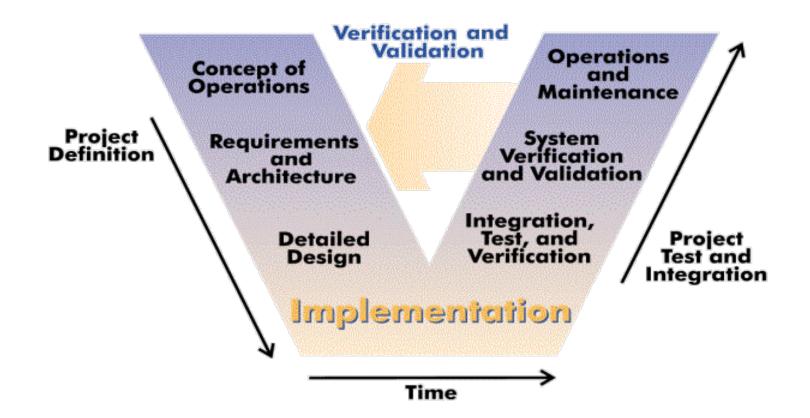


SI4000 Fall AY10 Systems Engineering Colloquium

Thursday October 1st,1500, SP321

"Up and Down The Systems Engineering "V"" Dr. Gerald Mulvey Northrop Grumman Aerospace Systems Gerry.mulvey@ngc.com

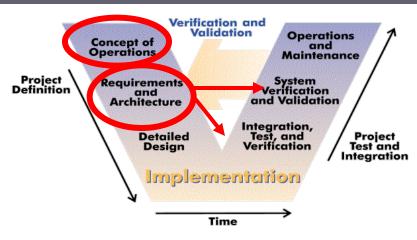
Irish69th@msn.com



- A series of case studies of system engineering practice successes and failures across the normal system engineering project tasks will be discussed.
- Each case will be presented in the following format
 - Project background
 - Systems Engineering challenge
 - Approach taken
 - Results

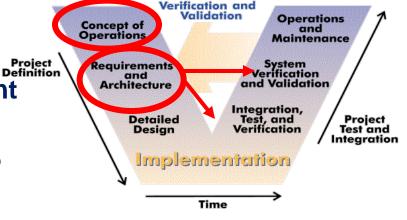
System Engineering "V"

- Afraid of Systems Engineering How do we test
- We all know Systems Engineering Spec is not important
- Systems Engineering Costs Too Much Pay now or pay later
- The COTS Mixture Design review success
- The Trust Balance Control by ICD


* The names of the companies and the projects have been removed

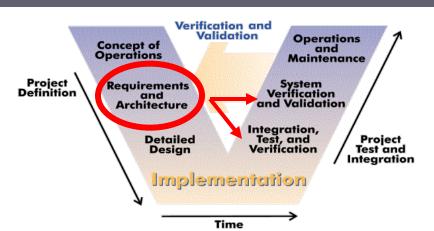
Afraid of Systems Engineering – But how do we test

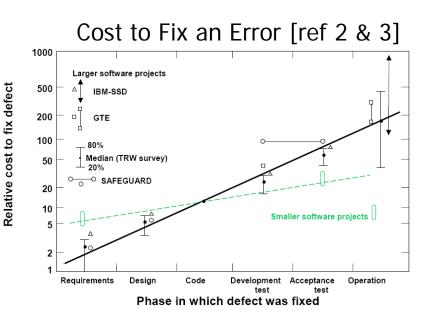
- Project Background
 - S/W & H/S System
 - **\$10M**
 - Systems Engineering
 - Specialty Engineering
 - Top Level Architecture
 - System Integration
- Systems Engineering Challenge
 - Develop Standard Documentation
 - Ops Con, Specs and ICDs
 - Design Engineering Choose to Block Documentation Development



Afraid of Systems Engineering – But how do we test

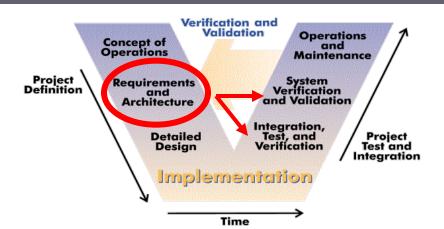
- Approach Taken
 - System Engineering Withdrew
 From Documentation Development
 Role
 - Design Engineering Proceeded to Develop the System
- Results
 - Design Engineering Did Not Know How to Test the System
 - System Engineering Re-engaged Developed an Informal Opscon, Requirement Set, Testing Approach/plan and Test Data
 - System Passed Tests
 - Degree of Over-design Unknown,
 - Cost of Over-design Unknown

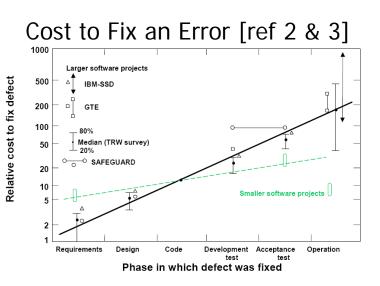




We all know Systems Engineering – The spec is not important

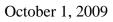
- Project Background
 - **H/W**
 - **\$10M**
 - Systems Engineering
 - Performed by Design Engineering
 - Specification 25 Pages With Hand Written Annotations and Approximately 25 TBXs
- System Engineering Challenge
 - Program Past CDR
 - Specification Remains As It Was the Proposal
 - Prepare for Testing and Sell-off

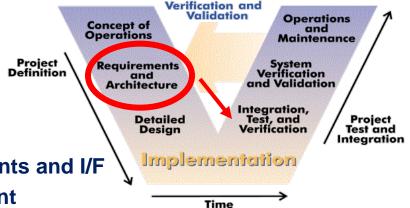


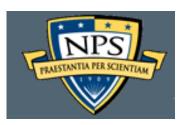


We all know Systems Engineering – The spec is not important

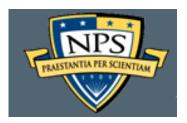
- Approach Taken
 - Update Specification
 - Control Requirement Creep
 - Develop VCRM
- Results
 - Customer Continued to Change Specification Without Agreement
 - Customer Refused to Sign Spec
 - Customer Refused to Agree on Required Testing
 - Customer Refused Product Delivery
 - Contract Went to Arbitration
 - Contractor Retained Product Incurre \$90M Cost Overrun





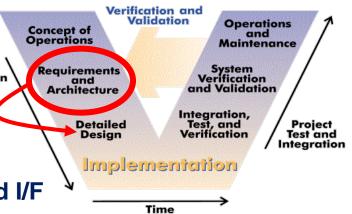

Systems Engineering costs too much – pay now or pay later

- Project Background
 - H/W & S/W
 - **\$250M**
 - Systems Engineering
 - Develop and Control Requirements and I/F
 - Plan for and Conduct Deployment
 - Plan for and Execute Verification
 - Plan & Conduct Sell-off
- Systems Engineering Challenge
 - Management Cut SE Budget to Meet Their "Expectation"
 (Top Down Allocation, Price to Win, Cut Fat, Lean and Mean, Provide
 - Challenge)
 - Plan for Success
 - Do the Job for Less
 - Hold Schedule



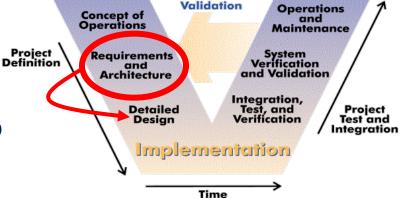
Systems Engineering costs too much – pay now or pay later

- Approach Taken
 - Used Requirement Management Tool Project Still Under Development (Cheap)
 - Advise Management of Budget Problem Before PDR, and Before CDR
 - Plan Based on Management Refusal to Reconsider
 - Management Responded by Adding Another Layer of Direct Management
- Results
 - Do What Was Necessary to Complete PDR
 - Downsize Team After PDR (Technical & Lower Level Leadership)
 - Management Reconsidered and Increased Budget
 - System Completed and Deployed



The COTS Mixture – Design review success

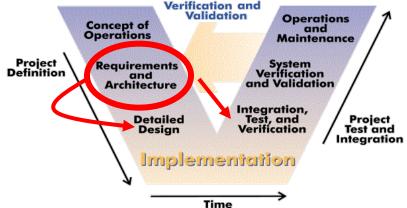
- Project Background
 - H/S & S/W Large Amount of COTS
 - ~ **\$500M**
 - Systems Engineering
 - Develop and Control Requirements and I/F
 - Plan for and Conduct Deployment
 - Plan for and Execute Verification
 - Plan & Conduct Sell-off
- Systems Engineering Challenge
 - Control Strong Subs
 - Forceful Customer
 - Changing Financial Budgetary Environment



The COTS Mixture – Design review success

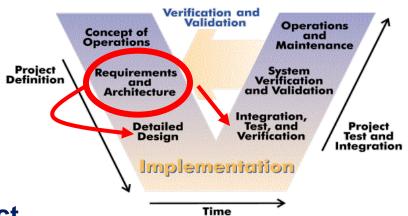
Approach Taken

- Employ Strong Systems
 Engineering Process to Develop and Retain Functional
 Interconnections
- Use Unique Approaches to PDR Format That Utilized Strong Subs to Highlight COTS Role
- Results
 - Customer Satisfied
 - Project Downsized Due to Customer Budget Cuts
 - Reduced System Deployed Successfully


Verification and

The Trust balance – Control by ICD

- Project Background
 - H/S & S/W
 - \$500M +
 - Systems Engineering
 - Develop and Control Requirements and I/F
 - Plan for and Conduct Deployment
 - Plan for and Execute Verification
 - Plan & Conduct Sell-off
- Systems Engineering Challenge
 - Requirements De-scoped to Meet Budget Profile
 - Resulting Requirements Not Adequate to Design System



The Trust balance – Control by ICD

- Approach Taken
 - Carefully Work Interface Definitions to Contain Requirements
 - New I/F Costs Were Allowed Since Not Developed at Contract Start

Results

- Customer and Contractor Controlled Growth and Technical Requirements
- Costs Did Climb, but Under Tight Systems Engineering Control (Contractor and Customer)
- System Completed and Deployed

Summary

- Systems Engineering Process Implementation Varies Across Programs
- The Most Successful Programs Have Knowledgeable Systems Engineers (or Members Who Recognize the Value of Systems Engineering) in Both the Contractor and Customer Teams
- Most of the Successful Programs Employ a Balanced Amount of Systems Engineering

If time permits, the smallest case \$120K

"Systems engineering culture is essential. All the companies agree that there must be a culture of systems engineering and that it must pervade every program, no matter how large or small. ... The prevailing view is that systems engineering is not a phrase, a bumper ticker, an organization, or a job code — systems engineering is a discipline. It is not something that one can have a nodding acquaintance with; nor is it something that one can just be familiar with. It is something one has to own and believe in." [ref 3]

> NATIONAL ACADEMY OF SCIENCES THE NATIONAL ACADEMIES

References

- 1. <u>Software Engineering Economics</u>, Boehm, Barry W., Englewood Cliff, Prentice Hall, 1981
- <u>Why systems engineering on telescope?</u>, G. Swart, J. Meiring, Proceedings of SPIE Vol. 4837 Large Ground-based Telescopes, p 166-177, 2003
- 3. <u>Pre-Milestone A and Early-Phase Systems</u> <u>Engineering: A Retrospective Review and Benefits</u> <u>for Future Air Force Systems Acquisition</u>, National Academy of Science, The National Academies Press 2008