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• OBJECTIVE:  TO PASS ON WHAT I KNOW on SIMULATION

• CAREER FOCUS: 

HOW TO USE COMPUTERS TO DO HELP MAKE BETTER DECISIONS

• PRACTICE USED:

User-driven COLLABORATION to commercialize technology 

• EXPERIENCE:
– Private sector: 1993-2008 MSC Software, Decision Incite

– Non-profit:  1989-1993 NCMS

– Government:   

• Hill – Senate Majority leader staff, 1987-1989

• U.S. Navy 

– Active (5 yrs) - Qualified Nuclear Engineer/SWO, CGN Command 
Duty Officer, Wartime OOD, Nuclear Training Officer, PreCom CRA

– Reserve Officer on CNO staff (15 yrs - N4, OP611)

– SSBN Acquisition (Booz, Allen & Hamilton - 3 yrs)

– Presently with Navy Surface Warfare Center Carderock

• EDUCATION: Nuclear Engineering, MIT, 1978 

Gene Allen - Introduction



GEA Background in

Development of Computer Simulation Technology

1978-1986 1987-1992 1992-1997 1996-2002 2002-

Engineering     DICE DARPA Initiative in RRM RDCS Stochastics
Foundation       Concurrent Engineering          Rapid Response Mfg       Robust Design Compute System

Newport GEAE, GECRD Ford, GM, TI         Boeing- MSC, IBM,
News, EB, CMU, RPI, WVU P&W, Boeing,      Rocketdyne Engineous,
Westghouse Kodak Ford Ontonix, 
GE Tech Suppliers     MSC Decision Incite

Nuclear DARPA       NIST DARPA
Navy



Decisions Result in Actions



Bad Decisions Result 
when all possibilities 

are not taken into account 

BEWARE OF OUTLIERS –
THEY ARE NOT 
'JUST ANOMALIES' 



Based On Understanding:
- All possible results
- BEFORE taking action 

Good Decisions 



Understanding from Knowledge

Knowledge is based on
Education & Experience



Experience

YEARSInitial Design

Eliminate
Failure Modes

Engineering

Demonstration

73%

15 %

10 %

2 %

Single
Engine
Certification

CO
ST

• Takes Time and Money
– Von Braun had hundreds of V2 failures before the Saturn V

– Graph for Saturn V rocket engines: $2.2 Billion, 9 years

RED Represents Learning from Experience

Source: Rocketdyne



Engineering before Computers

Successful Engineering Cultures

• U.S. Aerospace Industry
• Produced: U-2, X-15, Saturn V, C-130, B-52

• U.S. Navy Nuclear Program
• Decades of dynamic operations of    
hundreds of nuclear power plants without
casualties

• Combined Theory and Practice



Tools Engineers use to help do better 
engineering:

• Slide Rule

• Calculator

Moore’s Law has provided an unprecedented 
capability 

• “Commodity” computing

• CPU/hr costs in ¢

• We have not yet taken 
advantage of this

http://upload.wikimedia.org/wikipedia/commons/0/00/Transistor_Count_and_Moore%27s_Law_-_2008.svg�


Simulation can Accelerate Experience
• Understand How Products/Processes Function
• New Processes to Forecast Risk

– Complexity used as metric.
• Identify:

– Major factors driving functionality or contributing to potential failure.
– Combinations of factors that lead to unexpected situations (outliers) 

that lead to failures.
– Trends towards unstable situations.

• These Abilities Exist Today!
– Due to advances in compute capability

Presenter
Presentation Notes
Advances in computer capability have enabled variability and uncertainty to be taken into account in simulation and data analysis. Most of what we are taught in college is deterministic, that there is one correct answer.  While it is often necessary to simplify problems to be able to understand fundamental physics, the variability that exists in the real world, precludes single answers.  Solutions in the real world should take variability into account, minimize assumptions, and maximize the number of variables to generate multiple solutions.  This can be done using advanced Monte Carlo techniques.  The resulting multi-dimensional "clouds" of solutions can then be quickly compared to identify the relative importance of the variables in a problem, providing understanding of cause and effect and insight for improvement.  Combinations of variables that generate non-intuitive results can also be identified.  These outliers can represent improvements or problems; they provide a means to learn through simulation vice experience.  




Commodity Computing can be used to 
provide tools to simulate reality to:

• Compliment experience
• Learn what we do not know

Tools need to be:
• Accurate

o Results readily verified 
o Independent results replication 

• Easy to Use
• Interoperable



First  
assumption

Second
Assumption

Optimum?

Reality - Each Point:
• May be the result of a test, or an analysis.
• Is the result of different combinations of variables.

Improved Understanding



EXPERIENCE – Forms Engineering 
Knowledge Base



Analysis vs. Simulation
One run  vs.   Many runs

Understanding = Knowing the topology and structure of the data cloud.

Single
computer
run =
Analysis

Multiple
computer
runs =
Simulation



Simulation must address Variation 

MATERIAL CHARACTERISTIC VARIATION

Metallic Rupture 8-15%
Buckling 14%

Carbon Fiber Rupture 10-17%
Screw, Rivet, Welding Rupture 8%
Bonding Adhesive strength 12-16%

Metal/metal 8-13%
Honeycomb Tension 16%

Shear, compression 10%
Face wrinkling 8%

Inserts Axial loading 12%
Thermal protection  (AQ60) In-plane tension 12-24%

Source: Klein, M., Schueller, G.I., et.al.,Probabilistic Approach to Structural Factors of Safety in Aerospace, 
Proceedings of the CNES Spacecraft Structures and Mechanical Testing Conference, Paris, June 1994,   
Cepadues Edition, Toulouse, 1994.

• Material Variation Examples

• Similar Variation with Geometry
• More Variation with Forces

It’s the Way the World Is



x1

x2

x3
•
•
•

Simulation from 
an Analysis Model

Results Data
Representing Reality

PROCESS STEPS

1. Start with a product or process computer analysis model
2. Replace all discreet inputs with ranges and distributions
3. Run model ≈ 100 + times randomly changing all variables
4. Result is a Multi-dimensional data cloud that represents reality

100 +
runs

2.1. 3.
4.

Presenter
Presentation Notes
Stochastic Simulation Process:
Start by identifying the engineering tolerances and scatter in the input/design variables.
Determine the distribution type and variability range for each variable.
Establish the Engineering Analysis process (based on Monte Carlo Simulation).
This involves using established computer engineering software tools, such as finite element solvers.
Run approximately 100 analyses, randomly varying the values of the variables.
A response cloud of results is generated that captures the physics of the event.
 Statistical treatment of the clouds, instead of replacing them with surrogate models, yields unprecedented levels of knowledge, insight and, most importantly, CONFIDENCE in the simulation.

The cost of Stochastic Simulation is independent of the number of variables.




Simulation Results to Information

Results Data
Representing Reality

Most Relevant
Factors Report

Insight Map

Outliers

Presenter
Presentation Notes
Stochastic Simulation Process:
Start by identifying the engineering tolerances and scatter in the input/design variables.
Determine the distribution type and variability range for each variable.
Establish the Engineering Analysis process (based on Monte Carlo Simulation).
This involves using established computer engineering software tools, such as finite element solvers.
Run approximately 100 analyses, randomly varying the values of the variables.
A response cloud of results is generated that captures the physics of the event.
 Statistical treatment of the clouds, instead of replacing them with surrogate models, yields unprecedented levels of knowledge, insight and, most importantly, CONFIDENCE in the simulation.

The cost of Stochastic Simulation is independent of the number of variables.




The CHALLENGE

PREVENT FAILURES
Of Complex Systems 
& Programs 

We Don’t Know 
What We 
Don’t Know



To LEARN WHAT WE DO NOT KNOW 

We Need To 

MINIMIZE  ASSUMPTIONS

Common Foundation Assumptions:
• Continuity
• Mathematical Constructs

• Gödel’s incompleteness theorems: 
• Any computable axiomatic system that is consistent, cannot be 

complete; 

• The consistency of the axioms cannot be proved within the system. 

• General Over-Simplifications



This is NOT true

Assumption that Violates Physics
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Model Simulation Data System Map

From Analysis Models to Knowledge

The System Map shows:

• Relationships between parameters

• Complexity levels

• Outliers

http://images.google.com/imgres?imgurl=http://www.atlantic.drdc-rddc.gc.ca/factsheets/images/07_issmm_05.jpg&imgrefurl=http://www.atlantic.drdc-rddc.gc.ca/factsheets/07_issmm_e.html&usg=__H0pterxV1g-KXTPDDAnej-4LNuo=&h=244&w=400&sz=28&hl=en&start=18&sig2=2tR6EuuUb1YR0kGxgb9ZJg&um=1&tbnid=le0uGY8iDys6_M:&tbnh=76&tbnw=124&ei=lQJkSeiRMsugtwflmYyNCQ&prev=/images%3Fq%3DShip%2BFinite%2Belement%2Bmodel%2Bpicture%26ndsp%3D21%26um%3D1%26hl%3Den%26sa%3DN�
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In-Flight Structural 
Health Monitoring

From Raw Data to Knowledge



Complexity is a system attribute which reflects how information 
is organized and flows.  Complexity can be measured and 
managed.

Variable 1 Variable 2 Variable 3 Variable 4 Variable 5 Variable 6 Variable 7 Variable 8 Variable 9 Variable 10 Variable 11 Variable 12 Variable 13 Variable 14 

measurement 1 2.7202888e+003 7.4722596e+001 3.3732330e+001 1.0184837e+002 9.0967402e+001 1.3025740e+000 5.8491109e+002 2.0883948e+003 5.7746246e+002 2.0745664e+003 7.7027814e+001 4.7343477e+001 9.3212680e+001 1.4980173e+000
measurement 2 2.7202888e+003 7.4722596e+001 3.3732330e+001 1.0184837e+002 9.0967402e+001 1.3025740e+000 5.8491109e+002 2.0883948e+003 5.7746246e+002 2.0745664e+003 7.7027814e+001 4.7343477e+001 9.3212680e+001 1.4980173e+000
measurement 3 2.7472810e+003 7.5254340e+001 3.2769872e+001 9.9563658e+001 9.0359902e+001 1.2958549e+000 5.7800692e+002 2.1200529e+003 5.7044970e+002 2.1071991e+003 7.7609260e+001 4.4859857e+001 9.2513456e+001 1.4691249e+000
.
.
measurement 498 2.6963742e+003 7.4267584e+001 3.2300819e+001 9.9709857e+001 9.0880438e+001 1.2846033e+000 6.0231885e+002 2.0989936e+003 5.9500231e+002 2.0844376e+003 7.6470372e+001 4.7246972e+001 9.2445500e+001 1.4934932e+000
measurement 499 2.7161385e+003 7.4648496e+001 3.1284797e+001 9.7180980e+001 8.9747118e+001 1.2855390e+000 5.7932586e+002 2.1128403e+003 5.7174746e+002 2.1006561e+003 7.7008998e+001 4.2349411e+001 9.3013352e+001 1.4359544e+000
measurement 500 2.6995332e+003 7.5451365e+001 3.4156452e+001 1.0258146e+002 9.0543986e+001 1.3110797e+000 5.7014063e+002 2.0590153e+003 5.6257964e+002 2.0467060e+003 7.7843365e+001 4.4955206e+001 9.2165592e+001 1.4766825e+000 

Complexity and System Maps

A system can be represented as:
• Nodes with each node representing a

characteristic of the system, and 
• Links between nodes representing the 

relationships between characteristics.

System maps are built on analysis models or raw 
user data.  

• Links are established automatically  
using Ontospace software.

The Complexity of a system is based on the number 
and nature of the nodes and links.
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Complexity x Uncertainty = Fragility
Applies to product and enterprise:

Cbusiness model

x 
Uenvironment

= 
Fenterprise

Turbulent 
economy

Complex 
Business Model

Manager

Conventional Risk
Management Tool

Enterprise

Cdesign x (Umanufacturing + Uenvironment)
= Fproduct



Managing Complexity

As complexity increases, the cost 
of managing the complexity increases 
at an exponential rate until the system
finally collapses. 

Thomas Frey, The da Vinci Institute

• More complex systems provide greater functionality and can be more stable
in having redundancy and flexibility.

• However, complexity cannot grow indefinitely, and has a maximum, called 
critical complexity.  A system becomes fragile and vulnerable near this point.



This Fuzzy Cognitive Map shows how bad weather can affect how fast you drive on 
a California freeway in the daytime.  

From “Fuzzy Thinking” by Bart Kosko (Flamingo, 1994).

FUZZY COGNITIVE MAP



Decision Maps for Understanding Influence and 
Information Flow

Hand drawn, subjective Computer generated, 
extracts information from data

Past Today



Simulation - Input to Knowledge 

• Can compliment education and experience
• Can be validated by all members of a team

A good team will beat a superstar



Simulation-generated Information 
Infrastructure

• The pieces are in place
• Computer HW, SW, IT, Web technologies
• Advance “Proven” and new methods to 

leverage these capabilities:
– Incorporate variability provides
– Manage complexity transparent
– Methods are scalable credibility

• Expertise



USE INFORMATION FROM SIMULATION

TO LEARN What We Do Not Know

Inputs
• Less Assumptions
• More Variables

Outputs - Identify WHAT’S IMPORTANT
• Significant Variables
• Outliers

Process
• Scalable to people and disciplines
• Replicable 



Simulation for Better 
Understanding

• Leverage Commodity Computing 

• Augment and Compliment Experience

Can we learn from 
Virtual Experience?



Quality of Life

Simulation for Better Understanding

Can We Afford not to LEARN?  
Food Energy

Security



Back-Up Slides



CG 53 FEM from ABS
• 118,855 elements
• 3 loading conditions: 

• Still Water, Sagging and Hogging in 25 ft waves
• 243 MB file takes 33 minutes to run on laptop



Dynamic Analysis

Cost Analysis
Mechanical Design

Logistics & Field Support

Aerodynamics Stress Analysis

Risk/Life 
Management

PARAMETRIC MATH MODEL

Manufacturing

Robust Design System  Director

Deterministic
Optimization

Probabilistic
Analysis

Probabilistic
Sensitivities
& Scans

TaguchiDesign Scans

Probabilistic
Optimization

Sensitivity
Analysis

Deterministic
Design

Typical Case
Worst Case

Sensitivity
Variable Ranking

Design Space Exploration
Response Surface

Robustness
Nominal Design Point

Min cost, Weight
Max Performance

Risk
Reliability

Reliability Based 
Ranking

Min Cost, Weight
Max Reliability

MSC Robust Design Overview

Rapid  parallel computingCapture analysis & design process

Flexibility To Approach Product 
Design Many Ways



MONTE CARLO METHOD

Solution:
Establish tolerances for the 
input and design variables.

Measure the system’s 
response in statistical terms.

Sources of Variability
 Material Properties
 Loads
 Boundary and initial conditions
 Geometry imperfections
 Assembly imperfections
 Solver
 Computer (round-off, truncation, etc.)
 Engineer (choice of element type, algorithm,  

mesh band-width, etc.)

x1

x2

x3

y1

y2

Presenter
Presentation Notes
Stochastic Simulation Process:
Start by identifying the engineering tolerances and scatter in the input/design variables.
Determine the distribution type and variability range for each variable.
Establish the Engineering Analysis process (based on Monte Carlo Simulation).
This involves using established computer engineering software tools, such as finite element solvers.
Run approximately 100 analyses, randomly varying the values of the variables.
A response cloud of results is generated that captures the physics of the event.
 Statistical treatment of the clouds, instead of replacing them with surrogate models, yields unprecedented levels of knowledge, insight and, most importantly, CONFIDENCE in the simulation.

The cost of Stochastic Simulation is independent of the number of variables.




Monte Carlo Simulation Background
• Allows engineers to introduce hundreds of thousands of 

stochastic variables into the problem, and still call the solver 
only 100 times to obtain correct results.

• The power lies in the fact that the cost, i.e. the number of 
solver calls, is independent of the number of variables in a 
problem. 

SIMULATION-SUPPORTED ENGINEERING



Address the Curse of Dimension
“Monte Carlo simulation was developed by the Los Alamos team (the people who
developed the nuclear bomb for the US during the 1940's). They had high-
dimensional integrals to solve, and traditional methods of numerical integration 
failed them because of the curse of dimensionality. 

What is so fantastic about Monte Carlo simulation is the fact that its precision is
proportional to the square root of the number of scenarios used, and THIS
RESULT IS ENTIRELY INDEPENDENT OF THE NUMBER OF DIMENSIONS OF THE 
PROBLEM. Effectively, Monte Carlo simulation was developed to break the curse 
of dimensionality. The history of World War II might have been different if it were 
never invented.”

Glyn Holton

SIMULATION-SUPPORTED ENGINEERING

Why Stochastic Analysis



Monte Carlo Simulation Results

12 of the 78
2D views that 
resulted from a 
simulation with
6 outputs from
a scan of 7 
inputs with 
uniform
distributions.

Number of 2D Views of Results = Sum of all integers from 1 to (Number of Variables -1) 



Key Validation Events

MSC Robust Design, 2002- 2005 

• MSC CTO Dr. Ed Stanton focuses on probabilistic analysis following:
• RDCS experience at MSC and Boeing
• Attending 2001 Stochastic Simulation Conference in Germany
• Crystal Ball use

• MSC hired Dr. Jacek Marczyk

• 2003 Innovation of the Year Award - German CAD-CAM Magazine

• Positive Feedback from Customers and Application Engineers 

• Limited to Nastran applications

• Needed ability to change geometry, run with other solvers

Process Validation
• Dr. Schueller - MIT 2005 keynote presentation

• Dr. Hazelrigg - NSF meeting

• MIT mathematician K. Keilmeyer –

“Monte Carlo Simulation is not elegant, it just gives the right answers.”

SIMULATION-SUPPORTED ENGINEERING



Why Stochastic Analysis

Max. Failure vs.
Max. Thinning

Max. Failure vs.
Max. Wrinkling

Max. Thinning vs.
Max. Wrinkling

The most likely behavior (practically) never 
corresponds to the most likely values of 
input/design variables.

Result of 
Nominal Run

SIMULATION-SUPPORTED ENGINEERING



START WITH A GOOD MODEL

Accurately Capture:

• Physics

• Loads and 
boundary conditions

• Material properties

• Geometry

SIMULATION-SUPPORTED ENGINEERING

Remember “All models are wrong.  
Some are useful.” J. Box



Modeling Processes:

• In Analysis Software
• NASTRAN, Ansys, STAR-CD, Dyna, etc.  

• In CAD Software translated to Analysis Model
• Catia/UG/Pro-E/… to Hypermesh/Patran/…

• Multi-Disciplinary Process Model Mapping
• iSight/ModFrontier/ModelCenter/….

Results Processing/Visualization

SIMULATION-SUPPORTED ENGINEERING

Remember “All models are wrong.  Some are useful.” J. Box



Model Verification

• Make sure the math is correct

• Model checking with probabilistic analyses

• If solver runs 100 times the model is likely valid 

• Good CAE models exist
• Primarily done for forensic analysis

• Represents one instance of reality

• Stochastic analysis can provide information

SIMULATION-SUPPORTED ENGINEERING

Remember “All models are wrong.  Some are useful.” J. Box



Quantifying model confidence

Simulation without hourglass

The two meta-models show excellent statistical equivalence (shape, aspect
ratio, cog position. The difference in orientation has been found to be due to
5% HG energy in the FE model. 

Simulation (with 5% Hourglass)

Experiment

SIMULATION-SUPPORTED ENGINEERING



Which crash code?
Equivalent model run
with:

Code #1

Code #2

From a statistical point of view, the two codes are equivalent. 

SIMULATION-SUPPORTED ENGINEERING



Must Analyses be Repeatable?

The same model executed 
on 1 and 4 CPUs.

4 CPUs

1 CPU

Given that from a statistical standpoint the meta-models are equivalent, 
the number of processors is irrelevant.

SIMULATION-SUPPORTED ENGINEERING



Models and number of elements

150.000 elements

350.000 elements

400.000 elements

• 150 k element mesh is too coarse 
• Other two meshes are essentially equivalent (i.e. no need for more than 350 k)
• Meshes of more than 350 k elements are too detailed

SIMULATION-SUPPORTED ENGINEERING



Courtesy of Italdesign

SIMULATION-SUPPORTED ENGINEERING

Model Validation - B-Pillar example



B-Pillar Model Validation

Principal ellipsoids

• The model, in its current configuration, is not valid.
• Three tests are insufficient to make any statements as to the model’s validity. 
• A single experiment cannot validate a model, it can merely verify it (or falsify it!). 
• Validation requires multiple experiments and multiple calculations.

.
.

.

SIMULATION-SUPPORTED ENGINEERING



What Does Validation Really Mean

Means OK but differences in
covariance and scatter

Means and covariance OK 
but not scatter (eigenvalues)

It is matching the covariance matrices of test and simulation meta-models

SIMULATION-SUPPORTED ENGINEERING



Monte Carlo Simulation
SIMULATION-SUPPORTED ENGINEERING



Monte Carlo Simulation
SIMULATION-SUPPORTED ENGINEERING



Cumulative Distribution Function

SIMULATION-SUPPORTED ENGINEERING



Cumulative Distribution Function (CDF)
and 

Probability Distribution Function (PDF)

SIMULATION-SUPPORTED ENGINEERING



CDF and PDF
SIMULATION-SUPPORTED ENGINEERING



Where Does the PDF come from?
GOOD ENGINEERING

• We know from experience that the 
world is not discreet

• Replace all discreet values with ranges 
and a distribution

What is the real density of water?

SIMULATION-SUPPORTED ENGINEERING



• Stochastic material properties,
thicknesses and stiffnesses
(70 variables),initial and boundary 
conditions (angle, velocity and offset).
• 128 Monte Carlo samples on 
Cray T3E/512 (Stuttgart Univ.)
• 1 week-end of execution time.

First World-wide Stochastic Crash
(BMW-CASA, August 1997)



Element/Material Type Property C.o.V. (σ/μ)

Isotropic Material Young‘s modulus
Poisson‘s Ratio
Shear modulus
Mass density

8%
10%
12%
4%

Orthotropic Shell
Element Material

Young‘s Modulus
Shear Modulus

8%
12%

Solid Element An-Isotropic 
Material

Material Property 
Matrix
Mass Density

12%
4%

Simple Beam Section dimension 5%

Layered Composite Material Non-Structural Mass
Thickness of Plies
Orientation Fibre 
Angle

8%
12%
1.5°

Spring Element Stiffness 8%

Shell Element Membrane thickness
Non-Structural Mass

4%

Concentrated Mass Mass 3%

Damping Modal Damping
Structural Damping

40%
25%

# of Random Variables ≈ 1300

Types of uncertainties: Material Properties, Geometrical Properties

Gaussian

Log-Normal

Method 1 – ESA-LFU Load-Coupled Dynamic Analysis 



x

F(x)

0

1

Random
Number
Generator

U

X=F-1(U)

Random
Variable X

As few as 25-50 simulations provide information on the robustness 
and variability of the response due to uncertanties of the input 

parameters 

MCS is the most general and versatile method to process 
uncertainties

Efficient Monte Carlo Simulation

Prof. G.I. Schueller, Third MIT Conference on Computational Fluid and Solid Mechanics, June 2005



Input
Variables

Output
Variables

Ranks input variables and 
output responses 
by correlation level

Follows MIT-developed 
Design Structure Matrix 
model format 

Filters Variables Based 
on Correlation Level

Understand How Things Work

Correlation Maps –
Filter Complexity while Modeling Reality



Design Exploration with Fitness 
Landscapes
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Landscapes



Validation of 
simulation models

Simulation Design Improvement

Courtesy of BMW AG



What is Complexity?
• Complexity is an attribute which characterizes every system, just 

like energy or momentum. It can be measured, and therefore 
managed.

• However, complexity cannot grow indefinitely and has a 
maximum. Close to this maximum, called critical complexity, the 
system becomes fragile and vulnerable.

• Critically complex systems are very difficult to manage and can 
easily run out of hand.

• The risk exposure of any dynamical system can be measured 
and understood in an innovative way via complexity.



Upper Critical Complexity
Catastrophic collapse

Lower Critical Complexity
System is deterministic

Time

Complexity and Robustness

The lower this distance, the 
lower the robustness

Typical scatter-plot

Systems close to their upper critical 
complexity are less robust as numerous 
links between variables are weak 
(fuzzy) and are close to breaking and 
loosing functionality.



Complexity Principles
• Principle of Complexity: 

When the complexity and uncertainty of 
an engineering system increase, our 
ability to predict its behavior diminishes 

until a threshold is reached beyond which 
accuracy and significance become almost 
mutually exclusive.

• Principle of Incompatibility:
High precision is incompatible with high 
complexity.

L. Zadeh, UCLA



Complexity x Uncertainty = Fragility

• When uncertainty meets high complexity, the result is 
fragility.   Simple systems cope better with uncertainty 
than highly complex systems.  

• Highly complex systems are more exposed to the effects 
of uncertainty because of the countless ways they can 
process information.  They can fail in many ways, often 
due to apparently innocent causes.

• Uncertainty in the environment cannot be avoided.  We 
must learn to live with it. Hence the need to manage 
complexity.

• Fragility is a prelude to risk, holistic risk  management can 
be accomplished via complexity management.



Cdesign  x (Umanufacturing + Uenvironment) = Fproduct 

• A highly sophisticated design will result in a fragile 
product if:
• The manufacturing process is of poor quality

• The environment is very “turbulent”

• Hence, a more robust product requires:
• A high-quality manufacturing process, or

• A less severe environment in which to function, or

• A less “ambitious” initial design

Complexity x Uncertainty = Fragility



Complexity-Based Design
A less complex solution is generally:
• Less expensive to design and engineer
• Less expensive to manufacture 
• Less expensive to service (replace broken 

components, etc.)
• Cheaper
• Easier to operate
• Less fragile. This means:

– Less warranty costs
– Less recalls
– Less law-suits



Trial and error
Parametric studies

Sensitivity analyses

MDO

time

2000

Robust Design (MCS)

Uncertainty/Complexity
Management (MCS)

Analysis                        Simulation

Optimisation

P
a
ra

d
ig

m

System Complexity

S
ys

te
m

 F
ra

g
ili

ty

Evolution of CAE Paradigms



Safety

Crashworthiness

Aerodynamics

NVH & handling

Process Maps which gives users 
an integrated and holistic view 
of:

• Interaction between 
disciplines
• Degrees of coupling
• Critical variables
• Global robustness measures
• Failure modes
• Complexity

Compute power should be 
invested in getting the big 
picture and not in hair-splitting.

Power & Transmission

Holistic CAE 



Future Trends in CAE
• No surrogates – FE Models are already 

surrogates.   Why work with models of models?
• Move from (slow & expensive) pursuit of 

optimal solutions to (fast & cheap) identification 
of acceptable compromises. 

• Go holistic: Less local details more global 
patterns – Nature works like that!

• Measure robustness.
• Measure model credibility – the success of CAE 

hinges on it!



Simulation Design Improvement
Process – march cloud to target

1 2

3 4

Target
Performance

Iteration



Input
Variables

Output
Variables

Ranks input variables and 
output responses 
by correlation level

Follows MIT-developed 
Design Structure Matrix 
model format 

Filters Variables Based 
on Correlation Level

Understand How Things Work

DRAFT WORKING PAPER

Correlation Maps –
Filter Complexity while Modeling Reality



• Displays condensed information from hundreds of analysis runs.
• Correlation Map = Structured Information = Knowledge
• A Correlation Map helps an engineer:

– Understand how a system works. 
• How information flows within the system. 
• how variables and components correlate.

– Make decisions on how a design may be improved.
• Identify dominant design variables.
• Use as input for stochastic design improvement.

– Find the weak points in a system.
– Find redundancies in a design.
– Identify rules that govern the performance (“if A and B then C”).

There are NO algorithms to learn. The engineer concentrates on engineering, not 
on numerical analysis.

Correlation Maps: Tools for Understanding 



Upper right –
positive correlation

Lower left –
negative correlation

A Correlation Map

Presenter
Presentation Notes
Double clicking on a node displays the corresponding scatter plot (or ant-hill plot).

Positioning the cursor on a node, displays the values of the Spearman and Pearson correlations.



Correlation

• Correlation supersedes sensitivity.
• Correlation between two variables expresses the strength of 

the relationship between these variables while taking account 
of the scatter in ALL the other variables in the system.

• It is possible to compute correlations between any pair of variables (input-
output, output-output, etc., where input is a design or noise variable, and 
output is a performance, like stress or frequency).

• Knowledge of the correlations in a system is equivalent 
to understanding how that system works.



Pearson and Spearman Correlation

The Pearson, or linear correlation is given by:

The Spearman, or rank correlation is given by:

In the Spearman correlation, variable values are replaced 
with the corresponding ranks.



Correlation

• Positive. When one variable increases the other increases 
too.

• Negative. When one variable increases, the other decreases.
• Linear Correlation (or Pearson correlation) – means that 

scatter plot (also known as ant-hill plot) is “cigar shaped” 
(elliptical).

• Non-linear Correlation (or Spearman correlation) – means 
that scatter plot is irregular (e.g. has clusters).

• If the Spearman and Pearson correlations are not similar in 
terms of magnitude, then you can be sure that the input-
output transfer properties of a system are non-linear.



Correlation

• A large value of correlation doesn’t guarantee that a variable will  increase
if the other increases by a small amount - (as in the above case). 

• A correlation is only an indication of a general trend, that can be verified
only over large intervals. 

• Handle with care!



Non-linear Correlation
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Large Negative (Linear) Correlation
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Medium Negative Correlation
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Large Positive Correlation
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Correlation

• Correlation values below 0.5 may be neglected, as they represent 
meaningless (chaotic) relationships between variables. In these cases, the 
scatter in the other variables masks the relationship between the two in 
question.



Clustering (Bifurcations)



Clustering (Bifurcations)



Outliers



Outliers



Other Pathologies

Presenter
Presentation Notes
Even more complexity: outliers, multiple clustering.



More pathologies



Relationship Robustness
• The following forms of non-robustness exist:

– Outliers
– Clustering (multi-modal systems)
– Discontinuities (jumps) in CDFs – high skewness
– Any other pathology in ant-hills

• A good measure of robustness is the K-S distance (Kolmogorv-
Smirnov) between the actual Cumulative Distribution Function 
(CDF) and the one corresponding to an equivalent Gaussian CDF.

• Another good measure of robustness is the CONVEXITY of the 
corresponding meta-model. Non robust systems are non-convex.

• An easy way to detect potential non-robustness is to check for large 
differences in the linear and non-linear correlation coefficients.

• Large scatter does not imply low robustness.



The Kolmogorov-Smirnov (K-S) test is based on the empirical
distribution function (ECDF) compared to a normal cumulative
distribution function. The K-S test  is based on the maximum distance 
between these two curves. 

Kolmogorov-Smirnov (K-S) test



Example of Non-Robust system

Most likely behavior (two possible modes)



Design Improvement and Robustness: 
Navigation of Fitness Landscapes

Fitness landscape
Initial design is non-robust (has two clusters, PDF is 
bi-modal). Must move cloud away from bifurcation.

Robust design: one cluster  (no bifurcations possible)



Ohio State University FST 650 Lecture 4B

SIZE OF RESPONSE SURFACE MODELS 
NUMBER OF 

FACTORS 

RUNS IN 3 

LEVEL FACT. 

COEF. IN 

FULL QUAND 

TRIALS IN 

FACE-

CENTERED 

TRIALS IN 

BOX-

BEHNKEN 

2 9 6 11 11 

3 27 10 17 15 

4 81 16 27 27 

5 243 21 45 46 

6 729 28 81 54 

7 2187 36  62 

 

Response Surface Views

Assume Continuity

Sample Size a 
function of # of variables



Where is the Information?

Outliers
Most likely
behavior



Information from Correlation Maps 

• Minimum use of surrogates – process uses the full analysis model and 
is unlimited in terms of number of variables.

• Helps extract knowledge that is embedded in their analysis models -
leverages years of investment made in the FEM and CFD grids.

• Actually “computes knowledge” and presents it to the engineer in the 
form of the Correlation Map. 
– Knowledge is an organized set of related design rules
– Precisely what a Correlation Map is.

• No need to be a specialist in numerical analysis to take full advantage 
of this capability.

• Identifies what is IMPORTANT.
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Correlation Map

• A Correlation Map = Structured Information
• A Correlation Map helps an engineer:

– Understand how a system works (how information flows within the 
system, how variables and components correlate).

– Make decisions as to how the design may be improved.
– Find the weak points in a system.
– Find redundancies in a design.
– Identify rules that govern the performance (“if A and B then C”).

• Correlation Maps help structure information better, to give it 
“topology” and a sense of dimension.

• Structured information (i.e. links between rules) is equivalent to 
knowledge.

• The following slides show an examples of Correlation Maps and 
their salient features.



Design Structure Matrix 

• Format developed at MIT to maximize the data displayed 
in one view

• The Design Structure Matrix (DSM) has evolved into a 
tool to perform both the analysis and the management 
of complex systems. 

• It enables the user to model, visualize, and analyze the 
dependencies among the entities of any system and 
derive suggestions for the improvement or synthesis of a 
system. 

• Focus is on the visualization format



Correlation Maps – Structured Information

Correlation Maps reflect how all system attributes (outputs)  react to 
simultaneous changes in all of the input variables. It also shows relationships 
between outputs. Correlation maps can be very complex.

Inputs

Outputs

Presenter
Presentation Notes
Examples of simple and more complex Decision Maps
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