
1

Raytheon

Copyright © 2003 Raytheon Company UNPUBLISHED WORK ALL RIGHTS RESERVED

Leveraging Software Development Approaches in
Systems Engineering

Rick Steiner
Engineering Fellow

Raytheon Integrated Defense Systems
fsteiner@raytheon.com

6 May 2004
Naval Postgraduate School SI4000 Project Seminar

2

Raytheon

Copyright © 2003 Raytheon Company UNPUBLISHED WORK ALL RIGHTS RESERVED

We’re going to talk about:

• Why Software Tools exist, why Systems Engineers should care
• Software vs. SE as a discipline – key differences
• The importance of requirements

– Different requirement/system development approaches
– Pros & cons of each, and how they relate to software approaches

• How Use Cases relate to Requirements
– Hints on how to manage use case development

• How Object Oriented Design relates to Functional Analysis
– or not!

• What graphical languages can help (UML, SysML)
• The promise of Model Driven Architecture (MDA)

3

Raytheon

Copyright © 2003 Raytheon Company UNPUBLISHED WORK ALL RIGHTS RESERVED

Software Development Crisis

• In the 1980’s, software development underwent a crisis:
– Software was RAPIDLY proliferating
– Software was becoming very complex

• Software on top of Software (OS, Application)
• Software talking to Software (interfaces)

– Software development delays were holding up system delivery
– Software was becoming very expensive to develop and maintain
– Software development effort was becoming very hard to estimate
– Software reliability was becoming problematic
– Existing techniques were proving inadequate to manage the problem

• Reasons:
– Economics

• Processing hardware (silicon) got cheap
– Easy way to add capability

• Cheaper to modify product through software than hardware

4

Raytheon

Copyright © 2003 Raytheon Company UNPUBLISHED WORK ALL RIGHTS RESERVED

Response to the Software Crisis

• In the ’90’s, software development changed:
– New methods

• Scalability – Structured Analysis – Coad/Yourdon
• Reuse – Object Oriented Design

– Model based tools & techniques
• CASE tools – Excellerator, TeamWork, Software through Pictures
• Software modeling languages & techniques

– Unified Modeling Language (UML)
• Object Modeling Technique (OMT) - Rumbaugh
• Use Cases - Jacobsen
• Sequence Diagrams – Booch

– Specific techniques (ROOM, RUP, 4+1, etc.)
• Estimating models & tools: COCOMO, SEER, Price-S, etc.

• When appropriately applied, these changes dramatically improved the
predictability, productivity, and quality of software development!

– Software began to play a progressively larger role in the product system.

5

Raytheon

Copyright © 2003 Raytheon Company UNPUBLISHED WORK ALL RIGHTS RESERVED

Differences between SW and Systems

Software Engineering Systems Engineering

Mission Efficiently develop
software that meets
requirements

1) Ensure requirements
correct

2) Ensure system works
Product Software ready for

integration
1) Specifications
2) Integrated, usable system

Lifecycle Development (design,
code, test)

1) Concept -> Requirements
2) Integration -> Acceptance
3) Disposal

Focus Source code, diagrams Requirements, tests, reports
Done
when

Code compiles error free,
unit test complete

1) Requirements balanced
2) System accepted

6

Raytheon

Copyright © 2003 Raytheon Company UNPUBLISHED WORK ALL RIGHTS RESERVED

Systems Development Problem

• In the ’90’s, system development underwent a crisis:
– Systems were becoming very complex

• Systems on top of Systems (SoS)
• Systems talking to Systems (system level interfaces)

– Systems Engineering delays were holding up software development
– Systems were becoming very expensive to develop and maintain
– Systems development effort was becoming very hard to estimate
– Systems reliability was becoming problematic
– Existing techniques were proving inadequate to manage the problem

• Reasons:
– Demand for increased capability
– Systems becoming software intensive (embedded processing)
– Decreased manning driving increased automation
– Reliability of manned systems and weapon systems cannot be

compromised, in spite of rising complexity

7

Raytheon

Copyright © 2003 Raytheon Company UNPUBLISHED WORK ALL RIGHTS RESERVED

Systems Engineering Response to the
Problem

• In the ’00’s, system development is changing:
– More rigorous approaches to Requirements
– Use of Models to specify systems
– Adoption of successful software modeling methods

• Model Driven Development
• Hatley-Pirbhai
• Object Oriented Techniques

– Adaptation of software modeling languages & techniques to
systems engineering
• System Modeling Language (SysML)

– Estimating models & tools: COSYSMO
– Development of new methods

• Systems Architecting

8

Raytheon

Copyright © 2003 Raytheon Company UNPUBLISHED WORK ALL RIGHTS RESERVED

Characteristics of a Good System
Development Approach

• Sort wants from needs
– Identify and relay imperatives
– Track and tradeoff everything else

• Validate imperatives
• Manage/control level of abstraction

– Segregate requirements from design at each level of abstraction
• Keep track of Form vs. Functional imperatives
• Provide a framework for assessing completeness of all

requirements & design
• Provide a framework for assessing consistency across all

requirements & design
• Provide a framework for verifying product meets the

requirements

9

Raytheon

Copyright © 2003 Raytheon Company UNPUBLISHED WORK ALL RIGHTS RESERVED

Document Driven Approach

The traditional approach:
• Characterized by

textual specifications
• Specifications created

and managed as
documents

• Specifications
provided in a
hierarchical tree

• Specifications may be
parsed and
requirements linked in
a database

C3I System Segment

External
Communication

Element

Satellite
Communications

Component

Integrated
Communications

Control
Software

Component

Tactical
Data-link

Communications
Component

Line-of-Sight
Communications

Component

Air Craft
Control

Component

Decision and
Assessment
Component

Operational
and Mission

Planning
Component

Resource
Management

Component

Situational
Awareness
Component

HF Antennas
Component

LF Antennas
Component

Command
and Control

Element

Presenter
Presentation Notes
The most traditional approach:
Characterized by textual specifications
could be paper or electronic files
Specifications created and managed as documents
configuration control only at the document level
individual requirement changes happen only as specification version is advanced
Specifications provided in a hierarchical tree
usually mirrors product structure
Specifications may be parsed and requirements linked in a database
but specifications not usually generated from the database

10

Raytheon

Copyright © 2003 Raytheon Company UNPUBLISHED WORK ALL RIGHTS RESERVED

Document Driven Pros & Cons

Advantages:
• Easy to understand, traditional

approach
• Clear, straightforward hierarchy of

specifications quickly defines levels
of abstraction

• In precedented systems, can rapidly
partition requirements development
task

• Allows loose coupling between
requirements developers
– Can make rapid progress early

in program, compared to other
methods

Disadvantages:
• Consistency of requirements hard

to assess
– must read many documents,

manually link related requirements
• Large “chunks” of requirements

unwieldy
– latencies associated with

specification updates are significant
– need for reparsing/retracing of

requirements after each update
• Product tree needs to be defined in

advance
– not amenable to unprecedented

systems
• Requirement definition can outpace

analysis & design
– lower level requirements defined

before impact at higher level design
is understood

• Focus can easily revert to quantity,
rather than quality of requirements

11

Raytheon

Copyright © 2003 Raytheon Company UNPUBLISHED WORK ALL RIGHTS RESERVED

Database Driven Approach

Becoming more commonplace in Systems Engineering:
• characterized by integrated requirements/design databases

– requirements are records in relational database
– relations between requirements, attributes of requirements emphasized

• “specifications” are views into database
• requirements hierarchy very flexible

12

Raytheon

Copyright © 2003 Raytheon Company UNPUBLISHED WORK ALL RIGHTS RESERVED

Database Driven Pros & Cons

Advantages:
• Difficult to defer rigor

– need thorough analysis of
requirements up front

– difficult to “cheat” to save time
• Benefits of clear linkage

– on-demand consistency checking
– facilitated completeness checking
– on-demand verification

• flexible hierarchy
– can easily move requirements to

appropriate level of detail
• rapid cycle time for updates

– on-demand change impact
assessment

– clear ownership control
• unambiguous linkage to design

tools

Disadvantages:
• Difficult to defer rigor

– need thorough analysis of
requirements up front

– difficult to “cheat” to save time
• Slow startup… many decisions

need to be made up front
– requirements heirarchy, multiple

heirarchy - need CLEAR vision of
what to do!

– guidelines for requirements
attributes

– specification scripts
– linkage to design tools
– training, training, and relevant

training
• Investment in resources

– experienced toolsmith
– experienced process owner

13

Raytheon

Copyright © 2003 Raytheon Company UNPUBLISHED WORK ALL RIGHTS RESERVED

Model Driven Approaches

Becoming more common in Software development
Rarely implemented at Systems Engineering level - high risk, high payoff
• characterized by integrated model that represents both design and

requirements
• “specifications” are views into model
• “requirements hierarchy” doesn’t exist by itself

– “requirements” are simply characteristics of the model

Functional Allocation:Activity Diagram

Loss of
Traction

:Traction Detector :Brake Modulator

Loss of
TractionDetect Loss of

Traction
Modulate

Braking Force

:modulator
interface

Functional Allocation:Assembly Diagram

Anti-Lock Controller

<<allocation>>
<<activity>> Detect
Loss of Traction

:Traction Detector

<<allocation>>
<<activity>> Modulate
Braking Force

:Brake Modulator

:modulator
interface

tracLoss

Presenter
Presentation Notes
Rarely implemented at Systems Engineering level - high risk, high payoff
characterized by integrated system model that represents both design and requirements
model provides both problem & solution (level of abstraction)
model provides both form & function, and explicit allocation
requirements (imperatives) represented by “firmess” or change control of model element
configuration control at the model element level
relations model elements, attributes of model elements are also controlled, with variable “firmness”
ownership, change control of a model element can change over time
periodic consistency check, review, and baseline of model
“specifications” are views into model
turn-key specifications can be generated on the fly, based on abstraction criteria and scripts
interface specifications are direct view of controlled relationships between elements
budgets are direct view of attributes or rolled up attributes of model elements
“requirements hierarchy” doesn’t exist by itself
“requirements” are simply characteristics of the model

14

Raytheon

Copyright © 2003 Raytheon Company UNPUBLISHED WORK ALL RIGHTS RESERVED

Model Driven Pros & Cons

Advantages:
• Strong enforcement of rigor

– need thorough analysis of
requirements up front

– impossible to “cheat” to save time
• Clear, unambiguous system

definition
– clear allocation of function onto form

• Benefits of clear linkage
– on-demand consistency checking
– facilitated completeness checking
– on-demand verification

• Possible to eliminate “shalls”
altogether

– “firmness” becomes an attribute of
model elements

• Very rapid cycle time for updates
– on-demand change impact

assessment
– clear ownership control

• Unambiguous linkage to design
tools

Disadvantages:
• Impossible to defer rigor

– impossible to “cheat” to save time
• Slow startup… many decisions

need to be made up front
– syntax and relationship of proposed

models must be crystal clear!
– guidelines for model attributes
– linkage to design tools
– training, training, training,

experience, and relevant training
• Significant up front investment in

resources
– Very experienced toolsmith
– Very experienced process owner

• The model can become as complex
as the product itself

15

Raytheon

Copyright © 2003 Raytheon Company UNPUBLISHED WORK ALL RIGHTS RESERVED

Development Approach Scorecard

Characteristic Document Driven Database Driven Model Driven
Sort wants from needs “Shall” statements Attributes, link to

CONOPS
Attributes of model
elements

Validate imperatives Manual only Link to analyses Model execution, links
to analyses

Manage/control level of
abstraction

Spec tree: specification
vs. design description

Hierarchy, requirement
tree

Product hierarchy,
consistency checks

Form vs. functional
imperatives

Typically poor
segregation

Attributes, scripts,
filters

Separate form,
function, and allocation

Framework
completeness

All top level
requirements traced to
lower level

Vertical linkage,
hierarchy

Vertical linkage

Framework
consistency

Typically poor – some
peer to peer
requirements tracing

Horizontal linkage Horizontal linkage

Framework for meeting
the requirements

System Requirements
Verification Matrix

Link to verification
database

Development and
verification scenarios

Semantics captured Low Medium High

Design iteration time Long Medium Short

16

Raytheon

Copyright © 2003 Raytheon Company UNPUBLISHED WORK ALL RIGHTS RESERVED

environment
mission &

models

Requirements
Analysis

Functional
Analysis &

Requirements
Allocation

Synthesis &
Verification

System
Analysis &

Control

Customer
Dialog,
Specs

Simulation
Mission

Change Control

Functional
Modeling

Model
Integration

System
Simulation

r,c,&b

r,c,&b

requirements, constraints & budgets

risks & opportunities

r&o

r&o

r&o

Synthesis
Modeling

(System, CAD,
cost, etc.)

Test
Facilities

functional
models

functional
implications

form
implications

form
models
& cost
impacts

form
implications

EIA 632 SE Process IDEFØ w/ Models

• All four activities happen in parallel
• Risk Management & CAIV are integral to process
• Process is applied iteratively at each level of design

Presenter
Presentation Notes
IDEF0 charts: inputs on left, outputs on right, constraints on top, mechanisms on bottom.
All four activities occur in parallel: early functional modeling and synthesis modeling conducted for common key elements of design... These will be updated as mission models & constraints are derived.

Requirements Analysis
Elicitation through modeling
establishes subsystem context
baseline/change control of model & constraints
Validation through simulation, cross linking in SPM
Functional Analysis & Requirements Allocation
Model alternative functional approaches to meet requirements
Identify functional shortfalls as risks
Synthesis & Verification
Model implementation of each functional approach
CAIV/best value as criteria for selection
Simulation to verify predicted performance
System Analysis and Control
Risk Management is enabling process to initiate design changes & trade studies
TOC targeting (down & up) as part of release process
SPM is vehicle for technical management (consistency, integrity, maturity of design)

17

Raytheon

Copyright © 2003 Raytheon Company UNPUBLISHED WORK ALL RIGHTS RESERVED

Unified Modeling Language (UML)

• UML is maintained by the Object Management Group (OMG)
• The Unified Modeling Language (UML) is

– a graphical language for visualizing, specifying, constructing, and documenting the
artifacts of a software-intensive system. (from the OMG UML 1.4 specification,
emphasis added)

– the industry standard for expressing and communicating object-oriented
software designs

• Has undergone several revisions
– 1.0 Original submittal - Never released
– 1.1 UML Partners final submittal - First approved standard
– 1.2 Editorial clean-up - Document changes, no technical changes
– 1.3 Revisions, not enhancements - Clarifications and corrections
– 1.4 Revisions to UML extensions - Released late 2001
– 2.0 Major revisions to Behavior and Structure

• Approval August 2003, release expected soon.
• So what does that mean to the systems engineering community

– The OMG, in cooperation with INCOSE and ISO are exploring ways to
expand the role of UML into the realm of systems engineering

18

Raytheon

Copyright © 2003 Raytheon Company UNPUBLISHED WORK ALL RIGHTS RESERVED

UML 2 Diagram Taxonomy

UML 2
Diagram

Structure
Diagram

Behavior
Diagram

Activity
Diagram

Use Case
Diagram

State
Machine
Diagram

Interaction
Diagram

Interaction
Overview
Diagram

Sequence
Diagram

Communication
Diagram

Timing
Diagram

Class
Diagram

Component
Diagram

Object
Diagram

Composite
Structure
Diagram

Deployment
Diagram

Package
Diagram

Systems
Engineering

Interest

19

Raytheon

Copyright © 2003 Raytheon Company UNPUBLISHED WORK ALL RIGHTS RESERVED

Behavior in UML 2

Activity

+effect

Action 1

Action 2

Activity X1

State X

Activity Y1
Activity Y2

State Y
Transition Activity T1

Op 2.1

Class 2

Op 2.1 (msg:type)

method

entry
exit

doActivity
invocation

Class1

Class 1

States
Activities

Class

20

Raytheon

Copyright © 2003 Raytheon Company UNPUBLISHED WORK ALL RIGHTS RESERVED

Structure in UML 2

Definition
(Class Diagram)

Use
(Composite Structure Diagram)

Structural Hierarchy: Class Diagram

Traction
Detector

Brake
Modulator

Electro-
Hydraulic

Valve

Electronic
Processor

Anti-Lock
Controller

Structural Hierarchy: Composite Structure Diagram

Anti-Lock Controller

:Traction
Detector

:Brake
Modulator

:modulator
interface

21

Raytheon

Copyright © 2003 Raytheon Company UNPUBLISHED WORK ALL RIGHTS RESERVED

Extending UML to Systems
Engineering

• OMG Systems Engineering Domain Special Interest Group -
http://syseng.omg.org

– joint INCOSE-OMG initiative chartered in 2001- collaborated with UML2
– drafted UML for SE RFP, issued by the OMG in March 2003

• Systems Modeling Language (SysML) – http://www.sysml.org
– SysML Partners organized in May 2003 to respond to RFP

• Industry - BAE SYSTEMS, Deere & Company, IBM, Lockheed Martin,
Motorola, Northrop Grumman, Raytheon, Thales

• Government - NASA/JPL, NIST, OSD
• Tool Vendors - Artisan, Gentleware, IBM/Rational, I-Logix, Telelogic,

Vitech
• Liaisons - AP-233, INCOSE, Rosetta, EAST, Ptolemy

– SysML will customize UML 2.0 to support the specification, analysis,
design, verification & validation of complex systems.

– SysML Draft spec presented to INCOSE in January, OMG in February 04
– SysML 1.0 spec will be submitted to OMG in August 04, expect release in

early ‘05

22

Raytheon

Copyright © 2003 Raytheon Company UNPUBLISHED WORK ALL RIGHTS RESERVED

4 Pillars of SysML

Structure Behavior

Requirements Parametrics

Apply Brakes: Activity Diagram

Loss of
Traction

Loss of
TractionDetect Loss of

Traction
Modulate

Braking Force

ABS System:Assembly Diagram

Anti-Lock Controller

:Traction Detector

:Brake Modulator

:modulator
interface

ABS Spec:Requirements Diagram

Vehicle System
Specification

Braking Subsystem
Specification

<<trace>>

Id: 102
text: System shall ..
Criticality: H

<<requirement>>
R102

Id: 337
text: Braking
subsystem shall …
criticallity: H

<<requirement>>
R337

Braking Performacne:Parametric Diagram

<<property>>
Stopping.
distance

<<property>>
Vehicle.dec-
celeration

<<property>>
Vehicle.weight

<<parametricRelation>>
Total Force = Sum Forces

<<parametricRelation>>
Integrate

<<parametricRelation>>
Force = m*a

<<property>>
Tire.friction

<<property>>
Braking.friction

<<property>>
Vehicle.speed

Apply Brakes: Activity Diagram

Loss of
Traction

:Traction Detector :Brake Modulator

Loss of
TractionDetect Loss of

Traction
Modulate

Braking Force

:modulator
interface

ABS System:Assembly Diagram

Anti-Lock Controller

<<allocation>>
<<activity>> Detect
Loss of Traction

:Traction Detector

<<allocation>>
<<activity>> Modulate
Braking Force

:Brake Modulator

:modulator
interface

tracLoss

satisfy

Presenter
Presentation Notes
Structure
e.g., system hierarchies, interconnections
Behavior
e.g., function-based behaviors, state-based behaviors
Properties
e.g., parametric models, time variable attributes
Requirements
 e.g., requirements hierarchies, traceability

23

Raytheon

Copyright © 2003 Raytheon Company UNPUBLISHED WORK ALL RIGHTS RESERVED

Object Oriented Analysis (OOA) &
Use Cases

• OOA focuses on SERVICES the system is to provide, rather than
functions the system performs

• Use Cases are textual descriptions of scenarios
– They usually follow a standard format or template
– They address sequences - “happy path” and alternate paths
– They can include diagrams to show sequences/behavior
– They can address various levels of detail
– The relationships between Use Cases can be represented in a diagram

Driver

Mechanic

Purchase
Car Drive Car Maintain

Brakes

Provide
Satisfaction Maintain

Car

Apply
Brakes Adjust

Linings

Provide
Profit

extends includes

includes

includes

includes includes

extends extends

24

Raytheon

Copyright © 2003 Raytheon Company UNPUBLISHED WORK ALL RIGHTS RESERVED

Use Case Pros & Cons

Advantages:
• Help segregate problem from

solution
– Services aren’t functions

• Help focus on most important
aspects of system

• Used throughout design
process, and into testing

– Basis for test planning
• Vehicle for dialog with customer
• Vehicle for dialog with software

developers
• Can be used in conjunction with

requirements database to
generate specification

– This is an extension to OOA

Pitfalls:
• Difficult to estimate in advance
• Incomplete

– Only relate to functional
requirements

– Not performance or non-
functional requirements

• Explosion of Use Cases for
complex systems

– Difficult to manage
– When are you finished?

• Confusion/overlap with
functional analysis

– Services aren’t functions

25

Raytheon

Copyright © 2003 Raytheon Company UNPUBLISHED WORK ALL RIGHTS RESERVED

Managing Use Cases

System Threads
(concatenation of user scenarios)

S1.1 S2.1

S1.2
S2.1

S2.2

e1

e2

an
al

ys
is design

S1.1

User Scenarios
(specific sequences)

S2.1
S1.2

S1.3
S2.2

Reference & Test Cases
(specification of essential

system behavior)

R

R3R2R1

T

T2T1

UC1 UC2Use Cases
(actors & interfaces)

System Model
(representation of system to be built)

Sys Arch Alt (A)

f1 f2

&

d1

f3

&

d2

d3

system/
subsystem
alternative

2.0 3.01.0

1.1 1.2 41 4.2 4.3

4.0

function form

26

Raytheon

Copyright © 2003 Raytheon Company UNPUBLISHED WORK ALL RIGHTS RESERVED

Object Oriented Development (OOD)

Advantages:
• Reusable objects, each self

contained
– Significantly reduces subsequent

development time
• Strong interface management
• Proven value on non-realtime

software development

Pitfalls:
• Extra bulk, overhead that doesn’t

add capability in execution
• Cannot separate Form and Function

– Not amenable to functional
specification

• Data is internalized
– Not amenable to data engineering

• OOD focuses on maximizing cohesion and minimizing coupling
– Maximizing Cohesion: grouping objects together that tightly interrelate
– Minimizing Coupling: simplifying interfaces between groups of objects,

making them as independent as possible
• This makes objects reusable

– Aids in the “definition – usage” pattern discussed earlier
– Isolates the behavior and data of each object from every other object

27

Raytheon

Copyright © 2003 Raytheon Company UNPUBLISHED WORK ALL RIGHTS RESERVED

Model Driven Architecture (MDA)

• MDA has been developed & promoted by the OMG
– See also “Executable UML” – Steve Mellor

• Agreement that existing OOD techniques can be too restrictive
– Need to model patterns, abstract architecture
– I see this as a way of segregating form (what) from function (how)

• MDA uses two DIFFERENT modeling levels:
– Platform Independent Model (PIM)

• All abstract (non-instantiable) classes, no language dependency
• Focus on grouping of behavior, data, interfaces
• I call this “logical architecture”

– Platform Specific Model
• Specific languages (Java, C++, etc) and compilers
• Implementation details

– One PIM can have many compliant PSMs

28

Raytheon

Copyright © 2003 Raytheon Company UNPUBLISHED WORK ALL RIGHTS RESERVED

System Model & Performance
Analysis

System Alternative (A)

f1 f2

&

d1

f3

&

d2

d3

system/
subsystem
alternative

2.0 3.01.0

1.1 1.2 41 4.2 4.3

4.0

function form

Requirements

performance
budgets

closed form discrete event network

analysis
needs Analysis

Plan

analysis
specification

- purpose
- scope
-criteria

Analytical Models

System Modelperformance
estimates

29

Raytheon

Copyright © 2003 Raytheon Company UNPUBLISHED WORK ALL RIGHTS RESERVED

Summary

• Systems Engineering needs help to manage development of
today’s complex systems

• Software Engineering has a variety of tools and techniques
which have proven successful

• Applying Software Engineering techniques to SE needs to be
done with a full understanding of the scope of SE objectives

• While advanced model driven techniques are appropriate for
complex, unprecidented, ultra-quality systems, these
techniques require
– Training
– Tools
– Startup time

• These advanced techniques aren’t ALWAYS appropriate,
especially for highly precedented or legacy systems.

30

Raytheon

Copyright © 2003 Raytheon Company UNPUBLISHED WORK ALL RIGHTS RESERVED

Bibliography

• http://syseng.omg.org (OMG SEDSIG site)
• http://www.sysml.org (SysML Partners site)
• Writing Effective Use Cases, A. Cockburn, Addison-Wesley,

2000, ISBN 0201702258
• UML Distilled, M. Fowler et. al. Addison-Wesley, 1999, ISBN

020165783X
• “Topics in Modern Requirements Development”, R. Steiner and

J.M. Green, San Diego INCOSE tutorial
• “System “Late Binding” of Function to Form using UML”, R.

Steiner, San Diego INCOSE 2003 mini-conference
• “Threads, Reference Cases, and System Models: Adapting

OOA to Complex System Specification”, R. Steiner,
Proceedings of INCOSE Symposium 2001

• ““Shoot the Modelers & Begin Design”; Focusing Analysis on
Design Using a System Model”, R. Steiner, Proceedings of
INCOSE Symposium 2001

http://syseng.omg.org/�
http://www.sysml.org/�

	Leveraging Software Development Approaches in Systems Engineering
	We’re going to talk about:
	Software Development Crisis
	Response to the Software Crisis
	Differences between SW and Systems
	Systems Development Problem
	Systems Engineering Response to the Problem
	Characteristics of a Good System Development Approach
	Document Driven Approach
	Document Driven Pros & Cons
	Database Driven Approach
	Database Driven Pros & Cons
	Model Driven Approaches
	Model Driven Pros & Cons
	Development Approach Scorecard
	EIA 632 SE Process IDEFØ w/ Models
	Unified Modeling Language (UML)
	UML 2 Diagram Taxonomy
	Behavior in UML 2
	Structure in UML 2
	Extending UML to Systems Engineering
	4 Pillars of SysML
	Object Oriented Analysis (OOA) & �Use Cases
	Use Case Pros & Cons
	Managing Use Cases
	Object Oriented Development (OOD)
	Model Driven Architecture (MDA)
	System Model & Performance Analysis
	Summary
	Bibliography

