

NAVAL Postgraduate School

Hybrid Mesh Networking for Distributed Operations

LT M.S. Maupin, USN

OpTech East Tokyo, Japan

R NETWORK

01 December 2015

LITTORAL OPERATIONS CENTER

2

- Distributed Operations
 - Motivation
 - Dispersed littoral operations
 - Distributed mesh network operations
- Mesh Networking
 - Network topologies
 - Fundamentals
 - Technologies
- Field Experimentation
 - NMIOTC Crete 2015
 - SF Bay 2015
- Tactical Implications
 - Enhancing distributed ops

- Give operational commanders options to employ naval forces in any anti-access/area-denial (A2/AD) environment.
 - Improve offensive capabilities
 - Develop new CONOPs, doctrine and tactics
 - Seek out innovative methods for employing forces

<u>Distributed operations are a complex operating model requiring</u> <u>innovative approaches to Command and Control (C2).</u>

12/4/2015

Distributed Littoral Operations

- Littorals are among the most challenging and complex environments for disaggregated or dispersed operations
 - Inherently joint/combined
 - Congested RF spectrum
 - Diverse terrain features
 - Dense commercial and maritime traffic

Distributed Mesh Network Operations

- Highly mobile, high-bandwidth data, video and voice communications
- Self-forming, self-healing, scalable peer-to-peer networks

- Connectivity across disparate networks
- Leverage existing infrastructure to enable reachback
 - GIG access through shore 4G/cellular networks or legacy satcom systems
 - Mesh-network-over-IP WAN to seamlessly connect distributed operating elements across geographic areas

Network Topologies

Full mesh: each node is directly connected to all other nodes.

Partial mesh: not all nodes are directly connected.

Wireless Mesh Network (WMN) are multi-hop peer-to-peer wireless network in which *nodes connect with redundant interconnections* and cooperate with one another to route packets.

Layer 2 Connectivity

- The entire wireless mesh cloud becomes one (giant) ethernet switch
 - Perfect for short-term and opportunistic/delaytolerant networks

Mesh Network Modeling

11111

- CASS

Technologies - Wave Relay

Man Portable Units (Quad Radio & MPU4) Peer-to-Peer MANET

- Proprietary Wave Relay Layer 2 Routing
- Simultaneously support voice, video streaming, IP data, PLI

WR Frequency Range	WR Output Power
907-922 MHz	27dBm/500mW
2312-2507 MHz	28dBm/600mW
2412-2462 MHz	28dBm/600mW
5180-5320, 5500-5700, 5745-5825 MHz	28dBm/600mW
2312-2507 MHz	33dBm/2W*
1352-1387 MHz	27dBm/500mW
4400-4800 MHz	25dBm/320mW
4800-4985 MHz	26dBm/400mW

NETWORKING

- Seamless layer 2 network connectivity.
- Industry leading Wave Relay® MANET routing.
- 802.11a/b/g AP compatible with MANET.
- Integrated serial-to-Ethernet capability.
- Cursor-on Target.
- Wave Relay® over IP (WRoIP)
- Dynamic Link Exchange Protocol (DLEP) Certified.
- IPV4 and IPV6 compatible.
- Integrated DHCP server.
- Advanced multicast algorithm.

SECURITY

- Integrated hardware cryptographic accelerator.
- FIPS 140-2 (Up to level 2).
- Utilizes all Suite B algorithms.
- Anti-tamper mechanisms.
- AES-CTR-256 with SHA-512 HMAC.
- Over the air re-keying.

ANDROID(TM)

- Multicast Video, position locator and chat in a Android application.
- Supports commercial/custom phones and tablets.
- Provides power through USB tether.

PERSISTENT SYSTEMS

Technologies - TrellisWare

11

TW-225 CheetahNet Mini Infrastructure-less MANET

- Dynamic Network Architecture at MAC layer and above
- Barrage Network Relay
- Simultaneously support voice, video streaming, IP data, PLI

PHYSICAL	Network		
Size (w/o Accessories): 4.0' × 2.5' × 0.9'	Transmit Power: 2 Watt		
Weight (w/o Accessories): 10 oz	Operating Frequencies: 1775-1815 MHz, 2200-2250 MHz		
Environmental: MIL-STD 810G, 2 Meter Immersion	Network Throughput: Up to 8 Mbps		
Power In/Out: External Power Supply, 6- 18 V DC	Encryption Security: AES-256		
Battery Run Time: > 10 Hours	Range: (26 miles per hop) x (8 hops) = 208 miles network wide		
Data Interfaces: Ethernet (RJ-45), USB	PTT Voice Channels: Up to 12 channels		
	Occupied Bandwidth: 4-20 MHz		
	Data Handling: IPv6 or IPv4		

Technologies - Harris

Highband Networking Radio (HNRv2)

ATH or OTM mesh networking

- **Dynamic Network Architecture at MAC** ٠ layer and above
- 802.11g OFDM physical layer •
- Black or colorless ad-hoc network backbone
- ATO

ECHNOLOGIES

	WW

HNRv2 Capability and Implementation

Performance Parameter	Capability
Radio (BPU) SWaP	¹ / ₂ ATR form factor (4.9"x8.5"x14.2") 14 lbs
	+20 to +33 Vdc 180 W
Highband RF Unit (HRFU) SWaP	20" x 20" x 15" 60 lbs +20 to +33 Vdc 90 W
Current Band	C-band (4.5 to 4.99 GHz)
Occupied Bandwidth	22 MHz
RF Coverage	Full hemispherical
Tiers	Air and ground
Operational Modes	Warm-up Silent Watch; MANET operation
Network Modes	Point-to-Point; MANET; Managed Topology
Network Size	Easily supports battalion-size network configurations
Router	Internal to BPU, MANET IOS OSPF or EIGRP router protocols PPPoE OSPF.v3 interfaces
AES TRANSEC Cover	AES 256 bit; AES FIPS 197 certified FIPS 140-2 Level 2 certified
Modem	TDD/TDMA OFDM
Modulations	BPSK, QPSK, 16 QAM, 64 QAM with 1/2 and 3/4 rate coding
Data rate adaptation	8 burst rates from 6 to 54 Mbps
Range	Ranges up to 30 km
Environmental	
Sheltered Equipment	+20°F to 110°F (extended temp option available)
Antenna	-35°F to 120°F (includes full solar loading)
Antenna Electronics	-35°F to 120°F (includes full solar loading)
Reliability: MTRE	>6500 hrs (based on actual performance)

W.NPS.EDU

Recent NPS Research

- CENETIX
 - WMD-ISR
 - MIO and SSE operations
- Crete 2015
 - MIO/CWMD SA sharing in littorals
- SF Bay 2015
 - CWMD SA sharing and C2 in littorals
 - Mesh network management decision support

NMIOTC Crete 2015

TNT Video Conference Room	MAN	ET Monitor						Help
Participant: MOC1	Nodes in Network: 8 Only nodes with Wave Relay SA enabled and heard in the last 30 seconds will appear in the MANET Monitor, A dash '' indicates data is unavailable or not applicable.							
MOC1 Countrya	Serial	Node	Vector	Altitude	Neighbors	Battery	Receive SNR	Reverse SNR
page 1	14697	CNTX-MPU-1 (192.168.137.81)	1.4 mi SE	88 ft	6	67 %	32 dB	23 dB
	<u>14657</u>	CNTX-MPU-2 (192.168.137.82)	1.1 mi SSE	-16 ft	4	71 %	27 dB	13 dB
	<u>14693</u>	CNTX-MPU-3 (192.168.137.83)	-	-	5	52 %	18 dB	10 dB
	<u>14688</u>	CNTX-MPU-4 (192.168.137.84)	1.6 mi SE	-131 ft	4	75 %	12 dB	14 dB
	<u>5179</u>	CNTX-MPU-5 (192.168.137.85)	-	-	5	60 %	8 dB	8 dB
	HELO				1	74 %	-	-
		-			6	-	-	-
Send Audio/Video					4	-	52 dB	53 dB
CountryB CountryA	Visida So X295 Geoge 2295 George	uda vestRelay EastRela	ay Goo	glc earth				

12/4/2015

62

18.30

SF Bay 2015

SF Bay 2015 - CodeMettle

- CodeMettle Network Service Orchestrator
 - Unified network management dashboard
- Experiment support
 - Centralized awareness and management
 - Geo-Positioning
 - IP traffic performance
 - Visualize dynamic tactical mesh topologies
 - High-level results
 - Detect tactical network failure in real time
 - Analyze application failure to hardware vs network
 - Post-experiment
 - Provide historical experiment events for research

SF Bay 2015 - CodeMettle

CENETIX Backbone: Node health, traffic and quality

.....

SF Bay 2015 - CodeMettle

Tactical Mesh: Geo-Position, IP traffic, Radio quality

- Rapid deployability
- Quick adaptation to dynamic environment
- Tactical-level resilient connectivity for localized battlespace
 awareness
- Lower probability of interception/detection
 - Directional antennas
 - "Smart" physical layer (e.g. beam-steering, transmit power optimization, etc.)
- Improve interoperability
 - Ship-to-shore movement
 - Surface Action Group operations
 - Allies and partners

12/4/2015

Enhancing Distributed Littoral Operations (cont)

- Strengthen mesh using deployable sensor networks and unmanned systems (UxVs)
- Improve UxV C2 ecosystem

NAVAI

POSTGRADUATE

- Robust control and data links
- Expand network with UxV nodes
- Reduce reliance on overhead assets
 - Soft GPS trilateration in denied environments
- Flexibility to integrate legacy and next-generation networking concepts (e.g. optronics, projectile-based networks, cubesat, etc.)

NAVAL Postgraduate School

Questions

NAVAL Postgraduate School

Backup Slides

....

MIO-JIFX 2014 BT Experimentation

Network Management

- Monitor the "health" of the network
- Determine when
 intervention is required
- Detect problems
 - Equipment failures (often hidden by the self-repair feature of the network)
 - Intruders
- Manage the system

33-2-

Network-on-Target 2006

12/Bordersky, A. and Bourakov, E. (2006) Network on Target: Remotely Configured Adaptive Tactical Networks. 11th International Command and Control Research and Technology Symposium (ICCRTS), June 20-22, 2006, San Diego, CA. Naval Postgraduate School.

12

CAVR 2008

Center for Autonomous Vehicle Research (2006) Network on Target: Remotely Configured Adaptive Tactical Networks. 11th International Command and 12/4/2045 arch and Technology Symposium (ICCRTS), June 20-22, 2006, San Diego, CA. Naval Postgraduate School.

- Users + routers = nodes
- Nodes have two functions:
 - Generate/terminate traffic
 - Route traffic for other nodes

Routing – Cross-Layer Design

POSTGRADUATE

NAVAL.

Routing – Physical

- Link quality feedback is shown often to help in selecting stable, high bandwidth, low error rate routes.
- Fading signal strength can signal a link about to fail → preemptive route requests.
- Cross-layer design essential for systems with smart antennas.

- Routing MAC
 - Feedback on link loads
 can avoid congested
 links → enables load
 balancing.
 - Channel assignment and routing depend on each other.
 - MAC detection of new neighbors and failed routes may significantly improve performance at routing layer.

Routing – Cross-Layer Design (cont)

• Routing – Transport

NAVAL

SCHOOL

POSTGRADUATE

- Choosing routes with low error rates may improve TCP throughput.
- Especially important when multiple routes are used
- Freezing TCP when a route fails.

- Routing Application
 - Especially with respect of satisfying QoS constraints