Systems Engineering Analysis

NAVAL Postgraduate School

Capstone Project Presentation Systems Engineering Analysis (SEA) SEA 14

December 11, 2008

Monterey, California www.nps.edu

Opening Comments

- On behalf of President Dan Oliver, the faculty and students, welcome to NPS
- The SEA curriculum is a response to an initiative by Admiral William J. Fallon, then the Vice Chief of Naval Operations
 - Intended to give Unrestricted Line Officers (URLs) an education in both Analysis and Systems Engineering
 - A foundation for effective requirements officers and staff officers at many levels of the Navy.
 - The Navy sponsor for SEA is OPNAV N8F (Warfare Integration and Assessments)
- Because of the dual emphases in analysis and systems engineering, the degree is granted and the curriculum overseen jointly by the chairpersons of the Operations Research and the Systems Engineering Departments
 - An MS degree in Systems Engineering Analysis is jointly awarded

Opening Comments

- I oversee the program on a day-to-day basis with the indispensable support of
 - Prof. Mark Stevens, Academic Associate and
 - CDR Doug Burton, Program Officer
- SEA Core Educational Threads
 - SEA Preparation (Basics)
 - Analysis
 - Systems Technology
 - Systems Engineering
 - Capstone Project
 - Joint Professional Military Education (JPME)

- Interdisciplinary project; problem of significant importance to Navy
- Students:
 - Plan Project
 - Analyze need
 - Determine operational concept
 - Develop functional requirements
 Integrate final design
 - Allocate req'ts among sub-systems
 Present results

- -- Produce system Architecture
- -- Explore sub-system design
- -- Assess trade-offs

- Students are introduced to the analytical, political, strategic, tactical, and technical issues surrounding an important Navy problem, and more importantly, an understanding of a repeatable process that can be utilized for many problems
- Students from across campus often contribute
- TDSI students (Singapore) are integrated into every other project team.

5

The Faculty Advisors for this project were: Prof. Gene Paulo Industry Prof. Bill Solitario And RDML Rick Williams, USN (Ret) – NPS' Chair of Mine Warfare

LT Bobby Rowden is the Team Leader of the SEA 14 Capstone Project and will introduce you to their work.

WWW.NPS.EDU

Capstone Presentation – 11 Dec 08

A systems response to the Maritime IED threat

Faculty Advisors

Professor Gene Paulo – Systems Engineering RDML Rick Williams III, USN (Ret) – Expeditionary and Mine Warfare Professor Bill Solitario, Northrop Grumman - Industry

Tasking

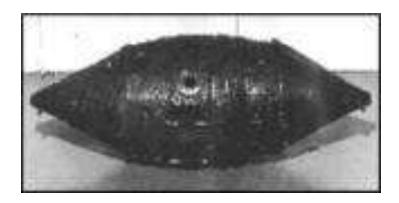
"Design a system of systems to counter maritime improvised explosive devices in US ports."

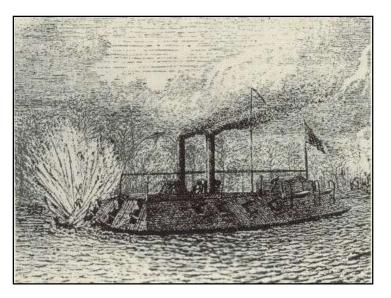
Presentation Objectives

- To present the Systems Engineering Analysis Cohort 14 (SEA 14) Capstone Project, including:
 - □ Project overview
 - □ Alternatives and Analysis
 - □ Findings and Recommendations

Presentation Agenda

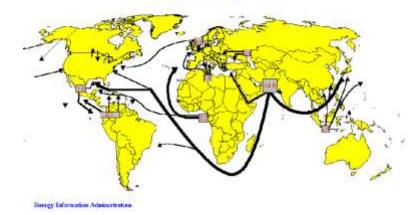
- History and Background
- Systems Engineering Design Process
- Functional Analysis
- Physical Architecture Alternatives
- Wargame, Modeling, and Simulation
- Decision Analysis Results
- Additional Insights
- Findings and Recommendations




Background

Historical Background

- Bushnell KegUSS CAIRO
- Vietnam

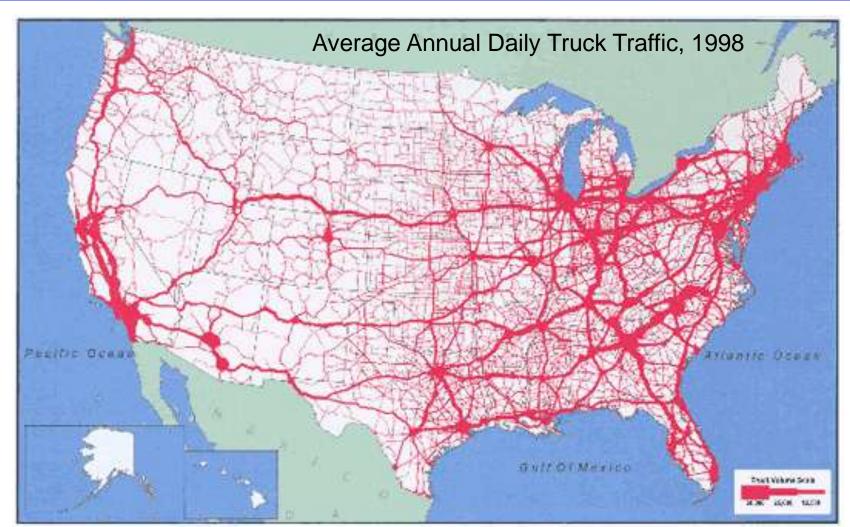


Terrorist Mining

- Patriotic SCUBA Diver, 1980
- "Mines of August" 1984
- Floating IED on Lake Pontchartrain, 2004
- Al Qaeda calls for "Chokepoint Terrorism" April, 2008
- Mumbai Attack of Nov, 2008

World Crude Oil Flows 1997 M S Million Barrole Per Day

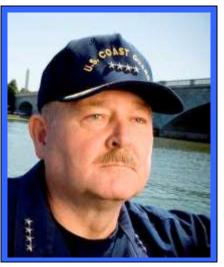
Potential for Disaster


- Economic/Political Effects
 90%+ US trade transits US ports
- LA/LB Longshoreman Strike, 2002 \$1.9B per day, and was expected!
- Lack of salvage assets
- Lack of backup options
- Power projection
- Just-In-Time economy

Down-range Effects

Source: Federal Highway Administration Freight Analysis Framework.

The New Focus



- 9-11 Changed the HS/HD World!
- US MCM focused on expeditionary ops
- An interagency problem
 USN, USCG, NOAA, FBI, *et al.*
- Tactical/Operational lines unclear

"What keeps me awake at night? The threat of underwater IEDs."

ADM Thad Allen, USCG

Aug 2007

National Strategy

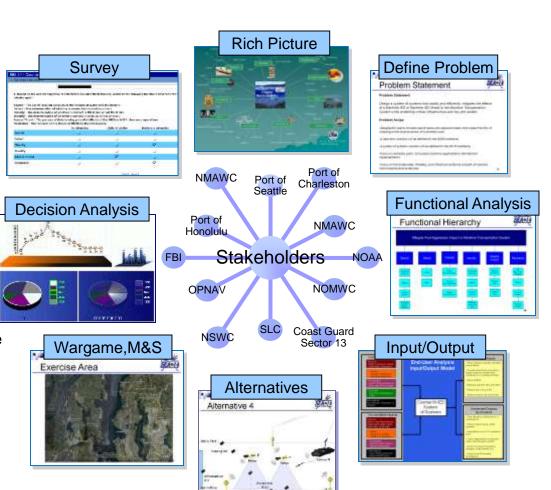
Systems Engineering Design Process

Our Process – SEDP

Initial Research

Conduct Mission Analysis Develop Scenarios and Concept of Operations Determine Customers and stakeholders

Problem Formulation


Conduct Stakeholder Analysis Define and Refine Problem Statement and Scope Perform Functional Analysis Develop Functional Architecture

Analysis of Alternatives

Develop Alternative Physical Architectures Perform Modeling And Simulation Assessing These

Implementation

Conduct And Complete Systems Analysis Conduct Decision Analysis Conduct Cost and Risk Analysis Recommend Preferred Alternative

Problem Statement

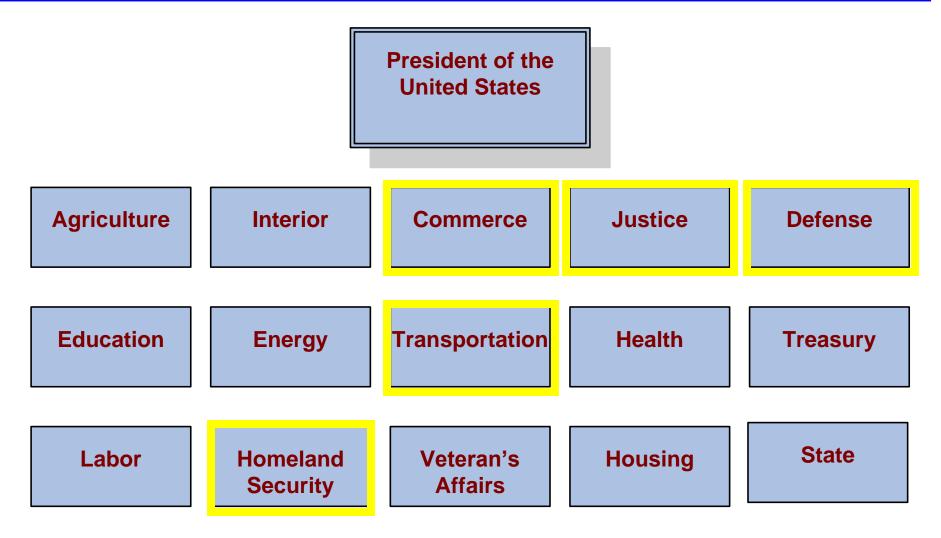
Problem Statement

Design a system of systems that rapidly and efficiently mitigates the effects of a Maritime IED or Maritime IED threat to the Maritime Transportation System while protecting critical infrastructure and key port assets.

Problem Scope

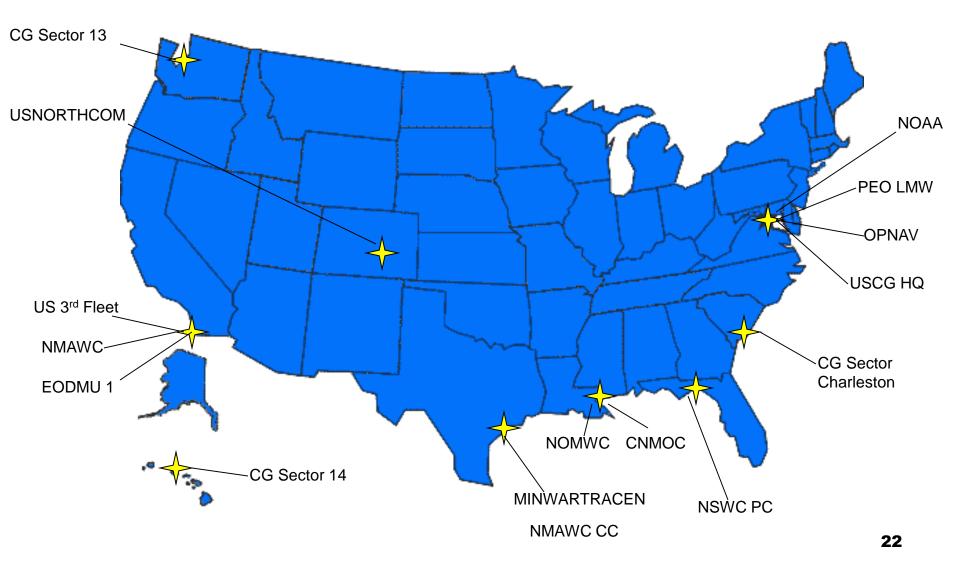
-Geographic space includes transit lanes and adjacent waters that impact the flow of shipping or the local economy of a domestic port.

-A near term solution will be defined for the 2009 timeframe.

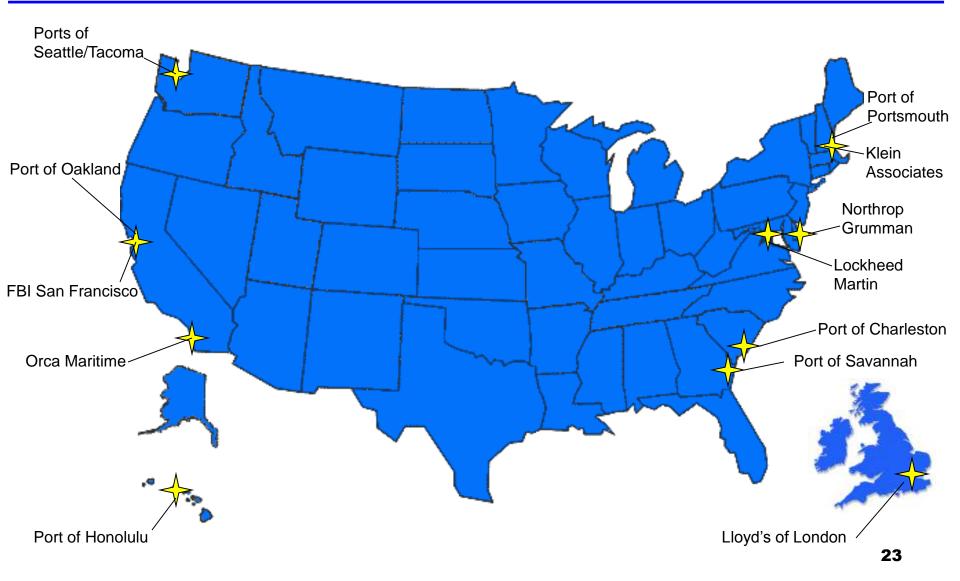

-A mid term solution will be defined for the 2009-2015 timeframe.

-A long range solution will be defined for 2015 and beyond.

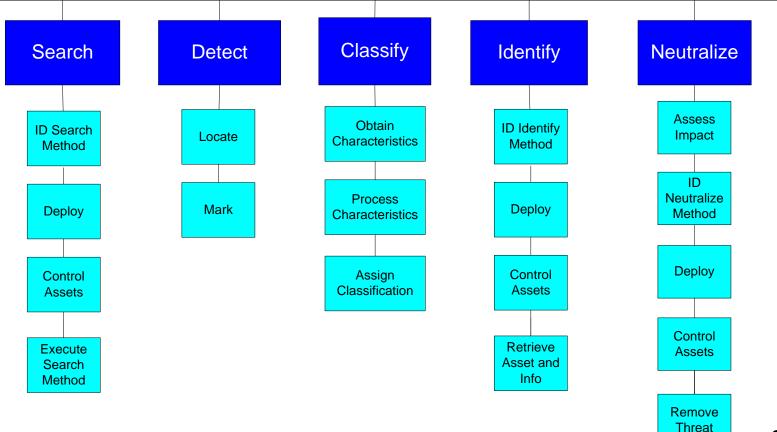
-Focus on the Underwater, Floating, and Infrastructure Borne subsets of maritime improvised explosive devices.



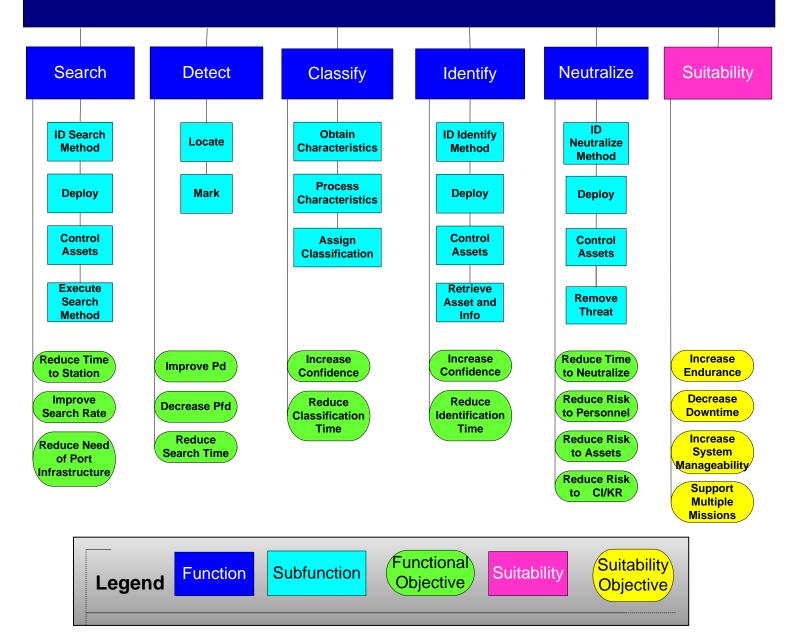
Stakeholders



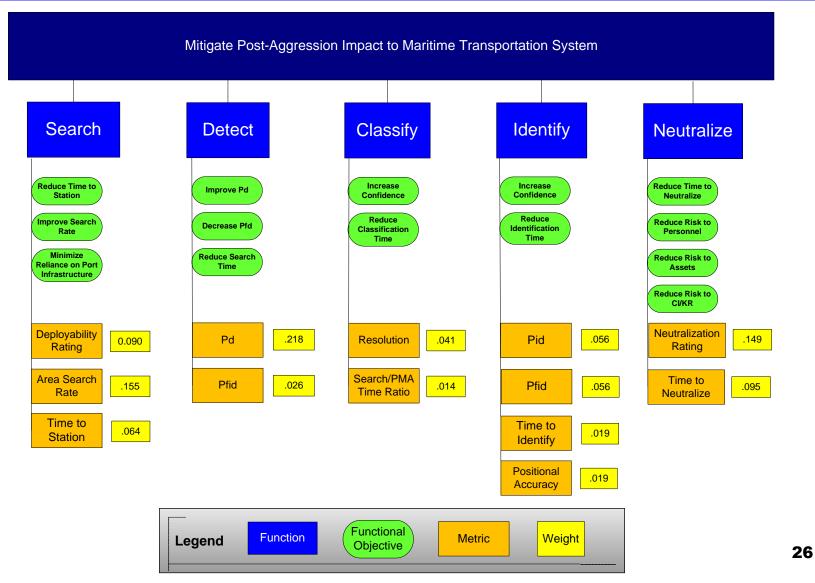
Uniformed Stakeholders


Civilian Stakeholders

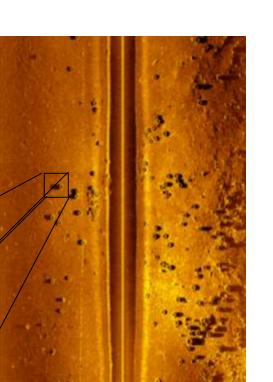
Functional Hierarchy



Mitigate Post-Aggression Impact to Maritime Transportation System

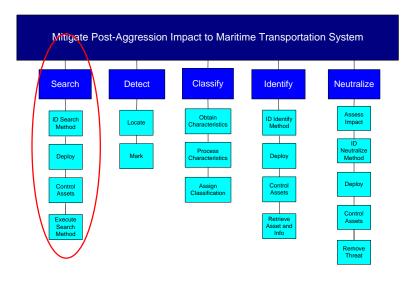

24

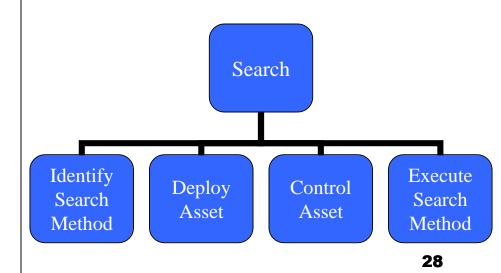
Mitigate Post-Aggression Impact to Maritime Transportation System



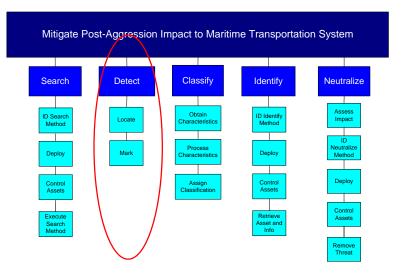
Design Value Diagram

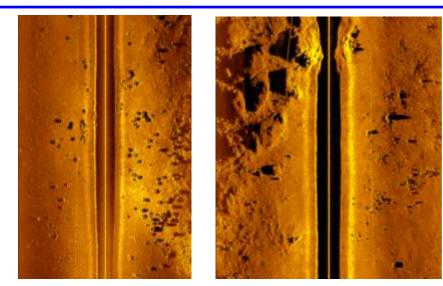
Key Terms

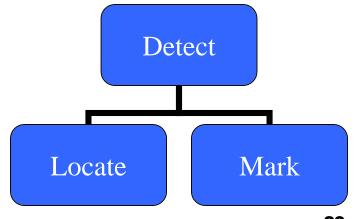

- Post Mission Analysis (PMA)
- CAD/CAC
- Baseline Survey
- Change Detection
- Port Folders



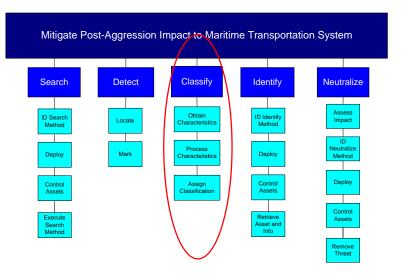
Search


- Area Search Rate
- Time to Station (TTS)
- Deployability Rating

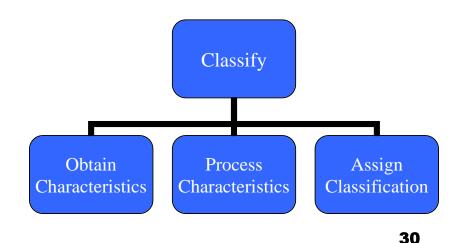




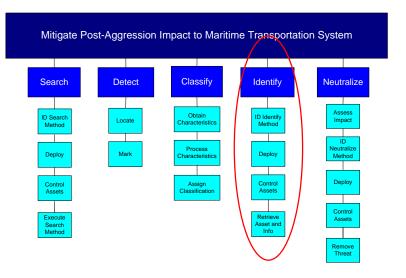
Detect

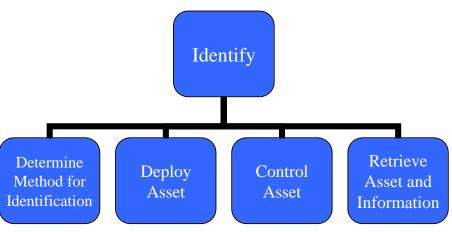


- Probability of Detection (P_d)
- Probability of False Detection (P_{fd})
- Detection rate
- Positional accuracy
- Resolution
- Search Time/PMA Time Ratio

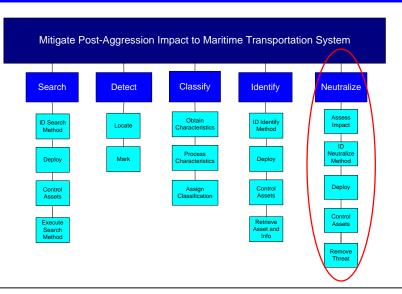


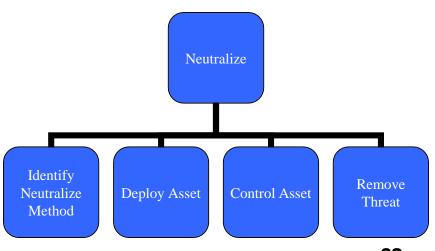
Classify


- Classification rate
- Probability of Classification (PC)
- Probability of False Classification (Pfc)



Identify


- Probability of Identification (P_{ID})
- Probability of False Identification (P_{FID})
- Identification Time per Contact (T_{ID})



Neutralize

- Time required to neutralize/contact
- Neutralization rating
 - Risk
 - Effectiveness

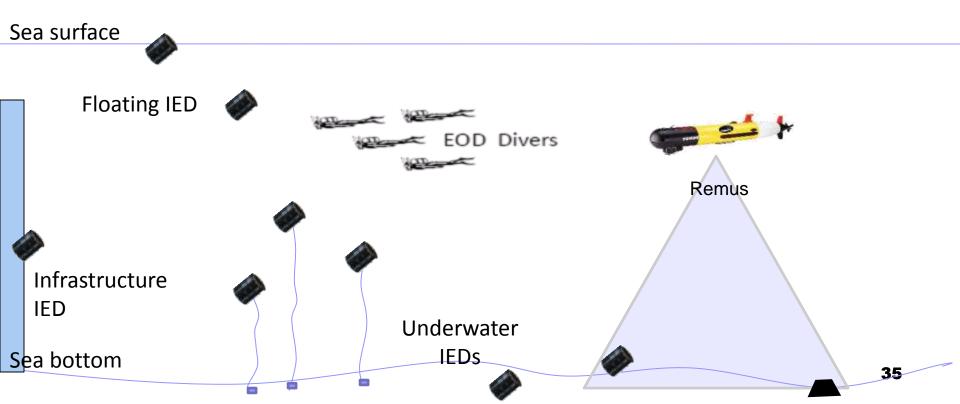
Adaptive Force Package 2009 Baseline

LT Mark Ellis

Baseline

EOD

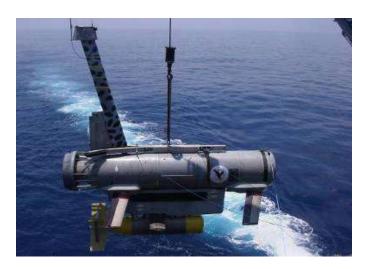
- 5 man teams
- 72 hour deployability
- Ability to Identify and Neutralize MIEDs
- Shortfalls: Places man in the Minefield.



REMUS

- NOMWC Platoons, 3 vehicle per platoon
- Developed: Hydroid, first trials in 2005
- Speed: 3-5 kts
- Application: Detection and Classification of MIEDs
- Shortfalls: Long PMA times, current, SSS

Baseline

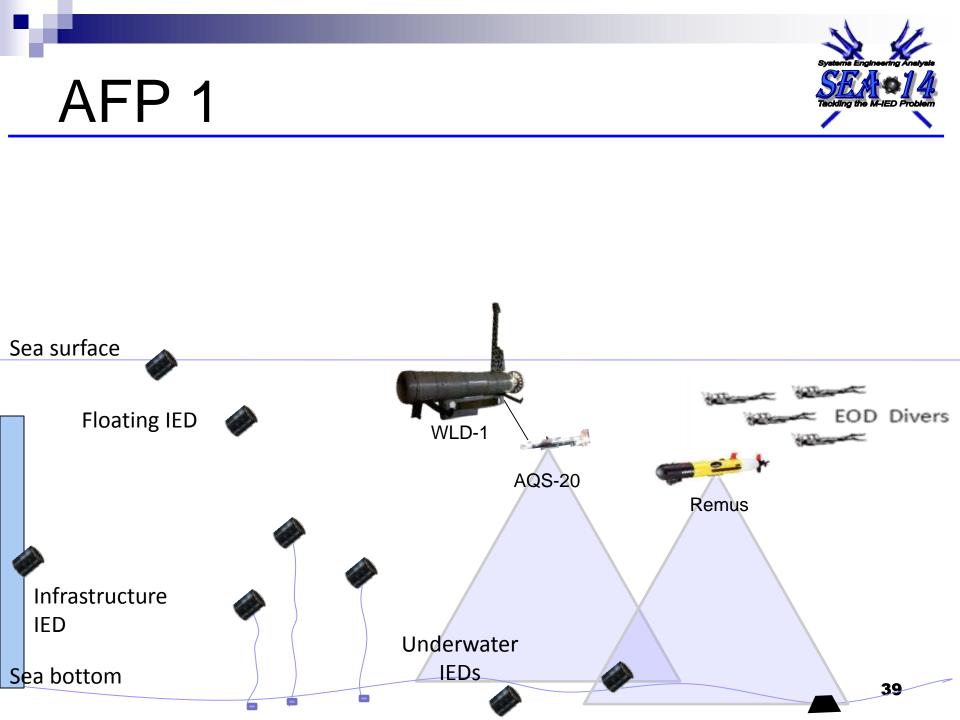

Adaptive Force Packages 2009-2015

AFP 1 – LCS Package

- Baseline Systems
- LCS MIW Mission Module
 - AN/WLD-1 RMS
 - AN/AQS-20

AFP 1 Components

AN/WLD-1

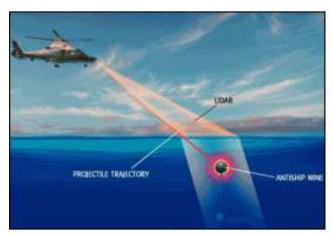

- Remote Multi Mission Vehicle
- Tow/control body for AQS-20

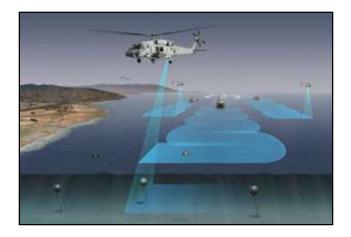
AQS-20

- Multi-sensor search body
- Towed by air, surface, UUV

AFP 2 – Airborne Package

- Baseline Systems
- Airborne Laser Mine Detection System (ALMDS)
- Rapid Airborne Mine Countermeasure System (RAMICS)
- Airborne Mine Neutralization System (AMNS)
- AN/AQS-20

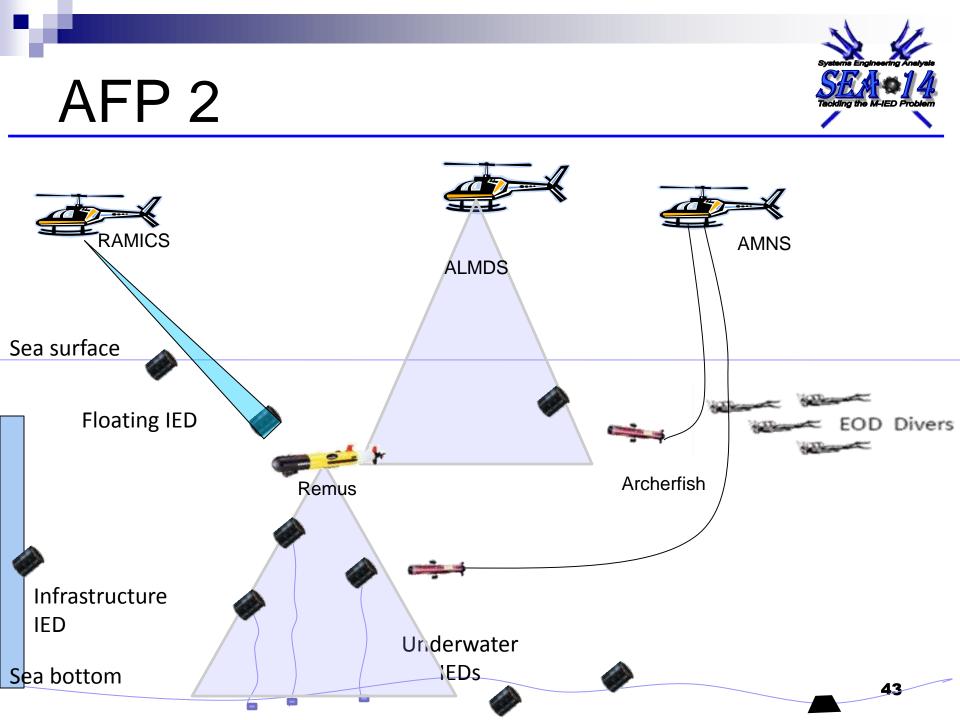

AFP 2 Components



ALMDS LIDAR sensor Shallow water

RAMICS

- Rapid Airborne Mine
 Countermeasure
 System
- Laser targeted, supercavitating round



AFP 2 Components

AMNS

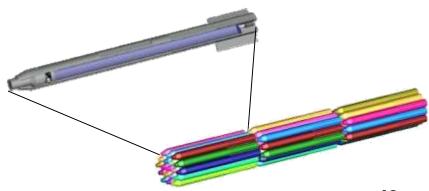
- □ Archerfish (x4)
- Single shot expendable UUV
- □ Wire guided

Adaptive Force Packages 2015 and Beyond

AFP 3 – Silver Bullet

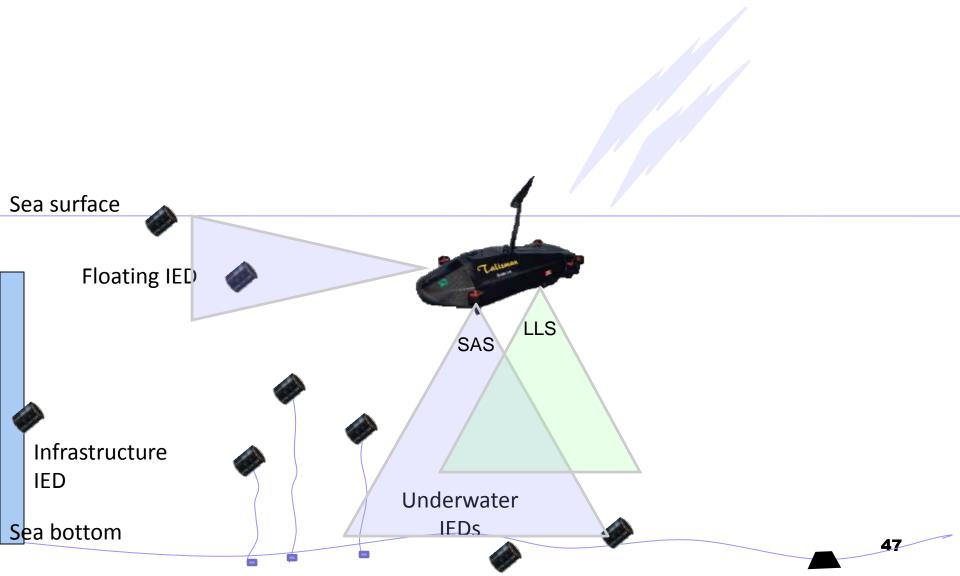
- Talisman M
- Integrated SAS/Laser Line Scan
- 2 Archerfish Expendable Mine Neutralization System
- 2 SeaArcher Chemical Mine Neutralization System

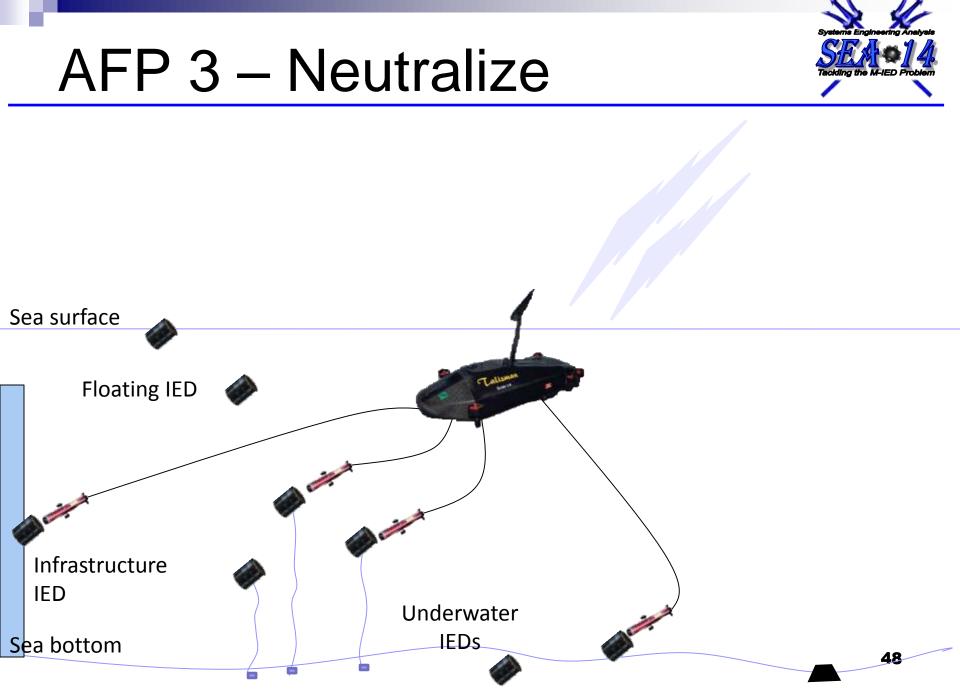
AFP 3 Components



Talisman M

- □ Multirole UUV
- High payload capacity
- □ Multiple sensors
- Organic neutralization


- SeaArcher CMNS
 - Modified Archerfish EMNS
 - Technology developed for ABS
 - Single-shot application

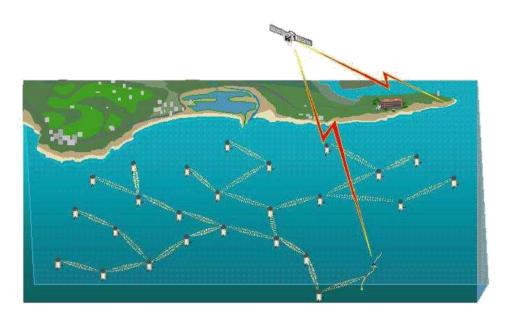


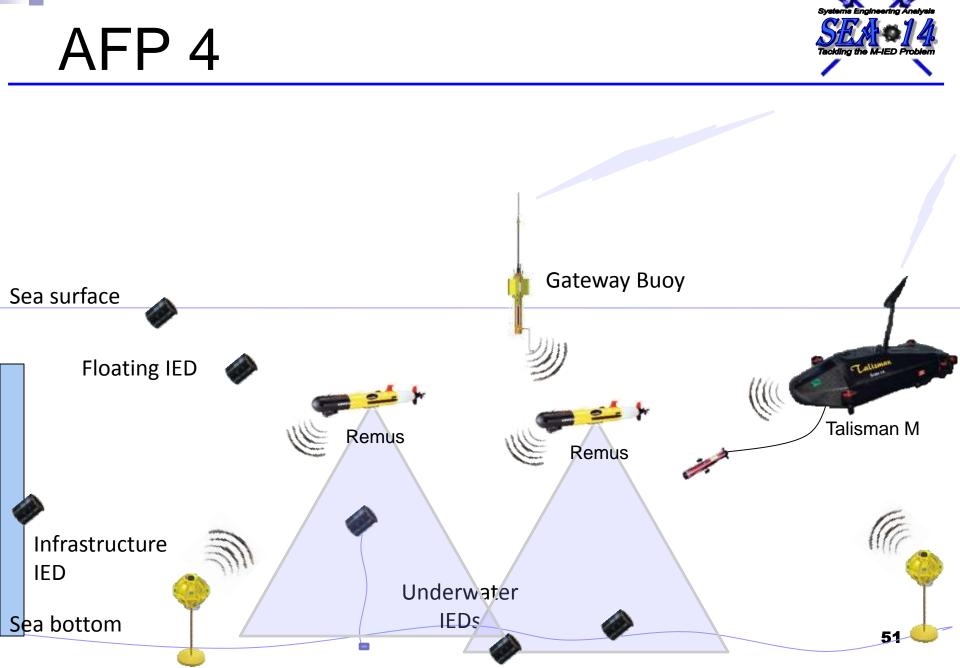
AFP 3 - DTE

AFP 4 – Vehicle Sentry

Improved REMUS

Talisman M


- SeaWeb Acoustic
 Network
- 2 Archerfish EMNS



AFP 4 Components

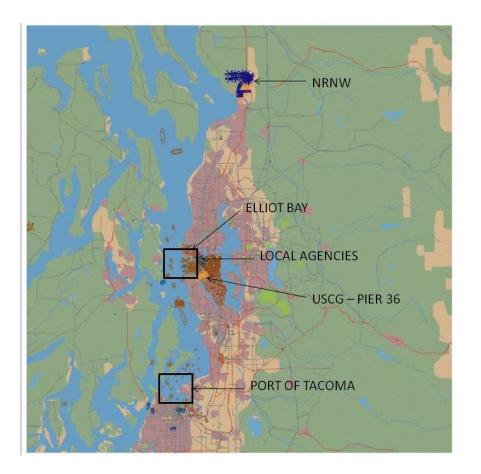
- SeaWeb Acoustic Network
 - Network of acoustic network nodes
 - Sends and Receives data from C2 center and underwater vehicles
 - Underwater nodes, vehicle modems, gateway buoy

Wargame, Modeling, and Simulation

LT Julio Nilsson

Background

 First SEA cohort to use wargaming
 Joint Conflict and Tactical Simulation program (JCATS)
 Used by JFCOM, CAW, DoN, HLS/HLD for contingency planning


Background

The wargame was designed to support the System's Engineering Design Process
 Conducted analysis of system of systems
 Assisted in validating the problem statement, operational concept, and scenario
 Served as a knowledge generating tool

Game Area

Port of Seattle provided:

- A vast area
- Numerous choke points
- Large volume of commercial traffic
- Coordinated effort of regional agencies

Scenario

- Event 1 Time +15 min: Ferry hits MIED in Elliott Bay
- Event 2 Time +20 min: CG First
 - Responders hit MIED enroute to the ferry
- Event 3 Time +60 min: Container vessel hits MIED enroute to the Port of Tacoma

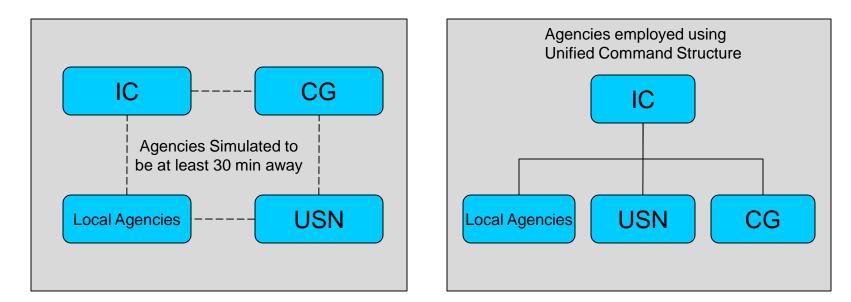
- Phase I Feasibility Wargame
- Phase II Baseline Wargame
- Phase III Closed Form Simulation

- Phase I Feasibility Wargame
 Supported by JFCOM
 - □ C2/SOP difficulties
 - Served as proof of concept for our overall approach to the MIED problem

Phase II – Conduct a Baseline Wargame
Prototype Improvements

- □ Baseline data collection
 - Based on National Incident Management System (NIMS)

Phase II – Conduct a Baseline Wargame

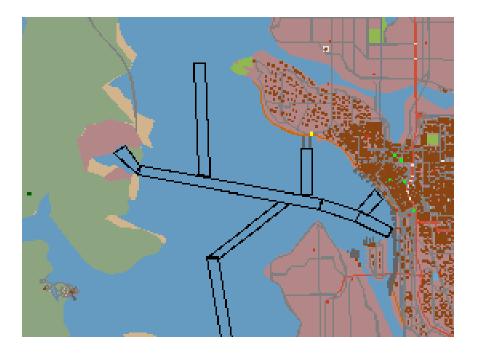

Expected vs. Actual Results

- Could only collect area search rate and probability of detection data
- Asset implementation in JCATS is shorter than Asset Implementation in Reality

Three Phased Approach

Command Structure Improvements

Feasibility Wargame - Structure was slow and cumbersome Baseline Wargame


- Structure improved response times

- Phase III Closed Form Simulation of Alternatives
 - Performance Analysis of the Alternatives
 - Individual System Analysis
 - Grouped System Analysis

Search Areas

- Data collected for analysis
- Used to test all systems

Final Data Collected

- Data verified by theoretical formulas
 Exhaustive Search Equation: $t = \frac{A}{VW}$
 - t is the time to conduct the search
 - A is the area searched
 - V is the search velocity
 - W is the swath width
 - \square Probability of Detection: $P_d = \frac{n\pi r}{4}$
 - n is the number of contacts
 - R is the sensor radius

 $=\frac{n\pi R^2}{4}$

Example of Data Collected

Data used to conduct the decision analysis Area Search Rate

А	FP 2		Route: From	First Respond	ders to Ferry					
#		Distance (Km) Distance		Area (m^2)	Start Time (Z)	End Time (Z)	Total Time	Actual Time (s)	Velocity (m/s)	Calculated Time (s)
	1	1.68931	1689.31	904610.33	0208	0230	22 min	1320	41.155	732.6856411
	2	0.509912	509.912							
	3	1.80611	1806.11							
	4	0.525283	525.283							

Area (m^2)	Actual Time (s)	Calculated Time (s)	Time Difference (min)
904610.3267	1320	733	10

Decision Analysis

- Performance Analysis
- Suitability Analysis
- Cost Analysis
- Risk Analysis

Performance Analysis

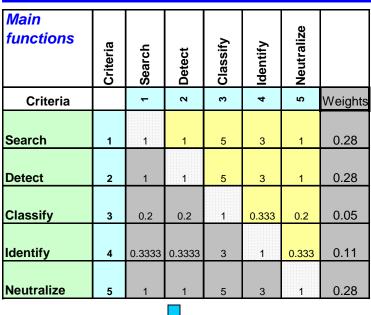
Mr. Cheng Hua Lim

Performance Analysis

- Evaluate the system performance and capability based on the MOPs listed for each functions.
- MOPs are weighted accordance feedback and survey using Analytical Hierarchy Process (AHP).
- Adaptive Force Package (AFP) compare to baseline (as reference).

Evaluation Crite	Weight	
Search	Area search rate	0.15
	Time to station	0.06
	Deployability rating	0.09
Detect	Probability of Detection	0.21
	Probability of False Detection	0.03
Identification	Probability of Identification	0.07
	Probability of false identification	0.07
	Identification time per contact	0.02
	Positional accuracy	0.02
Classification	Resolution	0.03
	Search time / PMA time ratio	0.01
Neutralization	Time required to neutralize	0.09
	Neutralization rating	0.15 /
	Tatal	1.00

		Wt
eployability	Movement	0.25
ating	Assembly	0.25
	Operational testing	0.25
	Fueling & Charging	0.25
	TOTAL	1.00


		Wt
Neutralization	Effectiveness in neutr	0.2
Rating	Damage to facilities	0.33
	Damage to personnel	0.14
	Damage to assets	0.33
	TOTAL	1.00

1.00

SYSTEMS ENGINEERING ANALYSIS SEA 14 - Countering Maritime	IEDs				
4. Search					
				33%	
1. Search - The act of locating conta	acts in the volume of wate	er and the bottom			
Which objectives are most vital to (conducting an effective so	earch?			
	No Importance	Little Importance	Moderate Importance	Significant Importance	Most Importance
Reducing Asset Time to Station					
Reducing Asset fine to oration	0	0	0	0	\checkmark
Improving the rate of search	J	J		 ₹	<i>ଟ</i> ୍ଟ ୦
-	0	0	0) 8	0 7 0	>

Search Objective	Criteria	Reduce time to station	Improve Area search rate	winimize reliance on port infra for asset denloyment	
Criteria		1	2	e	Weights
Reduce time to station	1	1	0.333	3	0.26
Improve Area search rate	2	3	1	5	0.63
Minimize reliance on port infra for asset deployment	3	0.3333	0.2	1	0.11

- Conducted online survey to determine the relative importance of each functions
- Carry out pairwise comparison of each functions using AHP

Search Objective	Overall weights
Reduce time to station	0.07
Improve Area search rate	0.18
Minimize reliance on port infra for	
asset deployment	0.03

Survey feedback		Wt	Search			Detect		Classify	/	Identify	ify			Neutralize	
Surve	Teeuback		Area search rate	Time to station	Deployability rating	Probability of Detection	Probability of False Detection	Resolution	Search time / PMA time ratio	Positional accuracy	Probability of Identification	Probability of false identification	Identification time per contact	Time required to neutralize	Neutralization rating
Search	Reducing Asset Time to Station	0.07		1	1										
Search	Improving the rate of search Minimizing reliance on port intrastructure for	0.18	1												
Search	asset deployment, operation, and recovery	0.03			1										
Detect	Improve probability of detection	0.18				1									
Detect	Decrease false alarm rate	0.03					1								
Detect	Reduce the time required to complete detections	0.07				1									
Classify	Increase confidence in object classification	0.04						1							
Classify	Reduce the time it takes to classify an object	0.01							1						
Identify	Reduce the time it takes to identify an object increase the confidence of an objects	0.03								1			1		
Identify	identification	0.08									1	1			
Neutralise	Reduce time to neutralize	0.11												1	
Neutralize	Reduce risk to personnel	0.04													1
Neutralise	Reduce the risk to assets	0.02													1
Neutralise	Reduce the risk to critical infrastructure/key resources	0.11													1
	Sub-total	1.00	0.18	0.07	0.10	0.25	0.03	0.04	0.01	0.03	0.08	0.08	0.03	0.11	0.17
	Normalize		0.15	0.06	0.09	0.21	0.03	0.03	0.01	0.02	0.07	0.07	0.02	0.09	0.15

Baseline

Current system (i.e. Baseline) is set as the baseline for comparison of the various alternatives.

AFP 0 - Baseline		Threshold	<u>Goal</u>	<u>Units</u>
Search	Area search rate	460	550	m2/s
	Time to station	1	0.5	hr
	Deployability rating	4	5	-
Detect	Probability of Detection	85	95	%
	Probability of False Detection	5	1	%
Identification	Probability of Identification	95	99	%
	Probability of False Identification	5	1	%
	Identification time per contact	1.5	1	hr
	Positional accuracy	15	3	m
Classification	Resolution	4	3	cm
	Search time / PMA time ratio	3	1	-
Neutralization	Time required to neutralize	3	2	hr
	Neutralization rating	3.26	4	-

Performance Comparison

- Compare Adaptive Force Package with reference to baseline.
- Raw data below threshold would score a value of 0.
- Raw data above goal would score a value of 1.
- Raw data between threshold and goal, the value will be interpolated accordingly.
- Each MOP value are multiple by the MOP weights and summed up to generate the system MOE.

Performance Comparison

				Bas	eline			AFP 1			AFP 2	2		AFP 3			AFP 4	
Evaluation Crit	eria		Weight	Threshold	Goal	units	Data	units	Value	Data	units	Value	Data	units	Value	Data	units	Value
Search	Area search rate		0.15	460	550	m2/s	630	m2/s	1.00	6650	m2/s	1.00	184	m2/s	0.00	644	m2/s	1.00
_	Time to station		0.06	1	0.5	hr	2	hr	0.00	2	hr	0.00	2	hr	0.00	1	hr	0.00
									Ba	selin	e			AFP	1		-	0.00
	Evaluation Crite	ria				Weig	ht	Thre	shold	Go	alu	nits	Data	units	s Va	lue _		
Detect	Search	Area search	n rate			0.15	;	4	160	55	0 n	n2/s	630	m2/s	5 1.0	00 -	%	1.00
		Time to stat	tion			0.06	;		1	0.	5	hr	2	hr	0.0	00	/0	1.00
Identification		Deployabilit	y rating			0.09)		4	5		-	4.5	-	0.	50	%	0.00
																	%	0.00
	Detect	Probability of	of Detection	า		0.21			85	90)	%	88	%	0.0	60	hr m	1.00 0.42
		Probability of				0.03	5		5	1		%	5	%	0.0	00		0.42
Classificatior									-								cm	1.00
	Search time / FIVIA	time ratio	0.01	5			2	-	0.50	2		0.50	-	_	1.00	_	-	1.00
Neutralization	Time required to ne	eutralize	0.09	3	2	hr	3	hr	0.00	0.5	hr	1.00	0.5	hr	1.00	0.5	hr	1.00
	Neutralization rating	g	0.15	3.26	4	-	3.26	-	0.00	3.48	-	0.30	4.47	-	1.00	4.47	-	1.00
	Tota	al	1.00					MOE	0.39		MOE	0.64		MOE	0.64		MOE	0.70

Performance Comparison

			Bas	eline		AFP 1		AFP 2			AFP 3			AFP 4			
Evaluation Crite	eria	Weight	Threshold	Goal	units	Data	units	Value	Data	units	Value	Data	units	Value	Data	units	Value
Search	Area search rate	0.15	460	550	m2/s	630	m2/s	1.00	6650	m2/s	1.00	184	m2/s	0.00	644	m2/s	1.00
	Time to station	0.06	1	0.5	hr	2	hr	0.00	2	hr	0.00	2	hr	0.00	1	hr	0.00
	Deployability rating	0.09	4	5	-	4.5	-	0.50	4.5	-	0.50	5	-	1.00	4	-	0.00
Detect	Probability of Detection	0.21	85	90	%	88	%	0.60	95	%	1.00	95	%	1.00	95	%	1.00
	Probability of False Detection	0.03	5	1	%	5	%	0.00	1	%	1.00	1	%	1.00	1	%	1.00
Identification	Probability of Identification	0.07	95	99	%	95	%	0.00	95	%	0.00	95	%	0.00	95	%	0.00
	Probability of false identification	0.07	5	1	%	5	%	0.00	5	%	0.00	5	%	0.00	5	%	0.00
	Identification time per contact	0.02	1.5	1	hr	1	hr	1.00	1	hr	1.00	1	hr	1.00	1	hr	1.00
	Positional accuracy	0.02	15	3	m	10	m	0.42	10	m	0.42	10	m	0.42	10	m	0.42
Classification	Resolution	0.03	4	3	cm	1	cm	1.00	0.01	cm	1.00	0.01	cm	1.00	0.01	cm	1.00
	Search time / PMA time ratio	0.01	3	1	-	2	-	0.50	2	-	0.50	1	-	1.00	1	-	1.00
Neutralization	Time required to neutralize	0.09	3	2	hr	3	hr	0.00	0.5	hr	1.00	0.5	hr	1.00	0.5	hr	1.00
	Neutralization rating	0.15	3.26	4	-	3.26	-	0.00	3.48	-	0.30	4.47	-	1.00	4.47	-	1.00
	Total	1.00					MOE	0.39		MOE	0.64		MOE	0.64		MOE	0.70

Performance Results

- Overall, Adaptive Force Package 4 had the highest MOE.
- Adaptive Force Package 2 and 3 had the second highest MOE.
- Adaptive Force Package 1 had the lowest MOE.

Suitability Analysis

Suitability Analysis

- Beside the performance and capability of the proposed system, the availability and dependability of the proposed system would also affect the system effectiveness and suitability.
- Thus, the system reliability and maintainability analysis were conducted for the various AFP.

Suitability Analysis

- However, reliability and maintainability for the various AFP were not obtainable as most of the systems are in developmental or design stage.
- Reliability and maintainability prediction conducted to analyze the AFP suitability.

Reliability Prediction

- Reliability prediction conducted based on following factors,
 - □ Similar equipment
 - Active element group
 - Equipments or parts count
 - Mechanical parts
 - Electrical parts
 - □ Software complexity

Reliability Comparison

AFP	Components	on similar equipment o	eliability prediction based Reliability n active element group on equip			d Reliability prediction bases on mechanical parts	sed		lity prediction ba trical parts	sed	Reliability predicti on software comp		sed	Relative Nett Score
0	REMUS	p	ropulsion system, sonar ensor 5 parts	oment and		Propulsion system, control system	5	Gps sys	stem, sensors	5	Simple and least interface required		5	30
	EOD Divers		luman, diver equipment parts			N.A		N.A						
	REMUS		ropulsion system, sonar Few equip	oment and		Propulsion system,		Gos sve	tom concore					
	EOD						<u> </u>							
1	408		Reliability prediction			· ·			-	-			4	25
	AFP	Components	on similar equipment			active element gr	ou	р	on equipn	ne	nt parts cou	nt		
	WLD-					ery, gps system,					nt and			
	Suppo	REMUS	Proven and reliable		sen	oulsion system, so	na		Few equip	me	ent and			
			Allowable diving time is	5 2					Few equip	me	ent and			
	REMU	EOD Divers	hrs		Hun	nan, diver equipme	ent	t	parts					
	EOD ALME	AQS-20	Similarity to REMUS	5	Son cam	ar sensor, optical era		4	Relatively	mc	ore parts	3		
2	AQS-		Similarity to diesel		-	oulsion system, gp	DS]	Deletively		us a suts		3	19
	RAMI	WLD-1	engine	_	syst	em		-	Relatively	mc	ore parts			
	AMNS	Support Module	Similarity to main frame computer	e		ware, electronic ponents			Relatively	mc	ore parts			
	MH-60		· · ·	more part		system, etc		_	ion system, etc					
3	Talisman M (c/w Archerfish, SeaArcher)	Similar to AQS-20 + 5 s	ystem, propolusion 2 parts than	ipment and alternative nan alterna	e 1	Propulsion system, gear system	5		sytem, sonar, ps, control	3	More complex softw and interface than alternative 2	vare	2	21
	Improved REMUS	Similarity to present p REMUS s	attery, gps system, ropulsion system, sonar ensor parts More equip			Propulsion system, control system			stem, sensors					
4	Talisman M (c/w Archerfish, SeaArcher)	Similar to AQS-20 + 5 s	ystem, propolusion 2 parts than	ipment and alternativ nan alterna	e 1 🛛 🗧	Propulsion system, gear system	5		sytem, sonar, ps, control	3	Most complex softw and interface	vare	1	19
	Benthos Modem Network	REMUS reference Bouy	VIFI Few equip	oment and		N.A								

Reliability Results

- From the prediction, among the alternatives:
 - □ AFP 1 had highest expected reliability
 - □ AFP 2 and 4 had lowest expected reliability

- Maintainability prediction conducted based on following factors:
 - □ Spare parts required
 - Test and support equipment required
 - □ Maintenance facility required
 - □ Maintenance organization required
 - System capability to record and process maintenance data / information

Maintainability Comparison

AF I 0	F	Componer REMUS EOD Diver REMUS	nts	Maintainability prediction based on spare parts an test & support equipment Commercially available N.A Commercially available	nt f	Maintainability predicti based on maintenance facility required Unit level N.A Unit level			n mai Ition I Inel, tr	aining) eam 5	Maintainability pred based on system ca to record and proce maintenace data / information Available N.A Available	apabil ess		Relative Nett Score 20
1		EOD Dive AQS-20 WLD-1 Support I	AFP	Components		Maintainability based on main facility require	ter	edictio		Maintain based or organiza	ability prediction maintenance tion required pel, training)	on	ō	15
2	<u> </u>	ALMDS	1	REMUS EOD Diver AQS-20 WLD-1		Unit level N.A Intermediate lev	/el		4	Maintena N.A Maintena manufact Maintena manufact	nce team ce team / urer ce team /	3	4	14
	/	AMNS		Support Module commercial Widely available through Navy and some commercial		Intermediate lev Depot level Unit level	<mark>/el</mark>	Manufact Crew	turer	Maintena manufact				
3	/	Falisman M Archerfish,	SeaArche			Depot level	2	Manufact		2	Available		5	13
4	-	mproved F Falisman M Archerfish, Benthos M Network	1 (c/w SeaArche	Commercially available r) Available through Navy Commercially available	4	Unit level Depot level Intermediate level	3	Maintena Manufact Manufact	turer	eam 1	Available Available Available		5	13

Maintainability Results

From the prediction, among the alternatives: AFP 1 had highest expected maintainability AFP 3 and 4 had lowest expected

maintainability

Suitability Analysis - Results

- Overall, AFP 1 had highest expected reliability and maintainability.
- AFP 4 had lowest expected reliability and maintainability.

	Reliability	Maintainability
Alternative 1	High	High
Alternative 2	Low	Medium
Alternative 3	Medium	Low
Alternative 4	Low	Low

Cost Analysis

LT Chris Causee

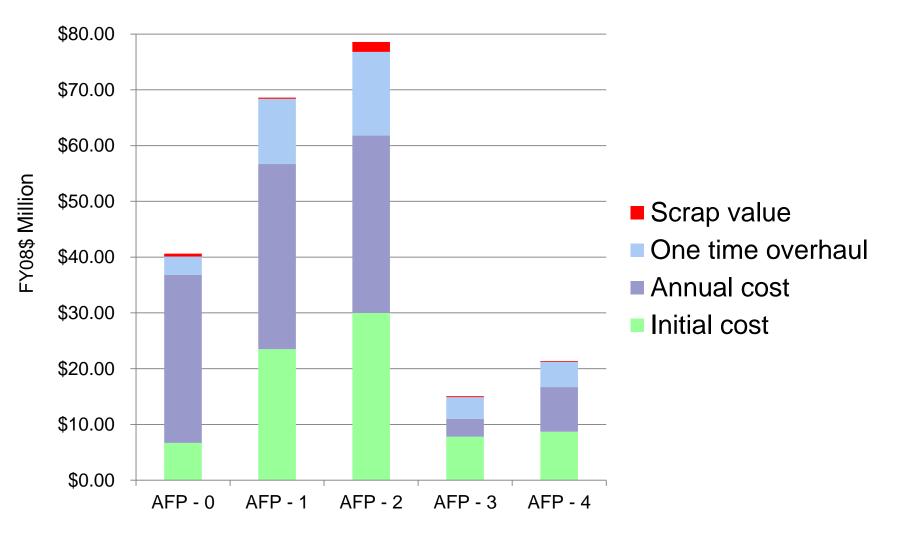
Cost Analysis

- Life Cycle Costs
 - Initial Cost
 - Purchase off the shelf
 - Annual Operation & Support Cost
 - Maintenance
 - Operating personnel cost
 - One-time overhaul / upgrades Cost
 - Mid-point of life cycle
 - 50% of initial cost
 - □ Scrap Value
 - 2% of initial cost

Cost Analysis Assumptions

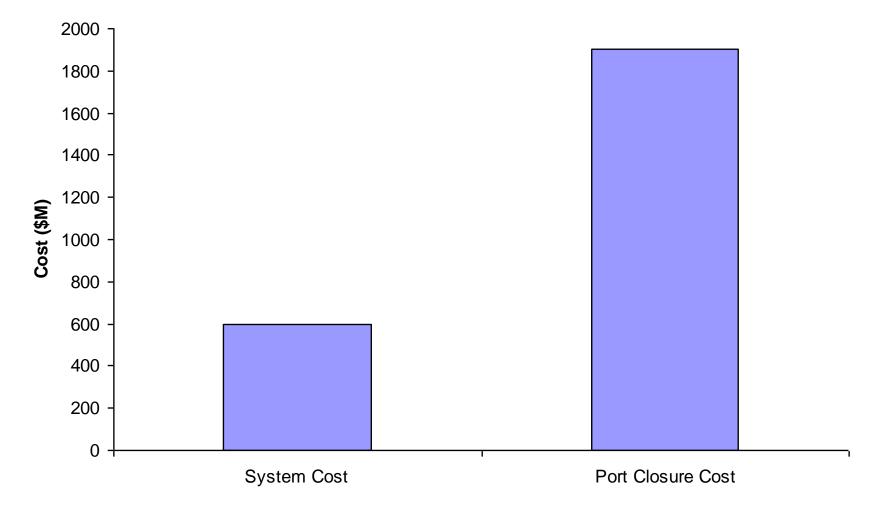
- Did not examine cost of successful enemy attack, focused strictly on system life cycle costs
- Did not include RDT&E costs in our initial model, but discussed separately
- Costs based on purchase of single AFP applied to a single port
- Annual operational costs have close dependency on use of manned vs. unmanned systems
- 10 year life cycle for system

Cost Analysis


10 Year Life Cycle Cost Breakdown – (in FY08\$ million)

10 Year Life Cycle	Alt - 0	Alt - 1	Alt - 2	Alt - 3	Alt - 4
Initial cost	\$6.7	\$23.5	\$30	\$7.8	\$8.7
Annual cost	\$30.1	\$33.2	\$31.8	\$3.2	\$8
One time overhaul	\$3.3	\$11.7	\$15	\$3.9	\$4.5
Scrap value	\$0.54	\$0.21	\$1.8	\$0.16	\$0.16
LCC Total (FY08\$)	\$43.9	\$72.8	\$84.3*	\$15.6	\$22.2
RDT&E Cost		\$1100	\$1600	\$570	\$580

* Does not include cost of MH-60



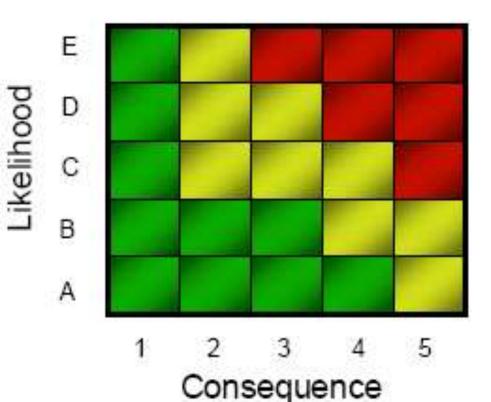
Cost Analysis

Cost Comparison

Risk Analysis

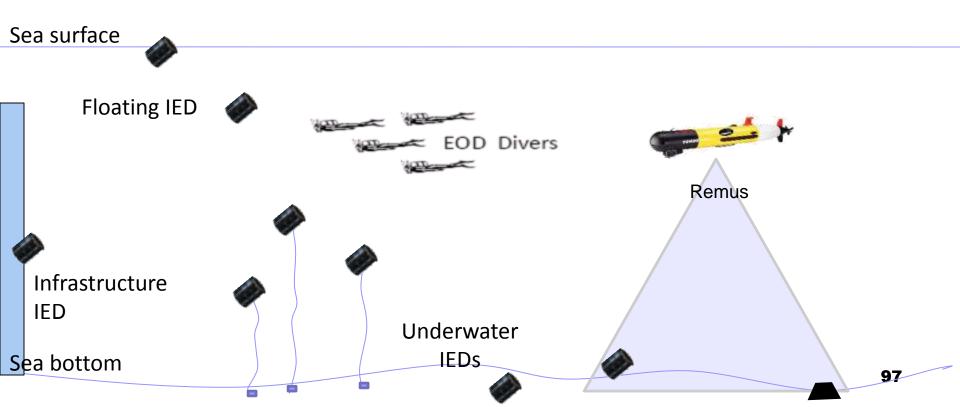
LT Eric Winn

Developmental risk


Cost risk

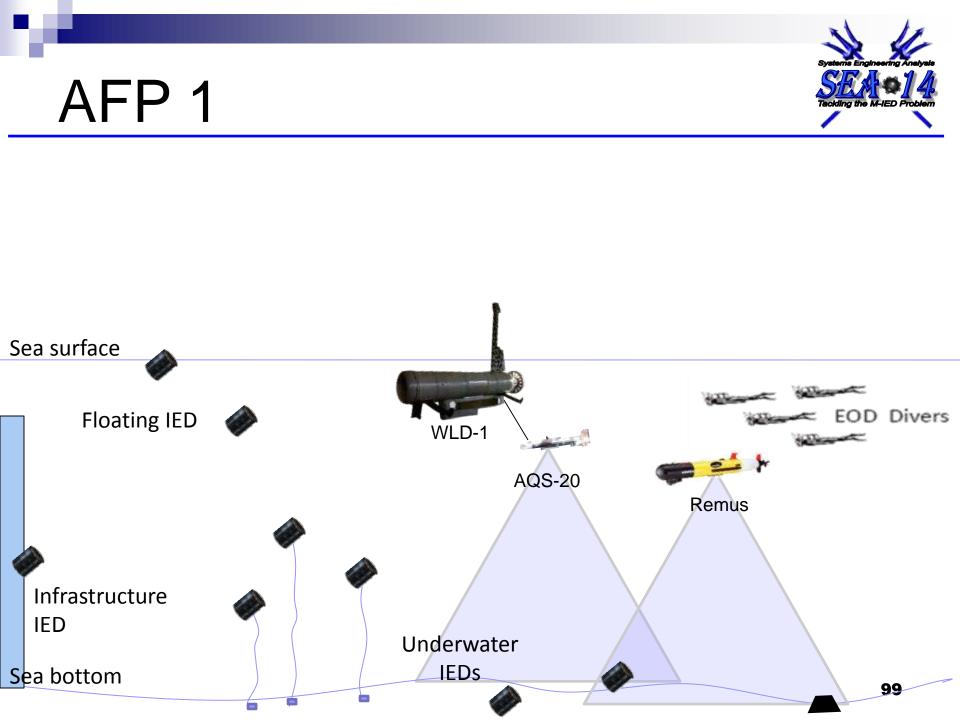
Schedule risk

Organizational risk

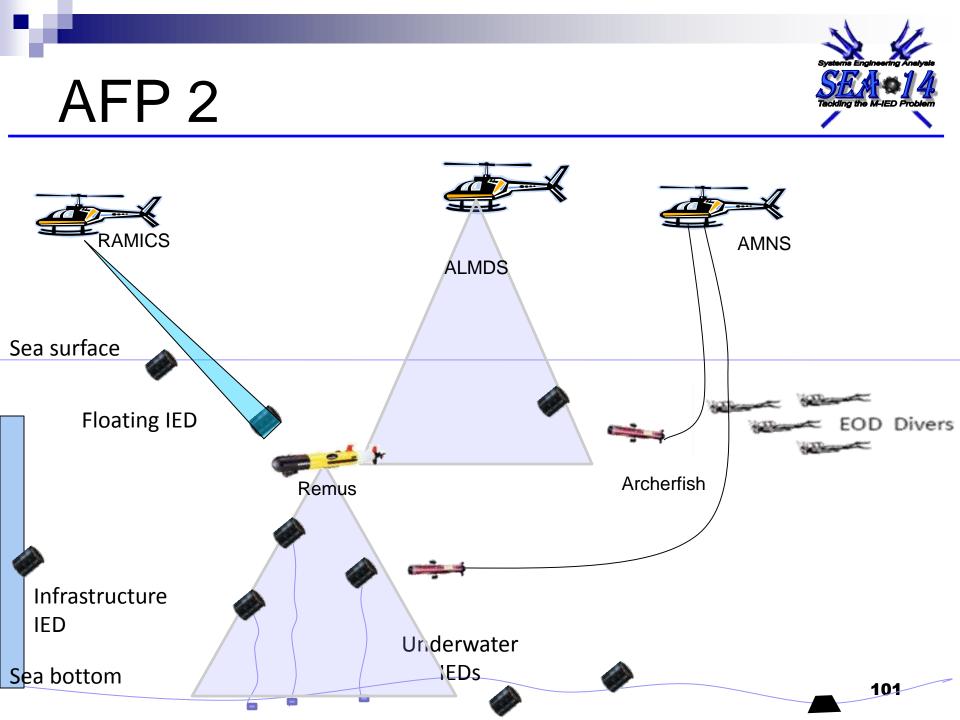


- Green=Low Risk
- Yellow=Medium Risk
- Red=High Risk

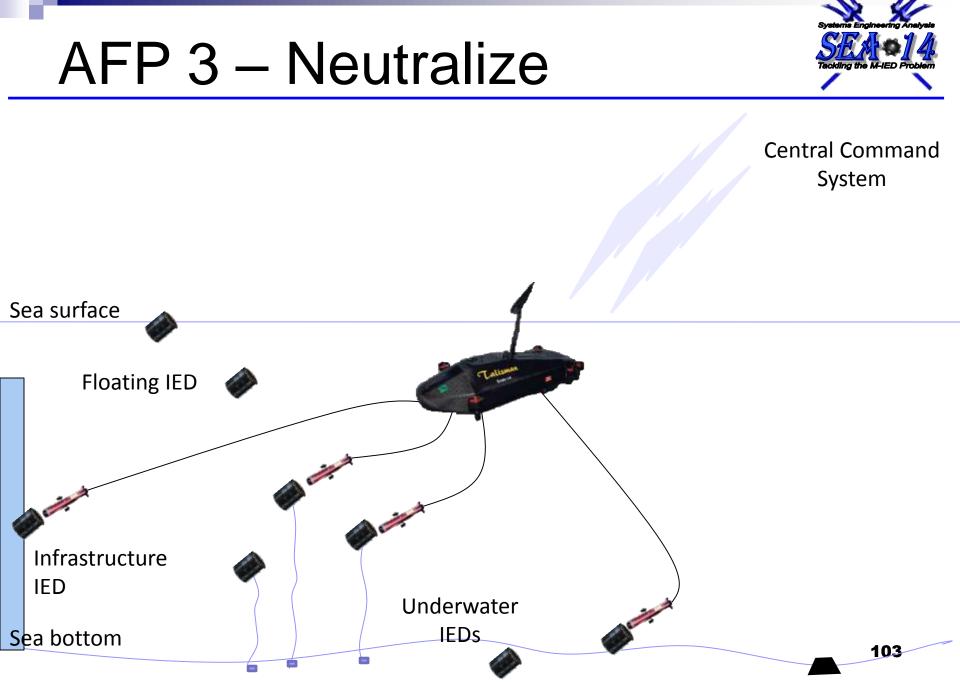
Baseline



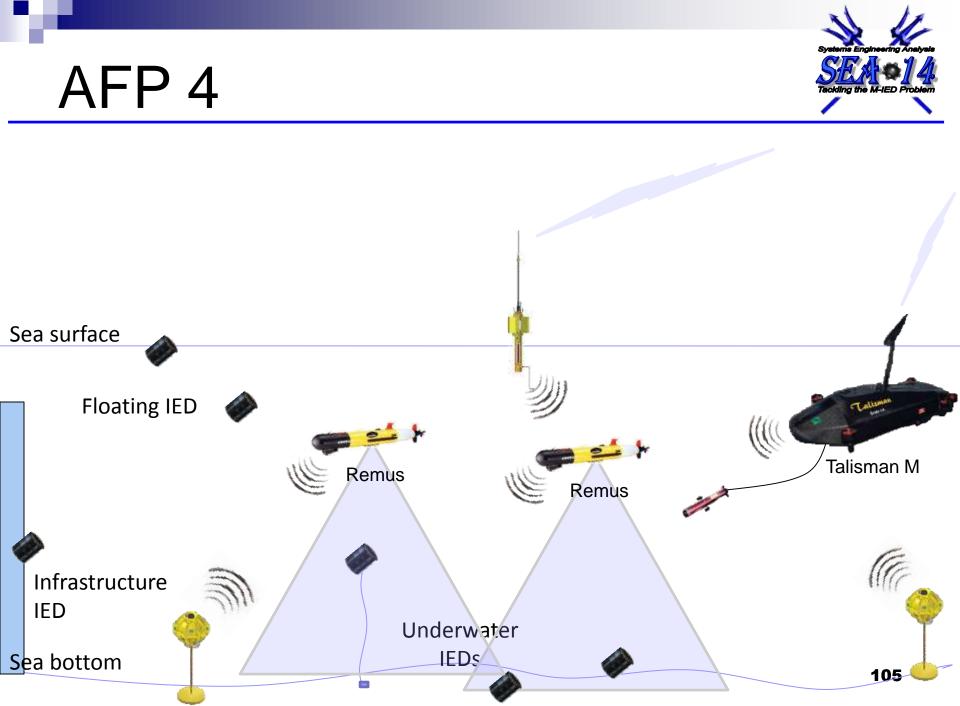
Baseline



Category	Risk	Mitigation	
Developmental Risk	No risk associated.		
Cost Risk	Lack of continuous funding	Assign roles and responsibilities to the appropriate agencies.	
Schedule Risk	No risk associated		
Organizational Risk	Ineffective Command and Control Structure	Assign roles and responsibilities to the appropriate agencies.	



Category	Risk	Mitigation	
Developmental Risk	MPCE production delayed	Allocate more resources to R&D and production; investigate other UUV alternatives	
Cost Risk	Inadequate funding	Assign roles and responsibilities to the appropriate agencies.	
Schedule Risk	MPCE schedule delay	Create system requirement; Manage MPCE development.	
Organizational Risk	Conflicting asset availability	Allocate sufficient assets to the appropriate agencies.	



Category	Risk	Mitigation	
Developmental Risk	Integration incompatibility between ALMDS and RAMICS	Continue with current OPEVAL; allocate resources to development.	
Cost Risk	Increased H-60 helicopter parts failure	Account for additional maintenance requirements	
Schedule Risk	CSTR schedule delay	Continue with current OPEVAL; allocate resources to development.	
Organizational Risk	Conflicting asset availability	Allocate sufficient assets to the appropriate agencies.	

Category	Risk	Mitigation	
Developmental Risk	System integration and development difficulties	Fallback to baseline systems and transition to partial capabilities	
Cost Risk	Manufacturing/Design issues resulting in delayed timeline	Allocate funds toward research and development.	
Schedule Risk	Manufacturing/Design issues resulting in delayed timeline	Allocate funds toward research and development.	
Organizational Risk	Conflicting asset availability	Allocate sufficient assets to the appropriate agencies.	

Category	Risk	Mitigation	
Developmental Risk	Advanced Remus development delay	Create system requirement; use current tech; transition to partial capabilities	
Cost Risk	Manufacturing/Design issues resulting in delayed timeline	Allocate funds toward research and development.	
Schedule Risk	Advanced Remus acquisition delay	Create system requirement; Manage Advanced Remus development.	
Organizational Risk	Conflicting asset availability	Allocate sufficient assets to the appropriate agencies.	

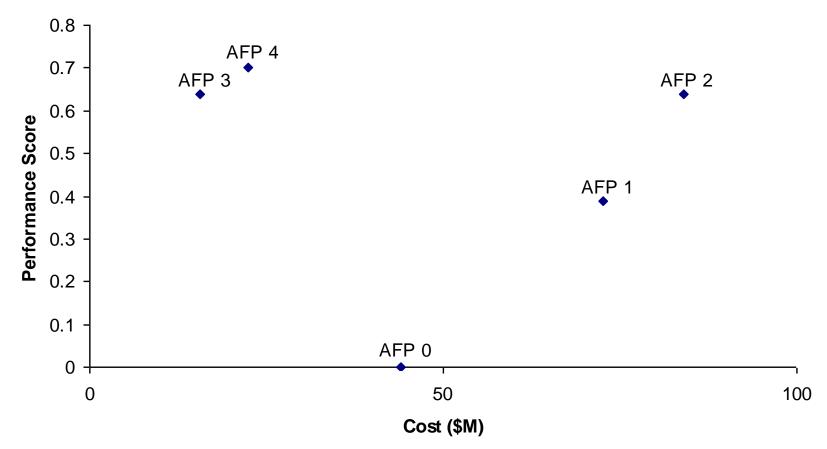
107

Overall Risk

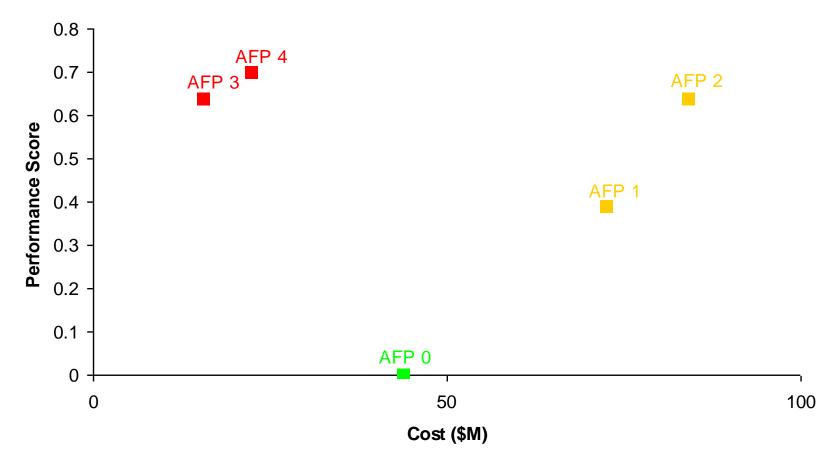
Baseline

- Adaptive Force Package 1
- Adaptive Force Package 2
- Adaptive Force Package 3
- Adaptive Force Package 4

Low Medium Medium High High

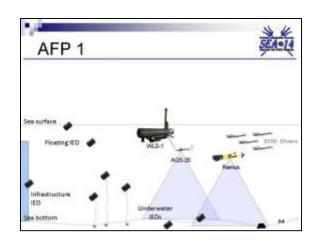

Critical Assessment

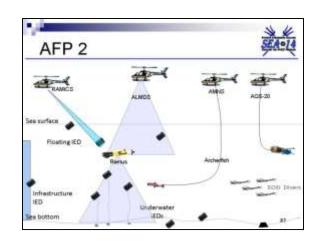
LT Bobby Rowden


Cost-Performance Analysis

Cost-Performance Analysis

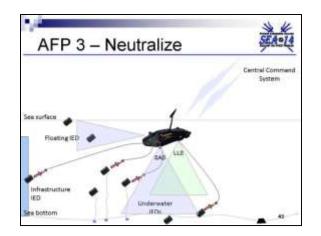
Cost-Performance-Risk





Findings – AFP 1 & 2

- All alternatives out-perform baseline
- AFPs 1 and 2 enable an interim improvement on performance
- Not well suited as long-term system solutions

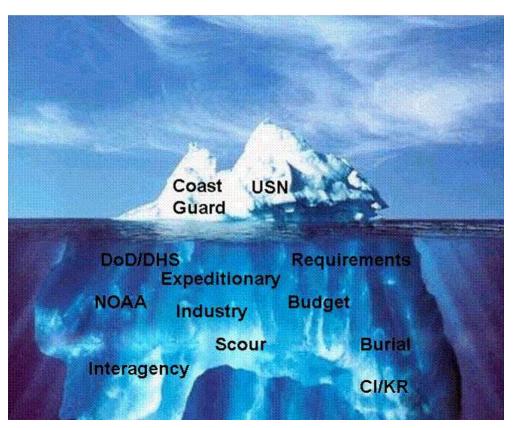


Findings – AFP 3 & 4

- AFPs 3 and 4 offer high performance, too similar to distinguish
- AFPs 3 and 4 offer cost savings, but with higher risk
- Better long-term solutions

- Invest in development of underwater communication networks
- Further development of CAD/CAC algorithms
- Research and development of nonexplosive neutralization techniques

Additional Insights


LT Mike Hellard

The Rest of the Story

Articulated Requirements drive solutions

Equipment
Personnel
Training
Preparation
Justify Budgets

National Objectives Needed

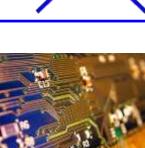
Specifically...

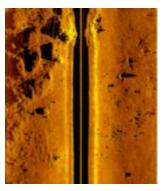
- Prioritized listing of ports
- □ National response / recovery timelines

Local Objectives Needed

Local ports set priority areas
 Establish "Port Folders"
 Supply chain impacts known
 Locally
 Regionally
 Nationally

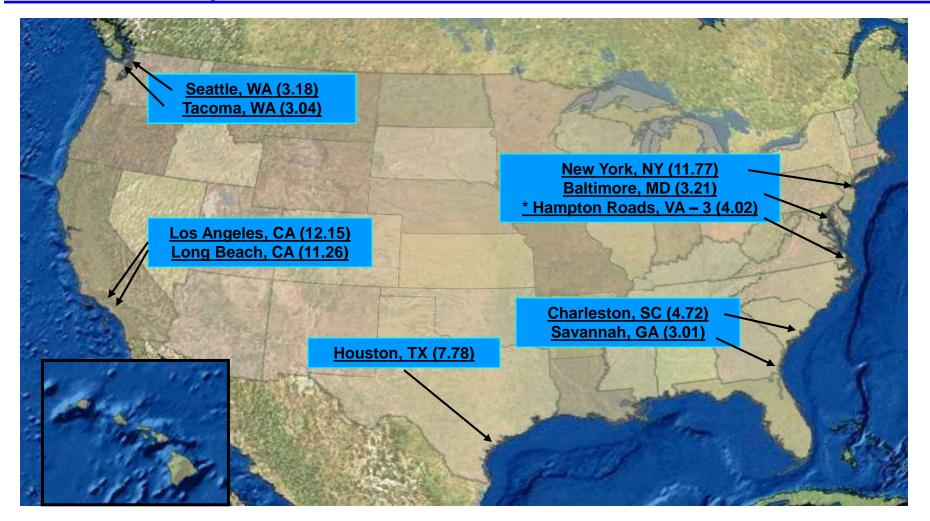
The Key


BASELINE SURVEYS


Lead to Change Detection"Cheap Insurance"

Science & Technology

- Change Detection
 Requires a baseline
- Post Mission Analysis (PMA)
 Rapid and accurate
 - Consistent and standardized
- Non-explosive Neutralization
- Unmanned systems



Priority Ports - TFT

UNITED STATES WATERBORNE FOREIGN COMMERCE 2005											
PORT RANKINGS BY VALUE OF CARGO											
(Millions of Current U.S. Dollars)											
	TOTAL FOREIGN TRA										
RANK	PORT	VALUE	Total Foreign Trade (TFT)	Ports % of TFT	Cumulative % of TFT						
1	Los Angeles, CA	\$135,079	\$1,111,370	12.15%	12.15%						
2	New York,NY	\$130,838	\$1,111,370	11.77%	23.93%						
3	Long Beach, CA	\$125,171	\$1,111,370	11.26%	35.19%						
4	Houston, TX	\$86,444	\$1,111,370	7.78%	42.97%						
5	Charleston, SC	\$52,483	\$1,111,370	4.72%	47.69%						
6	Hampton Roads	\$44,658	\$1,111,370	4.02%	51.71%						
7	Baltimore, MD	\$35,637	\$1,111,370	3.21%	54.92%						
8	Seattle, WA	\$35,301	\$1,111,370	3.18%	58.09%						
9	Tacoma, WA	\$33,788	\$1,111,370	3.04%	61.13%						
10	Savannah, GA	\$33,424	\$1,111,370	3.01%	64.14%						
11	Oakland, CA	\$32,885	\$1,111,370	2.96%	67.10%						
12	Morgan City, LA	\$21,039	\$1,111,370	1.89%	68.99%						
13	New Orleans, LA	\$20,944	\$1,111,370	1.88%	70.88%						
14	Miami, FL	\$19,899	\$1,111,370	1.79%	72.67%						
15	Philadelphia, PA	\$19,251	\$1,111,370	1.73%	74.40%						
16	Beaumont, TX	\$17,059	\$1,111,370	1.53%	75.93%						
17	Jacksonville, FL	\$16,494	\$1,111,370	1.48%	77.42%						
18	South Louisiana	\$15,630	\$1,111,370	1.41%	78.82%						
19	Corpus Christie, TX	\$15,532	\$1,111,370	1.40%	80.22%						
20	Port Everglades, FL	\$15,298	\$1,111,370	1.38%	81.60%						
186	Warroad, MN	\$0									
		\$1,111,370									

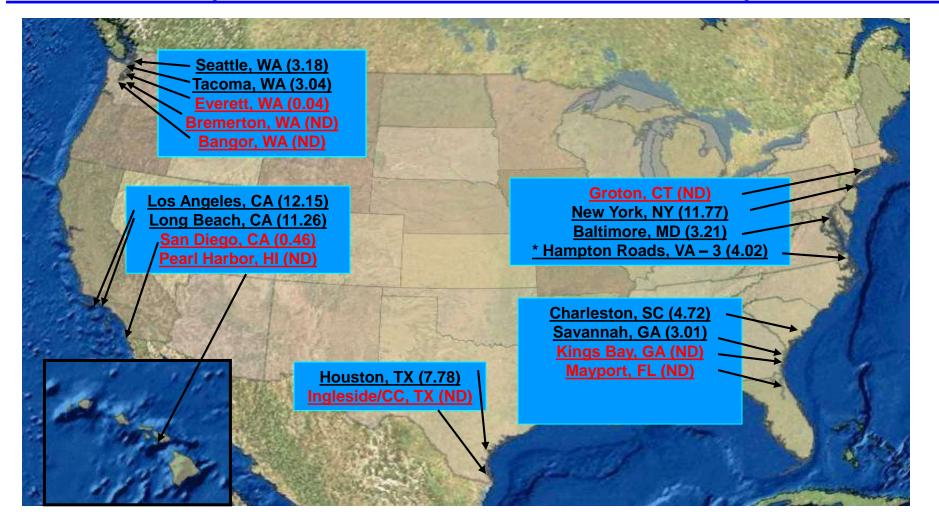
Priority Ports - TFT

FFC Priorities (12 Ports)

Ingleside Corpus Christi

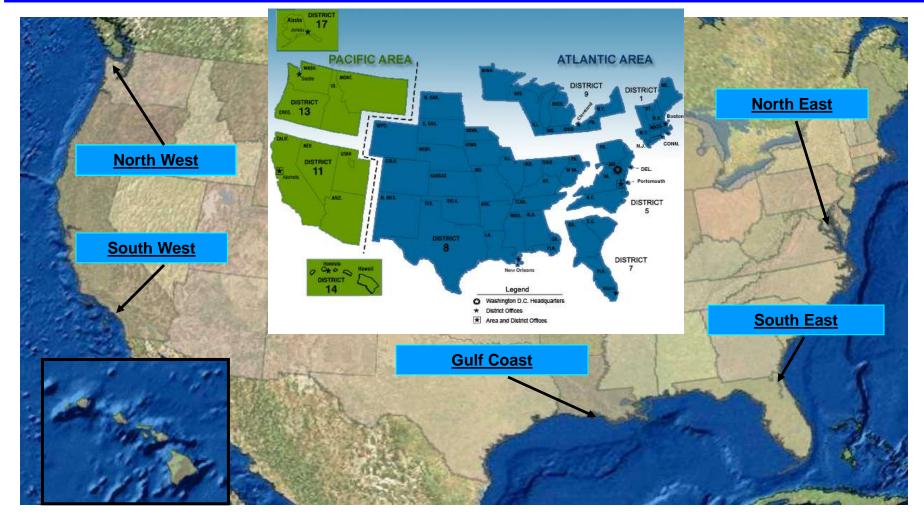
Norfolk Little Creek Newport News

Groton Mayport Kings Bay Bangor Bremerton Everett San Diego Honolulu

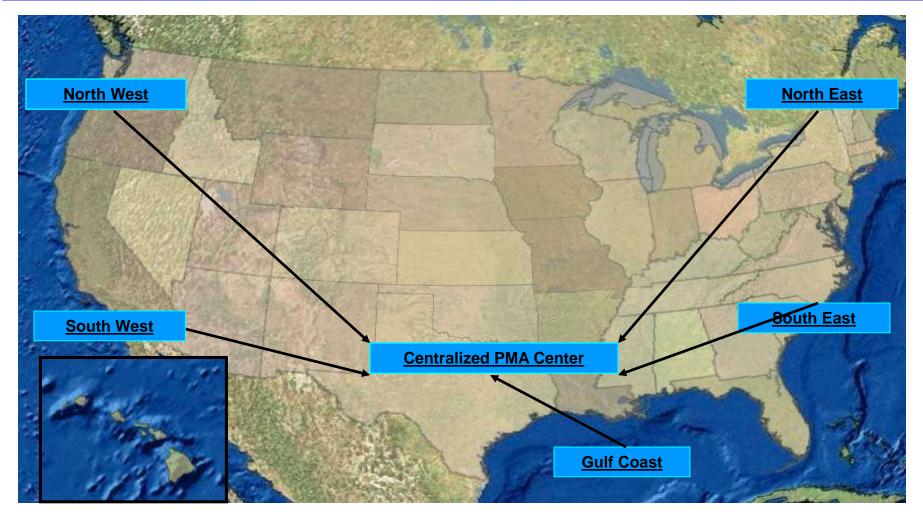

Priority Ports – TFT & Navy

		U	INITED STA	TES WATERBORNE FO	REIGN COMMERCE 2005					
(Millions of Current U.S. Dollars)										
TOTAL FOREIGN TRADE										
RANK	PORT	VALUE	Total	Foreign Trade (TFT)	Ports % of TFT	Cumulative % of TFT				
1	Los Angeles, CA	\$135,079		\$1,111,370	12.15%	12.15%				
2	New York, NY	\$130,838		\$1,111,370	11.77%	23.93%				
3	Long Beach, CA	\$125,171		\$1,111,370	11.26%	35.19%				
4	Houston, TX	\$86,444		\$1,111,370	7.78%	42.97%				
5	Charleston, SC	\$52,483		\$1,111,370	4.72%	47.69%				
6	Hampton Roads	\$44,658		\$1,111,370	4.02%	51.71%				
7	Baltimore, MD	\$35,637		\$1,111,370	3.21%	54.92%				
8	Seattle, WA	\$35,301		\$1,111,370	3.18%	58.09%				
9	Tacoma, WA	\$33,788		\$1,111,370	3.04%	61.13%				
10	Savannah, GA	\$33,424		\$1,111,370	3 01%	64.14%				
11	Oakland, CA	\$32,885		\$1,111,370	2.96%	67.10%				
12	Morgan City, LA	\$21,039		\$1,111,370	1.89%	68.99%				
13	New Orleans, LA	\$20,944		\$1,111,370	1.88%	70.88%				
14	Miami, FL	\$19,899		\$1,111,370	1.79%	72.67%				
15	Philadelphia, PA	\$19,251		\$1,111,370	1.73%	74.40%				
16	Beaumont, TX	\$17,059		\$1,111,370	1.53%	75.93%				
17	Jacksonville, FL	\$16,494		\$1,111,370	1.48%	77.42%				
18	South Louisiana	\$15,630		\$1,111,370	1.41%	78.82%				
19	Corpus Christie, TX	\$15,532		\$1,111,370	1.40%	80.22%				
20	Port Everglades, FL	\$15,298		\$1,111,370	1.38%	81.60%				
186	Warroad, MN	\$0								
		\$1,111,370								

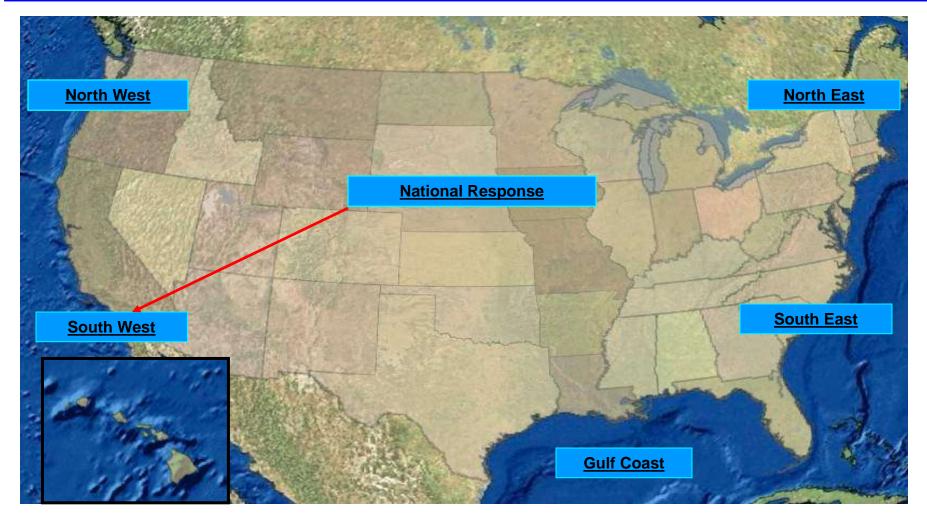
1	22	



Priority Ports – TFT & Navy



Regional Baseline Approach



Baseline Storage Repository

Neutralization Capability

Caveats - Grants

- Great for short term acquisition
- Need to address long term sustainment
- Provide direction

Caveats - Training

Exercises need to be realistic
 People who respond
 Capabilities they have
 Quantities they bring
 "Sensor in the water"
 Interagency relationships

Caveats - Costs

Going to cost some money BASELINES ARE MOST IMPORTANT

- Purchasing equipment to conduct surveys
- Conducting surveys
- Building port folders

Not going to cost money

- Prioritizing critical areas within ports
- Establishing key players
- Building interagency relationships

Caveats - Attitude

Low Probability – High Impact □ MIEDs are cheap □ MIEDs are easy to get Attacks hard to prevent Response and recovery is hard Response and recovery is time consuming Sept 10, 2001

Terrorists can achieve desired impacts

Takeaways

- Time is the key issue
- Baseline Surveys are "A Must Do"
- National Requirements and Guidance
 - Port priorities
 - Response and recovery timelines
 - Priority within the port

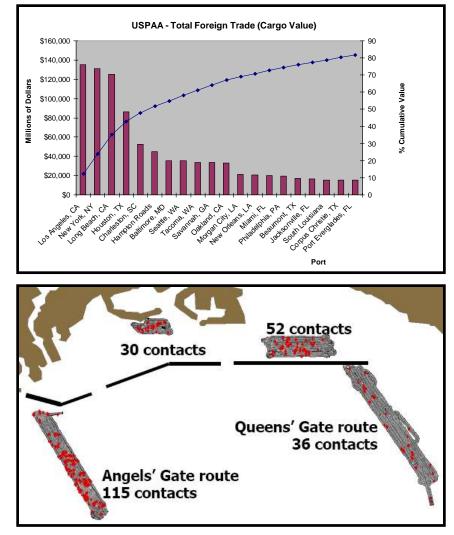
Takeaways

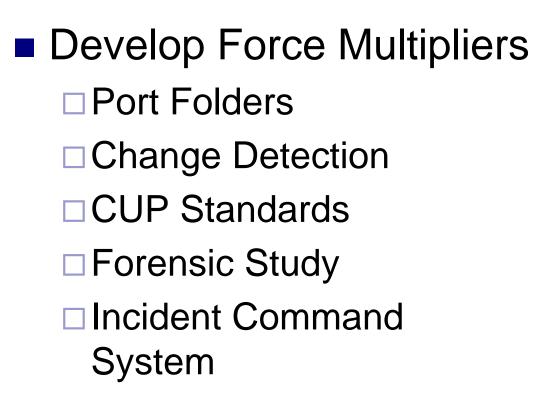
S & T Improvements Needed In... Automated Change Detection Rapid Post Mission Analysis Non-explosive Neutralization Unmanned Systems National Structure To Counter MIEDs Grants / Training / Costs / Attitude

Project Findings and Recommendations

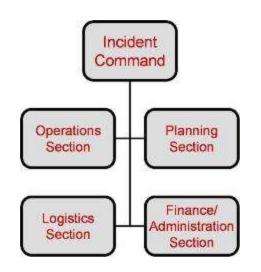
LT Bobby Rowden

Set Requirements
 Timeline Requirements
 Roles and Responsibilities
 Lifecycle Funding





Make Early Investments
 Non-explosive Neutralization
 Underwater Communications
 CAD/CAC Processes
 Effect of Port Environments on Sensors
 Multi-Agency Exercise Development

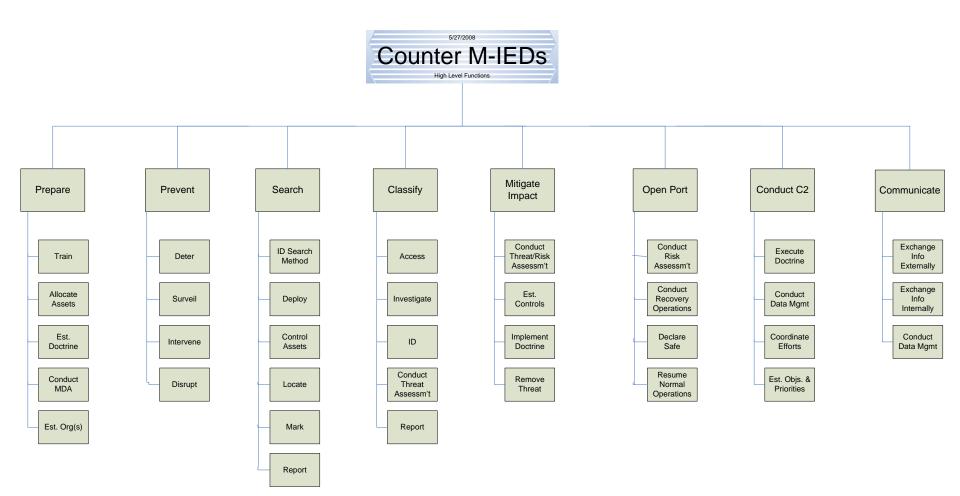


Set Priorities
 Counter MIED
 Port Coverage
 Port Infrastructure

Future Thesis Possibilities

- Organizational Roles and Responsibilities
- Mine burial modeling
- Command and Control
- MDA fusion/integration
- Port supply-chain shipping impact
- Port environment effects on sensors
- Non-explosive neutralization

Questions?


Backup

Contacts

- Project Manager, LT Bobby Rowden, <u>bjrowden@nps.edu</u>
- Dep. Project Manager, LT Joel Wheatley, jpwheat@nps.edu
- Systems Integration, Mr. Cheng Hua Lim, <u>clim@nps.edu</u>
- IPT 1 Lead, LT Rich Jimenez, rjimenez@nps.edu
- IPT 2 Lead, LT Chris Causee, <u>cmcausee@nps.edu</u>
- IPT 3 Lead, LT Tim Smith, <u>tdsmit2@nps.edu</u>
- Wargame Design, LT Julio Nilsson, janilsso@nps.edu

Functional Hierarchy

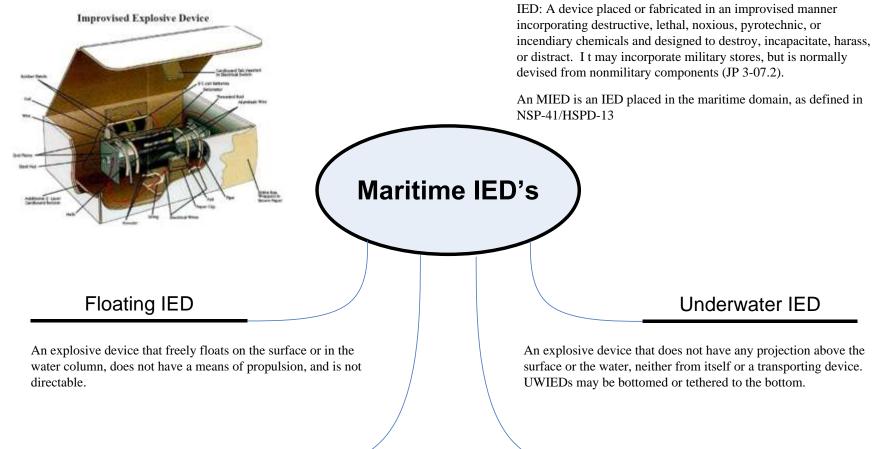
Initial Problem Statement

Statement of Problem

Develop a system of systems to prepare and defend commercial ports, commercial transit space, and the associated inland waterways from the threat of maritime improvised explosive devices. If defense fails, the system of systems will enable port recovery via the effective and timely search of above-stated waterways, conduct of command and control activities, and the mitigation of commercial impact to the port, regional, and national economies.

Scope of Problem

-Geographic space includes transit lanes and adjacent waters that impact the flow of commerce or the local economy of a domestic port.


-Solution shall be available to be implemented in US strategic ports by 2012.

-Focus on domestic ports, but assess solutions applicable to international implementation.

-Focus on the Underwater, Floating, and Infrastructure Borne subsets of maritime improvised explosive devices.

Definitions

Water Craft Borne IED

An explosive device attached to watercraft such as motor driven vessels, sailboats, or submersible/semi-submersibles. Craft may be unmanned, manned, or remotely controlled. Purpose of IED may be against craft itself, or in combination against external target.

Infrastructure Borne IED

An explosive device attached to infrastructure embodiments such as piers, buoys, markers, bridges, etc. Purpose of attack may be against the infrastructure bearing the IED or against targets expected to come in contact/close proximity.

144