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5.0 CONCLUSIONS AND RECOMMENDATIONS 

5.1 MARITIME DOMAIN PROTECTION (MDP) ARCHITECTURE 

One insight gained in the Naval Postgraduate School (NPS) MDP Study was the 

recognition of the extreme difficulty in designing a system to sufficiently address the MDP 

problem.  Despite keeping the political and legal considerations out of the problem space, there 

were a myriad of variables resulting from various international participants in a largely 

unregulated, vulnerable industry that was simultaneously critical to the worldwide economy.  

The interconnected nature of the commercial shipping industry also held challenges, as any 

improvement or enforcement that was made across the entire industry would lead to significant 

shipping costs, especially due to delays.  On the other hand, if improvements or enforcement 

were only made in a few areas by cooperative players, this could lead to either those players 

disproportionately assuming the cost burden or those areas being avoided altogether by 

nonconforming shippers. 

As a result of the multidiscipline, interrelated nature of the MDP problem, a  

Systems Engineering approach was critical.  There was no other approach that would necessarily 

focus on the entire problem as an integrated whole, instead of focusing on “stovepipe” or point 

solutions, although this had historically been the problem-solving method.  There could be no 

lasting solution to the MDP problem, as technology, public attitudes, and threats would 

continuously change.  Although the NPS MDP Study focused on three specific threat scenarios, a 

continuous reassessment of the threat capabilities and intentions versus industry and 

infrastructure vulnerabilities would be required to determine the direction of future  

resource focus. 

 
5.1.1 Weapons of Mass Destruction (WMD) Scenario 

The WMD Scenario integrated all five MDP System components (Sensors, Command, 

Control, Communications, and Intelligence (C3I), Force, Land Inspection, and Sea Inspection) in 

an attempt to detect a nuclear weapon outside of the Straits of Malacca.  A 20-KT,  

Russian-made, nuclear device was assumed for this scenario. 
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5.1.1.1 Conclusions 

The largest gain in architecture performance in the WMD scenario came with the 

addition of a Land Inspection System installed in the highest volume ports-of-origin for cargo 

destined for the Straits.  The Land Inspection alternative that was evaluated also relied on 

industry participation, using qualified “Trusted Agent” shipping companies to help find or deter 

WMDs from being loaded in their shipping containers.  This allowed resources to be focused on 

nonparticipating shippers, since they should be more likely to transport illegal cargo.  

Unfortunately, the cost to the shipping industry was significant for this Land Inspection 

alternative due to the worldwide extent of the industry, and the vast number of containers that 

were loaded and transported each day.  Also, there was a tradeoff that occurred between the 

number of ports that actively inspected for WMD, thereby reducing the opportunity for WMD 

shipment, and the high cost to install the Land Inspection System in those ports—in order to 

install Land Inspection Systems in a meaningful number of ports, significant resources would  

be required. 

Another less costly alternative architecture offered a significant improvement 

over the “As-Is” architecture, although the improvement was far less than the architecture that 

included the Land Inspection System.  This lower-cost alternative architecture used an improved 

Sensor system to detect inbound ships at 250 to 300 NM from the area of interest, along with a  

Sea Inspection System that used a 12-man boarding party to search suspect ships.  Due to the 

incidence of false alarms, this Sea Inspection System was only cost-effective with a C3I System 

that could accurately correlate positive detections made by the boarding party to determine the 

cause of the false alarm (i.e., radiation source due to pottery, medical equipment, etc.). 

 
5.1.1.2 Recommendations 

In order to achieve the most effective near-term defense against the  

WMD scenario, investments in sensors should be made that would allow the detection of 

contacts of interest at much further ranges.  This would give Command and Control 

(C2)/Intelligence Centers more time to process inbound contacts.  Additionally, in order to detect 

WMD prior to an area of interest, a Sea Inspection System using boarding teams with handheld 

sensors should be established that would be forward-deployable to allow the inspection of cargo 
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ships while en route.  Increasing Intelligence capabilities would also be required in order to 

offset false alarm detections by the boarding teams. 

More effective defense against the WMD scenario could only be accomplished by 

installing Land Inspection systems in high-volume ports.  These systems would take advantage 

of cargo delay times and close contact with transportation equipment in order to detect illegal 

cargo.  Additionally, establishing a program to certify and randomly test “Trusted Agent” 

shipping companies would be required to deter the shipment of WMD. 

 
5.1.2 Ship As a Weapon (SAW) Scenario 

The SAW scenario integrated three MDP System components (Sensors, C3I, and Force) 

in an attempt to defeat a ship used as a weapon against the Port of Singapore.  The most difficult-

to-defeat assumptions were used in this scenario, in which the attack was not initiated until the 

harbor pilot came aboard the Contact of Interest (COI) at five NM.  This limited the scenario by 

restricting the time available to recognize the attack and mobilize forces.  This made the scenario 

as difficult as possible, but masked some architecture benefits that could be achieved with earlier 

detection of hostile intent. 

 
5.1.2.1 Conclusions 

The “As-Is” Force System that loaded Sea Marshals on high-value COIs at  

five NM with the harbor pilot was effective, given the specifics of the scenario.  Only slight 

improvements in performance were attained with longer engagement times; however, increasing 

Sea Marshal training and armament significantly improved close-in performance. 

The Rapid Response Force alternative was not effective when COI hostile intent 

was determined at five NM.  There simply was not enough response time to brief and deploy the 

forces.  However, if hostile intent was determined at or before ten NM, the Rapid Response 

Force was highly effective. 

The Temasek Defense Systems Institute (TDSI) transport was effective in 

defeating the in-close SAW attack; however, the system cost was extremely high, and their 

materially destructive means of defeating the attack would increase the commercial costs and 

risk associated with this alternative. 
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Throughout this scenario, improvements in performance were possible by 

increasing the amount of time the Blue Forces could counter the attack.  The largest increase in 

response time was achieved by improving the Sensor’s capability, out to 250 to 300 NM.  

Improvements in C3I capabilities resulted in more timely decisions, but the increase in response 

time was less than that obtained by the Sensor’s improvement. 

 
5.1.2.2 Recommendations 

Effective near-term defense against the SAW scenario was already in place.  The 

only recommended improvement would be to increase the training and armament of the  

Sea Marshals.  Also, despite their not being effective in the in-close scenario, the Rapid 

Response Force should be maintained.  Procedures to increase the response time by either 

recognizing hostile intent earlier (possibly loading the Sea Marshals onboard earlier) or by 

slowing down the COI (barriers or other procedural wickets) should be implemented to increase 

performance against this type of attack. 

More robust defense against the SAW scenario would be possible by installing 

Sensor systems that could track COIs out to 250 to 300 NM.  This would allow the correlation of 

a specific COI with any suspect information from external intelligence, including the activation 

of a ship’s Automatic Identification System (AIS) “panic button” that could indicate a potential 

hostile boarding.  In any case, the deployment range of the Rapid Response Force should be 

increased in order to enable a response at longer distances, in order to increase the engagement 

time to defeat any attack. 

 
5.1.3 Small Boat Attack (SBA) Scenario 

Due to the extremely short time available to sense and respond to the SBA, the  

Force System was the only MDP System component that was effective for an attack in progress.  

The SBA assumed a suicide speedboat loaded with 1,000 lbs of TNT and a contact fuse. 

 
5.1.3.1 Conclusions 

Loading Sea Marshals on high-value COIs transiting an area of interest was a 

cost-effective solution alternative to counter the SBA scenario.  This method of point-defense 

was one active means of hardening the target against the attack.  Methods of passive defense also 
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showed promise, such as only permitting double-hull ships into a threat area or installing blast-

resistant coating on ships’ waterlines.  Although both passive and active defenses would require 

some level of cost, they both served to minimize the damage resulting from a small boat  

suicide attack. 

The TDSI-selected Sparviero hydrofoil was not cost-effective when used to 

randomly patrol the Straits (see Appendix I).  Although this alternative would serve to indicate 

presence and could potentially deter some attacks, this effect was not evaluated in this study. 

Although defeating a suicide boat attack in progress was very difficult, an 

increase in Sensors’ ability to track small boats in the area of interest could give additional 

benefits.  Intent or anomaly detection software could potentially detect trends or aberrant 

behavior by small boats, which could be the precursor to or preparation for an attack.  

Additionally, if SBAs were to become commonplace, being able to back-track to find the port of 

origin for attacking boats could allow resources to be focused in a region that could find terrorist 

bases, thereby halting attacks before they occur. 

 
5.1.3.2 Recommendations 

Due to the threat-specific nature of the defenses required for the SBA scenario 

and the rare occurrence of this type of attack, minimal resources should be dedicated to 

defending against this attack.  Randomly on-loading Sea Marshal escorts on a small number of 

ships transiting the Straits of Malacca would serve to repel hostile boarding attempts, especially 

by pirates, which could also deter future terrorist SBA attempts.  Another use of Sea Marshal 

escorts could be to capture pirates onboard merchant ships, and thereby deter pirate activity and 

attempt to gain intelligence on potential terrorist attacks. 

More robust defense against future SBAs would be possible by installing Sensor 

systems that could track small boats in the area of interest.  Once small boats were being tracked, 

anomaly detection software could be used to attempt to detect hostile activity, either by pirates or 

by terrorists.  Once an area of concentrated hostile activity was discovered, then intelligence 

resources (especially HUMINT) could be focused to prevent future terrorist (or pirate) attacks. 
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5.2 SENSORS SYSTEM 

5.2.1 Conclusions 

In the first place, the study conducted by the Sensors Team indicated that there were 

insufficient current assets in the Straits of Malacca to effectively execute the MDP mission, as 

required.  The “As-Is” search, track, classify, and identification capabilities were severely limited 

to an area that made it impossible to mount an effective response. As a result of this, it was 

determined that the existing “As-Is” architecture did not meet the requirements established for 

the MDP System. 

For the proposed architectures, Alternative 1 provided an important (twofold) increase of 

Time-to-Go-1 (TTG1) compared to the current system, with a net savings over a period of  

ten years, while Alternative 2 also provided a more significant increase in TTG1 (almost 

tenfold), though at a substantially higher cost. 

The physics-based modeling tools employed, Advanced Refractive Effects Prediction 

System (AREPS) and Target Acquisition Weapons Software (TAWS), allowed the  

Sensors Team to analyze sensor capabilities with a high degree of fidelity within the natural 

environment of the Straits of Malacca.  The results of these low-level modeling findings were 

further used to graphically model the deployment of sensor arrangements for accurate 

determination of coverages and subsequent determination of inventory needs. 

The previously described modeling efforts were complemented with extensive research 

of existing (and evolving) technologies.  Based on all of these detailed studies, the following 

conclusions were drawn regarding current and future Sensor System capabilities: 

Microwave Radar:  Microwave radars were determined to be a “ready” solution to 

provide all-weather, continuous coastal surveillance in the Straits of Malacca.  The technology is 

well-established and the relevant expertise is readily available, making it a quick, easy and 

affordable solution to implement a network of coastal surveillance radars.  Although 

environmental limitations (particularly “ducting”) were analyzed, the study indicated that the 

“height-of-the-eye” (height of the antenna) was the primary factor that limited the performance 

of the radar systems.  Tethered aerostats were determined to be cost-effective platforms, 

supported by proven technologies. 
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Particularly, Medium Altitude and Endurance Aerostat Radar (MAEAR) is a mature 

technology.  Operational availability issues, which seriously hampered the effectiveness of these 

systems for many years, were studied, modeled, and determined to be mostly solved.  MAEARs 

were determined to be able to provide the required coverages out to 150 NM and beyond. 

Ducting was determined not to be a critical issue for maritime radar surveillance 

performance.  Although ducting seriously degrades the performance of radars in the  

air-search mode, there is not a corresponding degradation for surface radars.  Ducting could only 

extend the usable ranges for maritime surveillance radars; however, since its occurrence its very 

unpredictable and only available for reduced periods of time, it should not be advisable to use 

those ranges as design parameters. 

Deploying microwave radar installations along the Straits of Malacca would face other 

challenges that were not discussed in this report, such as (1) the electromagnetic interference 

from the high density shipping in the straits that would significantly impact the operation of a 

large network of radar installations, and (2) the vulnerability of static microwave radar 

installations to attacks, particularly attacks coordinated with maritime terrorism. 

High Frequency Surface Wave Radar (HFSWR):  HFSWR was also determined to be 

a mature technology.  Improvements in signal processing techniques (under development) will 

enhance the detection and tracking performance out to the maximum required distances in the 

short term. 

Although the studies showed that the ionosphere seriously affected the 3MHz to 5MHz 

band propagation, degrading its performance at night, the benefit of long range detection 

outweighed the limitations.  Commercial pursuits included improved signal processing 

techniques for tolerance against interference and noise filtering to provide improvement in 

overall detection capability. 

For long-range detection, beyond the 150 NM radius, it was more desirable to use the 

3MHz to 5MHz band.  For midrange surveillance, where range radius did not exceed  

150 NM, the 10MHz to 18MHz band was considered.  These higher frequencies, although more 

highly attenuated, were less susceptible to ionospheric conditions and provided better detection 

capability against smaller targets. 
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The prospect of using the HFSWR to detect surface targets at ranges out to  

200 NM and beyond, working continuously 365 days of the year with low operating cost, was 

encouraging.  However, it was necessary to take into account the decreased performance 

regarding targets of less than 1,000 tons where the sea conditions were not optimal and 

“crowding” occurred in the HF spectrum. 

Electro-Optical/Infrared (EO/IR):  As expected, weather played a critical role in 

performance for EO/IR Systems.  Nevertheless, they were considered to be effective 

complementary augmentation assets to radar, particularly for the classification/ID mission, while 

ineffective as stand-alone detection and tracking systems.  The effectiveness of fixed  

(tower-mounted) EO/IR assets was determined to be limited to their use in surveillance and 

monitoring applications in constrained areas, critical points and infrastructure.  No sensible gain 

was obtained by increasing sensor height (contrast with radar). 

Equatorial weather was relatively consistent and facilitated accurate electro-optical 

system modeling through a reduced “problem space.”  Analysis indicated that a good weather 

maximum distance for detection occurred in the visible spectrum sensors (TV at approximately 

ten NM for small craft).  The best-performing sensors for foul weather were Long Wave Infrared 

(LWIR). 

Automatic Identification System (AIS):  The use of the Automatic Identification 

System (AIS) has been mandated by IMO and enforced by local authorities in the  

Straits of Malacca for over a year now.  The requirement only covers large ships above a certain 

tonnage, though.  Nonetheless, for the purposes of the MDP mission, AIS was determined to be a 

critical augmentation asset for the classification/ID function.  The position accuracy and update 

rate of the information provided by the AIS System were determined to be acceptable for the 

input requirements established.  The only caveat of AIS is that noncooperative vessels (and most 

small craft) are not “seen” by it, so it is not an effective stand-alone system.  AIS base stations 

collocated with radar systems on aerostats extended the (VHF – Line of Sight) coverage 

considerably. 
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5.2.2 Recommendations 

Based on the detailed studies and integrated analysis conducted in association with this 

MDP project, the following specific recommendations were proposed regarding current and 

future sensor systems capabilities: 

 
• As shown, no single sensor can provide the needed capabilities.  Accordingly, a 

multisensor approach should be implemented, exploiting the inherent capabilities 

of the different sensor packages used, to get multiple “looks” of the same COI as 

it moves through the area of regard. 

• In synchronism with the previous idea, a layered approach should also be 

enforced.  Increased demands on the Sensor System (detectability, accuracy, 

update rate, etc.) should be imposed gradually as the distance to critical points 

diminishes. 

• Although commercial-off-the-shelf (COTS) technologies exist today which have 

the ability to meet the specified requirements for both detection and tracking and 

classification and identification, the following areas are worth being developed 

and explored for further improvements in capabilities: 

o While radar was generally regarded as a mature technology, evolving 

applications and advances in signal processing and software improvements 

are still needed, particularly in the HFSWR domain.  Of specific note, 

efforts should also be invested in continuing developments that would 

increase the effective “height-of-the-eye.”  Particularly, high altitude 

(above 65,000 feet) platforms, like the untethered HAEAR Systems 

described in this study, should be monitored as feasible alternatives in the  

near future. 

o Ducting:  Investigate exploitation of evaporation ducts using low or 

variable-height antennas, which could be used beneficially to extend the 

detection range of microwave radars. 

o High Target Density/Mutual Interference:  Investigate the impact of 

electromagnetic interference from high-density vessel traffic on the 

operation of a large network of microwave coastal surveillance radars. 
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o Frequency Diversity:  Investigate the feasibility of combining three 

different types of processing (frequency, polarization, and time) to 

enhance the detection of small surface targets in sea clutter. 

o Development of combined TV/IR EO/IR Systems, which provide fused 

output to maximize detection capabilities for different 

environmental/target conditions. 

o Application of UAV platforms for the MDP mission, particularly using 

EO/IR payloads for the classification/ID function. 

o Extension of the AIS System to include smaller vessels. 

• Continue to develop and explore the use of non-material procedural solutions 

(like enforcing security zones around high-value assets and restricted access to the 

sea lanes) to enhance the operational effectiveness of the Sensor System. 

 
5.3 C3I SYSTEM 

5.3.1 Conclusions 

Based on the detailed studies conducted in association with this MDP project, the 

following conclusions were drawn regarding the C3I System’s capabilities. 

The other groups’ systems represented performance parameter inputs to the  

C3I System.  The C3I System performance was reliant on the contributed raw data at measurable 

levels of performance, linking their functions within the system of systems. Thus, the improved 

performance of the other systems contributed to the improved performance of the C3I System. 

Network Centric Warfare (NCW) Systems with four C2 Centers, and nine fusion centers 

with 13 HUMINT/Intelligence nodes, promised the best performance.  Although this  

C3I alternative resulted in the greatest cost, improvement to the C3I Systems provided  

cost-effective increases in performance when evaluated in the global context of the  

MDP Systems architecture.  Having a communications and computer infrastructure that enabled 

a Common Operational Picture (COP) and increasing the number of Data Fusion Centers drove 

personnel as well as other system costs.  Mission critical operating personnel accounted for 

roughly 85% to 99% of the total operating cost (TOC) for the notional C3I System alternatives. 
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NCW aided in the development and maintenance of COPs and Common Intelligence 

Pictures (CIPs), thereby creating situational awareness.  Shared information, through the COP 

and CIP, enabled informed and timely decisions in the operational environment of the  

Malacca Straits. 

The primary challenge at the onset of development was deriving a measure of 

performance that would serve as a guide for the modeling process.  After discussions with 

stakeholders, it was determined that the U.S. Coast Guard Maritime Intelligence Fusion Center 

Pacific Area at Alameda, California performed similar functions and provided an acceptably 

analogous model, from which metrics could be derived based on proven operational capability.  

Research revealed that queuing theory could serve as an appropriate framework around which a 

model of a C2 network could be constructed.1  Using common queuing system characteristics to 

outline the theory of C2 processes was straightforward.  However, given the overarching goal of 

creating a C2 Center to monitor maritime traffic, a more detailed description of actual maritime 

C2 practices was needed to determine appropriate MOEs. 

 
5.3.2 Recommendations 

Based on the detailed studies and integrated analysis conducted in association with this 

MDP project, the following recommendations were proposed regarding the  

C3I System’s capabilities. 

• Invest in a Network Centric Communications System. 

Aggregating information (i.e., data fusion), and then making it available through a COP 

was the critical enabler to the C3I System’s capability.  This improvement could only be 

accomplished through a robust, agile, and adaptable communications network.  The 

communications network provided a “pipeline” for raw sensor data to be sent to the 

C2/Intelligence Centers. 

• Invest in HUMINT. 

Detecting a threat began with advanced planning, understanding an adversary’s 

intentions, and observing a “trigger event.”  Technology could increase the quantity, accuracy 

                                                 
1 Ralph S. Klingbeil, and Keith M. Sullivan, “A Proposed Framework for Network-Centric Maritime Warfare 

Analysis,” NUWC-NPT Technical Report, 11, (15 July 2003):  p. 447. 
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(e.g., vector information), and speed of information.  However, highly trained and embedded 

“eyeballs and intellect” still proved to be a major asset in intelligence collection and exploitation. 

• Divide AOR into “data fusion cell” regions. 

Although the geographic region was constrained, the density of contacts in the  

Straits of Malacca made this problem a resolution issue.  A single C2/Intelligence Center had 

only a handful of analysts to devote to a large AOR.  Dividing the AOR into regions, and 

assigning those regions to data fusion cells, allowed the same number of analysts to concentrate 

on a smaller area; increasing awareness and reducing analysis time while providing a higher 

confidence factor.  Within this recommendation is the core assertion that data fusion or 

aggregating information is an essential function of C3I Systems. 

• Risk Assessment Tools. 

Existing C2 Centers had no mission capability to assess the consequence of an attack.  

Creating a real-time risk assessment tool should be the focus of further research within  

C2 design. 

Bringing together sensors, intelligence, and communications was a complex process with 

many unknowns.  The use of systems engineering design processes to develop a comprehensive 

solution enabled adaptation of this solution to the changing requirements of MDP operations. 

 
5.4 FORCE SYSTEM 

5.4.1 Conclusions 

One of the most significant findings to come out of the Force study was the realization 

that the only effective counter to a SBA was a Point Defense System.  This Point Defense 

System could be employed onboard the target vessel, or it could be an escort vessel, but the 

security force had to be near the target to offer effective protection.  The attempt to actively 

patrol the Straits would take more than 45 patrol craft, operating at all times, to maintain the 

minimum response time needed for visual engagement ranges.  The added benefits of having a 

visible force in place at all times might outweigh the phenomenal costs associated with this type 

of employment pattern; however, this deterrent factor was not considered in this model, and 

therefore was not evaluated. 



 287

Another major finding was that the Sea Marshals currently being employed by the 

Singapore Port System were effective and should be improved on for even better performance.  

The existing capabilities seemed to be adequate for the current threat level, however, if hostilities 

and attack attempts began to rise, additional forces would be needed in theater.  If this were to 

occur, the Force Group’s findings would lead to the recommendation of using a harbor patrol 

boat to act as both a deterrent factor, as well as an engagement-capable platform. 

Finally, the Force Group’s studies led to the recommendation of using helicopters to 

transport the inspection teams out from a centralized staging location for all WMD inspections.  

This allowed for the use of existing infrastructure like barracks and support facilities already in 

place in Singapore.  This option also allowed for moderating the number of teams on call, based 

on traffic patterns in the Straits, as well as desired inspection levels. 

 
5.4.2 Recommendations 

The major recommendations to come out of the Force Group’s study was to implement 

some style of point defense (either active or passive) to counter the SBA threat, maintain the 

current Sea Marshal forces to counter SAW threats, and increase readiness to include  

helicopter-lifted inspection teams out to suspect WMD vessels.  For the SBA threat, Sea Marshal 

escorts on ships transiting the Straits of Malacca should be an effective active defense, while 

blast-resistant hull coatings showed initial promise as a passive defense.  For the SAW threat, 

one improvement over existing capabilities would be to increase the level of training and 

armament of the Sea Marshals.  Significant improvement in the SAW threat scenario would be 

gained by implementing a method to detect hostile intent further from a critical area, either by 

speed zones, earlier boarding of Sea Marshals, staging area, etc.  Detection of hostile intent at 

least ten NM from port would allow the Rapid Response Force to be effective in assisting the 

Sea Marshal team in retaking a SAW vessel. 

 
5.5 LAND INSPECTION SYSTEM 

5.5.1 Conclusions 

The existing system used to inspect cargo containers was found to be inadequate in 

detecting WMDs or attempts to smuggle materials used for such weapons.  This was primarily 

due to the tremendous volume of containers passing through a given port.  The lack of dedicated 
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resources also limited the number of containers that could be inspected.  Inadequacies were also 

identified in sensor detection capabilities.  There was a lack of detectors that could address 

shielding concerns.  Chemical and biological weapons that were sealed properly would not be 

detected until after an attack has occurred. 

Delay costs due to container inspection, especially because of false alarms, would greatly 

influence the decision to implement an inspection regime.  Dedicated resources would alleviate 

delays and minimize the impact of false alarms. 

Modeling analysis showed that passive sensor probability of detection drove the system 

and was instrumental in identifying suspect containers as they moved through the port 

infrastructure.  The false alarms associated with passive detectors also impacted the delay cost of 

containers.  The best architecture performance was achieved through a layered defense of  

Port Centric (Alternative 1) and Trusted Agents (Alternative 2). 

Employing effective supply chain security measures would reduce the delay cost by 

allowing cargo to flow unimpeded from manufacturer to shipper.  Also, by increasing security 

measures across the supply chain, it would act to deter illicit trade, which might result in lower 

system costs. 

 
5.5.2 Recommendations 

Investment in passive sensor technologies would help maintain a constant flow of 

commerce that would be slowed down by intrusive, active inspections.  Also, continued 

development of sensors with better penetration capabilities would help prevent harmful materials 

and potential WMDs from being placed into containers.  In the existing system, only moderate 

levels of shielding would permit successful passage of WMDs through the supply chain.  When 

active search was required, a method to decrease the amount of time it would take to actively 

search a container could minimize delay cost. 

The number of inspection teams should be increased, requiring more inspectors in 

domestic and international ports.  Also, countries not already using the Customs-Trade 

Partnership Against Terrorism (C-TPAT) would benefit from initiating the process.  The 

program would require validation once certification had been granted.  If the security measures 

were not tested, success could not be measured or a return on investment determined.  The large 



 289

number of companies and personnel involved made the supply chain very vulnerable, since it 

could only be as strong as its weakest link.  Strengthening each area throughout the supply chain 

would require incentives to industry to comply with costly, but necessary, standards. 

 
5.6 SEA INSPECTION SYSTEM 

5.6.1 Conclusions 

One of the key insights was that the significant delay costs incurred on shipping made 

random inspections at sea inefficient.  However, if C2 elements could get more data from the 

AIS, a better evaluation of each ship could be made, and in turn, inspection teams could be used 

more efficiently.  Also, the deterrence factor of having the boarding teams could possibly justify 

their cost.  Another factor that prevented the efficient use of inspection teams was the stacking 

configuration of containers onboard ships.  Unless the container was on the end or somehow had 

enough room to access the container through the doors, inspection could only take place from the 

outside.  This greatly limited an inspection team in the at-sea environment. 

The current technology available for the handheld sensors used by the boarding teams 

was very costly.  Handheld sensor technology had not advanced enough to be able to detect 

radiation sources with even a small amount of shielding from outside of the container.  Also, for 

chemical and biological agents the technology was very poor in regard to contained agents.  

Therefore, the probability of detection for these sensors did not justify their cost.  The use of 

“backpack” or other slim style sensor devices that would fit between containers and lowered 

down the stack was key to being able to detect hazardous material.  Therefore, handheld sensor 

technology needed to be further developed. 

The number of teams per shift had a significant effect on the delay cost.  For  

Alternative 2, this happened to be the biggest factor.  In order to reduce delay costs in shipping, 

decision makers must make sure they have the appropriate manning.  When using too few 

inspection teams the delay costs become very large.  The greatest driver on delay cost for 

Alternative 1 was the probability of random inspections.  If random inspections were made 

without intelligence that would narrow down the number of ships, the inspection teams became 

overloaded and delay costs climbed.  Therefore, intelligence information for decision makers 

was a key factor for reducing the total number of inspections. 
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5.6.2 Recommendations 

Continued development of the sensor technologies to increase the probability of detection 

would make the at-sea inspections more efficient and less costly in terms of delay cost.  Another 

driver of the high delay cost was inspection team manning—increasing the number of teams per 

shift would minimize the delay cost. 

The selection process for the boarding team inspections required an efficient algorithm to 

select ships that should be inspected.  The goal was to minimize the number of “good” ship 

inspections and inspect more “suspicious” vessels.  To accomplish this, an algorithm should be 

developed to incorporate the AIS data into the inspection selection process.  Simultaneously, the 

AIS data should be expanded to give decision makers more data for detailed analysis. 

Finally, the Smart container devices would be excellent tools for shipping.  The sensor 

mapping capabilities inherent in some of these devices was the key to localizing containers that 

had either been broken into or contained some type of radiological device.  Smart container 

device technology should continue to be developed.  Many of the devices the sea inspection team 

researched had the capability to add extra sensors for added security.  These would, of course, 

use the same technology of the handheld sensor and should be more thoroughly developed  

as well. 

Overall, the capabilities of any “At-Sea” Inspection System greatly depend on the sensors 

used for detection of chemical, biological, radiological, nuclear, or explosive material.  Existing 

sensor technology would only detect chemical and biological agents if there were residue or 

spillage present.  For explosive devices the technology that the Sea Inspection Group found was 

greatly dependent on the procedures used for taking samples.  Newer, active interrogation-type 

technologies for explosive detection were present, but not developed enough for  

at-sea conditions.  Sensor technology for radiological sources was very advanced, but still easily 

susceptible to defeat by shielding inside of the container.  Without technology advances for each 

of these sensor technologies, Sea Inspection Systems could cause large delays in shipping and 

leave shipping susceptible and unprotected. 
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APPENDIX A:  SEA 7 COHORT TASKING MEMO 
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APPENDIX B:  SENSORS SYSTEM GROUP OBJECTIVE HIERARCHY 
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APPENDIX C:  FORCE SYSTEM GROUP OBJECTIVE HIERARCHY 
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DEPLOY COMMITSTAGE RECOVER

 

Figure 142.  Force Objective Hierarchy Top Level Functions 
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Figure 143.  Stage Function Hierarchy 
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Figure 144.  Deploy Function Hierarchy 
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Figure 145.  Commit Function Hierarchy 

 
 
 



 300

Recover

Recall Redirect

Return Reaction 
Force to Staging 

Area

Re-Allocate 
Reaction Force to 

New Target

Minimize 
Equipment Loss

Minimize Time to 
Redirect

Maximize Capability 
to Re-allocate

Minimize Time to 
Recall

Average Time to 
Recall

% of Equipment 
Lost per Mission

Average Time to 
Redirect

% of Personnel or 
Equip “out of 

service”

 
Figure 146.  Recover Function Hierarchy 
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APPENDIX D:  LAND SYSTEM GROUP OBJECTIVE HIERARCHY 
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Figure 147.  Search Function 
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Figure 148.  Detect Function 
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LIS OBJECTIVE HIERARCHY
LOCATE FUNCTION
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Figure 149.  Locate Function 
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LIS OBJECTIVE HIERARCHY
IDENTIFY FUNCTION
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Figure 150.  Identify Function 
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LIS OBJECTIVE HIERARCHY
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Figure 151.  Communicate Function 
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APPENDIX E:  SEA INSPECTION SYSTEM GROUP OBJECTIVE 
HIERARCHY 

 
Figure 152.  Search Function 
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Figure 153.  Detect Function 

 
 



 308

 
Figure 154.  Locate Function 
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Figure 155.  Identify Function 
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Figure 156.  Communicate Function 
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APPENDIX F:  SONAR FEASIBILITY STUDY 
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APPENDIX G:  SENSOR SYSTEM GROUP “AS-IS” SURVEY 
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