Submarine and Naval Ship Design for the Littorals - Saab Kockums

Roger Berg
2014-09-24
Submarine Development in Sweden since 1960
- Some Details

1960
- Kockums Sjöormen Class
 - Hull shape
 - X-rudder
 - One helmsman

1970
- Kockums Näcken Class
 - Automation

1980
- Kockums Västergötland Class
 - Sensors
 - Platforms
 - Weapon handling

1990
- Kockums Gotland Class
 - Firepower
 - Computerised

2000
- Kockums Södermanland Class
 - Modernisation

2010
- Kockums Archer Class
 - Modernisation

- Kockums Stirling AIP
 - Endurance / AIP / Survivability
 - Flexible Payload / Special Forces

- Kockums Class A26

- Kockums Stirling AIP
 - Signatures
 - Endurance

- Kockums Challenger Class

- Kockums Stirling AIP
 - Tropicalisation

- Kockums Collins Class
 - Modernisation

- Kockums Stirling AIP
 - Endurance / AIP / Survivability
 - Flexible Payload / Special Forces

- Kockums Södermanland Class
 - Modernisation

- Kockums Archer Class
 - Modernisation

- Kockums Stirling AIP
 - Signatures
 - Endurance
Saab Kockums A26 Submarine
– Designed for Littoral Operations with Ocean Going Capabilities

- Long Submerged Endurance - Stirling AIP
- High Level of Survivability – Stealth, Shock Resistance, Safety
- Excellent Manoeuvrability and Hydrodynamic Design
- High Performance Sensor and Communication Suite
- Large and Flexible Payload Capacity
- Special Operations Forces Support
The Stirling AIP System

Increases submerged endurance dramatically

- High efficiency – Further increased through waste heat recovery

Low signatures

- Low noise - No IR signature

Proven

- Operational since 1989
- Used in all RSwN submarines and by other navies
- High availability

Low life cycle cost

- Cost effective solution
- Easy to maintain

Simple logistics

- Low sulfur diesel and standard LOX

Can be refitted into existing submarines

- Self-contained AIP plug with all systems

New generation developed for Kockums A26

AIP replenishment at sea
(LOX, fuel & weapons)
Submarine Signature Management

- Submarine design with extremely low signatures
- Long experience – Co-operation with FMV/Navy/FOI, ranging data
- Advanced modelling capabilities – Prediction and reduction
- Stringent signature management process
- Measurement and analysis capabilities
Shock Resistant Design

SHOCK REQUIREMENT → SHOCK DESIGN → SHOCK RESISTANT SUBMARINE

TESTING → SIMULATION

Full scale testing since 1961
Full Scale Shock Test – First of Class Since 1961
The Kockums A26 Flexible Payload Concept

- Optional outboard TCM system or other system
- Flexible Stowage Compartment
- Extra bunks
- SOF equipment
- Weapons, Mines, UUVs, etc.
- Multi-Mission Portal (MMP) configured for diver lock in and lock out
- Multi-Mission Portal (MMP) configured for UUV launch and recovery

Flexible Payload Space, e.g. SOF equipment containers

SAAB Underwater Systems
The Visby Class Corvettes
Designed for Littoral Operations

➢ True stealth – Above and below the surface

➢ High speed and excellent maneuverability
 - Light Carbon Fibre Construction
 - Gas turbines and water jets

➢ Multi-mission capabilities
 - ASuW, ASW, MCM
 - Excellent sensor and effector suite

➢ High shock resistance
The Kockums FLEXpatrol Family – Based on Proven Solutions

- **Mission Modules**
 - (Kockums StanFlex)

- **Unmanned Vehicles**
 - (Kockums SAM3, Kockums Piraya)

- **Stern Launch & Recovery**
 - (Swedish Coast Guard)

- **Steel / Hybrid Design**
 - (P28 corvette)

FLEXpatrol Family
- FAC
- ASW
- MCM
- Stealth

Littoral Mission Vessel
- Hybrid (steel / composite)
- Multi-mission
- Agile (speed/firepower)
- Helo / Stern Ramps

- **Shock Resistance**
 - (Kockums Koster Class)

- **MCM Technologies**
 - (Kockums SAM3, Kockums Koster Class)

- **ASuW Systems**
 - (Kockums Gothenburg Class, Kockums Visby Class)

- **Stealth Technologies**
 - (Kockums Smyge, Kockums Koster Class)

- **Kockums Visby Class**
 - Stealth Technologies, Multi-Role
 - Composite Hull, Waterjet Propulsion
Why Carbon Fibre Sandwich?

- **Lightweight**
 - Structure -50% / Displacement -30%
- **Stealth/signature reduction**
 - Radar, IR, Acoustics, Pressure
 - 100% non-magnetic
- **Shock-resistance**
 - Proven from MCMVs and in live tests
- **Low life cycle cost**
 - Low fuel consumption
 - No corrosion
 - Long life span
Confirmation of structural strength by shock trials
SAM 3 for autonomous influence minesweeping

- Keeping ship and crew outside the mine danger area
- Autonomous control and sweep programming
- Container based systems enable rapid deployment
- Efficient minesweeping in confined and shallow waters
The Piraya USV Demonstrator

Unmanned Systems

- Technologies for autonomous and remotely controlled surface vehicles
- Network technologies for USV control
- Technologies for operation of multiple USV (swarming)
- Exercises with NPS on interdiction simulation and situation awareness