

NAVAL AVIATION ENTERPRISE

SINGLE PROCESS OWNER

A WARFIGHTING Partnership

SINGLE FLEET DRIVEN MEASURE OF SUCCESS:

ALD CDAFT AND CADDLEDC DEADY FOD TACKING AT DEDUCED COST

P-8A MMA Configuration

P-8A MMA Acquisition Snapshot

Component Advanced Development

Key Lessons Learned

- Lack of adequate program maturity at MS B
 - Ill defined requirements
 - Lack of robust requirements management
 - Risky technical approach
- Failure to involve independent technical community at program initiation
- Lack of early independent cost analysis (AIR-4.2) in POM/PR
 - III defined CARD
 - O&S costs not well understood
 - Failure to budget for long lead items
 - Test program correction of deficiencies not adequately planned for
- Lack of technical insight & risk management process
 - Lack of automated SE tools
 - Inadequate use of metrics
 - Lack of appropriate technical expertise
- Government acting as integrator by default
- Inadequate program technical staff and future staffing plans
- Lack of horizontal/vertical SE integration (i.e., Battlespace Engineering, Aviation/Ship integration)
- Overly optimistic Acq/PM strategy/schedule
- Comprehensive use of EVM and TPMs

Back-Up

DAU Program Start-up Workshop

- Set the foundation for SDD success
- Many DoD programs struggle or fail due in part to:
 - Lack of common Vision and plan for success
 - Lack of supportive environment
 - Disagreements over program baseline
- Foster sense of trust, teaming, and honest discussions
- Produced <u>useful</u> Workshop products
- Educated Industry on Govt's Warfighter Requirements
- Educated Government on Industry "Best Practices"

Key Accomplishment: Taking the time to have Navy and Boeing Team Lead counterparts sit down with one-another in a relaxed forum to discuss broad based and team focused challenges.

P-8A MMA Manufacturing Flow

Spirit AeroSystems Wichita, Kansas MMA Fuselage Boeing Commercial Airplanes Renton, Washington MMA wings, empennage, aircraft assembly, engine installations Boeing Integrated Defense Systems Seattle, Washington Mission systems/I&CO

P-8A MMA Acquisition Strategy

Activity Name		Y 2	00	0	FY 200			001			FY 20		Y 2002		FY 2003			F	(2	004		F	Y 20	005	5	F	Y 2	00	6	F	Y:	200	7		FY 2	200	8		FY 2009				FY 2010			F	FY 2011		
Activity Name	1	2	3	4	1		2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	1
MMA																																																	
	M	S-0)					CA	٩D	DF	2							M	IS-	в							С	0IP	Г			DF	RR						IF	R			MS	S-C					T
Reviews																												4	L				\triangle							Δ				Δ					T
PMR-PEO(A)																1	1												Δ	Δ	Δ	Δ	`							1									t
PMR-Boeing																										•			Δ	Δ	. Δ	Δ	7																Ī
					-			_				(CAE)		-	-	-	S			_	_	_			_						 Stage						AF	-1			RIP & AP				RIP#2 AP-3		+
Contract Awards.																																Ť		0						Ċ	>		1	$ \overline{C}$	>		C	⇒	T
Quantities																				3														4										6			5	8	T
CE		7	_		ĊE	Ē					∇																																						T
CAD						Γ							CAE	ב כ			Ļ.	J		∇																													T
SDD																					-				Sys	ter	n D	eve	elop	me	ent	& I	Den	non	stra	atio	n 🛛		÷		¢.	-			ė.		_	Ļ.	÷
Reviews																															Δ																		T
Deliveries																				SR	२	IBF	2 5	SFR	2	PDF	२			0	DF	۲.																	T
Stage I																1	1																							1	1	1	1						t
Stage 2						1																											1					1								2	1	1	t
T&E						Ť																											1					1				-	-	1	1		T&E	E	
P&D					1	1										1	1																							1	1							P&	,D

- Structured on an evolutionary systems replacement approach
 - Established sound program foundation based on an iterative requirements definition process with warfighters and industry, thorough risk analysis of competing concepts, and detailed cost analysis of evolving concepts
 - Provides a transformational product in minimal time to users while promoting evolutionary growth in capabilities through spiral development
- Defined in a capstone document that summarizes individual statutory and regulatory plans in order to communicate to leadership the total discipline approach to acquiring a system that recapitalizes the capabilities now provided by the P-3C

Systems Engineering Process Rigor

Naval Systems Engineering Process

- Documented in Naval Systems Engineering Guide
- Uses Industry Standard EIA-632 as a framework, but incorporates elements of MIL-STD-499B, IEEE-1220, ISO15288
- Identifies 13 Processes and 33 Sub-processes for engineering a system
- Provides information regarding inputs, outputs, entry criteria, exit criteria, references, agents, tools and methods that Navy engineering teams may use to accomplish each Sub-process.

Technical Review Timeline

Integration of Requirements Refinement, Concept Definition, and Cost Analysis

P-8A MMA Requirements Evolution

CAD Phase Takeaways

Schedule to Milestone B

Road to Milestone B:

- Source Selection for SDD
- Concept Development and Risk analysis/reduction
- Requirements definition, refinement, & validation (Pre-MS B SRRs w/each competitor)
- Concept Cost Analysis

Effective integration of discrete activities, orchestrated to execute in a concurrent, effective manner

SDD Systems Engineering Process and Major Products

Assessment and Balance of Technical Risk, Cost, and Schedule

P-8A MMA System Preliminary Design Baseline Specification Tree (CI/CSCI) in DOORS

Key Processes

- Systems Engineering Plans and Process (SEP and SEMP)
- Configuration Management Process
- Technology Readiness Assessment (TRA) Process
- Trade Study Process
- Risk and Opportunity Management Process
- Technical Performance Measures (TPMs) Process
- Human Systems Integration Plan
- Electromagnetic Environmental Effects (EEE) Plans
- Contractor Logistics Support (CLS) Plan
- System Security Plans
- System Safety Plans
- Interface Control and Interface Management Plans
- Producibility
- Quality System Plan

Technology Readiness Assessment

- Conducted during CAD
 - Independent assessment panel consisting of members from the Naval Air Systems Command (NAVAIR), Office of Naval Research (ONR), and academia (John Hopkins University Applied Physics Laboratory (JHU-APL)).
- TRA identified four Critical Technology Elements (CTEs) through a comprehensive review of the MMA program work breakdown structure (WBS) reflecting the Boeing CAD phase configuration baseline prior to SDD source selection
 - 1. Integrated Sonobuoy Launcher System
 - 2. Electronic Support Measures (ESM) system
 - 3. Data Fusion
 - 4. Acoustics Subsystem
- None of the P-8A CTE impact ability to meet program Key Performance Parameters (KPP)

Risk Management Process

- Fully integrated RMB with Industry
- Definition and implementation of process
- Facilitated by Boeing IDE

Opportunity Management The Sister of Risk

Opportunities

HIGH (Gold) - Major benefit likely. Priority management attention required.

MEDIUM (Silver) - Some benefit. Additional management attention may be required.

LOW (Bronze) - Minimum benefit. Minimum oversight needed to pursue opportunity.

O P P O R T U N I T Y

IDENTIFY Opportunity

ASSESS

- Likelihood & Consequence
- 5x5 Opportunity Assessment Matrix

PLAN

- <u>Capture</u>, Transfer, <u>Ignore</u>, or <u>Pursue</u> the *Opportunity*
- Establish *Opportunity* events, Responsibilities and Schedules

CONTROL

- Monitor Actions, Correct Deviations, and Re-plan as Appropriate
- Promote or Demote *Opportunity* as Appropriate

COMMUNICATE

• Populate Database, Keep it Current, and Make it Accessible to All

TPMS (Status as of 14Jul06)

Missier Deef	nmi			_			1.20	0 🔻 🔶	1,356	
Mission Perf./ Radius of Action		4 405		1.005		4 6	1,30		1,330	
		1,135		1,200		1,265		1,330		1,395
A/C Operating Weight	KIb	112,648		111,448		110,248	109,660 🔻	109,078	▼ 10	107,878
Association Description		112,040	, 	111,440				103,070		107,070
Aerodynamic Drag	counts	383.9		377.9	374.9	7 2.6	371 368.9	365.9	362.9	359.9
		383.9		377.9	374.9	3/1.9				309.5
Operational Availability	%						77.			
		50	55	60	65	70	75	80	85	90
Electrical Power Util	kVA							V (
		243	226	209	192	175	158	140	124	107
ECS Thermal Utilization	kW								71.8 💙	71.8
		97		90		83		76		69
MCDS CPU Utilization(OMI)	% of target			65						
		70	65	60	55	50	45	40	35	30
MCDS Lan Utilization	% of target									7/7
		55	50	45	40	35	28	21	14	7
MCDS Memory Utilization	% of target								19 文	19
		55	50	45	40	35	30	25	20	1
MCDS Storage Utilization	% of target								53 💙 53	
		120		100	90	8	0	60		40
EMI (cosite margin)	counts								11 🔷	HOC = (
		33	30	27	24	21	18	15	12	ç
Operations & Support Cost	normalized						8	3 🔻	7 7	
		1.10		1.0	.95	.90	.85	.80	.75	.70
Production Unit Cost	04 \$ in Mil						.91 🔶	▼88	}	
		1.06	1.03	1.0	.97	.94	.91	.88	.85	.82
Interoperability (# of PBSS	ERs)				54 💙	54				
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-	9	24	39	54	69	84	99	114	129
Worst Case PBS Survivabili	% Sur					1.03			1.1 🔻	
		.96	.98	1.0	1.02	1.04	1.06	1.08	1.10	1.12
Vulnerability	Av %								.52 🏹 .52	
, and ability		1.2	1.1	1	.9	.8	.7	.6	.5	
Fusion Track Accuracy	Heading						under revi		-	-
I USION MACCUIALY	ч Ч	1.2	1.1	1	.9	.8	.7	.6	.5	
C31SR Initial On Station Alt						36,402		.5		
Constraintian On Station Alt	Ft	15,000		25,000	30,000	35,402	- 30,043	45,000		55,000
A 014/14/14/14/14/14/14/14/14/14/14/14/14/1	I	-		23,000	30,000	33,000		40,000		55,000
ASW Weapon Loadout		In work								

KPPs Range Ao Interop Alt

ASW wt

SRR Lessons Learned

- Joint team attitude to address issues openly and overtly and proactively run actions to ground as a high priority during and after review will continue to serve program well. Critique acceptance and addressal will assist in successful execution and maintains credibility
- System Specification had moderate instability post-SRR due to Segment SRRs and the decomposition and allocation of requirements as the functional baseline was established (expected in the SE iterative loop, level of System Spec stability a good indicator of solid CAD phase and SRR)
- A robust requirements management tool (i.e., DOORS) with clear, clean links from top-level (CDD/Performance) requirements down through all levels of the specification tree to detailed requirements (at PDR/CDR) is essential

SFR Lessons Learned

- Derived Mission Functions and associated architectural flow needs to be kept alive under change control as a living part of the design baseline
- Functions and associated allocations must be used by product teams to identify and reconcile gaps in requirements
- Product team System Use Cases and associated functions must be linked to Transactional Mission Use Cases to identify and reconcile functional gaps (Software functional areas in particular)
- Trade Studies and Design Changes must consider the specification tree from top to bottom including the linked functions (DOORS extracts used at CCBs)
- SFR preparation improved intra and cross team communication
- SFR preparation led to customer 'buy in' on technical approach and maturity
- SFR preparation led to an exponential increase in the number of System Level Requirements experts, and Mission Usage experts

PDR Lessons Learned

- EVM implementation and team utilization is a continual study and refinement process to ensure proper CAM focus and Team Lead expectations are understood
- IDE is a productivity multiplier for team communications and insight into program status
- Value of design reviews is the build up and incremental review preparation process leading to the early identification of risks and issues to program execution
- Government teams expend considerable energy working processes and communications with the Prime contractor; the same needs to occur between the Prime and subcontractors
- Efficient budget execution is the best defense for budget development and prioritization

A Quality Team

Transition into SDD

- Contract award 14 June 2004
 - Required completion of Source Selection prior to Milestone B
 - Approval from MDA to enter SDD through the Milestone B DAB
 - Approval of Acquisition Strategy
 - Determination of fully funded program based on CAIG assessment
 - Approval of Acquisition Program Baseline
- Teaming with Industry Program Start-up Workshop

Program Best Practices for SDD

- Management by Metrics
 - Risk Management Process
 - Opportunity Management
 - Technical Performance Measurement
 - Earned Value Management

Earned Value Management Reporting Via Tier IV IMS

Integrated Baseline Review

Purpose – Achieve mutual understanding of baseline plan and relationship to underlying EVMS and processes during contract execution

Objectives –

Evaluate the performance measurement baseline to ensure:

- Entire technical scope of work captured
- Sufficient contract budget and schedule
- Budget properly allocated at the right level
- Resources adequately assigned
- Proper implementation of management processes
- Gain insight into cost and schedule risk areas associated with contract
- Develop confidence in the program's operating plans