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Al Systems: Unique Challenges for Defense Applications
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Major changes to SE are needed to “engineer” a system that is intelligent and continues to
learn during operations. AI/ML intelligent systems need a new approach for developing
requirements, evaluating when these changing systems are ready for operations, and for
ensuring they are “learning” correctly during operations.
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Major changes to SE are needed to “engineer” a system that is intelligent and continues to learn during operations.
AI/ML intelligent systems need a new approach for developing requirements, evaluating when these changing
systems are ready for operations, and for ensuring they are “learning” correctly during operations.



Al Systems: Unique Challenges for Defense Applications

1
The Race is On!

Adversary advancements in Al—
are we keeping up or falling

behind?

Will Al be the new standard for

future military dominance?

Can our AI/ML systems support
our military decision superiority?

Adversaries

2
Cyber Attacks

As we rely more and more on
AI/ML systems, are we creating
more cyber vulnerabilities?

Through growth in automation, are
we making it easier for adversaries
to take control of our systems or

“poison” our systems with bad
data?

3
Threats Keep Changing

Can our AI/ML systems keep up
with the always-changing
adversarial threat space?

Technology 1s rapidly evolving.
The geo-political landscape
continues to change. Can AI/ML
systems evolve fast enough & in a
safe and trustable way to meet this
pace?



What is Al?

Here’s a good definition: Automation
Al 1s the application of human (or biological)
processes to problem solving using machines

Artificial Machine

Intelligence Learning

(usually, but not always digital computers)

Two Primary Types of Al

1. Explicitly Programmed 2. Learns from Data
*  Think “if-then,” but can be more complex *  The system is provided a large amount of data
. Uses normal programming languages (many labeled examples)

*  The system learns patterns by trial-and-error until it

*  Caninvolve complex manually designed coding it the labeled 1
can predict the labeled examples

schemes for data / knowledge
*  Then, the “trained” system can be used (for

prediction) given new data

Adapted from Barclay Brown, Raytheon



A new type of system — a new set of challenges
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A new type of system — a new set of challenges

Characteristics of ML Systems:

Non-Deterministic

ML is a technique that allows a computer to learn a task without being
explicitly programmed. The ML system implements inductive inference on
real-time or operational data sets after being trained. Therefore, ML system
behavior leads to variability in results.

Complex

ML systems can exhibit complex behavior due to deep learning (the ML
system consists of networks of many learning sub-components) and complex
mathematical operations involving very large datasets and computations. The
complex (unexpected) behavior can emerge.

Intimately Connected to Data

ML systems “emerge” or are generated through the process of learning on
training data sets. They are a product of the quality, sufficiency, and
representativeness of the data. They are intimately connected and wholly
dependent on their training data.

Intimately Connected to Context

During operations, the behavior of ML systems is highly dependent on the
context, or operational situation. Uncertainty in data representations of
situational awareness, will lead to ML system prediction error. Complexity in
the operational situation will lead to complex ML system operations.



Failure Modes of AI/ML Systems
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overly trust the
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Operators
ignore the ML
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Uncertain
predictions arise

from uncertainties
in the data



Al System Safety: Root Causes of Failure Modes

Pre-Deployment: Design, Development, Testing

Bias in the training data sets

Incompleteness---data sets don’t represent all scenarios

Rare examples — data sets don’t include unusual scenarios

Corruption in the training data sets
Mis-labeled data
Mis-associated data

Poor validation methods (is there criteria for
deciding how much training data is good enough?)

Poor data collection methods

Underfitting in the model — when the model 1s

» Systems Engineering & Acquisition

Machine Learning System

not capable of attaining sufficiently low error on the training

data

Cost function algorithm errors — when trained model is
optimized to the wrong cost function

Wrong algorithm — when the training data is fit to the wrong

algorithmic approach (regression neural network, etc.)

v

Post-Deployment: Operations & Sustainment

Uncertainty/error in operational datasets
Corruption in operational datasets

Inaccuracy in the ML algorithm model (prediction
error)

Operational complexity that
overwhelms the ML system

Opverfitting — when the model presents a

very small error on the training data but fails to
generalize, i.e., fails to perform as well on new
examples; the model 1s “overfit” to the training data

Lack of explainability
Trust issues
Operator-induced error

Adversarial attacks — hacking, deception, inserting false
data, controlling automated systems



AI System Safety: Solution Strategies

Step One: Determine whether the ML system application is Type A or Type B

Type A Type B
Safety is Paramount Safety is Less Important
Applications in which ML system model predictions are Applications in which ML system model predictions are
used to support consequential decisions that can have a used in setting of low consequence and large scale

profound effect on people’s lives

Examples: Examples:
- Medical diagnosis - Services that decide which news story to show up on top
- Loan approval - Services that decide which advertisements to show

- Prison sentencing

Defense Application Examples: Defense Application Examples:
- Time-critical tactical applications (combat identification, - Planning operations with ample time (some logistics
weapon engagement decisions) operations)

- Mission planning applications (strike planning, aviation
planning, UAS operations)



Al System Safety: Four Types of Solution Strategies

» Systems Engineering & Acquisition

Pre-Deployment: Design, Development, Testing Post-Deployment: Operations & Sustainment

1. Inherently Safe Design

Focus: ensuring robustness against uncertainty in the training data sets

- Interpretability — ensuring designers understand the complex ML systems that are
produced from the data training process

- Causality — reducing uncertainty by eliminating non-causal variables from the model

v



Al System Safety: Four Types of Solution Strategies

» Systems Engineering & Acquisition

Pre-Deployment: Design, Development, Testing

1. Inherently Safe Design

Focus: ensuring robustness against uncertainty in the training data sets

- Interpretability — ensuring designers understand the complex ML systems that are
produced from the data training process

- Causality — reducing uncertainty by eliminating non-causal variables from the model

2. Safety Reserves

Focus: achieving safety through additive reserves, safety factors, and safety margins —
through training data set validation

- Validating training data sets — eliminating uncertainty in the data sets; ensuring data sets
are accurate, representative, sufficient, bias-free, etc.

- Increasing/improving model training process — ensuring adequate time and resoutces ate
provided for training and validation process

Post-Deployment: Operations & Sustainment

v
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» Systems Engineering & Acquisition
Pre-Deployment: Design, Development, Testing Post-Deployment: Operations & Sustainment

1. Inherently Safe Design

Focus: ensuring robustness against uncertainty in the training data sets

- Interpretability — ensuring designers understand the complex ML systems that are
produced from the data training process

- Causality — reducing uncertainty by eliminating non-causal variables from the model

2. Safety Reserves

Focus: achieving safety through additive reserves, safety factors, and safety margins —
through training data set validation

- Validating training data sets — eliminating uncertainty in the data sets; ensuring data sets
are accurate, representative, sufficient, bias-free, etc.

- Increasing/improving model training process — ensuring adequate time and resoutces ate
provided for training and validation process

3. Safe Fail

Focus: system remains safe when it fails in its intended operation

- Human operation intervention — the operation of ML systems should allow for adequate human-machine
interaction to allow for system overrides and manual operation

- Metacognition — the ML system can be designed to recognize uncertainty in predicted outcomes or possible
failure modes and then alert operators and revert to a manual operation mode

- Explainability/Understandability/ Trust-worthy

v



Al System Safety: Four Types of Solution Strategies

» Systems Engineering & Acquisition

v

Pre-Deployment: Design, Development, Testing Post-Deployment: Operations & Sustainment

1. Inherently Safe Design

Focus: ensuring robustness against uncertainty in the training data sets

- Interpretability — ensuring designers understand the complex ML systems that are
produced from the data training process

- Causality — reducing uncertainty by eliminating non-causal variables from the model

2. Safety Reserves

Focus: achieving safety through additive reserves, safety factors, and safety margins —
through training data set validation

- Validating training data sets — eliminating uncertainty in the data sets; ensuring data sets
are accurate, representative, sufficient, bias-free, etc.

- Increasing/improving model training process — ensuring adequate time and resoutces ate
provided for training and validation process

3. Safe Fail

Focus: system remains safe when it fails in its intended operation

- Human operation intervention — the operation of ML systems should allow for adequate human-machine
interaction to allow for system overrides and manual operation

- Metacognition — the ML system can be designed to recognize uncertainty in predicted outcomes or possible
failure modes and then alert operators and revert to a manual operation mode

- Explainability/Understandability/ Trust-worthy

4. Procedural Safeguards

Focus: measures beyond ones designed into the system; measures
that occur during operations

- Audits, training, posted warnings, on-going evaluation



Mapping Al to the Kill Chain

* SE Capstone project — graduating Dec 2021
* NRP 2021 — project with OPNAV N2/N6 Sponsor
* SE Capstone team (graduated Sept 2020) did preliminary study/
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 lAction | Al Method/Auto | Description |

Preprocessing and storing data

Fuse vague data to detect an anomaly

Retrieve similar cases

Awuto executes when triggered (emerged target)

Drecide on target from data mining knowledge base
Manitors the target in space and time

Predicts trajectory of threat

Provide precision coordinates meeting requirements of
AD system

Combine location data with AD capabilities data

Assesses utility (capability) and readiness

Assesses both probability and utility of threat knowledge
Assesses both probability and utility of COAs

Auto executes when triggered and auto populate fields
Auto executes when triggered (attack order)

Monitors and projects threat and AD asset

Auto executes when triggered (failed engagement)
Preprocessing and storing data

Data Management Strategy for the Navy
* SE Capstone project — graduating June 2021

* Presentation at NAML 2021
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Engineering Trust into Al Systems

* SE Thesis project — graduating Dec 2021
* NRP 2021 — project with NAWC China Lake Sponsor

Study Approach:

1. Conduct a lit review of “trust” in Al systems
2. Study “trust” in an automated battle management aid for air and missile defense
- Conceptualize a future Al-enabled BMA system for AMD
- Study AMD kill chain and identify decision points involving HMI
2. Model the human-machine decision interactions for the AMD kill chain using BMA
- Study the model using different threat scenario simulations with a variety of complexity
- Identify “trust” issues/risks and their consequences
- Characterize the components of trust in each decision point
3. Develop a strategy for engineering trust in AMD BMA systems based on the M&S analysis
results

* SE Capstone project — graduating Sept 2021 Al System Safety

* NRP 2021 — project with NAWC China Lake Sponsor

Study Approach:
1. View an automated battle management aid for air and missile defense as a system
- Characterize current BMAs and future BMAs
- Conceptualize a future Al-enabled BMA system for AMD
- Understand a future Al-enabled BMA system’s SE lifecycle (highlight unique SE aspects of an Al-
enabled system)
2. Perform a system safety analysis for the future Al-enabled BMA system

- Problems occurring during operations

- Problems creeping in during development
- Data corruption (cyber attacks, bias, unintended poor data, incomplete data, etc.)
- Human-machine safety risks (mis-trust, overreliance (ovetly trusted), dis-use, operator induced error,
Al-explainability (or lack of understanding), AI complexity, etc.)
- Cyberattacks
3. Characterize possible consequences of safety-related problems

>

Develop solutions, methods, and strategies for countering the safety issues
5. Compare and evaluate the solutions
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* SE Capstone project — graduating Dec 2021
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Monitors and projects threat and AD asset

Auto executes when triggered (failed engagement)
Preprocessing and storing data



Engineering Trust into Al Systems

* SE Thesis project — graduating Dec 2021
* NRP 2021 — project with NAWC China Lake Sponsor

Study Approach:

1. Conduct a lit review of “trust’” in Al systems

2. Study “trust” in an automated battle management aid for air and missile defense
- Conceptualize a future Al-enabled BMA system for AMD
-Study AMD kill chain and identify decision points involving HMI

2. Model the human-machine decision interactions for the AMD kill chain using BMA
-Study the model using different threat scenario simulations with a variety of complexity

- Identify “trust” issues/risks and their consequences
- Characterize the components of trust in each decision point
3. Develop a strategy for engineering trust in AMD BMA systems based on the M&S analysis results



Data Management Strategy for the Navy

* SE Capstone project — graduating June 2021
* Presentation at NAML 2021
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* SE Capstone project — graduating Sept 2021 Al System Safety

* NRP 2021 — project with NAWC China Lake Sponsor

Study Approach:
1. View an automated battle management aid for air and missile defense as a system
- Characterize current BMAs and future BMAs
- Conceptualize a future Al-enabled BMA system for AMD
- Understand a future Al-enabled BMA system’s SE lifecycle (highlight unique SE aspects of an Al-
enabled system)
2. Perform a system safety analysis for the future Al-enabled BMA system

- Problems occurring during operations
- Problems creeping in during development
- Data corruption (cyber attacks, bias, unintended poor data, incomplete data, etc.)
- Human-machine safety risks (mis-trust, overreliance (ovetly trusted), dis-use, operator induced error,
Al-explainability (or lack of understanding), Al complexity, etc.)
- Cyberattacks
3. Characterize possible consequences of safety-related problems
4. Develop solutions, methods, and strategies for countering the safety issues
5. Compare and evaluate the solutions
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Wrap Up

e AI/ML has huge potential for defense applications

* ML systems are different than traditional systems — we need to be mindful of new challenges and
new types of failure modes

* Systems Engineering and Acquisition are entering a new frontier with AI/ML systems — we need
new ideas, methods, and strategies

* Exciting research opportunities:
* AI/ML applications for defense (tactical kill chain, directed energy, air and missile defense)
* Engineering AI/ML systems (system safety, data management, system design)

I welcome collaboration!

Dr. Bonnie Johnson
bwjohnson@nps.edu
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