; n ¼ 0.5, m ¼ 2. (d) Same as in

(c) but including the effect of shear-

wave dissipation. The shear-wave

absorption coefficient is 0.55 dB/k.
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reflected from the sediment-water interface. By removing

the interference, shear-wave attenuation acts just like fre-

quency averaging and produces smooth frequency depen-

dence of the active component of the impedance, when

shear speeds are very small, such as ct ¼ 25 m/s and ct ¼
50 m/s in Fig. 2(d). At larger shear speeds, Im(bh)

decreases. Then shear-wave dissipation smoothens but does

not eliminate the oscillations [cf. the plots for ct ¼ 100 m/s

and ct ¼ 200 m/s in Figs. 2(c) and 2(d)]. With oscillations of

the active component of the impedance with frequency

smoothed, Fig. 2(d) clearly shows the linear dependence of

ReZin on the shear speed at cl1 � 200 m/s, which was also

pointed out in scenario (c).

In Fig. 3, we compare normal mode attenuation over

soft solid seabed and a homogeneous fluid bottom with the

same density and compressional wave speed as in the solid

sub-bottom. P wave absorption is assumed to be negligible

in the solid seabed; the shear-wave quality factors Qt ¼ Qt1

¼ 50 are the same in the top sediment layer and the sub-

bottom. In Fig. 3, the sound attenuation coefficient in the

fluid bottom is found by equating the real parts of the input

impedances of the solid seabed, Eq. (29), and the fluid bot-

tom, Zin ¼ xq1/a1. Essentially the same results (not shown)

are obtained by equating the real parts of the input admittan-

ces of the bottom in the solid and fluid models. Thus, Fig. 3

shows how the loss of acoustic energy due to P to SV wave

conversion in a soft solid seabed would be interpreted as an

apparent sound absorption within the fluid bottom model.

As long as attenuation per wavelength remains small, the

effects on the seafloor impedance of the P–SV wave conver-

sion and P wave dissipation are additive, and Fig. 3 also

represents the difference between the apparent and true

(intrinsic) P wave attenuation coefficients in the bottom.

Results shown in Fig. 3 depend on the wave frequency and

sediment layer thickness only through the combination fh.

Frequency values in the figure and cited below refer to h
¼ 10 m and can be easily re-scaled to other h values.

The frequency dependence of the apparent sound atten-

uation in a stratified solid bottom is characterized by fast

oscillations superimposed on a decreasing trend [Figs. 3(a)

and 3(b)] if there is shear speed and/or density variation

within the solid seabed. The fast oscillations are due to

shear-wave interference, as evidenced by the magnitude of

their period and variation of the period with shear speed.

These oscillations are of the same kind as seen in Figs. 1(c)

and 2(b)–2(d). The oscillations are suppressed by the shear-

wave dissipation at higher frequencies and at very small

shear speeds [Figs. 3(a) and 3(b)]; there are no oscillations

when only compressional speed varies across the interface

z¼ h [Fig. 3(c)]. Rapid oscillations of the apparent attenua-

tion with frequency are significant, because these increase

sensitivity of the attenuation modeling to uncertainty in the

geoacoustic parameters, limit reproducibility of narrowband

measurements, and hinder retrieval of the frequency depen-

dence of the intrinsic P wave absorption from sound attenu-

ation measurements.

The overall trend of the apparent dissipation with fre-

quency is qualitatively similar in Figs. 3(a)–3(c).

Quantitatively, the least variation in the attenuation between

frequencies below 50 Hz and above 500 Hz is observed

when there is no P–SV coupling at z¼ h [Fig. 3(c)], and by

far the largest variation occurs in the stratified seabed with a

FIG. 3. (Color online) Apparent atten-

uation coefficient of compressional

waves due to weak shear rigidity. (a)

The attenuation coefficient of compres-

sional waves in fluid bottom producing

the same active component of the

acoustic impedance of the seafloor as a

solid seabed is shown as a function of

frequency for four values of the shear

speed in the top layer: ct ¼ 25 m/s (1),

50 m/s (2), 100 m/s (3), and 200 m/s

(4). The layer thickness h ¼ 10 m. The

ratio of densities in the half-space and

in the layer is m ¼ 2; the ratio of shear

speeds in the layer and the half-space

is n ¼ 0.5. Compressional wave speeds

are cl ¼ 1700 m/s in the layer and cl1

¼ 1900 m/s in the half-space. Normal

mode phase speed is 1600 m/s. The

shear-wave absorption coefficient is

0.55 dB/k. The fluid bottom is a homo-

geneous half-space with the same den-

sity and compressional wave speed as

in the solid half-space. (b) Same as in

(a) but without density stratification in

the solid seabed (m ¼ 1). (c) Same as

in (a) but in the absence of density and

shear speed density stratification in the

solid seabed (m ¼ 1, n ¼ 1).
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density contrast between the top sediment layer and the sub-

bottom [Fig. 3(a)]. In the examples presented in Fig. 3,

mode phase speed is smaller than cl, and P waves are inho-

mogeneous (evanescent) in the layer 0< z< h. Combined

with the shear-wave dissipation, attenuation of P waves in

the layer contributes to the decrease in the effect of the inter-

face z¼ h on the seafloor impedance and the results in

Figs. 3(a)–3(c) becoming increasingly similar at frequencies

above about 300 Hz.

The magnitude of the apparent P wave attenuation coef-

ficient increases with the shear speed [Figs. 3(a)–3(c)] and

reaches extremely high values at frequencies below about

125 Hz, when ct ¼ 200 m/s and there is a density contrast

across the interface z¼ h [Fig. 3(a)]. (The frequency range

of very large attenuation would extend to 2.5 kHz instead of

125 Hz if the layer thickness were 0.5 m.) As expected,

weaker coupling at the interface without density contrast

decreases the apparent attenuation and shrinks the frequency

range, where it is significant [Fig. 3(b)]. In contrast to

Figs. 3(a) and 3(b), the previously considered16,27 mecha-

nism of P–SV coupling at the seafloor z ¼ 0 gives only mar-

ginal contributions to sound attenuation for the geoacoustic

parameters considered.

IV. DISCUSSION

Weak shear rigidity of the seabed results in attenuation

and variations of the phase and group speeds of acoustic

normal modes of the underwater waveguide. The effects of

weak shear rigidity on acoustic normal modes, which have

phase and group speeds on the order of the sound speed in

water and P waves in the bottom, are generally small (but

not negligible), as discussed in Secs. II and III. The full set

of normal modes in a waveguide with solid bottom also

includes Scholte wave(s), or “slow” interface waves, the

phase and group speeds of which are on the order of the

shear speed; see Refs. 3, 37, 39, 41, and 42 and references

therein. Unlike the acoustic modes considered in this paper,

the weak shear rigidity and its variation with depth are the

dominant factors, rather than a perturbation, for the “slow”

interface waves.

It is often implied5,28 that the difference between the

wavenumbers of the acoustic normal modes in waveguides

with a fluid bottom and a solid bottom with weak shear

rigidity can be readily described by a perturbation theory.

To our knowledge, no such perturbation theory is available

for an arbitrary stratified seabed. Perturbation theory30–32

for normal modes in arbitrary stratified solid and fluid-solid

waveguides predicts a linear dependence of the mode wave-

numbers perturbations on small changes in the density and

the elastic moduli, such as the Lam�e parameters. As in fluid

waveguides,33 the mode wavenumber perturbation is given

by an integral of weighted environmental perturbations over

depth, with the weights (sensitivity kernels) expressed in

terms of the shape function of the unperturbed mode.30–32

When the small shear modulus l ¼ qðzÞc2
t ðzÞ in soft solid

bottom is considered as a perturbation of the problem with a

fluid bottom, the theories30–32 predict the mode wavenumber

perturbations to be of the second order in ct, which is incor-

rect. It is shown by two distinct techniques in Secs. II C and

II D that the mode wavenumber perturbation is, in fact, of

the first order in ct when there is density stratification in the

solid bottom.

Derivations of the perturbation theories30–32 assume

that small environmental perturbations necessarily result in

small perturbations of the wave field in the mode. This is

not the case at transition from fluid to solid bottom. As

pointed out in Sec. II C, the transition from an (inviscid)

fluid to solid bottom is a singular perturbation in the sense

that the appearance of infinitesimal l brings about finite,

non-zero changes in particle displacements in the mode. The

perturbation theories30–32 presume regular perturbations and

fail to describe the effects of weak shear rigidity, which is a

singular perturbation of the fluid bottom model.

Shear waves have much shorter wavelength than com-

pressional waves in soft solids. A sediment layer can be thin

for P waves (jahj � 1) and thick for SV waves (jbhj
1 or

jbhj �1). As pointed out in Sec. II D, the effect of the top

sediment layer vanishes, and only second- and higher-order

effects of shear rigidity remain, when h! 0. However, Eqs.

(36) and (37) show that the larger, first-order shear-wave

effects are present as long as jbhj 
 1 or greater, even when

jahj ! 0. Hence, weak shear makes acoustic normal modes

sensitive to surficial bottom layers that are much thinner

than acoustic wavelength. This observation has important

implications for geoacoustic inversions. While a few layers

with some averaged parameters may be suitable to match

normal mode dispersion in a fluid bottom model, a much

more detailed representation of the density and shear speed

stratification in surficial sediments may be necessary to cor-

rectly reproduce mode attenuation and its frequency

dependence.

In this paper, we focused on the impact of weak shear

rigidity of the seabed on acoustic normal modes. The results

of Secs. II and III that are expressed in terms of the input

acoustic impedance of the seabed can be also readily used to

investigate the effect of the slow shear waves on sound

reflection from the seafloor43 and the bottom loss at reflec-

tion in particular. Similarly, with the complex “shear speed”

ct ¼ ð1� iÞðx�=2Þ1=2
, where � is kinematic viscosity of the

fluid,3 results of Secs. II and III explicitly describe the effect

of viscosity on the acoustic impedance and sound reflection

from a stratified viscous fluid.

V. CONCLUSIONS

Weak shear rigidity of stratified marine sediments is

found to have a much stronger effect on dispersion of

bottom-interacting normal modes and especially on sound

attenuation than was previously surmised based on oversim-

plified seabed models.16,17,27,29 With the effects of the weak

shear being larger and more intricate than previously pre-

dicted, applicability of the effective fluid bottom models and

the effect of shear waves on the experimentally measured
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frequency dependence of the sound dissipation may need to

be re-assessed.

Acoustic effects of shear rigidity originate from cou-

pling between sound and shear waves at the seafloor and

within inhomogeneous seabed. Coupling between compres-

sional and shear waves at interfaces within the bottom is

shown to be far more efficient than the coupling at the

water-sediment interface. In terms of the small ratio of the

shear to compressional wave speeds in soft sediments, first-

order contributions to mode travel time and attenuation

result from the P and SV wave coupling in the seabed with

density stratification. These first-order effects are generally

much stronger and, because of shear-wave interference,

have a more complicated frequency dependence than previ-

ously studied second-order effects on mode travel times and

third-order attenuation effects in the case of homogeneous

solid seabed or bottom with constant density. The acoustic

effects of weak shear tend to be most pronounced at lower

frequencies, with the frequency scale being controlled by

the shear-wave travel time within individual sediment

layers, the rate of change of the sediment properties with

depth, and the shear-wave dissipation.

The primary implications of this research are for geoa-

coustic inversions and especially for measurements of the

intrinsic (volume) dissipation of compressional and shear

waves. To capture the first-order shear effects correctly,

geoacoustic models must include a realistic description of

density variation in the seabed in addition to compressional

and shear speed profiles. A higher vertical spatial resolution

than in the fluid bottom models is required, particularly for

the density and shear speed.

The shear effects are much stronger in the seabed con-

taining dissimilar surficial layers than in a seabed with aver-

aged parameters. Our results suggest that, for narrowband

signals, the shear-wave contributions to sound attenuation in

the bottom can be overly sensitive to uncertain and spatially

varying details of sediment stratification, making broadband

and/or long-range measurements preferable. At low frequen-

cies, shear-wave contributions to sound attenuation in strati-

fied sediments remain significant even for very low shear

speeds. Because of their non-negligible magnitude and non-

monotonic frequency dependence, great care needs to be

exercised in characterizing and separating the contributions

to measured attenuation due to compressional-to-shear wave

conversion in order to reliably evaluate the frequency depen-

dence of the intrinsic dissipation of compressional waves.
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