Lab 4 Root Locus Design
Introduction. The performance of a closed-loop system is largely characterized by the location of its poles in the complex plane. The nature of the transient response (i.e. overdamped, underdamped,…) and whether or not the system is stable is determined by the pole locations. If the system has a variable parameter, such as a feedback gain whose adjustment has the effect of moving the system pole locations to some degree, then the system’s performance may be tuned to achieve a desired specification.

In this lab, we explore the root locus design method. It is a graphical method that provides insight into how a system’s poles may be tuned through variation of a feedback gain parameter. Consider a closed-loop system with open-loop transfer function and a tunable gain , as shown in Figure 1. The transfer functionis a ratio of polynomials where is the polynomial in the numerator and is the polynomial in the denominator.
	[image:]

	

Figure 1. Block Diagram. Input is desired angular position , output is actual angular position . Gain may be tuned accordingly to achieve a desired system response.

The closed-loop transfer function for the system shown in the figure is written as

	 	

The polynomial in the denominator, , in Eq. 1.1 is known as the characteristic polynomial. Its roots are the poles of the closed-loop system and determine the nature of the system response. We may rewrite Eq.1.1 using the polynomials and for , which gives

	 	

Examination of Eq.1.2 reveals that the characteristic polynomial (and consequently the system poles) depends on the value of that is selected. Furthermore, if is chosen to be equal to zero, then the poles of the system will be equal to the roots of (i.e. poles of). Alternatively, if the gain is chosen to be very large in Eq. 1.2, then the roots of the characteristic polynomial will be dominated by the roots of (i.e. zeros of). As a result, a root locus plot then is a diagram that shows the trajectory of the system poles as the system gain is varied from zero to infinity. The trajectory begins at the poles of the open-loop transfer function and ends at the zeros of the open-loop transfer function.

Pre-lab work. Using the steps outlined below, along with the root locus method, find appropriate values for and so that the three sets of specifications in Table I are achieved.
	Table I

	No.
	Specification

	1
	
System must produce an underdamped response with settling time less than 300 ms, OS% less than 5.0 %, and steady-state error less than 0.04 radians.

	2
	
System is critically damped, i.e. , and the steady-state error less than 0.04 radians.

	3
	System is overdamped with the response approximating that of a first-order system.

1.
Referring to the block diagram in Figure 2, derive the open-loop transfer function for the SRV02 position control system.
	[image:]

	

Figure 2. SRV02 closed-loop system with tunable gains and . Open-loop transfer function G(s) includes all components shown in the dashed red box.

2.

Using the last result, write expressions for the poles of . Hint: One pole will be at the origin, and the other will depend on the parameters , , and . Also, recall that the system gain and the time constant were found in a previous lab. See Figure 3.
	[image:]

	

Figure 3. has two real poles, one at the origin (green) and the other located on the real axis at (red). The value of the tunable gain will establish the location of . The red and green trajectories show the movement of the system poles as the position gain is increased from zero.

3.

For the SRV02 configuration, the settling time is approximately . Use this formula and your expression for found in the last step to determine a value for . This will fix the location of the pole in our design.
4.

With determined in the last step, everything needed to fully describe the open-loop transfer function is now available. In Matlab, define using the tf function, then use the rlocus function to find values for that satisfy the specifications in Table I.
a.
Specification 1. In the root-locus plot, use the data cursor to find the gain that satisfies the overshoot specification.
b.

Specification 2. For critically damped response, the damping ratio and the poles are real-valued with . Settling time may no longer be satisfied.
c.

Specification 3. For the last specification, the overdamped response has two distinct real-valued poles. For the system to approximate a first-order system, we should have or . This will cause the overall response to be dominated by the pole at. Search for a value ofin the region of the root-locus that will satisfy this specification. Settling time is definitely not satisfied here.
5.

Once the values for for the three specifications are identified, make a note of these values in the table below. Note that will be the same for all three specifications.

	Table II

	Specification
	

	

	1
	
	

	2
	
	

	3
	
	

Procedure. In this part of the lab, we will use the feedback gains derived in the pre-lab work to see if we can achieve the performance specifications in Table I. First we will try these gains using our Simulink model, then we will use these gains with the actual SRV02 hardware.
Simulated Response In this part, we will examine the simulated response using the Simulink model of the SRV02.
1. Copy the Matlab and Simulink files for this lab into your working directory.
a. exp04_Setup.m This file has the essential constants that are used in the Simulink model and are read in to the Simulink model at run time.
b. exp04_Simulink.slx This is the Simulink model we will use for this lab procedure. It simulates the performance of the SRV02.
c. exp04_SRV02.slx This model interacts with the actual hardware and drives the SRV02 according to the gains we program into the model.
2. Open Matlab version R2014a and change the working directory to the one that has the files you copied in the previous step.
3.

From the Matlab command window, run exp04_Setup.m. This script loads the workspace with the various constants that the Simulink model will use at run time. Note the values for the steady-state gain and the time constant in the command window. Change these values to those values derived previously in Lab 1. Also note the values forand . Change these values so that they agree with the numerical values derived in the pre-lab work.
4. [bookmark: _GoBack]Next, open your Simulink model, exp04_Simulink.slx.
5. Next open the scopes and run the model. It is not required to Build the model since we are not interacting with the real hardware here. Examine the scope traces and determine if the specifications in Table I were achieved.
6. To examine the simulated response more closely, plot the data in the data_pos array that is found in the MATLAB workspace. The columns in this array are time, commanded position, and actual position.
7. Verify that the gains in Table II satisfy the three sets of specifications given in Table I. Save your data for comparison with the real response in the next section.

Real Response In this next part, we’ll use the feedback gains and to drive the real SRV02 hardware and examine the output response.
1. Open the model exp04_SRV02.slx. This model interacts with the actual hardware commanding it to move in accordance with PD Controller and acquires measurements from the SRV02 for angular position and angular velocity.
2. Click Build Model in the toolbar to compile the model. This may take a minute or two to complete. If the model builds without any errors, proceed to the next step, otherwise, seek lab staff for assistance.
3. Click Connect To Target in the toolbar.
4. Open the scopes and run the model for three or four seconds to collect several cycles of the output response. Examine the scope traces and the data_pos array in the MATLAB workspace and verify whether or not the specified performance was achieved.
5. Verify all three sets of performance specifications in Table I were met.
Report. Submit a three-part report. Part 1 is one or two paragraphs on the objective of the lab, along with any pre-lab calculations. Part 2 contains the results from the lab procedure and includes screenshots, MATLAB data plots, and any data collected during the experiment. Include a plot that shows the simulated response and the actual SRV02 response on the same plot for comparison. Finally, Part 3 is a conclusion discussing any observations made and reasons for errors encountered in the lab.

oleObject2.bin

image42.wmf
21

pp

?

oleObject53.bin

image43.wmf
21

10

pp

»

oleObject54.bin

image44.wmf
1

p

oleObject55.bin

oleObject56.bin

oleObject57.bin

oleObject58.bin

oleObject59.bin

oleObject3.bin

oleObject60.bin

image45.wmf
K

oleObject61.bin

image46.wmf
t

oleObject62.bin

oleObject63.bin

oleObject64.bin

oleObject65.bin

oleObject66.bin

image3.wmf
()(s)

NsD

oleObject4.bin

image4.wmf
()

Ns

oleObject5.bin

image5.wmf
()

Ds

oleObject6.bin

image6.png
Open-loop transfer function

9, —> b G(s)

image7.wmf
d

q

oleObject7.bin

image8.wmf
Out

q

oleObject8.bin

image9.wmf
P

K

oleObject9.bin

image10.wmf
()

1()

p

Out

dp

KGs

KGs

q

q

=

+

oleObject10.bin

image11.wmf
1()

p

KGs

+

oleObject11.bin

image12.wmf
()

Ns

oleObject12.bin

image13.wmf
()

Ds

oleObject13.bin

image14.wmf
()

Gs

oleObject14.bin

image15.wmf
()

()()

p

Out

dP

KNs

DsKNs

q

q

=

+

oleObject15.bin

oleObject16.bin

oleObject17.bin

oleObject18.bin

image16.wmf
()

Gs

oleObject19.bin

oleObject20.bin

oleObject21.bin

oleObject22.bin

image17.wmf
P

K

oleObject23.bin

image18.wmf
V

K

oleObject24.bin

image19.wmf
S

T

oleObject25.bin

image20.wmf
1

V

=

oleObject26.bin

image21.wmf
()

Gs

oleObject27.bin

image22.png
SRV02 Plant

V;n K wour
rs+1

Integrator
1/s

Position
feedback

Velocity

I
1
1
1
'
1
1
1
1
1
1
1
1
1
feedback 1

AN

G(s)

Out

image23.wmf
p

K

oleObject28.bin

image24.wmf
V

K

oleObject29.bin

oleObject30.bin

image25.wmf
K

oleObject31.bin

image26.wmf
t

oleObject32.bin

oleObject33.bin

oleObject34.bin

oleObject35.bin

image27.png

image28.wmf
()

Gs

image1.wmf
()

Gs

oleObject36.bin

image29.wmf
1

p

oleObject37.bin

image30.wmf
2

p

oleObject38.bin

image31.wmf
V

K

oleObject39.bin

image32.wmf
2

p

oleObject40.bin

image33.wmf
P

K

oleObject1.bin

oleObject41.bin

image34.wmf
2

8

S

Tp

=

oleObject42.bin

image35.wmf
2

p

oleObject43.bin

image36.wmf
V

K

oleObject44.bin

oleObject45.bin

image37.wmf
V

K

oleObject46.bin

image2.wmf
p

K

image38.wmf
()

Gs

oleObject47.bin

oleObject48.bin

image39.wmf
P

K

oleObject49.bin

image40.wmf
P

K

oleObject50.bin

oleObject51.bin

image41.wmf
12

pp

=

oleObject52.bin

