

<u>Track, Engage, & Neutralize Threats – Asymmetric</u> & <u>Conventional – in the Littoral Environment</u>

Faculty

Prof. Fotis Papoulias Prof. Bill Solitario Prof. Greg Miller Prof. J. Mike Green Prof. Robert Ashton

2005 Student Design Team

Payload

LT B. C. Black, USN, ME/CSST LCDR M. A. Glova, USN, ME LT J. S. Hall USN, AE LCDR C. J. Hickle, USN, ME <u>Combat Systems</u> LTjg S. Bouabid, Tunisian Navy, EE LCDR G. M. Harden, USN, EE LT P. Majewicz, USN, EE LT A. B. Nozik, USN, EE 13 Students

3 Countries

4 Academic Curricula

<u>H M & E</u>

LCDR L. H. Bollock, USN, ME LTjg S. Hosoglu, Turkish Navy, ME LT K. Mullenix, USN, ME LCDR S. F. Sarar, USN, EE LTjg H. Ucar, Turkish Navy, ME

- Overall Design Process
 - Requirements Analysis
 - Functional Analysis Allocation
- Payload and Operational Concept
- Combat Systems
- Hull, Mechanical, and Electrical (HM&E)
- Summary

Figure from NAVSEA Ship Design Manager (SDM) Manual

Top Level Requirements

- Deploy, retrieve, and regenerate large UUVs semi-clandestinely
- Sensor assets required to provide Pd 0.8 across contested OA (6,700 NM2) within 10 days
- Provide logistic support necessary to sustain SoS for 30 days
- Communicate on the following circuits:

High Band Width Air/Space Line of Sight (LOS)	LOS Data
LOS Voice	OTH Data
OTH Voice	SATCOM
Underwater Data	

- Launch, recover, and control a 7,000 lb UAV
- Deploy box-launcher weapons and torpedoes for enemy engagement

Notional Payload and Operational Concept

- Conducted from Aug-Sep using notional payload architecture and SEA-8 scenario
- Competing Architectures:
 - -- LCAC size craft (single and wave)
 - -- LCS Module (single and wave)
- Selection Criteria:

 - -- Endurance (10)
 - -- Capability (30) -- Deployability (20)
 - -- Flexibility (10) -- Cost (5)

- -- Survivability (20)
- -- Technical Risk (5)

-- Mid-size ship

Top Level AoA Results

Critical Design Parameters

Threshold **Objective** Category **Operational Availability** 0.85 0.95 **Hull Service Life** 20 years 30 years Draft @ Full Load 5 m 8 m 30 + kts 40 + kts Max Speed Range @ Max Speed 1000 nm 1500 nm Range @ Cruise Speed 3500 nm 4500 nm Large UUV Capacity 40 50+ Hvy Wt UUV capacity 100+ 80 400 MT **Cargo Weight** 800 MT 5000 m^3 6000 m^3 Cargo Volume Small Boat (7 m RHIB) 1 2 USV (11 m RHIB) 1 2 **UUV/USV/UAV** Launch Recover Sea State 3 Sea State 4 **Aviation Support** One 7000 lb VTUAV VTUAV (2)/ SH-60R Aircraft Launch / Recover VTUAV VTUAV/SH-60R **UNREP MODES RAS, CONREP, VERTREP RAS, CONREP, VERTREP Core Crew Size** <130 < 100 **Crew Accommodations** 125 125 **Provisions** 30 days 45 days

Introduction and Overall Design Process

- Payload and Operational Concept
 - Components
 - Launch, Deployment, and Recovery
 - Handling Systems
 - Payload Modeling
- Combat Systems
- Hull, Mechanical, and Electrical (HM&E)
- Summary

Challenge	Response
Contested air space	Covert insertion and recovery, 200nm standoff range
30 day sustained operations	Centralized hub replenishment and recovery
Time and Space: 100 nm ² in 72 hrs 6700 nm ² in 10 days	Single launch cycle followed by ongoing service cycles

10 nm X 10 nm Network Hub

Architecture Refinement with TSSE/SEA-8 Collaboration

- 1 Large UUV (*Sea Predator)
- 1 Sled equipped with deployable RF buoy, acoustic modem, docking transducers, coupling two 21" diameter shapes
- 6 Light Weight UUVs four for power, two for sensor processing and communications control
- 16 man-portable sensor and wire deployment vehicles

* Sea Predator, David DeMartino, NAVSEA Panama City

Payload Deck

- X-Y-Z Overhead Hoist Array and Deck-rail Storage System
 - Longitudinal overhead monorail along centerline
 - Transverse overhead rail pairs
 - Reconfigurable two tier shelves anchored into deck rails provide secure stowage
 - Port and Starboard amidships rail extensions provide over the side lift capabilities
 - Amidships ramp cradle handles up to Large UUV's
 - Stern ramp variable geometry cradle for larger capacity launch and recovery

Notional Architecture

ASSUMPTIONS: -1 nm Detection Radii -Sensor Spacing: 4 nodes at 5nm 8 nodes at 4nm 4 nodes at 2nm

1 center node

10 nm

Top Level Requirement: Full AO Coverage

72 Hour Single Hub Deployment Mission Range: 1000nm

Loitering at 1,000nm from the Harbor Gate AO, Sea Tentacle receives urgent tasking:

24

36

12

0

48 60 72

10-Day Maximum Payload Deployment Mission Range: 3,400nm

In port at < 24 underway readiness, Sea Tentacle receives urgent tasking to AO at 3,400nm range:

- Perimeter defense of <u>Sea Base</u> and high value transit lanes
- Core ASW and MIW capabilities providing offensive and defensive early warning envisioned by <u>Sea Shield</u>
- Wide area battle-space preparation and intelligence gathering capabilities for time critical <u>Sea Strike</u>

1S

Baseline Operational Unit Count					
Sea Predator (Large UUV)	AN/WLD-1 (Large UUV)	11m RHIB (USV equipped)	7m RHIB	SH-60R	VTUAV
48	2	2	2	2	2

Detailed Payload Deck-Plan

Payload Top Level Requirements

Deploy, retrieve, and regenerate large UUVs semi-clandestinely

Sensor assets required to provide Pd 0.8 across contested OA (6,700 NM2) within 10 days

Provide logistic support necessary to sustain SoS for 30 days

• Communicate on the following circuits:

High Band Width Air/Space Line of Sight (LOS)	LOS Data
LOS Voice	OTH Data
OTH Voice	SATCOM

- **Underwater Data**
- Launch, recover, and control a 7,000 lb UAV
- Deploy box-launcher weapons and torpedoes for enemy engagement

Introduction and Overall Design Process
 Payload and Operational Concept

Combat Systems

- Derived Requirements
 - Weapons Deployment
 - Communications
- Design Philosophy
- ICMS Architecture
- Component Selection
 - Layered Defense
 - Radio Frequency Systems
- Radar Cross Section Analysis
- Summary
- Hull, Mechanical, and Electrical (HM&E)
- Summary

Threat Matrix

Threat	AMRFS	TISS	EW Suite	ISMD/A	ASROC	ESSM	SSM	Millenium Gun
ASCM	D	D	D - SK			HK		HK
Aircraft	D	D	D			HK		HK
Ship	D	D	D	D		HK *	HK	HK
Submarine				D	HK			
Small boats	D	D	D	D			HK	HK
Mines				D				HK
Shore Fire		D	D				HK	HK

← SENSORS → ← WEAPONS →

D – Detection SK – Soft Kill HK – Hard Kill

HK* - Anti-ship ESSM requires software upgrade

RF External Communications

- The ship will be fully interoperable with the following systems:
 - CEC
 - Joint Planning Network
 - Joint Data Network
 - GCCS-M
 - SIPRNET
 - NIPRNET
- The following frequency ranges / data rates will be supported:
 - UHF SATCOM 512 4.5 Mbps
 - SHF SATCOM 1.544 Mbps (T-1) 45 Mbps (T-3)
 - UHF LOS 200 kbps

-

ICMS Open Architecture Design

Operating Characteristics:

- •Net-Centric
- Collaborative
- •Distributed Functionality
- •Strong HSI Focus

Mission Areas:

- Littoral ASW/MIW
- •SUW (Maritime Surveillance)
- •AAW

Inner Defense Layer AoA

Design Requirements	Weight	Sea Ram	CIWS 1B	Millennium Gun	Goal Keeper
Modularity	0.15	1.00	5.00	5.00	2.00
Personnel	0.10	4.00	2.00	3.00	2.00
Operational Availability	0.15	4.50	4.50	4.00	4.00
Range	0.10	5.00	5.00	3.00	3.50
Surface Threat Capability	0.15	1.00	2.50	5.00	0.00
Air Threat Capability	0.10	5.00	4.50	3.50	4.00
Responsiveness	0.10	5.00	4.00	3.50	4.00
Footprint (Physical, RCS)	0.15	2.00	2.00	4.00	2.00
Totals	1.00	0.64	0.73	0.80	0.51

Inner Defense Layer Trade Study

Selected System: Millennium Gun

- Range (air): 3.5 nm
- Range (cruise missiles) : 1.08 nm
- Range (sea-skimming missiles): 0.8 nm
- Firing Rate: 1,000 rounds/min
- 152 sub-projectiles per round

Advanced Multifunction RF System (AMRFS) Capabilities

Multi-functional:

- Communications
 - Satellite Communications
 - Line-of-Sight Communications
- Electronic Attack (EA)
 - Noise Jamming
 - Deceptive Jamming
- Electronic Surveillance (ES)
- Radar
 - Surface Navigation Radar
 - Volume Search
- Reduced Maintenance
 - Array & Subsystem Calibration, Characterization, and Diagnostics

Source: Raytheon DBR

AMRFS Motivation

Benefits:

- Reduces Total Number of Required
 Topside Arrays
- Increases Potential for Future Growth without Major Ship Alterations
- Tighter Control over EMI/EMC Issues
- Functionality Primarily Defined by Software
- Potential for Substantial Reduction in Life Cycle Costs
- Enables Reallocation of RF Functions

Summary:

 RF functions can be customized to tactical environment, enhancing warfighting capabilities !!!

W. Gottwald, "An Overview of the Advance Multifunction RF Concept (AMRFC) Test-Bed", 04APR14

- For our design RCS estimation, we used two techniques:
 - Empirical Method (Skolnik)
 - Physical Optics Method (POFACETS Software)

 Skolnik (1980) suggested a formula to estimate the median RCS of a ship based on its displacement and the frequency of operation of a given seeker:

$$\sigma_{\mathrm{m}^2} = 1644 \cdot \sqrt{D_{\mathrm{kT}}^3 \cdot f_{\mathrm{GHz}}}$$

• For our design, with a displacement of around 7000 LT and a frequency of operation of 0.3 GHz:

$$\sigma_{\text{Sea-Tentacle}} = 16677 \text{ m}^2 = 42 \text{ dBsm}$$

• This approximation varies with the angle. 13 dB (for broadside) are added and 8 dB (for minima) are subtracted.

34 dBsm
$$\leq \sigma_{\text{Sea-Tentacle}} \leq 55$$
 dBsm

Physical Optics Method of RCS Estimation

ISSE

- POFACETS is a RCS tool developed by Dr. Jenn of the ECE Dept. of NPS.
- It is based on the Physical Optics Method.
- Ship Parameters used by POFACETS were generated with RHINO software.

RCS Results using a PEC material model at a frequency of 0.3 GHz

RCS as a Function of Material Selection

Composite vs. PEC (Steel)

Composite material ship yields a median RCS of approximately <u>5dBsm</u>

Steel ship yields a median RCS of approximately <u>25dBsm</u>

RCS as a Function of Seeker Frequency

RCS Results using a Steel Ship model vs. Seeker frequency at a 090/270 TA RCS: Beam target angle for steel ship.

Steel material selection renders lowest RCS at frequencies:

- 2.3 GHz
- 4.1 GHz
- 7.2 GHz

RCS Conclusions

- Empirical and simulation results for RCS are similiar.
- POFACETS results facilitated material considerations.
- RCS Comparisons are comparable between 2004 and 2005 TSSE designs.
- RCS Analysis (unclassified) and does not take into account AMRFS RF emissions.

Deploy, retrieve, and regenerate large UUVs semi-clandestinely
 Sensor assets required to provide Pd 0.8 across contested OA (6,700 NM2)

within 10 days

Provide logistic support necessary to sustain SoS for 30 days

Communicate on the following circuits:

- High Band Width Air/Space Line of Sight (LOS)
- LOS Voice
- OTH Voice
- Underwater Data

Launch, recover, and control a 7,000 lb UAV

Deploy box-launcher weapons and torpedoes for enemy engagement

- LOS Data
- OTH Data
- SATCOM

- Open Architecture Focus
 Embraces Technology Growth.
- Multi-mission capability supports dynamic mission requirements.

- Introduction and Overall Design Process
- Payload and Operational Concept
- Combat Systems
- Hull, Mechanical, and Electrical (HM&E)
 - Initial Hull Selection AoA
 - Hydrostatics, Damaged Stability, Structures
 - Resistance, Propulsion, Electrical
 - Seakeeping
- Summary

Hull Selection

- Systems
 Engineering
 Waterfall Model
 used
- Applied up to component development stage

Monohull

- Long endurance at low speeds
- Ruggedness, simplicity, and durability
- Tolerance to growth in weight and displacement
- Existing infrastructure of yards, docks, and support facilities is designed for monohulls
- Low cost

Trimaran

- Reduced powering requirements at high speeds
- Reduced draft
- Increased deck area and growth margin
- Increased seakeeping
- Increased powering requirements at low speeds because of large wetted surface area

Hull Type Comparison

Catamaran

In addition to Trimaran;

- Good stability after dropping off all the payload
- Advantage of using the space between demihulls as launching / recovering stations (semi-covert operations)
- Best speed for high weight / cargo load

SCOUVO – Surface Combat Optimized for Unmanned Vehicle Operations – NSWC Carderock ⁴⁸

5.00

4.50

4.00

3.50

3.00

2.50

2.00

1.50

1.00 ·

0.50

0.00 -

Monohull

Catamaran

Hull Type AoA

			Monohull		Catamaran		Trimaran	
	Requirement	Weight		Weighted		Weighted		Weighted
	Endurance at low speed	0.06	5.00	0.30	4.00	0.24	3.50	0.21
	Endurance at high speed	0.07	3.00	0.21	4.50	0.32	5.00	0.35
	Risk	0.08	5.00	0.40	4.00	0.32	3.00	0.24
	Cost	0.10	5.00	0.50	4.00	0.40	3.50	0.35
	Draft	0.10	3.50	0.35	4.50	0.45	5.00	0.50
	Deck Area	0.16	3.00	0.48	5.00	0.80	4.00	0.64
	Growth Margin	0.08	4.00	0.32	5.00	0.40	5.00	0.40
	Sea Keeping	0.10	4.00	0.40	5.00	0.50	5.00	0.50
	Stability	0.15	4.00	0.60	4.50	0.68	5.00	0.75
	Footprint (RCS)	0.10	4.00	0.40	5.00	0.50	4.00	0.40
	Total	1.00		0.79	l	0.92		0.87
	 Footprint (RCS) Stability Sea Keeping Grow th Margin Deck Area Draft Cost Risk 							

Endurance at low speed

Trimaran

Catamaran was selected

Selection

New System

Components

Requirements

Hydrostatics

Displacement = 7023 MTDWL = 117.4 mDesign Draft = 5.2 mVCG = 5.925 m (from keel)

Results obtained using standard and custom hydrostatics software and weight data for the ship

Intact Stability

ISSE

Positive Righting Arm up to 85°

Damaged Stability

Can survive in case of loss of one demi-hull

Can survive with all engine rooms flooded

Light Ship = 4504 MTLoaded Displacement = 7023 MT LOA = 120 mLWL = 117.4 mBeam = 25 mDesign Draft = 5.2 mMetacentric Height = 16.05 m Design Trim = 0.1° to Bow Design Heel = 0.51° to Port

Gas Turbine Analysis Snapshot

- Propulsion Plant: Gas Turbines
- Specifically:

- 2 LM2500+ 1 LM6000
- 1 Allison 501-K34

Summary of Chosen Propulsion Systems

- Electric drive
- 2 Bird-Johnson AWJ-21 water jets
- 2 bow thrusters

View showing AWJ-21^{nu} and underwater nacell

Range Calculations

Endurance and Speed

Transiting Speed of 20 kts gives Range of 5,400 nm

Max Speed 40 kts

Sprint Speed of gives Range of

• Motor alternatives:

- Conventional COTS motor
- Superconducting DC Homopolar motor
- High Temperature Superconducting AC motor
- High Temperature Superconducting Synchronous AC Motor Selected

- IPS is an AC/DC hybrid zonal
- Total capacity is 103 MW
- 93 MW required for 40 knots, 6MW for ship service loads, 4 MW reserve
- Gas turbines produce 3 phase 13.8 kVolt AC
- All ship service loads distributed via 1000 volts DC

13.8 K volts Allison LM6000 13.8 K volts 3Φ 3Φ 1000 volts DC } \land \land \land Ship Service Loads **Bidirectional AC/AC** converter (w/ galvanic isolation) Stbd HTS Port HTS Motor Motor LM2500+ LM2500+ 65

- Evaluate response in regular seas; varying ship speeds and headings.
- Within linear theory, evaluate response in random seas using regular wave results.
- Assume long-crested, fully developed seas.
- Set limiting values of the response and calculate the operating envelope.
- Adjust design parameters to achieve an acceptable operating envelope.

Speed-Polar Plot

- Significant single amplitudes:
 - Ship roll: 5 deg.
 - Ship pitch: 3 deg.
 - Absolute vertical velocity at ramp: 2 m/sec
 - Depends on ramp (x,y) location
- Expected number of events per hour:
 - Wetness (relative vertical motion hits zero) events at ramp: 30
 - Depends on ramp (x,y,z) location

Vertical Velocity

Wetness Events

Operating Envelope

All Speeds; Operating Envelopes; Sea State 3; Aft Ramp; Height = 2

Operations can be sustained

Operations are unsafe
Design Selection

adequate operability region

Sea State Effects

2 m clearance provides adequate operating envelope

even for elevated sea states

Operability Index – Aft Ramp

Wave Generation

-1.94

-2.56 -3.18

-3.80

V=20 Kts

- Introduction and Overall Design Process
- Payload and Operational Concept
- Combat Systems
- Hull, Mechanical, and Electrical (HM&E)
- Summary
 - Manning
 - Cost
 - Geographical Transit Ranges
 - Requirements Summary
 - Conclusion

- Reduced manning possible concepts studied on DD(X) and TAK-E(X):
 - Human Centered Design and Reasoning Systems
 - Reliability and Condition Based Maintenance vs. Preventative Maintenance System (PMS)
 - Automated Damage Control
 - Reduced Watch Stations
 - Self Service Laundry
 - Innovative Messing

ſ

Core Watch Stations

WATCH STATION LOCATION	WATCH STATION NAME	NUMBER OF PERSONNEL	SUB - TOTAL	
Bridge	Officer of the Deck (OOD)	1	3	
	Junior OOD	1		
	Quartermaster of the Watch	1		
Combat Information Center (CIC)	Tactical Action Officer	1	9	
	CIC Supervisor	1		
	Air Search Radar Operator	1		
	Surface Radar Operator	1		
	Sonar Operator	1		
	Gun Operator	1		
	Missile Operator	1		
	Electronic Warfare Operator	1		
	Aircraft Controller	1		
Engineering	Engineering Officer of the Watch	1	1	
		ΤΟΤΑΙ	13	

- Two methods were used to estimate cost:
 - Top-down method using data from the Congressional Budget Office (CBO), Visibility and Management of Operating and Support Costs (VAMOSC), and others
 - Bottom-up method using detailed weight-based Cost Estimating Relationships (CERs), labor costs, and specialized equipment costs
 - The bottom-up method produced results that were less than 10% lower than the top-down method
 - For brevity, only the top-down method is detailed on the following slides

Platform Comparisons

ISSE

Ship Class	Туре	Displaceme nt (tons)	Crew Size	Armament	Missions	Follow ship procuremen t cost (FY05 \$M)	O&S (FY05 \$M)
DD(X)	General- Purpose Destroyer	16,000	130	2 Helo, 2 155- mm AGS, 128 VLS	Land attack, ASW	* 3,200	40.8
DDG-51 (II)	Guided- Missile Destroyer	9,200	340	AEGIS, 2 Helo, 1 5-inch, 96 VLS	Long-range air and missile defense, land attack, open- ocean ASW	1,800	31.2
Sea TENTACLE	Focused- Mission Combatant	7,000	100	2 Helo, 2 Millenium gun, 16 VLS, AMRFS, UUV, USV, UAV launch/recove r and support	Littoral and open-ocean ASW, maritime interception	* 900	15.9
FFG(X)	Guided- Missile Frigate	6,000	120	2 Helo, 5- inch gun, 48 VLS	Convoy escort, maritime interception, open-ocean ASW	* 700	UNK
FFG-7	Guided- Missile Frigate	4,100	221	2 Helo, 1 76- mm gun, 6 Torpedo Tube	Convoy escort, maritime interception, open-ocean ASW	300	26.1

Courtesy of Congressional Budget Office, Congressional Research Service, VAMOSC and Northrup Grumman

Lead Ship Cost Estimate

	Estimated	Primary Basis of
(in millions of 2005 dollars)	Cost	Estimate
Detail Design	200	FFG(X)/LCS
Infrastructure Upgrade	250	Catamaran Hull Construction
Production Costs:		
Basic Construction	990	FFG(X) Analogy
VLS	16	FFG(X) Analogy
Advanced Combat Systems Suite	200	AMFRS
Catamaran Construction	100	
Total Lead Ship Cost	~1,750	

Guam 10-day Striking Range

Diego Garcia 10-day Striking Range

Arabian Gulf 3-day Striking Range

1000 nm

Critical Design Parameter Results

Category	Threshold	Objective	Actual
Operational Availability	0.85	0.95	N/A
Hull Service Life	20 years	30 years	N/A
Draft @ Full Load	8 m	5 m	5.1 m
Max Speed	30 + kts	40 + kts	40 kts
Range @ Max Speed	1000 nm	1500 nm	920 nm (1045 nm @ 35 kts)
Range @ Cruise Speed	3500 nm	4500 nm	5400 nm (20 kts)
Large UUV Capacity	40	50+	50 (48 SP, 2 WLD-1)
Hvy Wt UUV capacity	80	100+	110
Cargo Weight	400 MT	800 MT	570 MT
Cargo Volume	5000 m ³	6000 m ³	5500 m ³
Small Boat (7 m RHIB)	1	2	2
USV (11 m RHIB)	1	2	2
UUV/USV/UAV Launch Recover	Sea State 3	Sea State 4	Sea State 4
Aviation Support	One 7000 lb VTUAV	VTUAV (2)/ SH-60R	VTUAV (2)/ SH-60R(2)
Aircraft Launch / Recover	VTUAV	VTUAV/SH-60R	VTUAV/SH-60R
UNREP MODES	RAS, CONREP, VERTREP	RAS, CONREP, VERTREP	RAS, CONREP, VERTREP
Core Crew Size	≤130	≤ 100	Approx 110
Crew Accommodations	125	125	125
Provisions	30 days	45 days	30 days

Top Level Requirements Revisited

Deploy, retrieve, and regenerate large UUVs semi-clandestinely

Sensor assets required to provide Pd 0.8 across contested OA (6,700 NM2) within 10 days

Provide logistic support necessary to sustain SoS for 30 days

Communicate on the following circuits:

- High Band Width Air/Space Line of Sight (LOS) LOS Data
- LOS Voice
- OTH Voice
- Underwater Data

Launch, recover, and control a 7,000 lb UAV

Deploy box-launcher weapons and torpedoes for enemy engagement

- OTH Data

- SATCOM

- Employs a large, well designed, and flexible Payload configuration
- Combat Systems offer a robust mix of Offensive and Defensive capabilities that can conduct simultaneous ASW, SUW, & AAW operations
- HM&E design delivers high speed & high power in a unique and efficient manner

Sea TENTACLE is the platform of choice for Littoral ASW in 2025