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Computation and Statistics

• A Grand Challenge of our era: tradeoffs between 
statistical inference and computation
– most data analysis problems have a time budget
– and often they’re embedded in a control problem

• Optimization has provided the computational model for
this effort (computer science, not so much)
– it’s provided the algorithms and the insight

• On the other hand, modern large-scale statistics has 
posed new challenges for optimization
– millions of variables, millions of terms, sampling issues, 

nonconvexity, need for confidence intervals, parallel/distributed 
platforms, etc



Perspectives on AI

• The classical “human-imitative” perspective
– cf. AI in the movies, interactive home robotics

• The “intelligence augmentation” (IA) perspective
– cf. search engines, recommendation systems, natural language 

translation
– the system need not be intelligent itself, but it reveals patterns 

that humans can make use of
• The “intelligent infrastructure” (II) perspective

– cf. transportation, intelligent dwellings, urban planning
– large-scale, distributed collections of data flows and loosely-

coupled decisions



Near-Term Challenges in II
• Error control for multiple decisions 
• Systems that create markets
• Designing systems that can provide meaningful, calibrated notions of their 

uncertainty
• Managing cloud-edge interactions
• Designing systems that can find abstractions quickly
• Provenance in systems that learn and predict
• Designing systems that can explain their decisions
• Finding causes and performing causal reasoning
• Systems that pursue long-term goals, and actively collect data in service of 

those goals
• Achieving real-time performance goals
• Achieving fairness and diversity
• Robustness in the face of unexpected situations
• Robustness in the face of adversaries
• Sharing data among individuals and organizations
• Protecting privacy and data ownership



Computation and Statistics (cont)

• Modern large-scale statistics has posed new challenges 
for optimization
– millions of variables, millions of terms, sampling issues, 

nonconvexity, need for confidence intervals, parallel/distributed 
platforms, etc

• Current algorithmic focus: what can we do with the 
following ingredients? 
– gradients
– stochastics
– acceleration

• Current theoretical focus: placing lower bounds from 
statistics and optimization in contact with each other



Outline

• Escaping saddle points efficiently
• Variational, Hamiltonian and symplectic perspectives on 

Nesterov acceleration
• Acceleration and saddle points
• Acceleration and Langevin diffusions
• Optimization and empirical processes



Part I: How to Escape Saddle Points 
Efficiently 

with Chi Jin, Praneeth Netrapalli, Rong Ge, 
and Sham Kakade



Nonconvex Optimization and Statisitics

• Many interesting statistical models yield nonconvex 
optimization problems (cf neural networks)

• Bad local minima used to be thought of as the main 
problem in fitting such models

• But in many convex problems there either are no 
local optima (provably), or stochastic gradient 
seems to have no trouble (eventually) finding global 
optima

• But saddle points abound in these architectures, 
and they cause the learning curve to flatten out, 
perhaps (nearly) indefinitely



The Importance of Saddle Points 

•  How to escape? 
–  need to have a negative eigenvalue that’s strictly negative 

•  How to escape efficiently? 
–  in high dimensions how do we find the direction of escape? 
–  should we expect exponential complexity in dimension?   



A Few Facts 

•  Gradient descent will asymptotically avoid saddle 
points (Lee, Simchowitz, Jordan & Recht, 2017) 

•  Gradient descent can take exponential time to 
escape saddle points (Du, Jin, Lee, Jordan, & Singh, 
2017) 

•  Stochastic gradient descent can escape saddle 
points in polynomial time (Ge, Huang, Jin & Yuan, 
2015) 
–  but that’s still not an explanation for its practical success 

•  Can we prove a stronger theorem? 

 



Optimization

Consider problem:
min
x∈Rd

f (x)

Gradient Descent (GD):

xt+1 = xt − η∇f (xt).

Convex: converges to global minimum; dimension-free iterations.
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Nonconvex Optimization

Non-convex: converges to Stationary Point (SP) ∇f (x) = 0.

SP : local min / local max / saddle points

Many applications: no spurious local min (see full list later).



Some Well-Behaved Nonconvex Problems 

•  PCA, CCA, Matrix Factorization 
•  Orthogonal Tensor Decomposition (Ge, Huang, Jin, 

Yang, 2015) 
•  Complete Dictionary Learning (Sun et al, 2015) 
•  Phase Retrieval (Sun et al, 2015) 
•  Matrix Sensing (Bhojanapalli et al, 2016; Park et al, 

2016) 
•  Symmetric Matrix Completion (Ge et al, 2016) 
•  Matrix Sensing/Completion, Robust PCA (Ge, Jin, 

Zheng, 2017) 

•  The problems have no spurious local minima and all 
saddle points are strict 

 



Convergence to FOSP

Function f (·) is `-smooth (or gradient Lipschitz)

∀x1, x2, ‖∇f (x1)−∇f (x2)‖ ≤ `‖x1 − x2‖.

Point x is an ε-first-order stationary point (ε-FOSP) if

‖∇f (x)‖ ≤ ε

Theorem [GD Converges to FOSP (Nesterov, 1998)]
For `-smooth function, GD with η = 1/` finds ε-FOSP in iterations:

2`(f (x0)− f ?)

ε2

*Number of iterations is dimension free.
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Definitions and Algorithm

Function f (·) is ρ-Hessian Lipschitz if

∀x1, x2, ‖∇2f (x1)−∇2f (x2)‖ ≤ ρ‖x1 − x2‖.

Point x is an ε-second-order stationary point (ε-SOSP) if

‖∇f (x)‖ ≤ ε, and λmin(∇2f (x)) ≥ −√ρε

Algorithm Perturbed Gradient Descent (PGD)

1. for t = 0, 1, . . . do

2. if perturbation condition holds then

3. xt ← xt + ξt , ξt uniformly ∼ B0(r)

4. xt+1 ← xt − η∇f (xt)

Adds perturbation when ‖∇f (xt)‖ ≤ ε; no more than once per T steps.
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Main Result

Theorem [PGD Converges to SOSP]
For `-smooth and ρ-Hessian Lipschitz function f , PGD with η = O(1/`)
and proper choice of r ,T w.h.p. finds ε-SOSP in iterations:

Õ

(
`(f (x0)− f ?)

ε2

)

*Dimension dependence in iteration is log4(d) (almost dimension free).

GD(Nesterov 1998) PGD(This Work)

Assumptions `-grad-Lip `-grad-Lip + ρ-Hessian-Lip

Guarantees ε-FOSP ε-SOSP

Iterations 2`(f (x0)− f ?)/ε2 Õ(`(f (x0)− f ?)/ε2)
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Õ

(
`(f (x0)− f ?)

ε2

)

*Dimension dependence in iteration is log4(d) (almost dimension free).

GD(Nesterov 1998) PGD(This Work)

Assumptions `-grad-Lip `-grad-Lip + ρ-Hessian-Lip

Guarantees ε-FOSP ε-SOSP

Iterations 2`(f (x0)− f ?)/ε2 Õ(`(f (x0)− f ?)/ε2)



Geometry and Dynamics around Saddle Points

Challenge: non-constant Hessian + large step size η = O(1/`).

Around saddle point, stuck region forms a non-flat “pancake” shape.

w

Key Observation: although we don’t know its shape, we know it’s thin!
(Based on an analysis of two nearly coupled sequences)
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Next Questions

• Does acceleration help in escaping saddle points?
• What other kind of stochastic models can we use to 

escape saddle points?
• How do acceleration and stochastics interact?



Next Questions

• Does acceleration help in escaping saddle points?
• What other kind of stochastic models can we use to 

escape saddle points?
• How do acceleration and stochastics interact?

• To address these questions we need to understand 
develop a deeper understanding of acceleration than 
has been available in the literature to date



Part II: Variational, Hamiltonian and
Symplectic Perspectives on Acceleration

with Andre Wibisono, Ashia Wilson and 
Michael Betancourt 



Interplay between Differentiation and 
Integration

• The 300-yr-old fields: Physics, Statistics
– cf. Lagrange/Hamilton, Laplace expansions, saddlepoint 

expansions
• The numerical disciplines

– e.g.,. finite elements, Monte Carlo
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Interplay between Differentiation and 
Integration

• The 300-yr-old fields: Physics, Statistics
– cf. Lagrange/Hamilton, Laplace expansions, saddlepoint 

expansions
• The numerical disciplines

– e.g.,. finite elements, Monte Carlo
• Optimization?

– to date, almost entirely focused on differentiation



Accelerated gradient descent

Setting: Unconstrained convex optimization

min
x∈Rd

f (x)

I Classical gradient descent:

xk+1 = xk − β∇f (xk)

obtains a convergence rate of O(1/k)

I Accelerated gradient descent:

yk+1 = xk − β∇f (xk)

xk+1 = (1− λk)yk+1 + λkyk

obtains the (optimal) convergence rate of O(1/k2)
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The acceleration phenomenon

Two classes of algorithms:

I Gradient methods
• Gradient descent, mirror descent, cubic-regularized Newton’s

method (Nesterov and Polyak ’06), etc.

• Greedy descent methods, relatively well-understood

I Accelerated methods
• Nesterov’s accelerated gradient descent, accelerated mirror

descent, accelerated cubic-regularized Newton’s method
(Nesterov ’08), etc.

• Important for both theory (optimal rate for first-order
methods) and practice (many extensions: FISTA, stochastic
setting, etc.)

• Not descent methods, faster than gradient methods, still
mysterious



The acceleration phenomenon

Two classes of algorithms:

I Gradient methods
• Gradient descent, mirror descent, cubic-regularized Newton’s

method (Nesterov and Polyak ’06), etc.

• Greedy descent methods, relatively well-understood

I Accelerated methods
• Nesterov’s accelerated gradient descent, accelerated mirror

descent, accelerated cubic-regularized Newton’s method
(Nesterov ’08), etc.

• Important for both theory (optimal rate for first-order
methods) and practice (many extensions: FISTA, stochastic
setting, etc.)

• Not descent methods, faster than gradient methods, still
mysterious



Accelerated methods

I Analysis using Nesterov’s estimate sequence technique

I Common interpretation as “momentum methods” (Euclidean
case)

I Many proposed explanations:

• Chebyshev polynomial (Hardt ’13)
• Linear coupling (Allen-Zhu, Orecchia ’14)
• Optimized first-order method (Drori, Teboulle ’14; Kim,

Fessler ’15)
• Geometric shrinking (Bubeck, Lee, Singh ’15)
• Universal catalyst (Lin, Mairal, Harchaoui ’15)
• . . .

But only for strongly convex functions, or first-order methods

Question: What is the underlying mechanism that generates
acceleration (including for higher-order methods)?



Accelerated methods: Continuous time perspective

I Gradient descent is discretization of gradient flow

Ẋt = −∇f (Xt)

(and mirror descent is discretization of natural gradient flow)

I Su, Boyd, Candes ’14: Continuous time limit of accelerated
gradient descent is a second-order ODE

Ẍt +
3

t
Ẋt +∇f (Xt) = 0

I These ODEs are obtained by taking continuous time limits. Is
there a deeper generative mechanism?

Our work: A general variational approach to acceleration

A systematic discretization methodology
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Bregman Lagrangian
Define the Bregman Lagrangian:

L(x , ẋ , t) = eγt+αt

(
Dh(x + e−αt ẋ , x)− eβt f (x)

)
I Function of position x , velocity ẋ , and time t

I Dh(y , x) = h(y)− h(x)− 〈∇h(x), y − x〉
is the Bregman divergence

I h is the convex distance-generating function

I f is the convex objective function

I αt , βt , γt ∈ R are arbitrary smooth functions

I In Euclidean setting, simplifies to damped

Lagrangian

x y

h(x)

h(y)

Dh(y, x)

Ideal scaling conditions:

β̇t ≤ eαt

γ̇t = eαt
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I Dh(y , x) = h(y)− h(x)− 〈∇h(x), y − x〉
is the Bregman divergence

I h is the convex distance-generating function

I f is the convex objective function

I αt , βt , γt ∈ R are arbitrary smooth functions

I In Euclidean setting, simplifies to damped

Lagrangian

x y

h(x)

h(y)

Dh(y, x)

Ideal scaling conditions:

β̇t ≤ eαt

γ̇t = eαt



Bregman Lagrangian

L(x , ẋ , t) = eγt+αt

(
Dh(x + e−αt ẋ , x)− eβt f (x)

)

Variational problem over curves:

min
X

∫
L(Xt , Ẋt , t) dt

t

x

Optimal curve is characterized by Euler-Lagrange equation:

d

dt

{
∂L
∂ẋ

(Xt , Ẋt , t)

}
=
∂L
∂x

(Xt , Ẋt , t)

E-L equation for Bregman Lagrangian under ideal scaling:

Ẍt + (eαt − α̇t)Ẋt + e2αt+βt
[
∇2h(Xt + e−αt Ẋt)

]−1
∇f (Xt) = 0
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General convergence rate

Theorem
Theorem Under ideal scaling, the E-L equation has convergence
rate

f (Xt)− f (x∗) ≤ O(e−βt )

Proof. Exhibit a Lyapunov function for the dynamics:

Et = Dh

(
x∗, Xt + e−αt Ẋt

)
+ eβt (f (Xt)− f (x∗))

Ėt = −eαt+βtDf (x∗,Xt) + (β̇t − eαt )eβt (f (Xt)− f (x∗)) ≤ 0

Note: Only requires convexity and differentiability of f , h



Mysteries

• Why can’t we discretize the dynamics when we are 
using exponentially fast clocks?

• What happens when we arrive at a clock speed that 
we can discretize?

• How do we discretize once it’s possible?



Symplectic Integration 

•  Consider discretizing a system of differential 
equations obtained from physical principles 

•  Solutions of the differential equations generally 
conserve various quantities (energy, momentum, 
volumes in phase space) 

•  Is it possible to find discretizations whose solutions 
exactly conserve these same quantities? 

•  Yes! 
–  from a long line of research initiated by Jacobi, Hamilton, 

Poincare’ and others 

 



 Towards A Symplectic Perspective 
• We’ve discussed discretization of Lagrangian-based

dynamics
• Discretization of Lagrangian dynamics is often fragile

and requires small step sizes
• We can build more robust solutions by taking a Legendre 

transform and considering a Hamiltonian formalism:



Symplectic Integration of Bregman 
Hamiltonian 



Symplectic vs Nesterov
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Part III: Acceleration and Saddle Points

with Chi Jin and Praneeth Netrapalli



Problem Setup

Smooth Assumption: f (·) is smooth:

I `-gradient Lipschitz, i.e.

∀x1, x2, ‖∇f (x1)−∇f (x2)‖ ≤ `‖x1 − x2‖.

I ρ-Hessian Lipschitz, i.e.

∀x1, x2, ‖∇2f (x1)−∇2f (x2)‖ ≤ ρ‖x1 − x2‖.

Goal: find second-order stationary point (SOSP):

∇f (x) = 0, λmin(∇2f (x)) ≥ 0.

Relaxed version: ε-second-order stationary point (ε-SOSP):

‖∇f (x)‖ ≤ ε, and λmin(∇2f (x)) ≥ −√ρε



Analysis of AGD in the Nonconvex Setting

I Challenge: AGD is not a descent algorithm

I Solution: Lift the problem to a phase space, and make use of a

Hamiltonian

I Consequence: AGD is nearly a descent algorithm in the Hamiltonian, with

a simple “negative curvature exploitation” (NCE; cf. Carmon et al., 2017)

step handling the case when descent isn’t guaranteed

12 / 14 Michael Jordan AGD Escape Saddle Points Faster than GD



Hamiltonian Perspective on AGD

• AGD is a discretization of the following ODE

"̈ + $%"̇ + '( " = 0

• Multiplying by "̇ and integrating from +, to +- gives us

( "./ + 1
2 "̇./

- = ( ".2 + 1
2 "̇.2

- − $% 4
.2

./
"̇. -5+

• In convex case, Hamiltonian ( ". + ,
- "̇. - decreases monotonically



Algorithm

Algorithm Perturbed Accelerated Gradient Descent (PAGD)

1. for t = 0, 1, . . . do

2. if ‖∇f (xt)‖ ≤ ε and no perturbation in last T steps then

3. xt ← xt + ξt , ξt uniformly ∼ B0(r)

4. yt ← xt + (1− θ)vt

5. xt+1 ← yt − η∇f (yt); vt+1 ← xt+1 − xt

6. if f (xt) ≤ f (yt) + 〈∇f (yt), xt − yt〉 − γ
2 ‖xt − yt‖2 then

7. xt+1 ← NCE(xt , vt , s); vt+1 ← 0

I Perturbation (line 2-3);

I Standard AGD (line 4-5);

I Negative Curvature Exploitation (NCE, line 6-7)
I 1) simple (two steps), 2) auxiliary. [inspired by Carmon et al. 2017]



Hamiltonian Analysis
! ⋅ between #$ and #$ + &$

! #$ + '
() &$ ( decreases

AGD step

&$*' = 0 Move in ±&$ direction

Not too nonconvex Too nonconvex
(Negative curvature exploitation)

&$ large &$ small

Enough decrease 
in a single step

Do an 
amortized 

analysis



Convergence Result

PAGD Converges to SOSP Faster (Jin et al. 2017)

For `-gradient Lipschitz and ρ-Hessian Lipschitz function f , PAGD with

proper choice of η, θ, r ,T , γ, s w.h.p. finds ε-SOSP in iterations:

Õ

(
`1/2ρ1/4(f (x0)− f ?)

ε7/4

)

Strongly Convex Nonconvex (SOSP)

Assumptions
`-grad-Lip &

α-str-convex

`-grad-Lip &

ρ-Hessian-Lip

(Perturbed) GD Õ(`/α) Õ(∆f · `/ε2)

(Perturbed) AGD Õ(
√
`/α) Õ(∆f · `

1
2 ρ

1
4 /ε

7
4 )

Condition κ `/α `/
√
ρε

Improvement
√
κ

√
κ
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Part IV: Acceleration and Stochastics

with Xiang Cheng, Niladri Chatterji and Peter 
Bartlett



Acceleration and Stochastics

• Can we accelerate diffusions?
• There have been negative results...
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Acceleration and Stochastics

• Can we accelerate diffusions?
• There have been negative results…
• …but they’ve focused on classical overdamped

diffusions
• Inspired by our work on acceleration, can we accelerate 

underdamped diffusions?



Overdamped Langevin MCMC

Described by the Stochastic Differential Equation (SDE):
!"# = −∇' "# !( + 2!+#

where ' " : -. → - and +# is standard Brownian motion.
The stationary distribution is 0∗ " ∝ exp ' "

Corresponding Markov Chain Monte Carlo Algorithm 
(MCMC):

6" 789 : = 6"7: − ∇' 6"7: + 2;<7
where ; is the step-size and <7 ∼ >(0, B.×.)



Guarantees under Convexity

Assuming ! " is #-smooth and $-strongly convex:

Dalalyan’14: Guarantees in Total Variation
If  % ≥ ' (

)* then, +,(. / , .∗) ≤ 4

Durmus & Moulines’16: Guarantees in 2-Wasserstein

If  % ≥ ' (
)* then, 56(. / , .∗) ≤ 4

Cheng and Bartlett’17: Guarantees in KL divergence

If  % ≥ ' (
)* then, KL(. / , .∗) ≤ 4



Underdamped Langevin Diffusion

Described by the second-order equation:

!"# = %#!&
!%# = −(%#!& + *∇, "# !& + 2(* !.#

The stationary distribution is /∗ ", % ∝ exp −, " − |7|88
9:

Intuitively, "# is the position and %# is the velocity

∇, "# is the force and ( is the drag coefficient



Discretization

We can discretize; and at each step evolve according to

! "#$ = "&$!'
! "&$ = −) "&$!' − *∇, "# $/. . !' + 2)* !1$

we evolve this for time 2 to get an MCMC algorithm

Notice this is a second-order method. Can we get faster rates?



Quadratic Improvement

Let !(#) denote the distribution of %&#', %)#' . Assume + & is
strongly convex

Cheng, Chatterji, Bartlett, Jordan ’17:

If . ≥ 0 1
2 then 34 ! # , !∗ ≤ 7

Compare with Durmus & Moulines ’16 (Overdamped)

If . ≥ 0 1
28 then 34 ! # , !∗ ≤ 7



Intuition: Smoother Sample Paths

!" is much smoother for Underdamped Langevin Diffusion, so easier to 
discretize

Overdamped Langevin Diffusion Underdamped Langevin Diffusion



Beyond Convexity?

So far we assume ! " is #- strongly convex

Goal: Establish rates when !(") is non-convex

Multiple modes



Strongly Convex Outside a Ball

1.  Smooth everywhere

2.  Strongly convex outside a ball

Cheng, Chatterji, Abbasi-Yakdori, Bartlett, & Jordan ’18:

To get !" # $ , #∗ ≤ (:

Overdamped MCMC : * ≥ , -./012
31

Underdamped MCMC needs: * ≥ , -./01 2
3

∀5, 6 |∇ U x − ∇< 6 |= ≤ >|5 − 6 |=
∀5, 6: |5 − 6|= ≥ ?

∇< 5 − ∇< 6 , 5 − 6 ≥ @|5 − 6 |=



Proof Idea: Reflection Coupling

Tricky to prove continuous-time process contracts. Consider 
two processes,

!"# = −∇' "# !( + 2 !+#,
!-# = −∇' -# !( + 2 !+#.

where "/ ∼ 1/ and -/ ∼ 1∗. Couple these through Brownian motion

!+#. = 34×4 −
2 ⋅ "# − -# "# − -# 7

|"# − -#|99
!+#,

“reflection along line separating the two processes”



Reduction to One Dimension

By Itô’s Lemma we can monitor the evolution of the separation distance 

!|#$ − &$|' = − #$ − &$
|#$ − &$|'

, ∇+ #$ − ∇+ &$ !, + 2 2!/$0

‘Drift’ ’1-d random walk’

Two cases are possible

1. If |#$ − &$|' ≤ 2 then we have strong convexity; the drift helps.

2. If |#$ − &$|' ≥ 2 then the drift hurts us, but Brownian motion helps stick*.

*Under a clever choice of Lyapunov function.

Rates not exponential in ! as we have a 1-! random walk



Population Risk vs Empirical Risk

Well-behaved population risk ⇒ rough empirical risk

I Even when R is smooth, R̂n can be non-smooth and may even have
many additional local minima (ReLU deep networks).

I Typically ‖R − R̂n‖∞ ≤ O(1/
√
n) by empirical process results.

Can we finds local min of R given only access to the function value R̂n?
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Our Contribution

Our answer: Yes! Our SGD approach finds ε−SOSP of F if ν ≤ ε1.5/d ,
which is optimal among all polynomial queries algorithms.

Complete characterization of error ν vs accuracy ε and dimension d .



ZPSGD Algorithm

Algorithm Zero-th order Perturbed SGD (ZPSGD)

1. for t = 0, 1, . . . do

2. sample (z
(1)
t , · · · , z(m)

t ) ∼ N (0, σ2I)

3. gt(xt)←
∑m

i=1 z
(i)
t [f (xt + z

(i)
t )− f (xt)]/(mσ2)

4. xt+1 ← xt − η(gt(xt) + ξt), ξt uniformly ∼ B0(r)

I Computing stochastic gradient of smoothed function (line 2-3);

f̃σ(x) =Ez∼N (0,σ2I)[f (x + z)]

∇f̃σ(x) =Ez∼N (0,σ2I)[z(f (x + z)− f (x))]/σ2

I Perturbation (line 4).



Our Contribution

Our answer: Yes! Our SGD approach finds ε−SOSP of F if ν ≤ ε1.5/d ,
which is optimal among all polynomial queries algorithms.

Complete characterization of error ν vs accuracy ε and dimension d .



Discussion
• Data and inferential problems will be everywhere in 

computer science, and will fundamentally change 
the field

• Many conceptual and mathematical challenges 
arising in taking this effort seriously, in addition to 
systems challenges and “outreach” challenges

• Facing these challenges will require a 
rapprochement between computational thinking and 
inferential thinking

• This effort is just beginning!
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