

NAVAL Postgraduate School

Directed Energy Weapons

SEA-19B Capstone Final Progress Review June 06 2013

The Nation's Premiere Defense Research University

Monterey, California WWW.NPS.EDU

Roadmap

- Team & Organization
- Tasking & Scope Summary
- Historical Overview
- SE Process
- Modeling and Simulation
 - Method, results, and findings
- Cost Estimation
- Integration, Sustainment, Training, and Manning
- Selected Technologies Summary & Overview
- AoA
- Conclusion and Future Recommendations

Bottom Line Up Front

WWW.NPS.EDU

Bottom Line Up Front

•DEW can and will be "game changing," just not in the next 4 years Current DEW tech levels inadequate for "one for one" weapon replacement Aggregate estimate for shipboard fuel cost associated with a DEW shot is less than \$1 Compare to \$800K to \$3.6M AD interceptors Tactical Laser Syste entry of for the buck" Active Denial System (ADS) has potential to fill unique capability gap for Anti-Terrorism and Force Protection Both TLS and ADS ar per than other O CLEEP alternatives of comparabl 5

Systems Engineering Team

- 23 Total Personnel
 - 6 US Navy Surface Warfare Officers
 - 1 US Army Officer
 - 1 Taiwanese Air Force Officer
 - 1 Israeli Army Officer
 - 14 Singapore military / DOD / Industry Reps

Tasking Statement

Design a family of systems or a system of systems of Directed Energy Weapons (DEW) that can be integrated with manned and unmanned forces to address a broad spectrum of missions commensurate with the needs of the U.S. Navy. Consider current fleet structure and funded programs as the baseline system of systems to conduct current missions. Develop the concept(s) of operations for the range of current and future missions that incorporate DEW, then develop alternative fleet architectures for 8 platforms, ships, manning, command and control, communications, logistics, and operational procedures to advantage DEW capabilities. Consider the potential technology gaps for both DEW and integrating DEW into Naval forces; determine a more streamlined architecture for the combined DEW – Navy forces; and identify and characterize the "gap" fillers. Iterate the task, as approved by your primary faculty advisor. Produce a coherent vision of U.S. Navy missions that incorporate DEW; identify the requirements for support and collaboration with coalition forces; and discuss the interoperability issues with these collaborative efforts. Provide a roadmap of DEW to improve the effectiveness for future Navy ships.

WWW.NPS.EDU

•Address a broad spectrum of missions commensurate with the needs of the U.S. Navy

Consider current fleet structure and funded programs

•Consider the potential technology gaps for both DEW and integrating DEW into current and future Naval forces

•Identify and characterize the gap fillers

•Produce a coherent vision of U.S. Navy missions that incorporate DEW

 Provide a roadmap of DEW to improve the effectiveness for future Navy ships

What is the problem?

Path to Solvency

- We recognize that shipboard weapon systems are about tradeoffs; provide equal capability or better
- Just because it works does not mean it's useful
- We recognize the value of federal dollars already spent

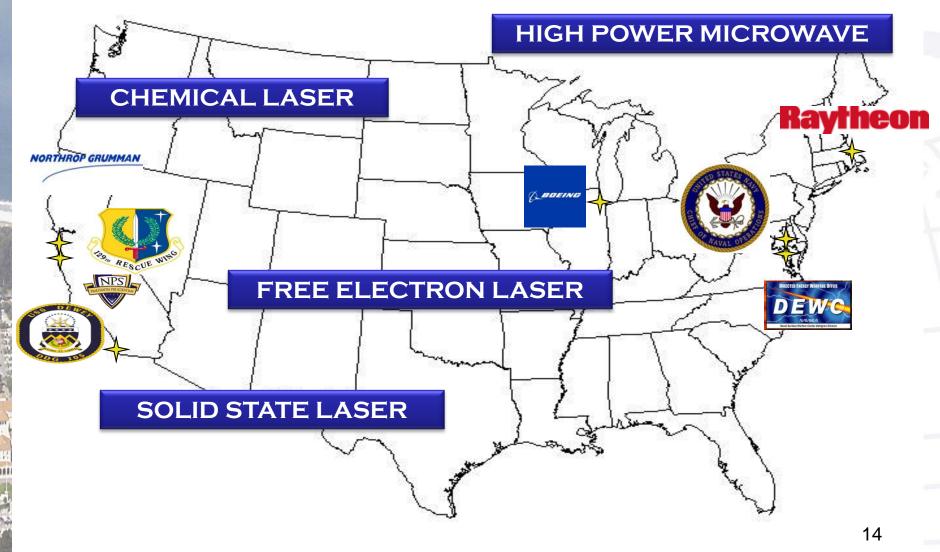
DECISION CALCULUS

✓ COMPARATIVE ADVANTAGE
 ✓ ADDED VALUE TO WARFARE COMMANDER
 ✓ RETURN ON INVESTMENT

- We will only consider DEW technologies that currently have an operationally tested prototype
- DEW must have the ability to comply with the following timeline:
 - 12 months to development of concept of operations
 - 24 months to the demonstration of operational utility
 - 36 months to initial operational capability
 - 48 months to validation of operational capability
- Consider integration with DDG-51
- Consider prototypes that are US developed
- Focus on defensive capabilities

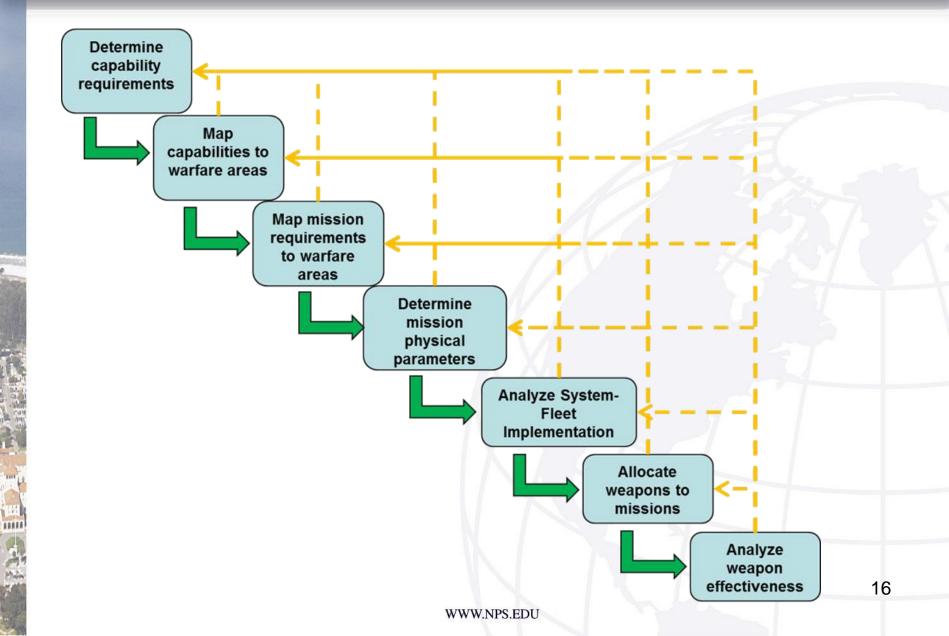
11

- Focus is on "Beams" not "Bombs"
- Space-based weapons
- Not looking to provide "strike" capability
- Not evaluating technologies whose purpose is to provide Ballistic Missile Defense (BMD) capability
- Not considering DEW technologies designed to be deployed on airborne platforms
- Technologies whose primary purpose is to cause unnecessary suffering or superfluous injury
- Politics surrounding the use and employment₁₂

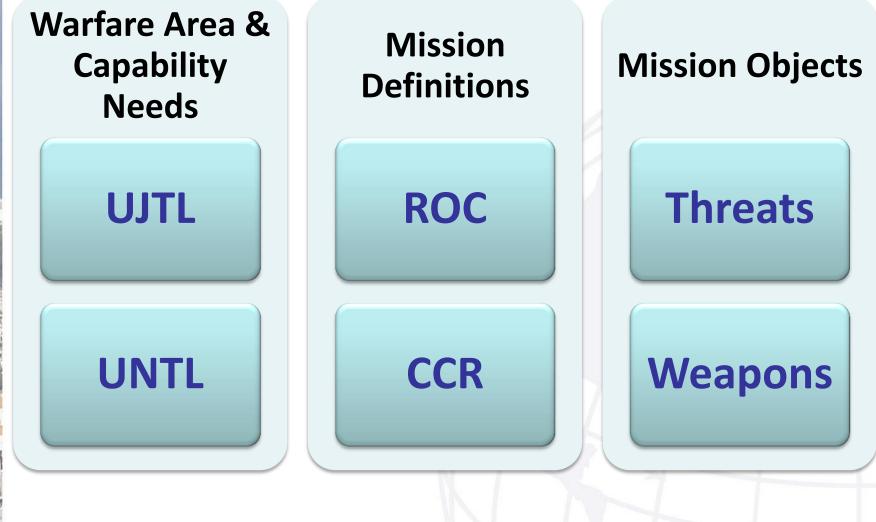

Stakeholders

NPS and N9I are the two project stakeholders.

Potential Sources of Information

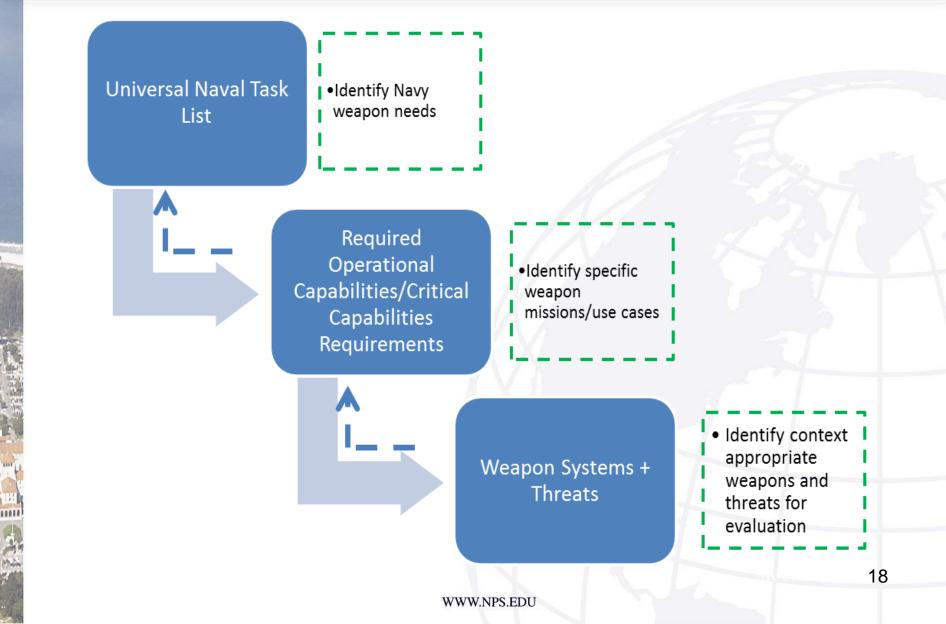

Respective company trademarks

- Archimedes "death ray" (circa 200 B.C.) used against invading Roman fleet
- Nikola Tesla's work on high frequency technologies (circa early 1900s)
- WWII German experiments (circa 1940s)
 - Proved you can make people physically sick with DEW (induce nausea and vertigo)
- Reagan's Strategic Defense Initiative (circa 1980s)
- DEWs subject of study at NPS (circa "recent")
 - Funded studies by professors
 - Student Capstone Project; student thesis



Tailored SE Process

Fractured View of Need/Mission/Weapon Integration



WWW.NPS.EDU

17

Needs/Mission/Weapon Mapping Method

NAVAL POSTGRADUATE High Power Microwave (HPM) Weapons

- What are they
 - Weapons designed to exploit parts of the electromagnetic spectrum in order to neutralize targets
- How do they work
 - HPM weapons transmit high amounts of energy via concentrated radio waves which can be used to disrupt electronic equipment and produce devastating biological effects in the use of crowd control
- Origin
 - Development began nearly 50 years ago in the technology race between East and West
- Where are we now
 - Active Denial System is the only U.S. HPM weapon with a viable, operationally tested, prototype

Active Denial System

(www.globalsecurity.com)

- ADS is a non-lethal counterpersonnel directed energy weapon
- Millimeter waves penetrate up to 1/64 of an inch into skin quickly heating it up
- Burning sensation stops when target moves out of the way of beam or when the system is turned off
- Low potential for burns produced due to low levels of energy used and shallow penetration
- Deployed to Afghanistan in 2010; however, not used for political reasons

- What are they
 - A laser that uses a gain medium that is a solid (opposed) to a liquid such as in dye lasers, or a gas as in gas lasers)
- How do they work
 - Energy is pumped into a solid gain medium of rare earth elements exciting ions and producing more energy that is focused by glass or crystalline (lens) onto the target
- Origin
 - First SSL was invented in 1960
- Where are we now?
 - Several viable options available including the LaWS which will be installed on the USS Ponce in FY 2014

Laser Weapon System (LaWS)

(www.popsci.com)

- Technical Maturity: TRL 6
- Working on ASCM capability
 -Not demonstrated yet
- NAVSEA 05 Tentative Green Light
- 33 150 KW technically acceptable to be fitted onto DDG-51

 All blueprints and technical drawings exist

Maritime Laser Demonstration (MLD)

NAVAL

SCHOOL

POSTGRADUATE

(www.ndu.edu)

- Built by: Northrup Grumman
- Tech Maturity: TRL 6
- Testing Completed: April 2012
 - Tracking and setting on fire multiple, small, unmanned boat targets
- Description:
 - Mounted on Spruance-class destroyer
 - Using only ship's existing electricity
 - Integrated with ship's radar and navigation system
 - Actual maritime conditions: 8-ft waves, 25kt winds, rain & fog

Tactical Laser System (TLS)

(www.nosint.blogspot.com)

- Built by: BAE and Boeing
- Tech Maturity: TRL 7
- Testing Completed: December 2012
 - Successful engagements at thousands of meters
 - Has engaged targets over land and water
 - **Description:**
 - High energy laser system attached to
 Mk 38 naval gun systems currently
 deployed on most surface combatants

DEW Assumptions and Summary

System	Power	Wavelength/ Frequency	Aperture Diameter/ Area	Gaussian Waist Factor/ Antenna Constant	Antenna Efficiency
ADS	100kW	3155.7 μm	4.772 m ²	4/π	0.8
LaWS	33kW	1.064 µm	0.66 m	6.5	N/A
LaWS+	150kW	1.064 µm	0.66 m	6.5	N/A
MLD	105kW	1.064 µm	0.49 m	6.5	N/A
TLS	10kW	1.6 µm	0.3 m	6.5	N/A

Modeling and Simulation

Vector-Based Movement Map Aware Non-uniform Automata This software has been developed by <u>Gregory McIntosh</u>, <u>David Galligan</u>,

Mark Anderson and Michael Lauren for the New Zealand Army and Defence Force. Terms of use:

This software belongs to the Defence Technology Agency (DTA), New Zealand Defence Force. It is not to be distributed without the permission of DTA. This product is not to be offered for resale.

View end user license agreement (EULA)

(Requires user account.)

5.01.04

I Agree Cancel

Modtran⁵

Microsoft[®] Visual Studio[®]

Microsoft[®]

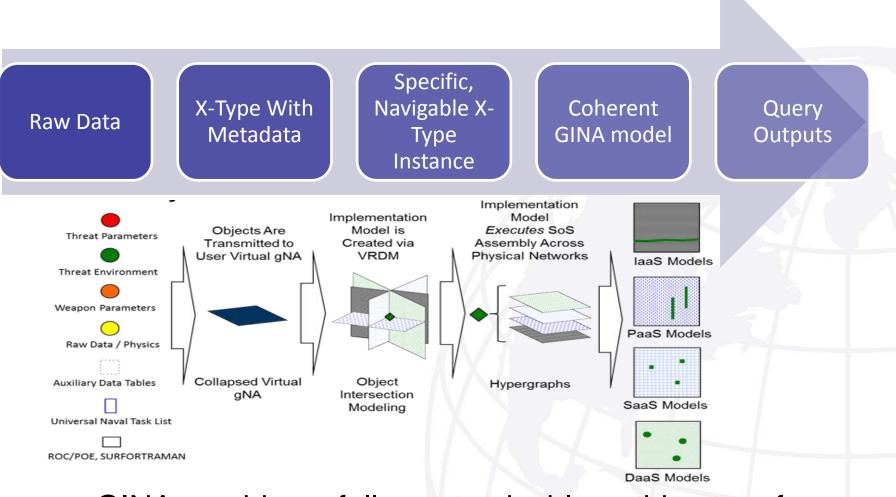
WWW.NPS.EDU

- How well do DEWs address an entire warfare area?
- What missions or set of missions is most appropriate for a DEW?
- What threat or set of threats is most vulnerable to a DEW engagement?
- How can DEWs be used in a unique or augmenting capacity?
- How do DEWs perform as compared to conventional weapons?

DEW Performance Metrics

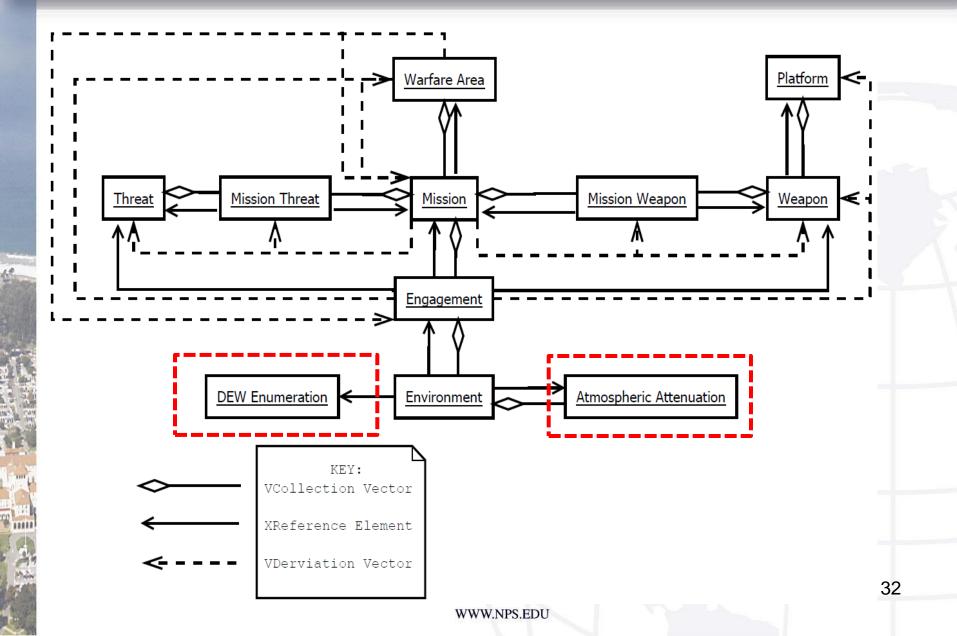
- GINA Modeling Metrics
 - Warfare area missions success percentage
 - Mean range of first Type I Engagement, given success
 - Mean Range first Type II Engagement, given success
 - Number of threats with more with Type I Engagements than a conventional weapon
 - Is DEW's maximum range of first Type I Engagement greater than that of a convectional weapon?
 - Is the DEW non-lethal capable?
 - Simulation Metrics
 - Percentage of scenarios with zero leakers
 - Best combination of weapons for maximum survivability

Problem Space Contexts



- "A configurable interoperable network information object modeling environment for configuring and implementing an executable description of system of systems behavior with applications across the IT domain space"
- Developed under a collaborative research agreement by NPS and the US Army Corps of Engineers with Big Kahuna Technologies LLC
- Technical Support: Dr. Tom Anderson, USACE ERDC (TRAC Monterey) and Mr. Frank Busalacchi, Chief Technology Officer, Big Kahuna Technologies LLC

Why GINA?



GINA provides a fully customizable architecture for implementing "Supermetadata"

WWW.NPS.EDU

GINA Model Architecture

- 3 mathematical models implemented in VB.NET
- MODTRAN 5 Radiative Transfer Model
 - C# Class Wrapper for MODTRAN integration
- Custom GINA Content Manager to execute mathematical models and run MODTRAN from GINA
- Result:
 - A semantically-driven framework that allows a direct comparison of DEWs to conventional weapons in the context of a mission, warfare area, weapon platform, threat, and environment

- What does it mean to model DEW performance?
 - Current combat models do not accurately address DEWs
- Required unique definitions of engagement end-state:

	Type I Engagement	Type II Engagement	
LASER	Burn though threat armor	Threat armor failure under stress due to structural weakening	
Microwave	Probability of death from exposure > 1%	Exposure causes the pain threshold to be reached	
Conventional	onventional Ability to intercept a Not applicable threat		

NAVAL POSTGRADUATE SCHOOL

Modeled Engagement Diagram

	Mission ID	VA Radius (m)	
	ATFP 12	50	
	ATFP 15	100	
Weapon	ATFP 4	200	
Intercept	ATFP 8	100	
Threat	ATFP 9	500	
WEAPON Mission Defined Speed	AW 1.1	5000	
Weapon Effect Delay	AW 1.12	500	
	AW 1.13	5000	
Threat Engage Threat	AW 1.2	500	
By Range Detection Slant Range	AW 1.4	1000	
Weapon	AW 1.5	3000	
Maximum	AW 1.6	3000	
Effective Range Threat Detection Stant Speed	AW 9.1	1000	
Detection Slant Speed Range	AW 9.3	500	
Mission Defined Threat Vital Area Detection	AW 9.4	1000	
	NCO 19.6	200	
Threat Detection	NCO 19.9	200	
Threat Engage Ground Range By Range	SUW 1.10	100	35
WWW.NPS.EDU	SUW 2.3	1000	00

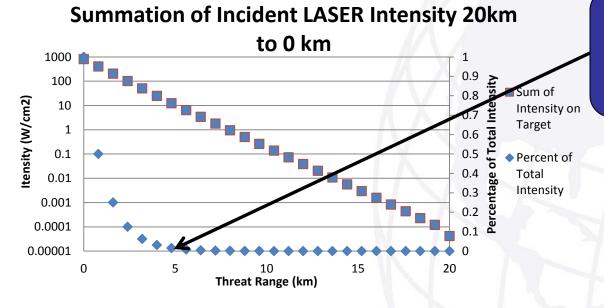
NAVAL POSTGRADUATE Modeling HPM Performance in GINA SCHOOL

Model Parameter	Inputs and Assumptions	
Determine Threat Material Properties	Assume human skin, using empirical data to determine pain and lethal thresholds: <i>Thermal</i> <i>Radiation: Physiological and Pathological</i> <i>Effects</i> (Institution of Chemical Engineers)	
Calculate Intensity at Range	Atmospherics: MODTRAN Maritime Model, Absorption + Scattering, Use transmittance at detection range to estimate attenuation coefficient along entire path $I = \frac{P_{peak} * G * T}{4 * \pi * R^2}$ P: Power (Watts) G: Gain (dB) T: Transmittance (%) R: Range (meters)	

69

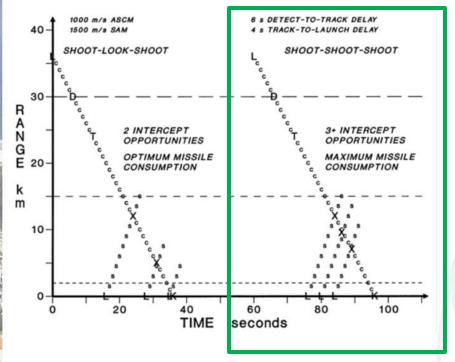
ABAAA

Sel X


NAVAL POSTGRADUATE Modeling HEL Performance in GINA

Model Parameter	Inputs and Assumptions
Determine Threat Fluence for T1E	Density, Thickness, Specific Heat, Melting Temperature, Ambient Temperature, Latent Heat of Fusion, Reflectivity
Determine Threat Fluence for T2E	$F = \frac{Fluence \ for \ Type \ I \ Engagement}{6}$
Determine Intensity at Range	 Beam:coherent, spherical, Gaussian Atmospherics: MODTRAN Maritime Model, Absorption + Scattering, Use transmittance at detection range to estimate attenuation coefficient along entire path Ignore jitter and use a 1/3 conical spreading approximation, assume adaptive optics work $I_{pk} = \frac{4 * P * e^{-\alpha * (\frac{R}{1000})}}{\pi * (W_0^2 + R^2 * \varphi^2)}$ P: Output power (Watts) <i>α</i>: Attenuation Coefficient (km⁻¹) W₀: Beam waist (meters) R: Range (meters) <i>φ</i>: Full angle beam divergence (1/e power point) (Radians)

GINA Outputs for LASER


- Number of Type I Engagements possible
- Number of Type II Engagements possible
- Range of first Type I Engagement
- Range of first Type II Engagement
- Maximum effective range:

MER is the range at which 1% of fluence for T1E is accumulated: "Begin engage range"

Modeling Conventional Weapon Performance in GINA

- Time, speed, distance to intercept calculation

 No drag or acceleration
- If weapon can reach the threat before threat reaches Vital Area: success
- Single delay between shots assumed
- Guns are modeled as bursts of rounds

Conventional Assumptions

Weapon Designator	Weapon Name	Weapon Speed (m/s)	Weapon Max Effective Range (m)
MK 15	Close-In Weapon	1113	1490
	System		
MK 38 Mod 2	25mm	1100	2460
	Bushmaster		
MK 54	5 Inch/54 Cal.	808	15000
	Deck Gun		
RIM-66 MR	SM-2 Block III	1191	166680
	Medium Range		
	Niedium Range		

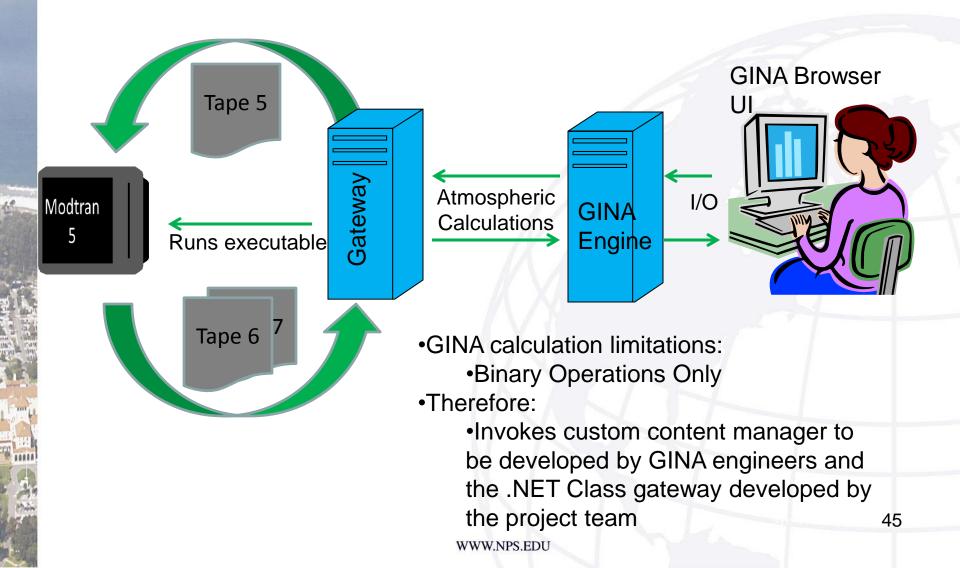
GINA Conventional Outputs

- Number of Type I Engagements possible
- Range of first Type I Engagement
- Maximum effective range

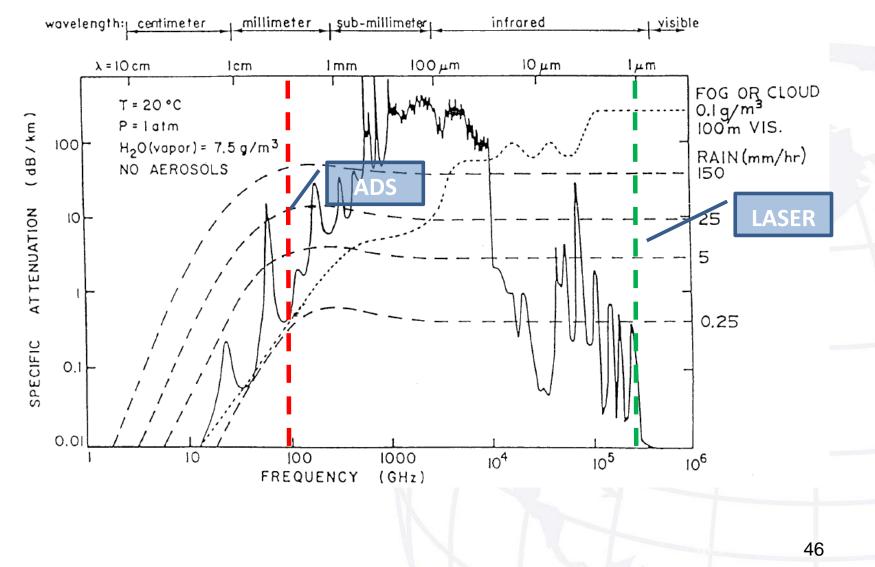
• Type II Engagements are N/A

Modeled Threat Assumptions

Designator	X-type Name	Armor Material	Speed (m/s)
Cessna	Cessna 150	Aluminum	49
FAC	Aluminum Boat	Aluminum	23
Iranian UAV	Ghods Ababil Ababil-T	Aluminum	103
MiG-29	Fulcrum	Aluminum	666
FIAC	Fiberglass Boat	Fiberglass	23
Person	Running 5 mph	Skin	2
AS-11	Kilter	Stainless Steel	1167
C-802	Saccade	Stainless Steel	266
PC	Boghammer	Stainless Steel	9
F-14	Tomcat	Titanium	555
Dhow	Dhow	Wood (oak)	4

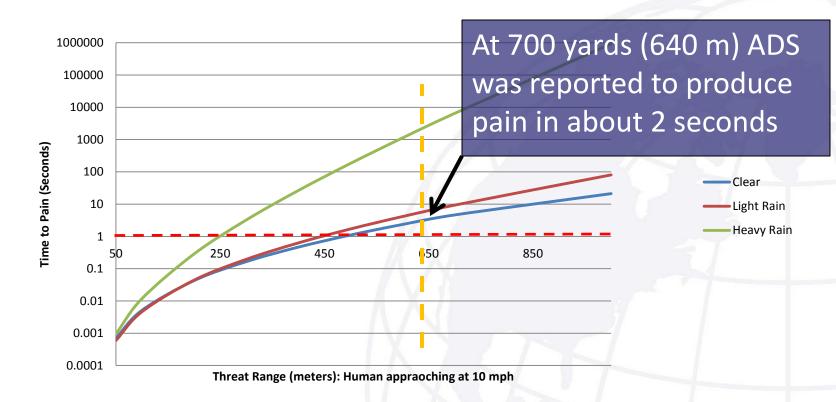

Atmospheric Modeling

- Readily available to the project team
- Validated model for radiative transfer estimation for use by DoD
- Included U.S. Navy maritime atmospheric model by default
- Covers both LASER and microwave regions in one model
- Provided necessary transmittance inputs for mathematical models


GINA-MODTRAN 5 Integration

....

Atmospheric Analysis



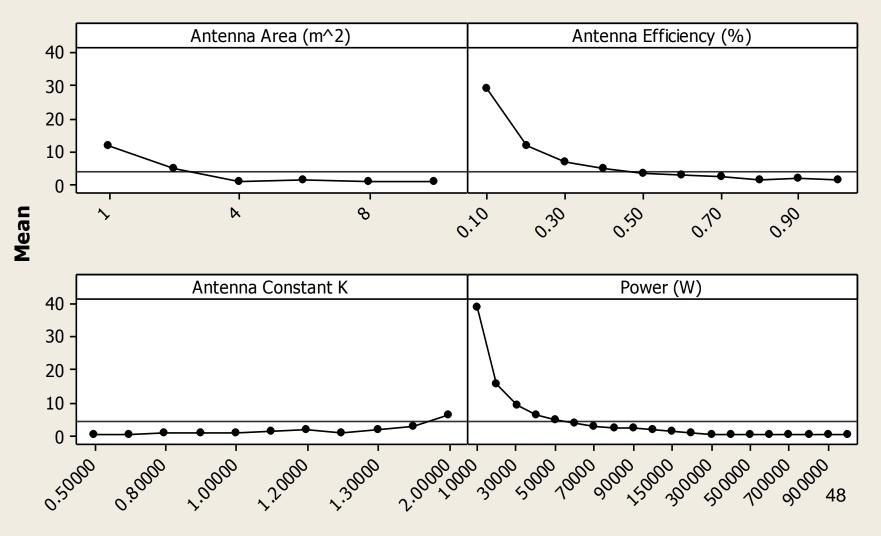
WWW.NPS.EDU

Microwave Model Validation

ADS Pain Threshold Weather Effects

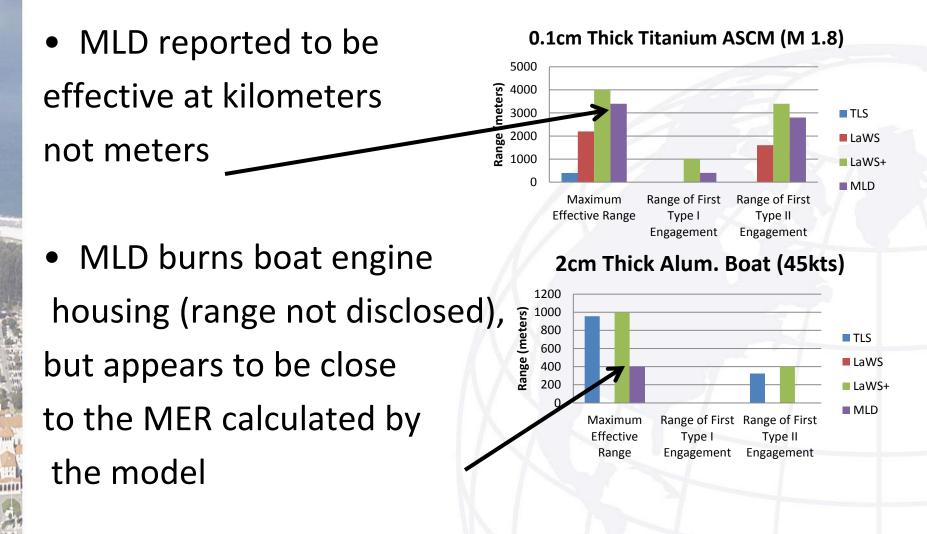
WWW.NPS.EDU

47



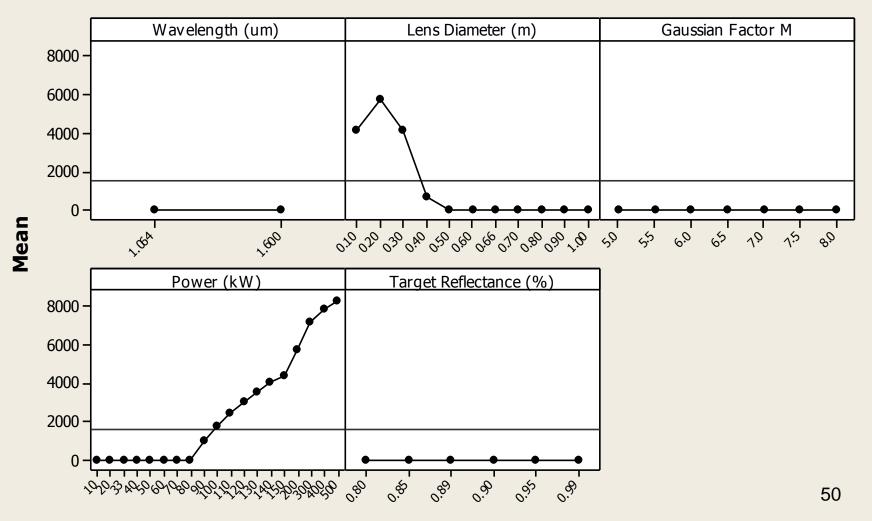
10

Microwave Model Sensitivity


Main Effects Plot for Seconds to Pain

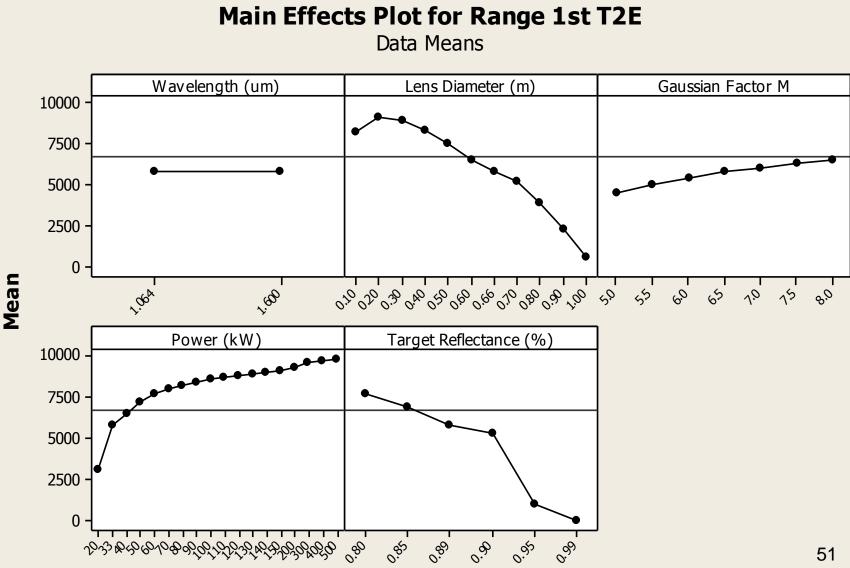
Data Means

LASER Model Validation



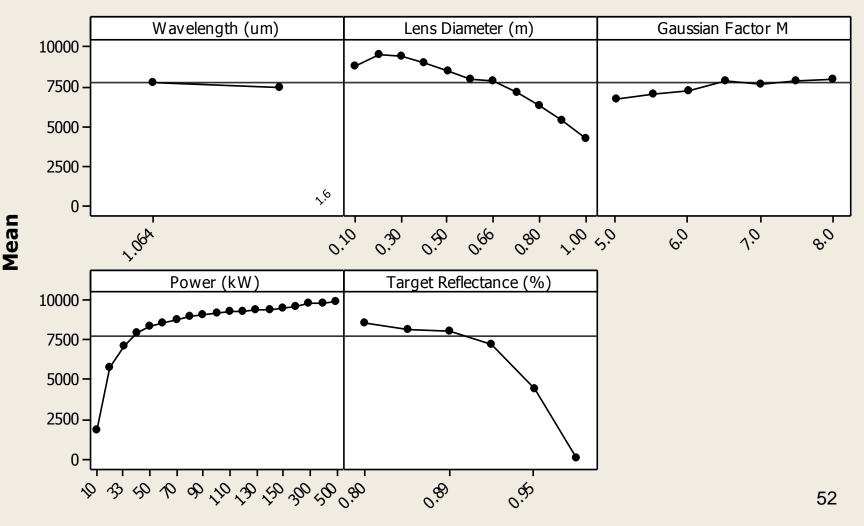
LASER Sensitivity Cont.

Main Effects Plot for Range 1st T1E


Data Means

10

LASER Sensitivity Cont.



6

LASER Model Sensitivity

Main Effects Plot for Max. Effective Range (m)

Data Means

- Full Factorial: 1008 potential engagement combinations
- Partial Factorial
 - Mr. Bill Glenny of CNO's SSG suggested narrowing the scope to FAC/FIAC and ATFP as primary areas of interest
 - Used UNTL to scope analysis:
 - Scoped to 212 possible engagements

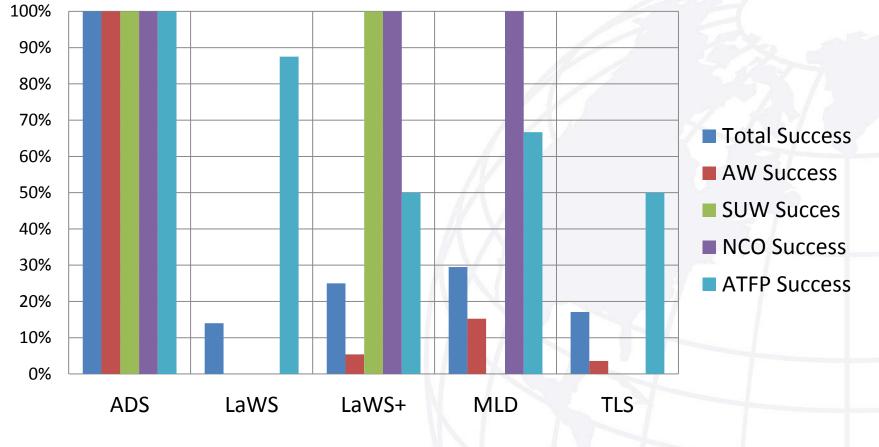
Mission	Mission Threats
SUW 1.10	3
AW 1.2	3
ATFP 12	1
NCO 19.6	2
ATFP 15	1
ATFP 9	2

- Randomized remaining combinations to be executed on a time permitting basis
- Ultimately ran 337 engagements in the model

GINA Results and Analysis

									Back Previous P	Form				_				
Selec	t Engage	ement	New	Enter Engage	ment Parameters for	Analysis			Save De	000								
	Threat	Weapon	Environment	Mission ID:	ATFP 15 👻					_								
ID ATFP	Desig FIAC	Desig ADS	Marine, Light Rain, Mid	Environment		Latituda	Query Re	sults						_	_		_	
15 ATFP			Latitude Marine, Moderate Rain, Mid	Description: Threat	Marine, Light Rain, Mid	Latitude 💌								7				
15 ATFP	FIAC FIAC	ADS MK 38 Mod		Designator: Threat	FIAC 💌		Atmospheric	DEWMaximum Effective	DEWMaximum Tactical	Mission	Number Of Hard	Of Soft	Threa	Threat Detection	Threat Detection	Vital Area	Weapon	Weapon
15 ATFP	FIAC	2 MK 38 Mod	Latitude Marine, Light Rain, Mid	Detection	1.0000		Attenuation	Range	Range	ID	Kills Possible	Kills Possible	Designator	Altitude _m	Ground Range _m	Radius _m	Designator	Туре
15 ATFP	FIAC	2 MK 38 Mod		(meters): Threat			0			ATFP 15	15	0	FIAC	1.0000	700.0000	100	MK 38 Mod	CONV
15 ATFP	FIAC	2 MK 38 Mod	Latitude Marine, Clear, Mid Latitude	Detection Ground	700.0000		0			ATFP	15	0	FIAC	1.0000	700.0000	100	MK 38 Mod	CONV
15 ATFP	FIAC	2 MLD	Marine, Clear, Mid Latitude	Range (meters):			0			15 ATFP	15	0	FIAC	1.0000	700.0000	100	2 MK 38 Mod	
15 ATFP	FIAC	MLD	Marine, Heavy Rain, Mid	Weapon Designator:	ADS 💌					15 ATFP							2 MK 38 Mod	CONV
15 ATFP	FIAC	MLD	Latitude Marine, Light Rain, Mid Latitude	Wavelength:	0.00316		0			15	15	0	FIAC Iranian	1.0000	700.0000	100	2	COIN
15 ATFP 15	FIAC	LaWS	Marine, Clear, Mid Latitude	DEW Power (W):	100000		0			ATFP 9	2	0	UAV	500.0000	1000.0000	500	MK 15	CONV
ATFP 15	FIAC	MLD	Marine, Moderate Rain, Mid Latitude	Laser Lens Diameter:			0			ATFP 9	2	0	Iranian UAV	500.0000	1000.0000	500	MK 15	CONV
ATFP 15	FIAC	TLS	Marine, Clear, Mid Latitude	Laser M:			0			ATFP 9	3	0	Iranian UAV	500.0000	1000.0000	500	MK 38 Mod 2	CONV
ATFP 15	FIAC	TLS	Marine, Heavy Rain, Mid Latitude	Microwave Antenna	4.772		0			ATFP 9	3	0	Iranian UAV	500.0000	1000.0000	500	MK 38 Mod 2	CONV
ATFP 15	FIAC	LaWS	Marine, Light Rain, Mid Latitude	Area m2: Microwave			0			ATFP 9	3	0	Iranian UAV	500.0000	1000.0000	500	MK 38 Mod	CONV
ATFP 15	FIAC	TLS	Marine, Light Rain, Mid Latitude	Antenna Constant:	1.273239545		0			ATFP 9	3	0	Iranian	500.0000	1000.0000	500	MK 38 Mod	CONV
ATFP 15	FIAC	LaWS	Marine, Moderate Rain, Mid Latitude	Microwave Antenna	0.8		0			ATFP 9	3	0	UAV Iranian	500.0000	1500.0000	500	2 MK 15	CONV
ATFP 15	FIAC	LaWS	Marine, Heavy Rain, Mid Latitude	Efficiency: Density			0			ATFP 9		0	UAV Cessna	500.0000	1500.0000	500	MK 15	CONV
ATFP 15	FIAC	TLS	Marine, Moderate Rain, Mid Latitude	g/cm3:	0.026		0			ATFP 9		0	Cessna	500.0000	1500.0000	500	MK 15	CONV
ATEP 4	Person	ADS	Marine, Moderate Rain, Mid	Thickness cm:	2.5		0			ATFP 9		0	Cessna	500.0000	1500.0000	500	MK 15	CONV
			Latitude Marine, Light Rain, Mid	Mass Per	0.065		0			ATEP 9		0	Cessna	500.0000	1500.0000	500	MK 15	CONV
	Person	ADS	Latitude Marine, Heavy Rain, Mid	Area g/cm2: Temp at MSL	288.15		0			ATFP 9 ATFP 9		0	Cessna Cessna	500.0000 500.0000	1500.0000 1500.0000	500 500	MK 15 MK 38 Mod	CONV
	Person	ADS	Latitude Marine, Light Rain, Mid	K (Ambient): Melting	1394.15												2 MK 38 Mod	
ATFP 8		LaWS LaWS	Latitude Marine, Moderate Rain, Mid	Temp . K:	1.00 × 10		0			ATFP 9		0	Cessna	500.0000	1500.0000	500	2 MK 38 Mod	COINV
ATFP 8		MLD	Latitude Marine, Moderate Rain, Mid				0			ATFP 9	12	0	Cessna	500.0000	1500.0000	500	2	CONV
ATFP 8		ADS	Latitude Marine, Heavy Rain, Mid				0			ATFP 9	12	0	Cessna	500.0000	1500.0000	500	MK 38 Mod 2	CONV
		4567891	Latitude .0				0			AW 1.1	0	0	C-802	5.0000	5000.0000	5000	RIM-66 MR	CONV
							0			AW 1.1	9	0	F-14	1000.0000	10000.0000	5000	RIM-66 MR	CONV
							0			AW 1.1	19	0	Iranian UAV	100.0000	7000.0000	5000	RIM-66 MR	CONV
							0			AW 1.12	6	0	AS-11	5.0000	10000.0000	500	RIM-66 MR	CONV
							0			AW 1.13	3	0	AS-11	5.0000	9000.0000	5000	RIM-66 MR	CONV
							Select Page:	12345678	3910	1.15							1115	
							Total Re	sults										
										_								

WWW.NPS.EDU


Unclassified

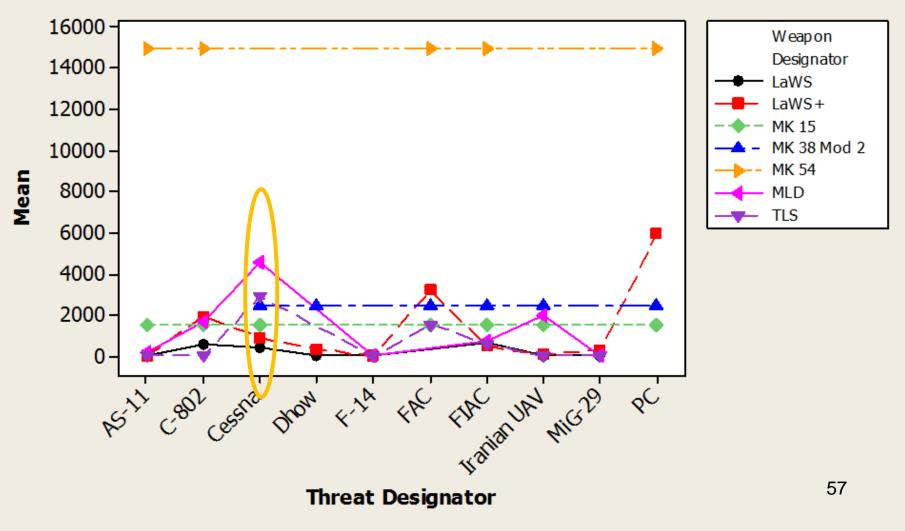
54

Warfare Area Results

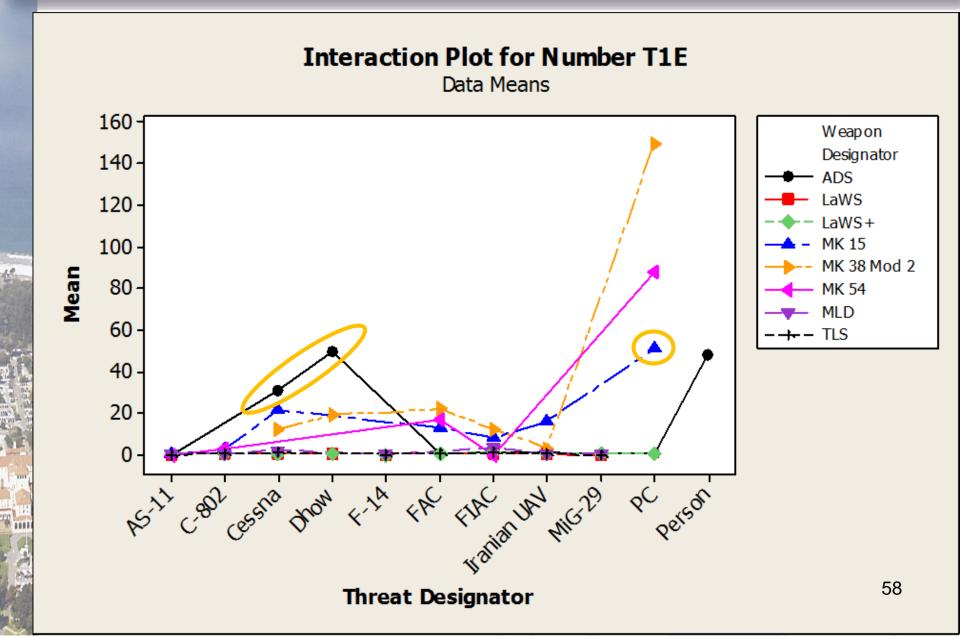
Weapon-Warfare Area Mission Sucess Rates

Type I Engagement Comparison

Type I Engagement Performance (All Weather, All Missions)


WWW.NPS.EDU

MER Comparison

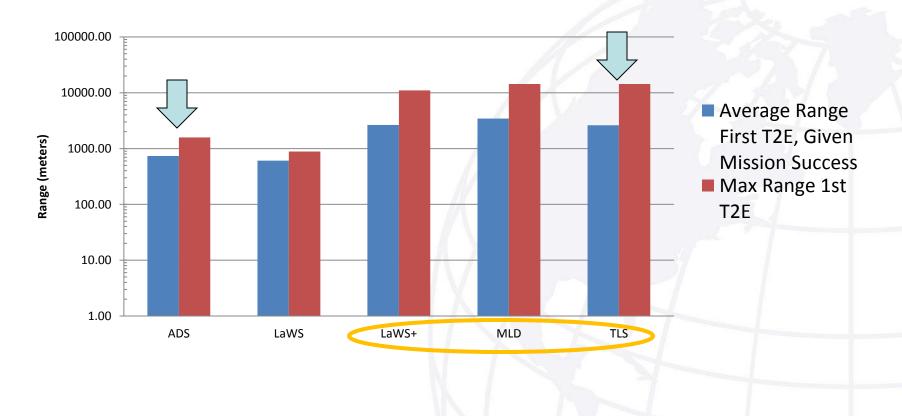

Interaction Plot for Weapon Maximum Effective Range

Data Means


Type I Re-Engagement Analysis

69

Type I First Engagement Ranges

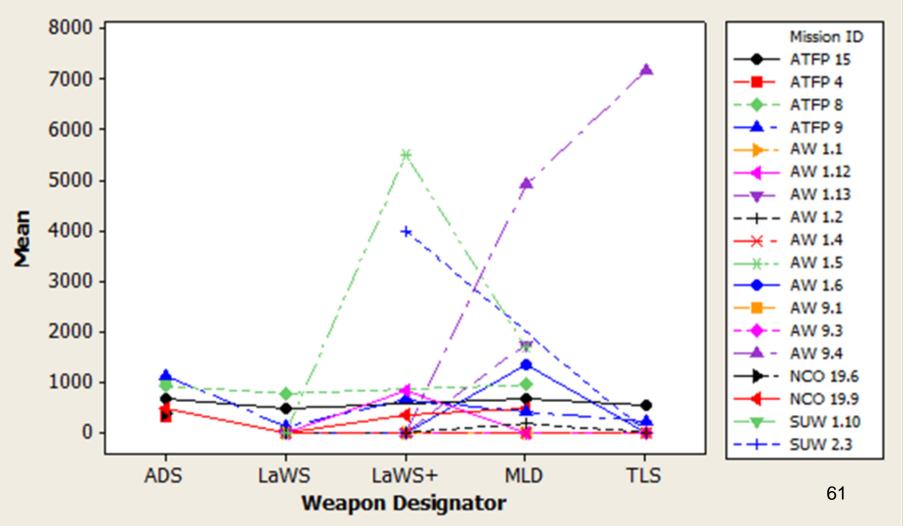


Each symbol represents up to 6 observations.

Type II Range Comparisons

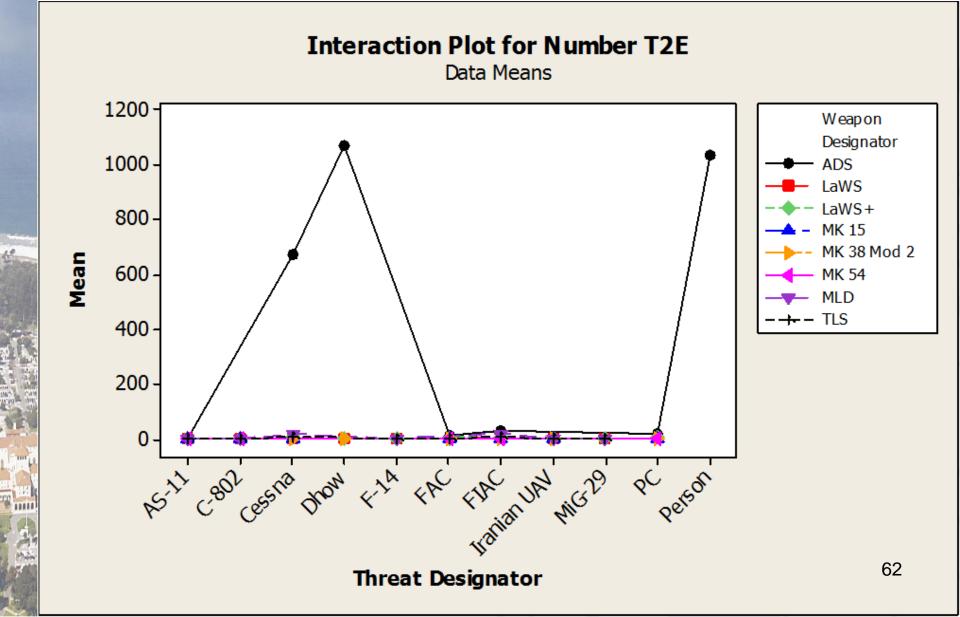
DEW Type II Engagement Performance (All Weather, All Missions)

60

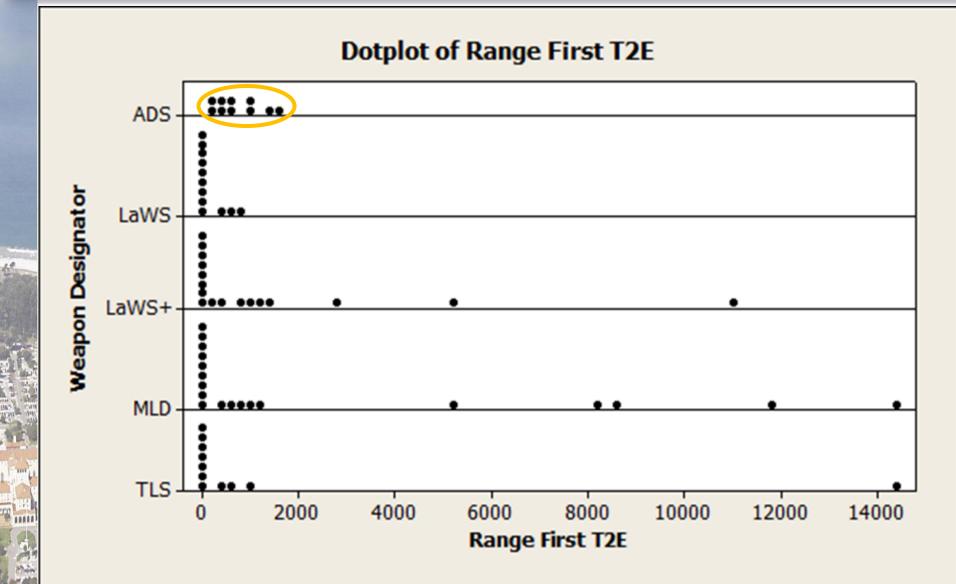


69

Type II Mission Analysis



Data Means



Type II Re-Engagement Analysis

Type II First Engagement Ranges

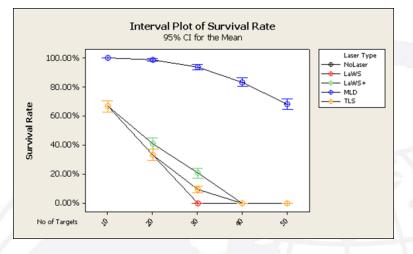
Each symbol represents up to 5 observations.

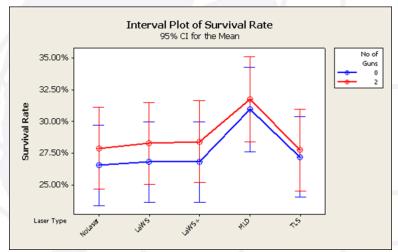
GINA Modeling Summary

- The TLS was effective against ATFP threats and showed comparable performance to the LaWS and LaWS+ in most scenarios
- The most consistent best all around performer was the ADS
- For LASER, the MLD was the best overall performer due to the combination of its relatively high power and small aperture

Simulation

- 2 Simulations:
 - MANA
 - First to use MANA to simulate DEWs
 - Unique adaptation of MANA
 - Monte Carlo in Excel
 - Ship survivability
 - Weapon combinations
- Simultaneous time on top missile attacks, FAC/FIAC attacks, and LSFs/UAVs
- Only LASERs


- Binomial trials based on rate of fire, effective range, and an assumed P_{kl "hit}"
- Factor Combinations for scenarios:
 - Missile attack (5 STOT ASCMs)
 - FAC/FIAC attack
 - Number of threats
 - CIWS mounts (0, 1, or 2)
 - Missile launchers (0, 1, or 2); assuming 1 launch per launcher at a time
- Assumptions based on MIT LPD-17 design project for realistic/unclassified P_k values for conventional weapons



Monte Carlo Results

• FAC/FIAC

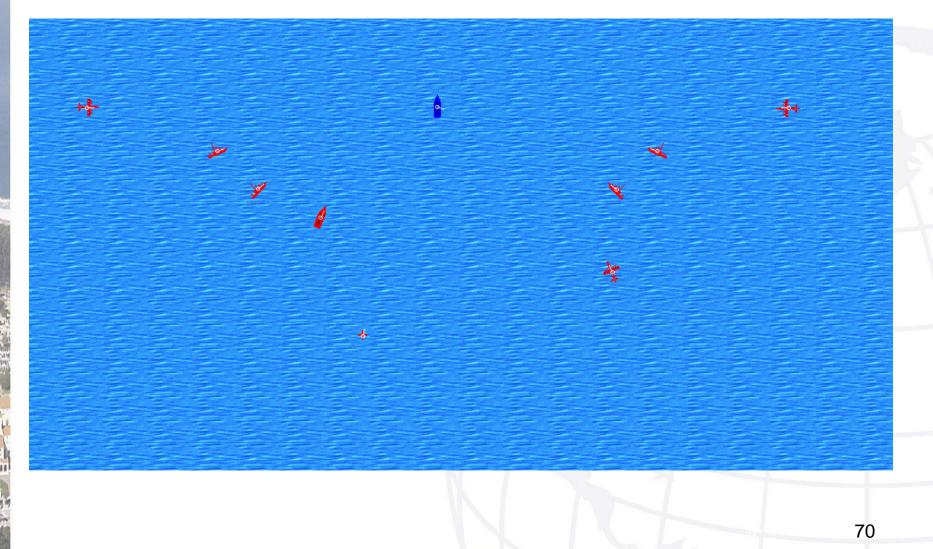
- MLD's high power and small aperture make it top performer
- TLS out performs LaWS due to
 Small aperture and high BQ
- Missile Attack
 - MLD is only marginally effective compared to the other LASERS
 - TLS is on par with LaWS/LaWS+

Modeling Laser with MANA

- Adapted MANA's kinetic energy weapons model for LASER analysis
 - Determine time for a Type I Engagement at a set of static ranges
- Convert deterministic data to probabilistic:

$$P_k(r) = \frac{N}{s \times t_k(r)}$$

- N: Target life point, S: # "shots" per sec, t: seconds required for Type I Engagement at a specific distance
 - Example: DEW requires 5 sec for a T1E at 1 km, and N = 100, S = 100, t = 5 sec. Then, Pk = 0.2 per shot
- Assume that even after long interruptions the target will "remember" that it already received a given amount of energy



MANA Results

- Suggested that LASERs are part of a defense in depth CONOPS augmenting crew served weapons
- Suggested that 1 LASER weapon could successfully engage:
 - -2 to 3 FAC/FIAC
 - -3 to 5 LSF/UAVs
 - -1 to 2 sub-sonic ASCMs

• LaWS+ Against 1 Subsonic ASCM, 3 UAVs, and 5 Boats

WWW.NPS.EDU

Cost Estimation

- There are a LOT of unknowns!
- Assumptions:
 - Total Life Cycle Cost Estimate would be a waste of time due to high degree of uncertainty
 - Estimating an implementation cost of a single unit is feasible
 - Federal dollars expended to date are "sunk"
 - DDG-51 class integration assumed due to short time requirement
 - Power, cooling, weight, and space requirements supported by platform
 - Total hardware cost is proportional to laser power (linear fit assumed for hardware)
 - Cost factors for aggregate shipboard electronics distributions are applicable to DEW

Cost Estimation Methodology

- 1. Cost estimation "scenarios" developed
 - DEW systems similar, but different
 - Permutations to the cost estimate necessary
 - 4 scenarios or cost "vignettes" utilized
- 2. Determined baseline costs from trusted published references
- 3. Identified applicable WBS cost sub-elements
- 4. Decomposed actual cost figures with respect to various cost factors using historical statistics
- 5. Use cumulative inflation to calculate inflated cost of for FY13

Methodology presented here is greatly oversimplified!

ABAAA

Baseline Figures & Cost Factors

System	Baseline Figure	Remarks	Company
Active Denial System (ADS)	\$7.5M	Cost plus award fee contract to design, fabricate, and test	Raytheon
LaWS	\$28.1M	Development funding data	Raytheon
Maritime Laser Demonstration	\$98M	Indefinite delivery/indefinite quantity contract ceiling value	Northrop
Tactical Laser System	\$2.8M	Prototype development contract	BAE

COST FACTORS:

ADS Estimate

Objective: To derive the cost estimate of deploying two units of Active Denial System (ADS) onboard a DDG-51 class ship.

COST FACTORS		SENSITIVITY ANALYSIS (95% CONFIDENCE)				
		INIMUM		MIDDLE	Ν	MUMIXAN
DESIGN (15% original design)	\$	138,670	\$	210,438	\$	282,205
HARDWARE (2X contract HW)	\$ 1	,905,964	\$	3,374,104	\$	4,842,243
CONTRACTOR SUPPORT						
- Support Equipment	\$	-	\$	204,222	\$	801,433
- Tools & Test Equipment (T&TE)	\$	-	\$	142,068	\$	372,905
- Training	\$	-	\$	17,758	\$	51,242
- Data	\$	-	\$	106,551	\$	334,394
- Other	\$	-	\$	159,826	\$	477,784
GOVERNMENT SUPPORT						
- System Engineering / Program Management (SE/PM)	\$	-	\$	2,246,443	\$	6,433,722
- Test & Evalution (T&E)	\$	-	\$	45,298	\$	240,604
SOFTWARE	\$	91,503	\$	470,599	\$	849,694
INTEGRATION	\$	399,565	\$	399,565	\$	399,565
	\$2 ,	,535,702		\$7,376,870	\$1	5,085,791

NAVAL POSTGRADUATE SCHOOL

LaWS+ Estimate

Objective: To determine and estimate the upgrade and shipboard installation cost of the Laser Weapon System (LaWS) from its current 33kW output to 150 kW (+).

COST FACTORS		SENSITIVITY ANALYSIS (95% CONFIDENCE)				
		NIMUM		MIDDLE		MAXIMUM
HARDWARE (4.54X contract HW)	\$14	1,527,015	\$	25,716,992	\$	36,906,970
CONTRACTOR SUPPORT						
- Support Equipment	\$	-	\$	684,884	\$	2,687,704
- Tools & Test Equipment (T&TE)	\$	-	\$	476,441	\$	1,250,582
- Training	\$	-	\$	59,555	\$	171,848
- Data	\$	-	\$	357,331	\$	1,121,433
- Other	\$	-	\$	535,996	\$	1,602,307
GOVERNMENT SUPPORT						
- System Engineering / Program Management (SE/PM)	\$	-	\$	7,533,725	\$	21,576,288
- Test & Evalution (T&E)	\$	-	\$	168,600	\$	806,896
SOFTWARE	\$	306,867	\$	1,578,211	\$	2,849,555
INTEGRATION	\$ 1	. ,339,991	\$	1,339,991	\$	1,339,991
	<mark>\$16</mark>	,173,873	\$	38,451,727	\$ 7	70,313,573

76

Objective: To derive the cost estimate of integration and installation of the Maritime Laser Demonstration (MLD) onboard DDG-51 class ships.

	SENSITIVITY ANALYSIS (95% CONFIDENCE)				
COST FACTORS	MINIMUM	MIDDLE	MAXIMUM		
HARDWARE	\$11,412,101	\$ 20,202,700	\$ 28,993,299		
CONTRACTOR SUPPORT					
- Support Equipment	\$-	\$ 2,445,590	\$ 9,597,278		
- Tools & Test Equipment (T&TE)	\$-	\$ 1,701,280	\$ 4,465,588		
- Training	\$-	\$ 212,660	\$ 613,635		
- Data	\$-	\$ 1,275,960	\$ 4,004,422		
- Other	\$-	\$ 1,913,940	\$ 5,721,532		
GOVERNMENT SUPPORT					
- System Engineering / Program Management (SE/PM)	\$-	\$ 26,901,490	\$ 77,044,791		
SOFTWARE	\$ 1,095,765	\$ 5,635,490	\$ 10,175,215		
INTEGRATION	\$ 4,784,850	\$ 4,784,850	\$ 4,784,850		
	<mark>\$17,292,716</mark>	\$65,073,960	\$145,400,610		

77

TLS Estimate

Objective: To determine the estimated cost of installing and deploying two Tactical Laser Systems (TLS) on DDG-51 class ships.

COST FACTORS		SENSITIVITY ANALYSIS (95% CONFIDENCE)				
		IINIMUM		MIDDLE	Μ	AXIMUM
DESIGN (15% original design)	\$	45,128	\$	68,484	\$	91,839
HARDWARE (2X contract HW)	\$	620,265	\$	1,098,048	\$1	L,575,831
CONTRACTOR SUPPORT						
- Support Equipment	\$	-	\$	66,461	\$	260,813
- Tools & Test Equipment (T&TE)	\$	-	\$	46,234	\$	121,356
- Training	\$	-	\$	5,779	\$	16,676
- Data	\$	-	\$	34,675	\$	108,823
- Other	\$	-	\$	52,013	\$	155,487
GOVERNMENT SUPPORT						
- System Engineering / Program						
Management (SE/PM)	\$	-	\$	731,069	\$2	2,093,752
SOFTWARE	\$	29,778	\$	153,149	\$	276,519
INTEGRATION	\$	130,032	\$	130,032	\$	130,032
	\$	825,204		\$2,385,943	\$ 4	,831,129

Integration

WWW.NPS.EDU

79

Shipboard Integration

	(2)TLS	LaWS	MLD	(2) ADS
Weight	2,000 lbs.	10,000 lbs.	20,000 lbs.	20,000 lbs.
Input Power	151.62 kW	400 kW	520 kW	400 kW
Cooling	Self-Contained	86 Tons	120 Tons	Self-Contained
Coverage	Nearly 360°	180°	180°	Nearly 360°
Combat Systems	No	Yes	Yes	No

Although the current AEGIS destroyer can support each of the four systems, an analysis of the current capability shows that as the power levels of these lasers are increased in the future, the DDG-51 platform must also be upgraded to account for the additional power and cooling requirements.

Sustainment Overview

	Technology	Materials	Supply Chain Management	Operational Unit Support	Sustaining Engineering	Disposal	
		Number of units	Weapons support provided	POC for supply support	Perform technical tasks to	Considers when,	
		procured will be based	by Naval Supply Systems	concerns along with	ensure continued	where, and how to	
		on available platforms;	Command Weapons Systems	call centers for	operation of a system	get rid of the system	
		some parts may be	Support (NAVSUP WSS)	troubleshooting	which includes		
		stored on ship however		and having technicians	conducting major repairs		
	нрм	critical components will		travel to ship for repair	at depot level facilities		
		be held at depot level		when needed	and having Inspections to		
		facilities			evaluate performance		
					standards; use of built in		
					test equipment to ensure		
					proper operation		
		Number of units	Weapons support provided	POC for supply support	Perform technical tasks to	Considers when,	
		procured will be based	by Naval Supply Systems	concerns along with	ensure continued	where, and how to	
		on available platforms;	Command Weapons Systems	call centers for	operation of a system	get rid of the system	
1		some parts may be	Support (NAVSUP WSS)	troubleshooting	which includes		
		stored on ship while		and having technicians	conducting major repairs		
	SSL	others such as optics		travel to ship for repair	at depot level facilities		
ĺ		will be at facilities due		when needed; optics may	and having Inspections to		
		to level of cleanliness		have to be repaired off	evaluate performance		
		required		ship	standards; use of sensors		
					to detect laser firings		

Sustainment

- Materials
 - Requirements
 - Initial Needs/Projections
 - Personnel
- Supply Chain Management
 - Procurement
 - Distribution
 - Software
- Sustaining Engineering
 - Depot Level Support
 - Performance Standards Analysis for Continued Use
- Operational Unit Support
- Disposal

NAVAL POSTGRADUATE Materials and Supply Chain Management SCHOOL

- Material involves developing supply requirements, storing components needed for repair and replacement, and providing personnel for warehouse functions
 - Number of units acquired will be based off of number of available platforms
 - Considerations made for operating in marine environment include protective coverings, stabilizers, and lubricants
 - Minor components stored on ship and major components stored at facilities
 - Supply chain managements includes the procurement and distribution of materials
 - Weapons support provided by Naval Supply Systems
 Command Weapons Systems Support (NAVSUP WSS)

Sustaining Engineering, Operational Unit Support, and Disposal

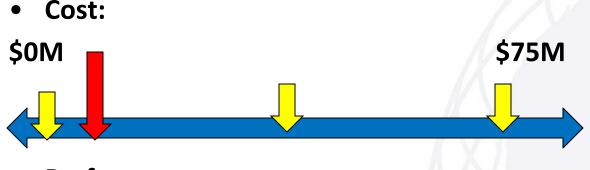
- Sustaining Engineering involves performing technical tasks to ensure continued operation of a system (Providing Depot Level support)
 - Major repairs conducted at depot level facilities
 - Inspections held to evaluate performance standards
- Operational unit support includes providing POC for supply support concerns
 - Call centers for troubleshooting
 - Technicians may travel to ship for repair
- Disposal considers when, where, and how to get rid of the system

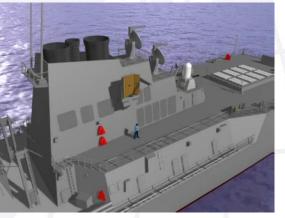
Training

- Analogy Method using CIWS
- Differences in training requirements are negligible between the 4 systems.
- All systems would have a similar training pipeline
- Assumptions were made based on SME experience

A-School	C-School	OJT/PQS	Specialized Training
30 Weeks	36 Weeks	As Required	As Required

Manning


- EDVR and Projected Maintenance Requirements were used in manning projections
- FC is the Optimal Rate
- Assumptions were made based on SME experience


	Number of Additional Personnel Required?	NEC Required
LaWS & LaWS+	1-2	Yes
TLS	1-2	Yes
MLD	2-3	Yes
ADS	3-4	Yes

ADS Tech Summary

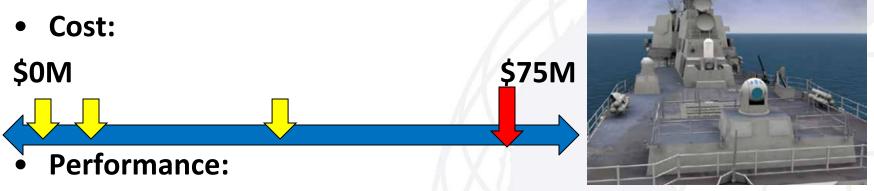
- Integration: ADS will likely be installed as two separate systems
 - Will add approximately 20,000 lbs.
 - Requires 200 kW of electrical power to operate and includes its own cooling
 - Operates independently from each other and the Ship's Combat System.
 - Provides nearly 360 degrees of combined coverage

Performance:

- Only DEW with 100% effectiveness against all threats modeled against
- Pierside ATFP applications against personnel and LSFs show the greatest potential for success
- FAC/FIAC can be effectively engaged with multiple opportunities for reengagement
 WWW.NPS.EDU

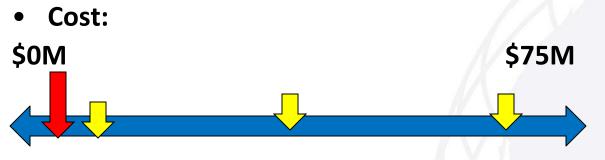
LAWS & LAWS+ Tech Summary

- Integration: Will likely be co-located on an existing CIWS mount
 - Will add approximately 10,000 lbs.
 - Requires 400 kW of electrical power to operate
 - Requires 86 Tons of cooling to remove the waste heat
 - Requires integration into the Ship's Combat Systems
- Cost:
 \$0M
 \$75M
 \$75M


• Performance:

- Best against lightly armored ATFP threats like LSFs/UAVs
- Ineffective against missiles
- Large aperture reduces potential gains from higher power levels

MLD Tech Summary

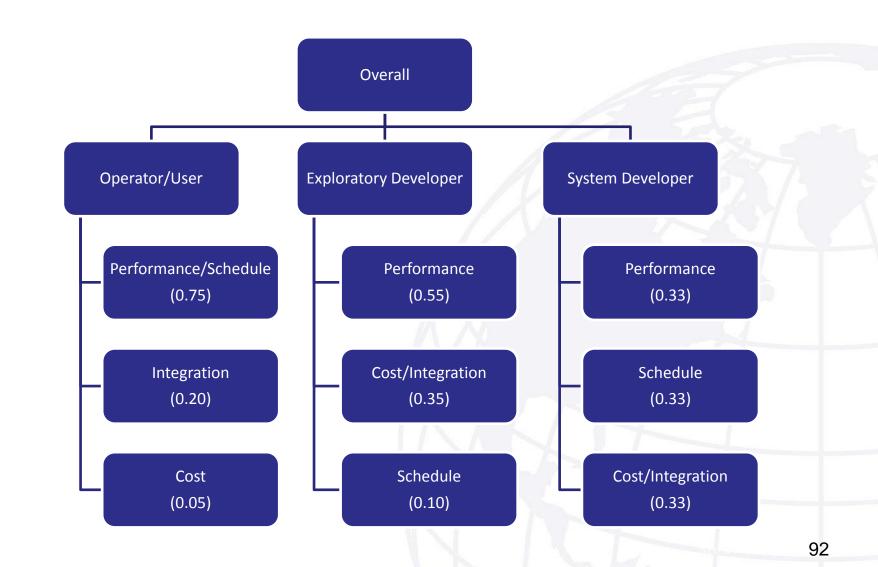

- Integration: The MLD is the largest and most complex of the 4 systems
 - Will add approximately 20,000 lbs.
 - Requires 520 kW of electrical power
 - Requires 120 Tons of cooling provided by the ship
 - Requires several inputs from the ship's Combat Systems to perform DTE

- Best LASER overall: smaller aperture than LaWS and higher power than TLS
- Effective against ATFP, FAC/FIAC, and LSF/UAV threats
- Potentially able to augment current close-in missile defense systems to conserve ammunition and missiles while increasing shipboard survivability

- Integration: The TLS will have the smallest footprint to the ship. 2 systems will be added to the MK 38 Mod 2
 - Will add approximately 2,000 lbs.
 - Requires 150 kW and each system provides it own cooling
 - Each system will operate independently and will not be integrated in the Ship's Combat Systems

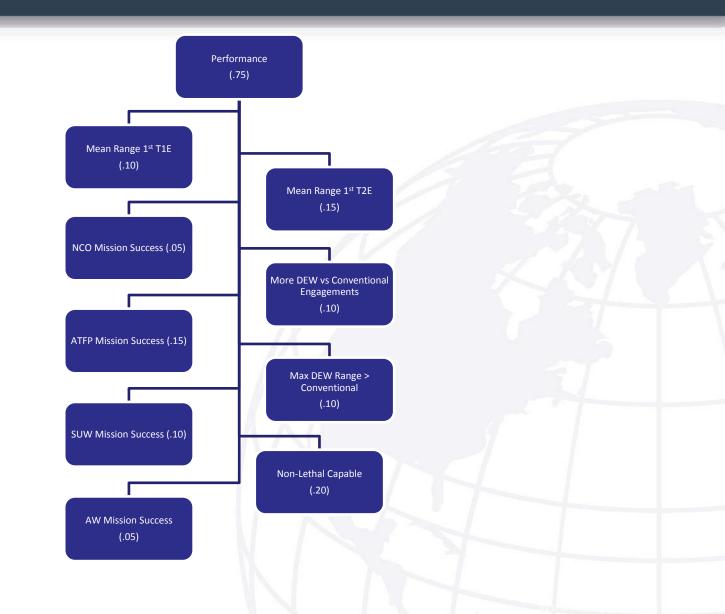
• Performance:

- Small aperture and high beam quality make up for low power
 - Increasing power from 10 kW to 20 or 30 kW would see a marked increase in performance
- Effective against lightly armored ATFP and LSF/UAV threats
- Potentially able to augment current close-in missile defense systems to conserve ammunition and missiles while increasing shipboard survivability



- Conduct a value analysis from the point of view of the 3 project stakeholders
 - Operator/user, exploratory developer, and system developer
 - Includes performance, integration, cost, and schedule
- Remove cost from the analysis for CAIV analysis
- Prototype component scores taken from Integration and Cost sections

....


AoA Top Level

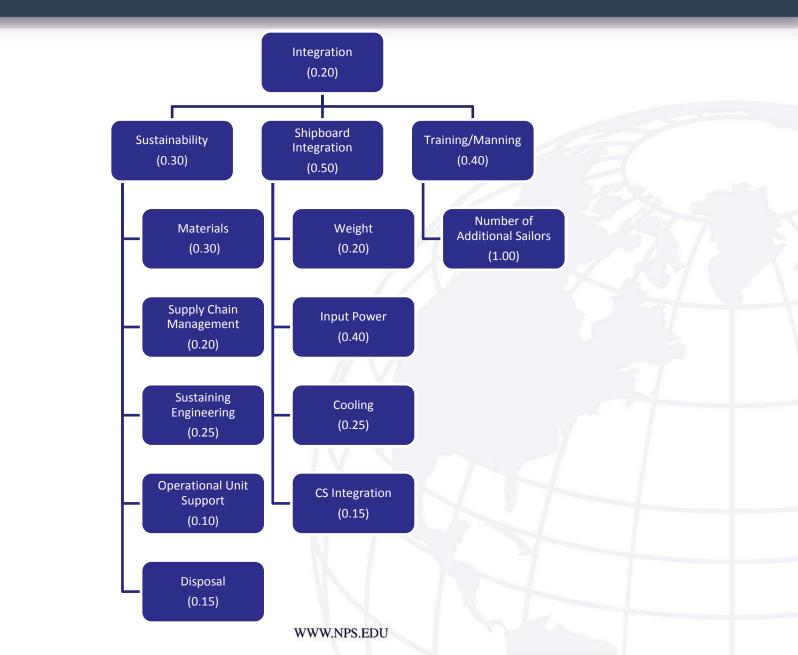
NAVAL POSTGRADUATE SCHOOL

.....

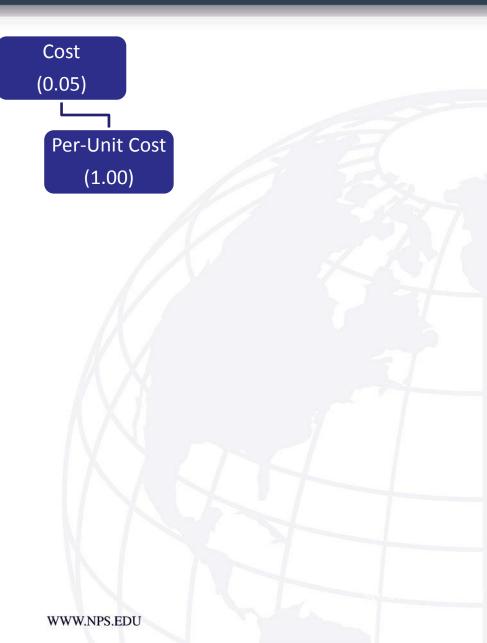
Operator AoA In Depth

WWW.NPS.EDU

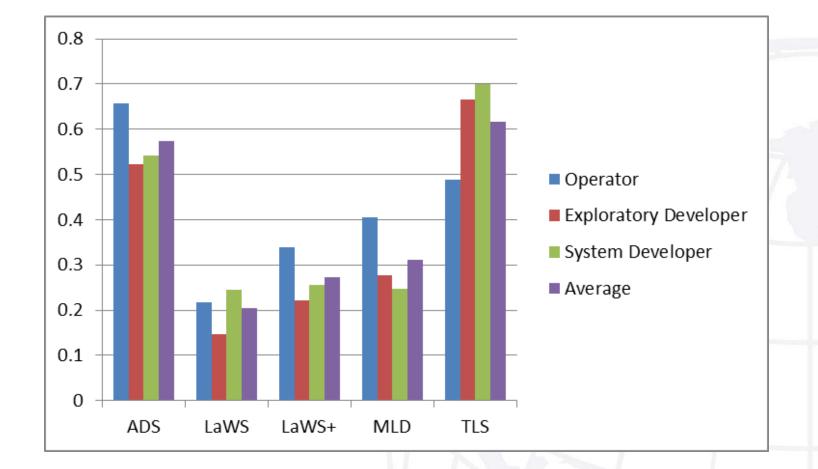
NAVAL 7 POSTGRADUATE 8CHOOL


NPS

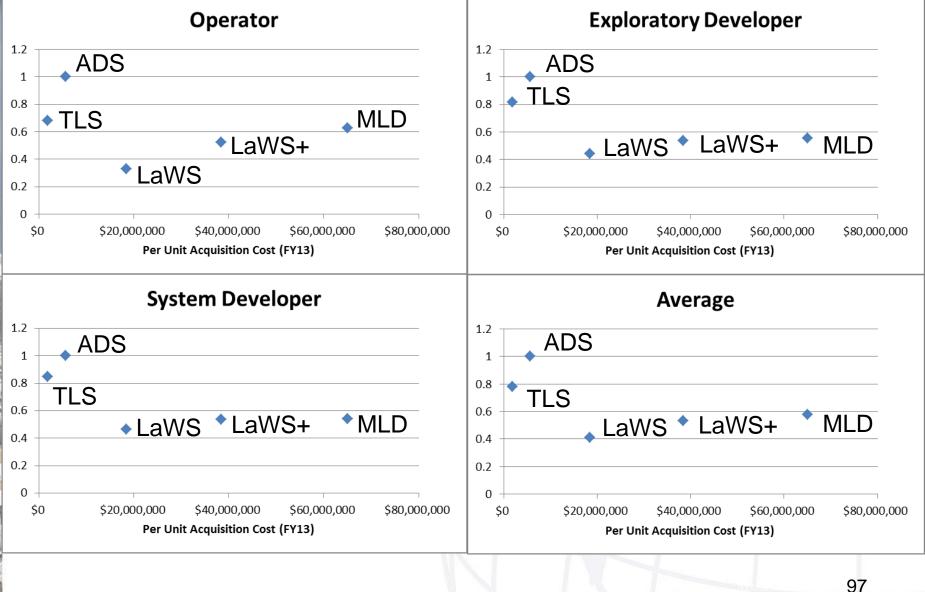
6


Set X

Operator AoA In Depth


Operator AoA In Depth

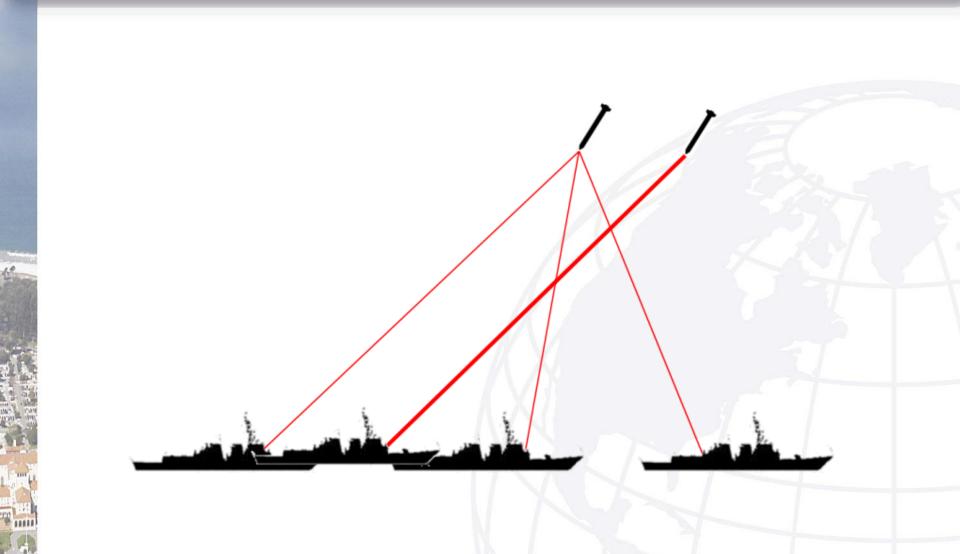
....


AoA Results

NAVAL JPS POSTGRADUATE **SCHOOL**

0085

CAIV



- Raw output power is not the determining factor
- TLS provides the most "bang for the buck"
- ADS fills a unique gap for AT/FP
- TLS and ADS are significantly cheaper than LaWS, LaWS+ or MLD
- TLS and ADS could both be installed for less than the cost of LaWS, LaWS+ or MLD

The Future

- Analyze feasibility of "stacking" TLS and compare to MLD/LaWS individual units
- Feasibility of TLS on organic shipboard aircraft
- Derive future requirements via mission-based analysis with GINA
- Add a cost X-type to the GINA model
- Use actual validated combat model to evaluate the conventional weapon performance
- Operational Availability

....

Questions ?

