Lab 3 Steady State Error
Introduction. The overall system response is generally divided into two portions—a transient response and a steady-state response. The transient response is the initial system response after an input has been applied. This portion of the system response is characterized by parameters, such as, overshoot, rise time, peak time, and settling time—also whether the system response is overdamped or underdamped.
The steady-state response occurs after the transient response has settled down. This response is mainly characterized by the steady-state error. It is the difference between input and the output at steady-state when the transient response has passed. The steady-state error depends on the particular form of the system input. Generally, input signals such as steps, ramps, and parabolas are used to study the steady-state error.

Consider the block diagram of the SRV02 control feedback system as shown in Figure 1. The steady-state gain and the time constant are parameters used to characterize the SRV02. As before in Lab 2, the parameters and are the position and derivative (or velocity) feedback gains, which are adjusted or tuned as necessary to achieve the desired performance for the system. Lastly, the error signal is the difference between the input and the output ; it is given by the expression

	 	
	[image:]

	

Figure 1. SRV02 Block Diagram. Input is desired angular position , output is actual angular position . is the difference between the input and the output -

To study the steady-state error, the block diagram in Figure 1 will be considered in terms of a unity-feedback control system, as shown in Figure 2. The transfer function represents the inner-loop of the SRV02 consisting of the position feedback , the velocity feedback , the SRV02 plant, and the integrator.
	[image:]

	
Figure 2. Block diagram of the SRV02 unity-feedback control system. is called the open-loop transfer function.

With this representation, the output of the system is written as

	 	

Combining Eq 1.1 and Eq 1.2, the error is written as

	 	

Eq. 1.3 gives the error in terms of the commanded input and the open-loop transfer function . Lastly, the Final Value Theorem applied to Eq. 1.3 is used to give the steady-state error

	 	
Pre-Lab Work In this section, we will find the steady-state error for three different inputs—the step, the ramp, and the parabolic input.
1.
Referring to Figures 1 and 2, find the open-loop transfer function for the SRV02 feedback control system.
2.

Using from the previous step and Eq. 1.4, find the steady-state error when the input is a step (i.e.).
3.
Find the steady-state error when the input is a ramp, .
4.
Find the steady-state error for a parabolic input .
5.
In Table I, indicate for each type of signal input.

	Table I

	
Input signal
	Steady-state error

	Step
	

	

	Ramp
	

	

	Parabola
	

	

Procedure. In this part of the lab, we will apply inputs to the SRV02 position control system to observe the steady-state response.
Simulated Response In this part, we will examine the simulated response using the Simulink model of the SRV02.
1. Copy the Matlab and Simulink files for this lab into your working directory.
a. exp03_Setup.m This file has the essential constants that are used in the Simulink model and are read in to the Simulink model at run time.
b. exp03_Simulink.slx This is the Simulink model we will use for this lab procedure. It simulates the performance of the SRV02.
c. exp03_SRV02.slx This model interacts with the actual hardware and drives the SRV02 according to the gains we program into the model.
2. Open Matlab version R2014a and change the working directory to the one that has the files you copied in the previous step.
3.

From the Matlab command window, run exp03_Setup.m. This script loads the workspace with the various constants that the Simulink model will use at run time. Use the default values for the steady-state gain, the time constant , and the feedback gains and , as shown in the command window.
4. [bookmark: _GoBack]Next, open your Simulink model, exp03_Simulink.slx. The model should appear as shown in Figure 3.
5. We will use the From Workspace block to provide the input signal needed to drive the simulation. In the Matlab workspace, create a step input called simInput. This will be an array of two columns, with time in the first column and the step signal in the second column. The commands below show how to do this.
>> time = [0:0.001:3]’;
>> simInput = [time, pi/8*ones(size(time))];
6. Next open the scopes and run the Simulink model. It is not required to Build the model since we are not interacting with the real hardware here. Examine the scope traces and determine if the steady-state error agrees with your pre-lab work found in Table I.
7. To examine the simulated response more closely, plot the data in the data_pos array that is found in the MATLAB workspace. The columns in this array are time, commanded position, and actual position. Use the subplot command to make a plot showing the commanded and actual position in the upper plot, and the steady-state error in the lower subplot.
8. Next, repeat step 5 and create another input signal that is a ramp. You can do this easily with the following command, >> simInput = [time, pi/8*time];
9. Run the Simulink model again and examine the steady-state error. Make Matlab plots, as you did in step 7. Compare your results with Table I.
10.
Lastly, make a parabolic input, as shown. The is included to prevent the input from growing too quickly.
 >> simInput = [time, pi/8*time.^2];
11. Test this parabolic input in the Simulink model. Examine the steady-state error and compare with your expected results in Table I.
	[image:]

	 Figure 3. Simulink model to simulate the SRV02 and examine steady-state error.

Real Response In this next part, we’ll examine the steady-state error for the real SRV02 system. We’ll generate input signals in the Matlab workspace, as before to run the experiment.
1. In the Matlab command window, create the step input with the name simInput, as in step 5 of the previous section.
2. Open the model exp03_SRV02.slx. This model interacts with the actual hardware commanding it to move in accordance with PD Controller and acquires measurements from the SRV02 for angular position and angular velocity.
3. Check the Simulation Stop Time to make sure it is set to three seconds.
CAUTION: Applying large input signals for long periods to the SRV02 can damage the equipment.
4. Click Build Model in the toolbar to compile the model. This may take a minute or two to complete. If the model builds without any errors, proceed to the next step, otherwise, seek lab staff for assistance.
5. Click Connect To Target in the toolbar.
6. Open the scopes and run the model for three seconds.
7. Examine the scope traces and the data_pos array in the MATLAB workspace and determine whether or not the result agrees with Table I. Use the subplot command to make a plot showing the commanded and actual position in the upper plot, and the steady-state error in the lower subplot.
8. Repeat the procedure using the ramp input and the parabolic input.
Report. Submit a three-part report. Part 1 is one or two paragraphs on the objective of the lab, along with any pre-lab calculations. Part 2 contains the results from the lab procedure and includes screenshots, MATLAB data plots, and any data collected during the experiment. Include the subplots as described in the procedure. Finally, Part 3 is a conclusion discussing any observations made and reasons for errors encountered in the lab.

oleObject2.bin

image3.wmf
P

K

oleObject3.bin

image4.wmf
V

K

oleObject4.bin

image5.wmf
()

Es

oleObject5.bin

image6.wmf
d

q

oleObject6.bin

image7.wmf
Out

q

oleObject7.bin

image8.wmf
()()()

dOut

Esss

qq

=-

oleObject8.bin

image9.png

oleObject9.bin

oleObject10.bin

oleObject11.bin

oleObject12.bin

oleObject13.bin

image10.wmf
()

Gs

oleObject14.bin

oleObject15.bin

oleObject16.bin

image11.png

image12.wmf
()

Gs

oleObject17.bin

image13.wmf
()

Out

s

q

oleObject18.bin

image14.wmf
()()()

Out

sEsGs

q

=

oleObject19.bin

image15.wmf
()

Es

oleObject20.bin

image16.wmf
()

()

1()

d

s

Es

Gs

q

=

+

oleObject21.bin

image17.wmf
d

q

oleObject22.bin

image18.wmf
()

Gs

oleObject23.bin

image19.wmf
()

e

¥

oleObject24.bin

image20.wmf
0

0

()lim()

()

lim

1()

s

d

s

esEs

s

s

Gs

q

®

®

¥=

=

+

oleObject25.bin

image21.wmf
()

Gs

oleObject26.bin

image22.wmf
(s)

G

oleObject27.bin

image23.wmf
()

e

¥

oleObject28.bin

image24.wmf
()1

d

ss

q

=

oleObject29.bin

image25.wmf
2

(s)1

d

s

q

=

oleObject30.bin

image26.wmf
3

()1

d

ss

q

=

oleObject31.bin

oleObject32.bin

image27.wmf
()

d

s

q

oleObject33.bin

image28.wmf
1

s

oleObject34.bin

image29.wmf
2

1

s

image1.wmf
K

oleObject35.bin

image30.wmf
3

1

s

oleObject36.bin

image31.wmf
K

oleObject37.bin

image32.wmf
t

oleObject38.bin

oleObject39.bin

image33.wmf
V

K

oleObject40.bin

oleObject1.bin

image34.wmf
8

p

oleObject41.bin

image35.png

image2.wmf
t

