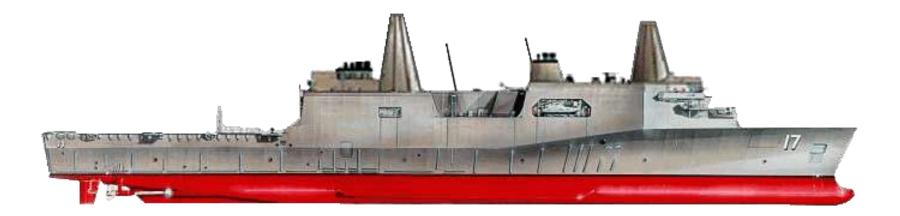


3 June 2004



Presentation Purpose

Final Review by SEA5 of the AY2004 Spring Integrated Project

Executive Overview	LCDR Tran
SoS Development	ENS Tsikalas
Functional Analysis	ENS Tubbs
Value Systems Design	ENS Tubbs
Architectures	
Threats & Scenarios	LT Holmes
TDSI Integration	ENS Hartling
Cost Analysis	LT Julien
Simulative Study	ENS Abbott
Engineering Physics Models	ENS Poitevent
Platform/Combat System Models	ENS Poitevent
Force/Theater Models	ENS Smith
Architecture Ranking	LT Graham
Configuration Selection Validation	LT Winslow
Concluding Remarks	LCDR Tran
unch Break	

Executive Overview

LCDR Quoc Tran

- Project Overview
- Project Description
- Project Results
- Project Team Organization
- Project Schedule
- Project Effective Need

Project Overview

- Tasked to Develop a System of Systems Conceptual Solution For Maritime Dominance in the Littorals
- Developed a Project Management Plan
- Used a Systems Engineering Design Process
- Analyzed Threats and Defined Littoral Scenarios
- Generated Conceptual SoS Architecture Alternatives
- Used Modeling and Simulation
- Ranked SoS Architecture Alternatives According to Their Maritime Dominance Effectiveness and Cost
- Delivered The Final Recommendation

Project Description

- Execute Tasking from Deputy Chief of Naval Operations (CNO) for Warfare Requirements (OPNAV 7)
- Develop a Conceptual System of Systems (SoS) for Maritime Dominance that Enables SEA BASING and SEA STRIKE in the Littorals
 - Generate Alternatives Using Existing Systems, Current Programs of Record, and Future Systems
 - Recommend Cost Effective Conceptual SoS That Minimizes Risk To Allied Personnel While Accomplishing Objectives
- Deliver Results in a Final Briefing and Technical Report

Combination of both Manned and Unmanned Systems Surface, Subsurface, Air and Space Systems

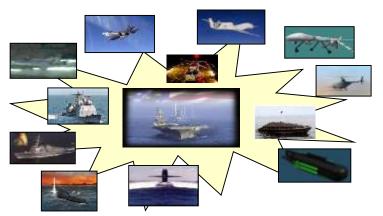
Employment of Forces From All Services

Constraints

Scenario Constraints

SoS Architectural Focus

- Land Forces Deployed up to 200 nm Inland
- Striking/Supporting Maritime Forces Deployed up to 200 nm Offshore
- Timeframe Constraint
 - Concepts of Operations Applicable within 2020 Timeframe
- Cost Being a Necessary Selection Variable


SoS Focus and Constraints

Recommended System of Systems for Maritime Dominance in Littorals

•Unmanned Vehicles Complement But Cannot Replace Manned Platforms

•Recommended System of Systems Enabling SEA BASING and SEA STRIKE in 200 nm by 200 nm Littoral Operation Area in 2020 Timeframe

- Consists of Unmanned/Manned Vehicle Ratio of Approximately 1.5 to 1
- Utilizes Distributed Communications with 100nm Physical Platform Distribution
- Employs Decentralized Command & Control Structure
- Is Cost Effective Relative to Other Alternatives

• Distributed Communications

- Faster Dissemination of Information
- Minimum Impact on Throughput with Node Failures

• Decentralized Command and Control

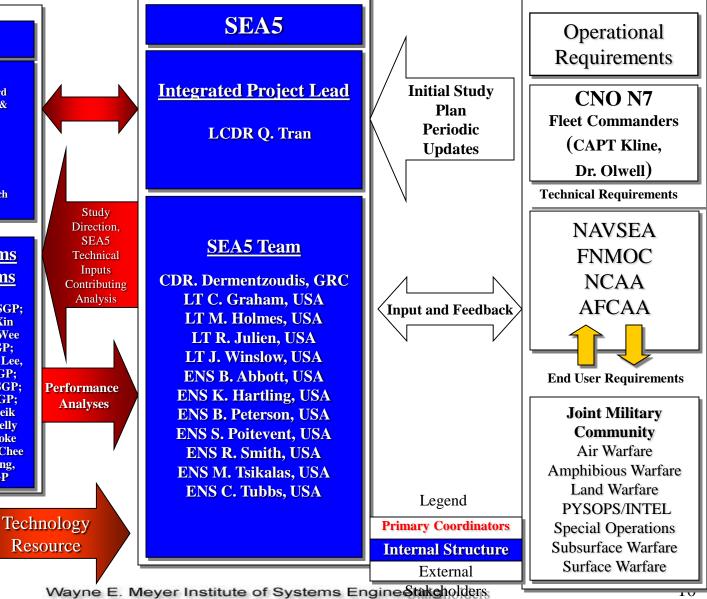
- Shorter Reaction Times
- Less Network Demand
- Single C2 Node Failure Avoidance
- 100 nm Platform Distribution
 - -Superior Overall Performance

2004 Integrated Project Interface

Faculty Advisors

Prof. W. Solitario-Overall Project Coord Dr. T. Huynh-Proj. Mgmt, Sys. Design & Analysis Dr. R. Cristi-Communications Dr. D. Kapolka-Sensors Dr. G. Karunasiri-Sensors Dr. I. Kaminer-Land Systems Dr. F. Papoulias-Land Systems LCDR R. Gottfried-Operations Research Prof. K. Burke-Information Systems

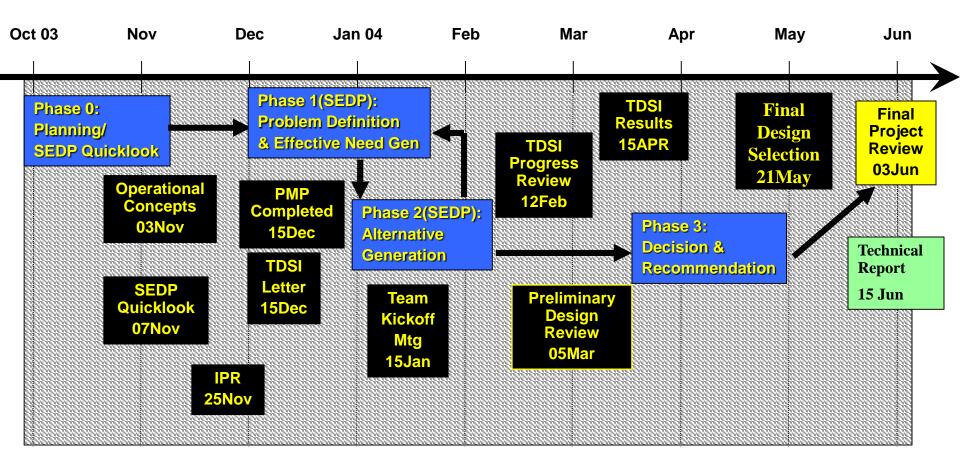
Temasek Defense Systems Institute Technical Teams


Berner, Andy USA; Chan, Chee Wai SGP; Cheak, Seck Fai SGP; Chen, Yuan Xin SGP; Cheng, Kah Wai SGP; Cheng, Wee Kiang SGP; Chow, Khin Choong SGP; Gonen, Ofer ISR; Koh, Jin Hou SGP; Lee, Kok Thong SGP; Lim, Kian Guan SGP; Monfore, Ken USA; Mui, Whye Kee SGP; Neo, Melvin SGP: Oh, Khoon Wee SGP: Ong, Chin Siang SGP; Phey, Khee Teik Augustine SGP; Poh, Seng Cheong Telly SGP; Quek, Yew Sing SGP; Seow, Yoke Wei SGP; Tan, Peng Soon SGP; Tay, Chee Bin SGP: Toh. Chee Hwee SGP: Wong. Chin Han SGP; Yong, Siow Yin SGP

Industry

Boeing

Lockheed Martin Northrop Grumman


Raytheon

Project Schedule

Major Phases

Completed Tasks

Today

Deliverable

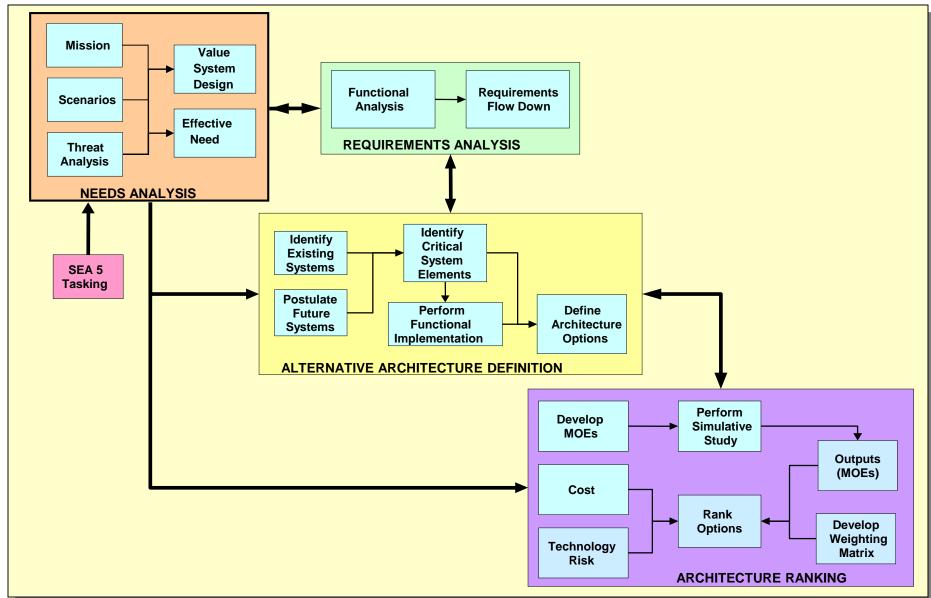
Effective Need

Develop a SoS Solution to Enable SEA BASING and SEA STRIKE by Providing Maritime Dominance in the Littoral Environment Through Cooperative Surveillance, Threat Analysis and Evaluation, Battle Management, and Engagement

SoS Development

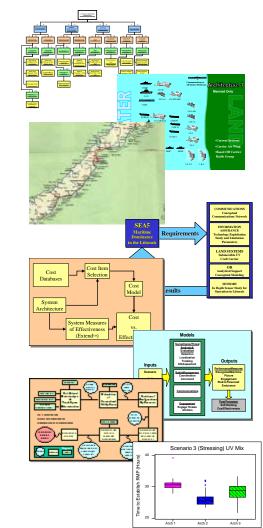
ENS Manny Tsikalas

Problem Definition



- Define and Select a Cost Effective System of Systems Architecture Consisting of Sea-Based, Land-Based, and Airborne Sensor and Weapon Systems that Are
 - Both Manned and Unmanned
 - In Existence, in Development, and Future Concepts
 - Networked Via Communication Links and Space
 Systems to Achieve Success of the Following
 Littoral Missions with Minimum Risk to Allied
 Personnel
 - Identification and, If Necessary, Reduction of Hostile Threats to Within Defensive Capability of the Sea Base
 - Enabling Projection of Offensive Capabilities From the Sea Base

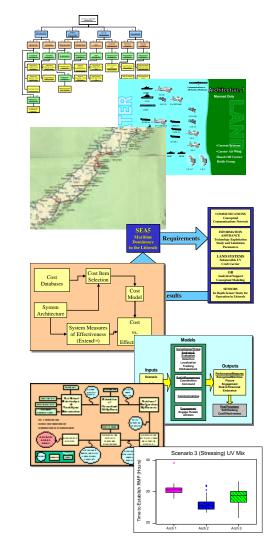
SoS Development Process



SoS Development Overview

- Functional Analysis
- Value Systems Design
- Architectures
- Threats & Scenarios
- TDSI Integration
- Cost Analysis
- Simulative Study
- Architecture Ranking
- Configuration Validation

Functional Analysis and Value Systems Design

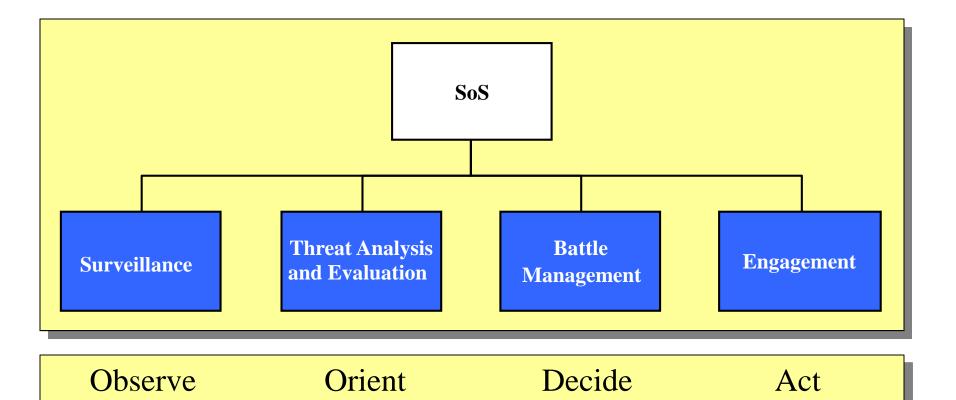

ENS Cavan Tubbs

SoS Development

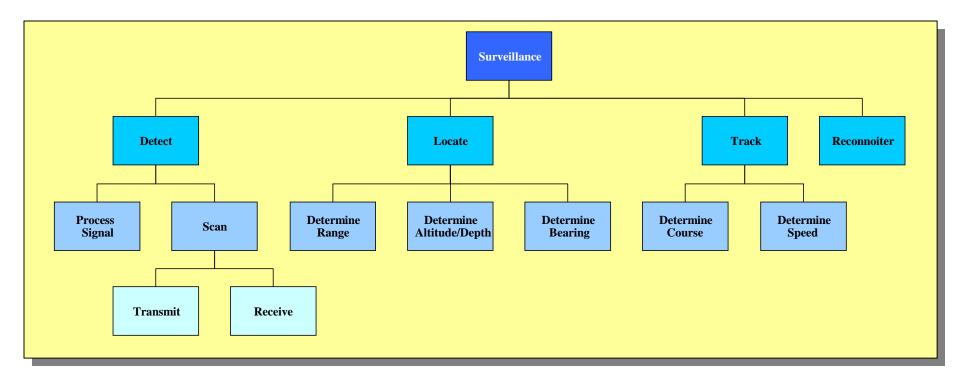
- Functional Analysis
- Value Systems Design
- Architectures
- Threats & Scenarios
- TDSI Integration
- Cost Analysis
- Simulative Study
- Architecture Ranking
- Configuration Validation

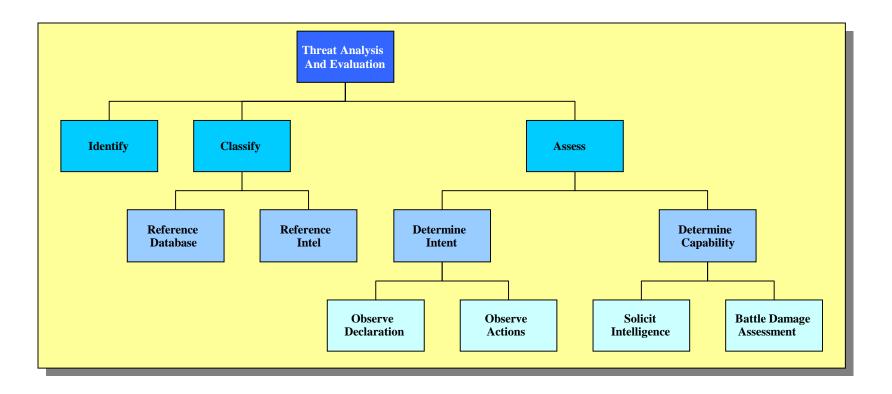
Functional Analysis

- SoS Design Requires
 - Identification of Functions to be
 Performed in Support of
 Mission Accomplishment
 - Decomposition of Identified Functions
- Four-Level Depth Functional Decomposition Embodies SoS Functionality



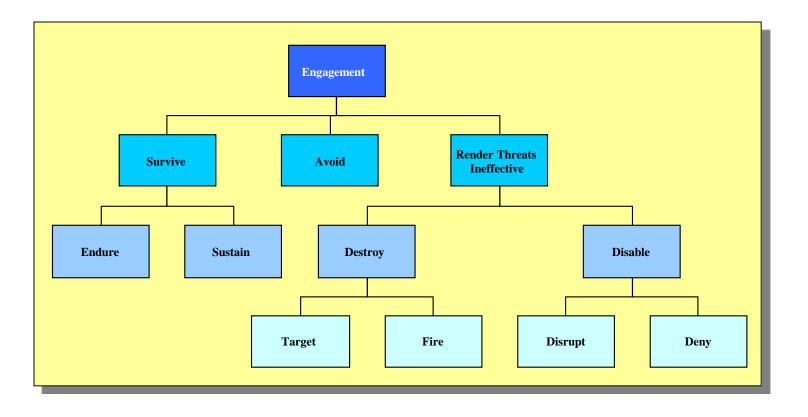
Functional Hierarchy



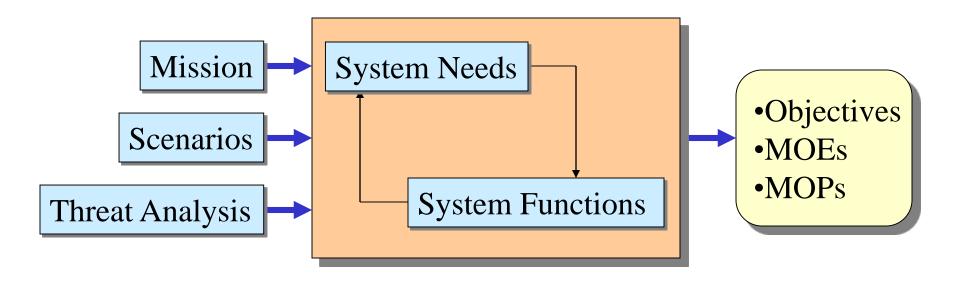

Surveillance Functional Decomposition

Threat Analysis & Evaluation Functional Decomposition

BMC4I Functional Decomposition


Battle Management Communication Command Transmit & Share Information Plan Task Report Information Receive Security Integrate Coordinate Data Data Direct Allocate **De-conflict** Fusion Processing Asset Assign Assignment Priority

Battle Management Means Battle Management, Command, Control, Communications, Computers, and Intelligence (BMC4I)


Engagement Functional Decomposition

Value Systems Design Implementation

Balance System Needs and Functions in Support of SoS Missions of Enabling SEA BASE and SEA STRIKE

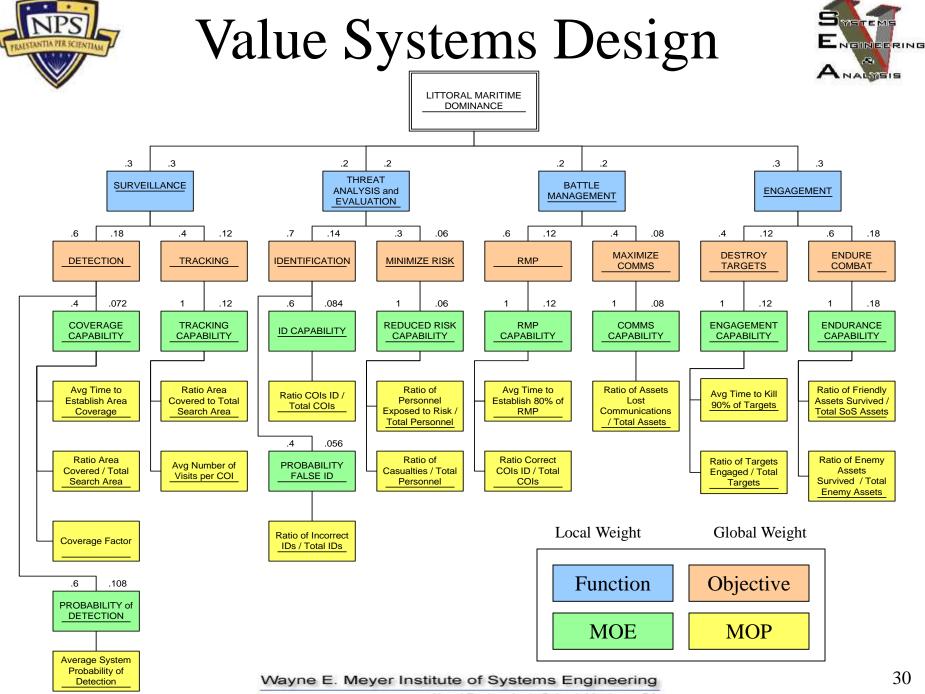
MOE – Measure of Effectiveness

MOP – Measure of Performance

Functional Decomposition

Surveillance Function			
Objectives	MOE	MOP	
Detection	Coverage Capability	Average Time to Establish Complete Area Coverage	
		Ratio Area Covered / Total Search Area	
		Coverage Factor (Confidence)	
	Probability of Detection	Average System Probability of Detection	
Tracking	Tracking Capability	Ratio Contact of Interest (COI) Tracked / Total COI	
		Average Number of Visits per COI	

Threat Analysis & Evaluation Function			
Objectives	MOE	MOP	
Identification	ID Capability	Ratio COIs Identified / Total COI	
	Probability of False ID	Ratio of Incorrect Identifications / Total Identifications	
Minimize Risk	Reduced Exposure to	Ratio of Personnel Exposed to Risk / Total Personnel	
	Risk Capability	Ratio of Casualties / Total Personnel	

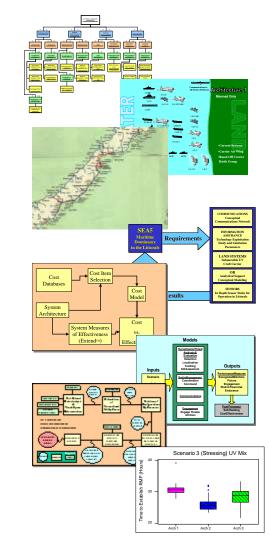


Battle Management Function			
Objectives	MOE	MOP	
Recognized Maritime Picture	RMP Capability	Average Time to Establish 80% of RMP Ratio Correct COI IDs / Total COI	
Maximize Communication	Communication Capability	Ratio of Number of Assets Lost Comms / Total Assets	

Engagement Function			
Objectives	MOE	MOP	
Destroy/	Engagement Capability	Average Time to Kill 80% of Targets	
Disable Targets		Ratio Targets Engaged / Total Targets	
Endure Endurance Capability	Ratio Friendly Assets Survived / Total Friendly Assets		
		Ratio Enemy Assets Survived / Total Enemy Assets	

Naval Postgraduate School, Monterey, CA

Architectures


ENS Bryan Peterson

SoS Development

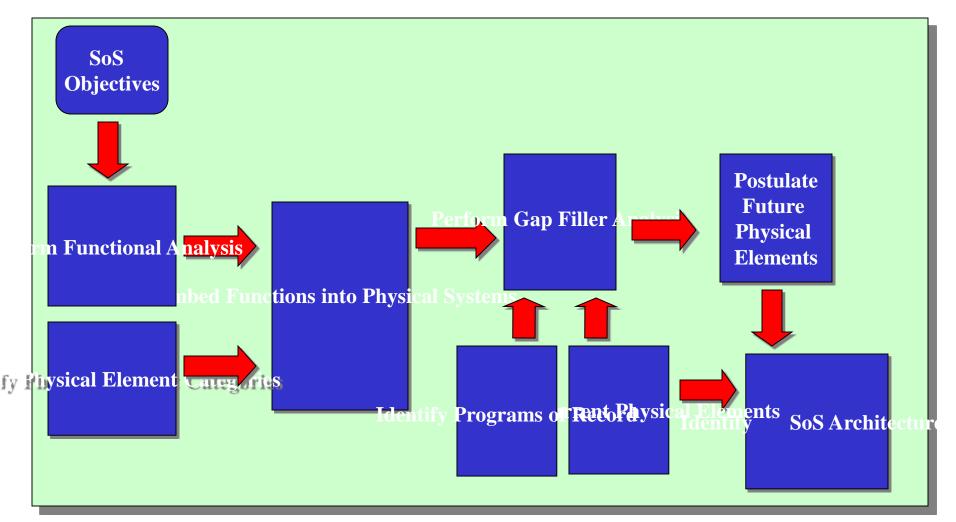
- Functional Analysis
- Value Systems Design
- Architectures
- Threats & Scenarios
- TDSI Integration
- Cost Analysis
- Simulative Study
- Architecture Ranking
- Configuration Validation

- SoS Architecture Overview
- SoS Architecture Assumptions
- SoS Architecture Definition Process
- Functional Embedding
- UV Types and Functions
- Architectures
- Architecture Summary

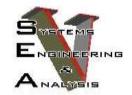
SoS Architecture Overview

- Ensured Gradual Increase of Unmanned Vehicles with Architectures
 - Manned Only (Architecture 1)
 - Balanced Hybrid (Architecture 2)
 - Primarily Unmanned (Architecture 3)
- Ensured Architecture 1 Consisted of Current Systems Only
- Accounted for 2020 Timeframe Technology
- Named Unmanned Vehicles According to Size and Functions

SoS Architecture Assumptions



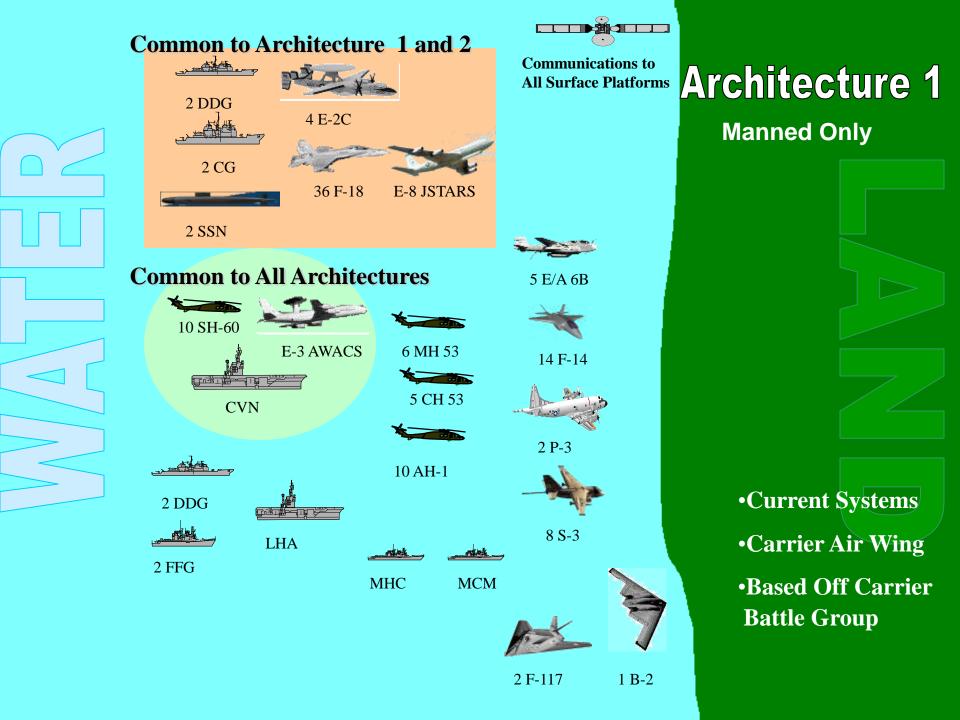
- Manned Systems Still Required For Air to Air Combat in 2020 Timeframe
- Carrier-Launched and Recovered Medium-Sized UAVs Exist
 - Number of UAVs Determined by Size and Space Available on Carrier
- Availability of Postulated Systems in 2020 Timeframe
 - DDX, CGX, LCS, etc.

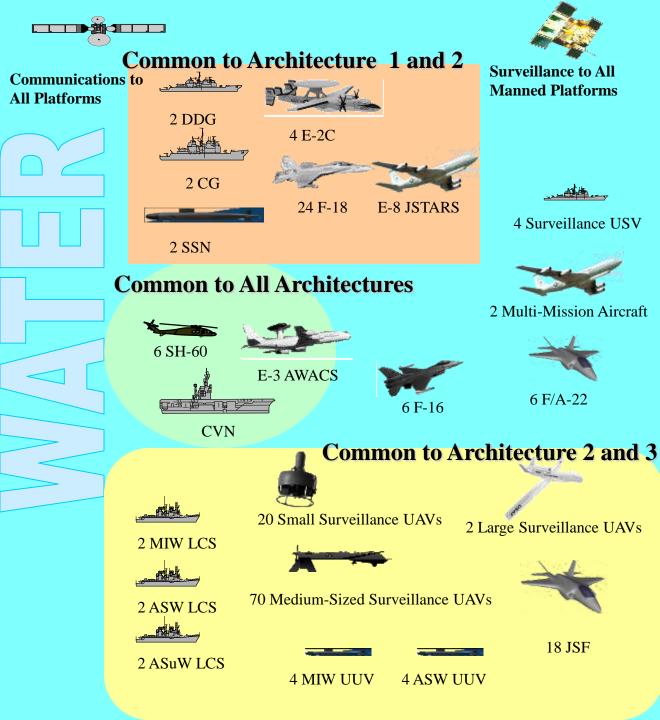

SoS Architectures Definition Process

Functional Embedding

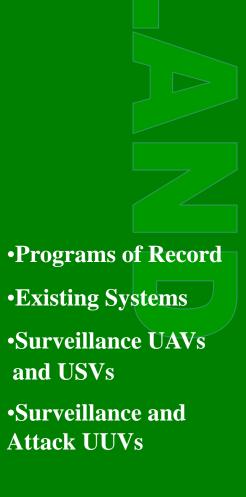
		Platforms													
Functions		S-3	P-3	EA-6B	AH-1	B-2	F-14	F/A-18	JSF	C-2	E-2C	MH-53	SH-60	Strike UAV	Surv UAV
Surveillance	Detection	X	X								X	X	X		Χ
	Tracking	X	X								X		X		X
Threat Analysis and Eval	ID Targets	X	X				X	X	X		X		X	X	X
	Minimize Risk													X	X
Battle Management	RMP	X	X								X	X	X		X
	Max Comms													X	Χ
Engagement	Destroy Targets	X	X	X	X	X	X	X	X				X	X	
	Endure Combat			X	X	X	X	X	X					X	
Architecture 1 Architecture 2 Architecture 3					A	rchite	cture	all Arc 1 anc 2 anc	12	tures	Ī				

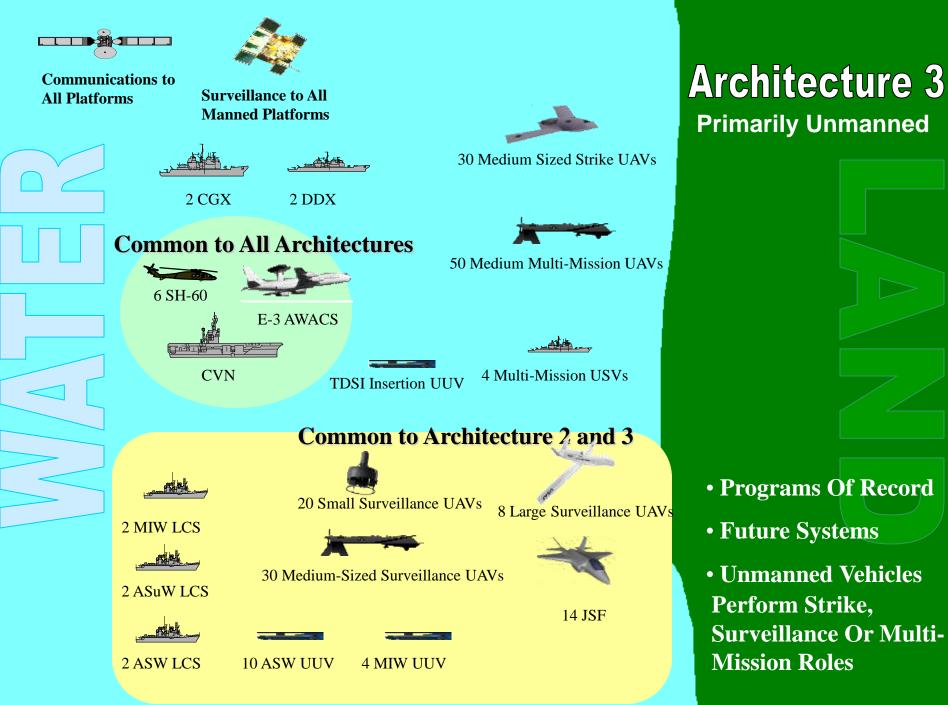
Wayne E. Meyer Institute of Systems Engineering


Naval Postgraduate School, Monterey, CA



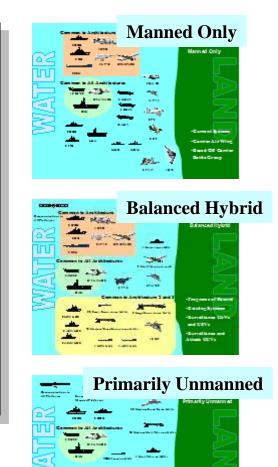
Unmanned Vehicle Types and Functions

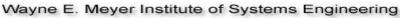



Unmanned Vehicle Type	Sensors/Weapons/Functions
Large Surveillance UAV	Air/Surface Search Radar
Medium-Sized Surveillance UAV	TDSI FOPEN Radar, Infrared (IR) Sensor
Medium-Sized Strike UAV	Harpoon, JSOW
Medium-Sized Multi-Mission UAV	TDSI FOPEN Radar, Hellfire
Small Surveillance UAV	IR Sensor
Mine Warfare UUV	Sonar
Anti-Submarine Warfare UUV	Sonar, Torpedo
Unmanned Vehicle Insertion UUV	TDSI Unmanned Insertion Vehicle
Surveillance USV	Surface Search
Multi-Mission USV	Surface Search, Hellfire

Architecture 2 Balanced Hybrid

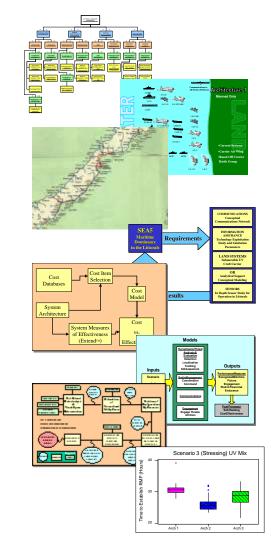
Architecture Composition




MANNED ONLY (ARCH 1)	BALANCED HYBRID (ARCH 2)	PRIMARILY UNMANNED (ARCH 3)				
1 CVN	1 CVN	1 CVN				
10 SH-60	6 SH-60	6 SH-60				
1 E-3 AWACS	1 E-3 AWACS	1 E-3 AWACS				
2 CG	2 CG	2 CGX				
4 DDG	2 DDG	2 DDX				
2 SSN	2 SSN	1 INSERTION UUV				
4 E2-C	4 E2-C	4 MULTI-MISSION USV				
36 F/A-18	24 F/A-18	30 MEDIUM-SIZED STRIKE UAV				
1 E-8 JSTARS	1 E-8 JSTARS	50 MEDIUM-SIZED MULTI-MISSION UAV				
2 P-3	6 LCS	6 LCS				
5 CH-53	4 MIW UUV	4 MIW UUV				
6 MH-53	4 ASW UUV	10 ASW UUV				
14 F-14	18 JSF	14 JSF				
8 S-3	2 LARGE SURVEILLANCE UAVS	8 LARGE SURVEILLANCE UAVS				
5 E/A-6B	70 MEDIUM-SIZED SURVEILLANCE UAVS	30 MEDIUM-SIZED SURVEILLANCE UAVS				
10 AH-1	20 SMALL SURVEILLANCE UAVS	20 SMALL SURVEILLANCE UAVS				
1 B-2	6 F/A-22					
2 B-52	2 MULTI-MISSION MARITIME AIRCRAFT (MMA)					
2 F-117	2 SSGN					
2 FFG	4 SURVEILLANCE USV					
1 MHC	6 F-16					
1 MCM						
1 LHA All Arcl	nitectures Arch1 and Arch 2 A	Arch 2 and Arch 3				

- Three Architectures With Progressing Reliance on UVs
 - Architecture 1: Manned Only
 - Architecture 2: Balanced Hybrid
 - Architecture 3: Primarily Unmanned
- Architecture Effectiveness Modeled in Simulative Study Against Test Scenarios

Threats & Scenarios


LT Matt Holmes

SoS Development

- Functional Analysis
- Value Systems Design
- Architectures
- Threats & Scenarios
- TDSI Integration
- Cost Analysis
- Simulative Study
- Architecture Ranking
- Configuration Validation

- Joint Campaign Analysis
- South China Sea Scenario
- Scenario Development Criteria
- Tactical Scenarios

JCA Referenced US Force Composition Criteria

- Joint Campaign Analysis as Point of Reference for Scenario Analysis
- Warfare Threats to NESG Prioritized
 - ASCM
 - -ASW
 - -MIW
 - -ASuW
- JCA Study Format
 - Officers 📀
 - Baseline Architecture
 - Lanchester Attrition Models
 - Larger Group Broken Into Mission Groups
 - Estimate of SoS Baseline Architecture Performance vs. Threat

South China Sea Scenario

- PRC Warship Strafed by Philippines Fighter
- PRC Naval Blockade of Puerta Princessa
 - Historical Rights and Economic Requirements
 - Need to Establish Safety Perimeter Around South China Sea
- PRC Reinforcement of Presence in the Spratly Islands
 - Paved Runways
 - Pier and Maintenance Facilities
 - ADA Batteries and Ballistic Missile Sites.
- PRC Invasion of Kepulauan Natuna (Indonesia)
- PRC Invasion of Palawan After a 30-day Blockade
 - Land, Air, Sea, and Missile Forces Moved to Island

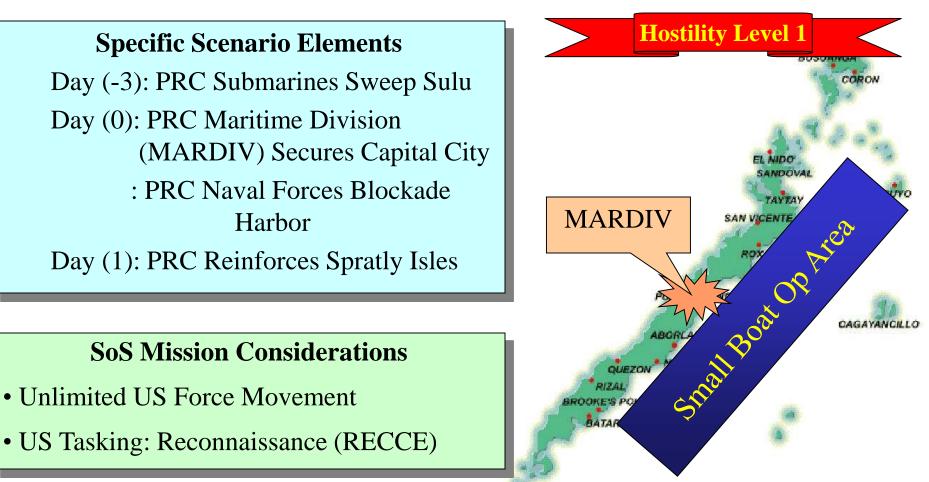
Scenario Criteria

PRC Invasion Force

Aircraft 735 Surface 79 **3 SOVREMMENY DDG** 1 CV + 30 SU - 3055 DDG, FFG, & PGM Subsurface 21 5 Type 091/093 SSN 15 Diesel SS (4 Kilo) MARDIV ARTDIV **INFDIV** 7*

*3 Additional Reserve (Guangzhou)

No Heavy Armor Division Light Armor Units With MANPADS


- Tactical Littoral Environments
- Scenario Definition Guided By Complexity
 - Mission
 - Enemy Force Structure
 - Level of Hostility

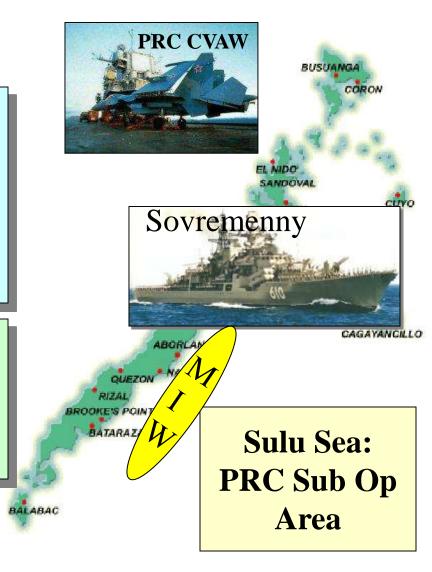
Scenario	Enemy	Conflict	Escalation
Benign	Neutral	Unlikely	Unlikely
Nominal	Aggressive	Medium	Low
Stressing	Hostile	High	Medium

Scenario 1 - Benign

Wayne E. Meyer Institute of Systems Engineering

BALABAC

Scenario 2 - Nominal


Hostility Level 2

Specific Scenario Elements

Day (2): PRC Artillery/Inf. FWD Staged PRC Fortifies Palawan Airport Day (3): PRC Naval Forces Mine Harbor PRC TU-16s Begin Maritime Patrol Day (12): PRC Reinforces Naval Presence

SoS Mission Considerations

- Restricted US Movement Outside 12 nm
- US Forces Actively Tracked
- US Tasking: RECCE and Targeting

Scenario 3 - Stressing

Hostility Level 3

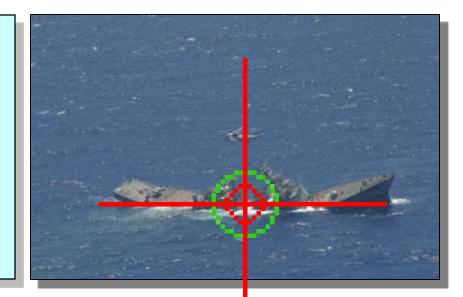
Day (13): PRC MARDIV Fortifies Puerta Princessa Day (15): PRC INFDIV Disperse Into Terrain PRC Air Corps Commence Aggressive Patrols

Day (16): SOVREMENNY Steam to North Rendezvous Subs Deploy to Surf/Sub-surf Operating Areas

Day (18): PRC Surface Fleet Patrol/Interdict SSOA2

SoS Mission Considerations

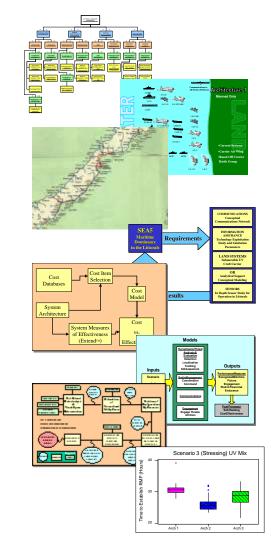
- Enemy Hostile (Active Patrol Zones)
- Denial of US Assets to Littoral Region
- US Tasking: RECCE, Targeting, and Strike



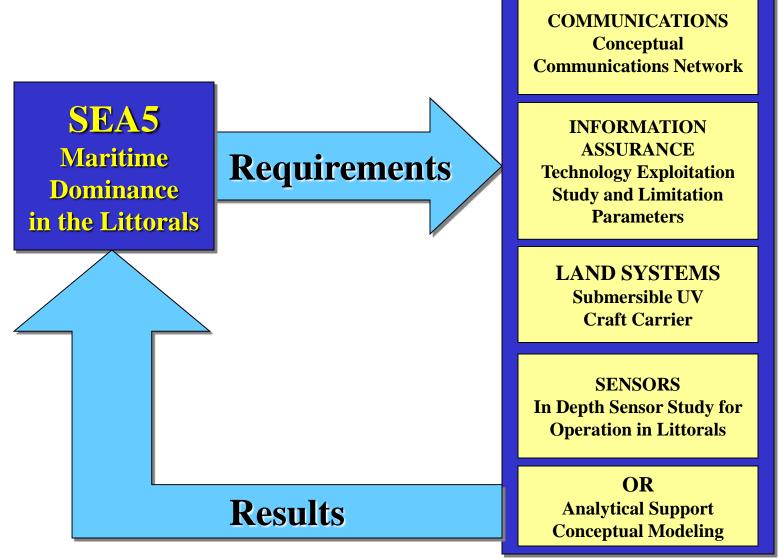
Threats & Scenarios Summary

- Quantifying Capability vs. Risk
- Building the Operating Environment
- Identifying Future Threats
- Evaluating SoS Performance with Scenarios

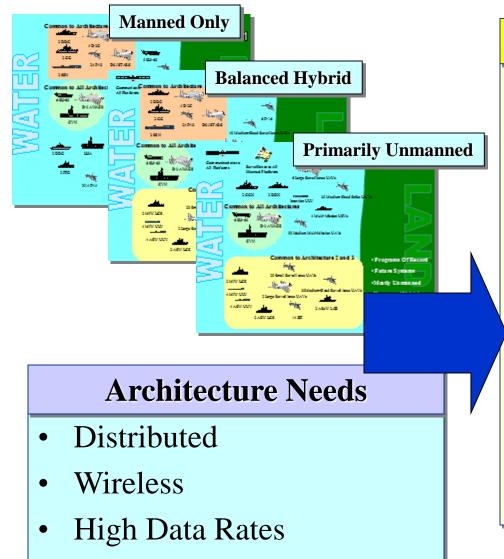
TDSI Integration


ENS Kara Hartling

SoS Development

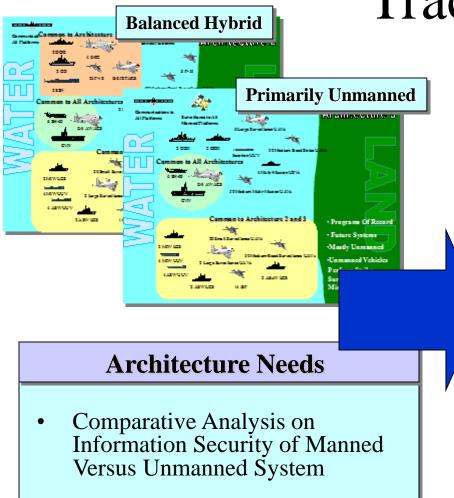

- Functional Analysis
- Value Systems Design
- Architectures
- Threats & Scenarios
- TDSI Integration
- Cost Analysis
- Simulative Study
- Architecture Ranking
- Configuration Validation

TDSI Requirements Process



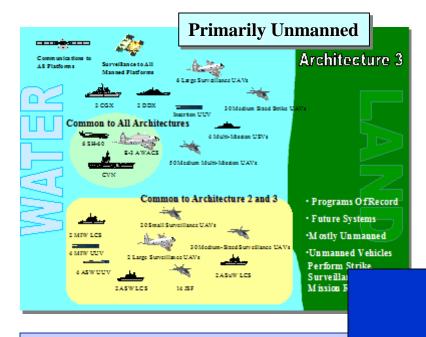
Communications Track

Comms Outputs


- Developed a Conceptual Inter-platform Communications Network
- Provided Interoperability and Bandwidth Constraints
 - Focused on Emerging Technologies such as
 - Mobile *ad hoc* Networking
 - Adaptive Communication
 Software for Multi-platform
 System Interoperability
 (Software Defined Radio)

Wayne E. Meyer Institute of Systems Engineering

Information Assurance Track

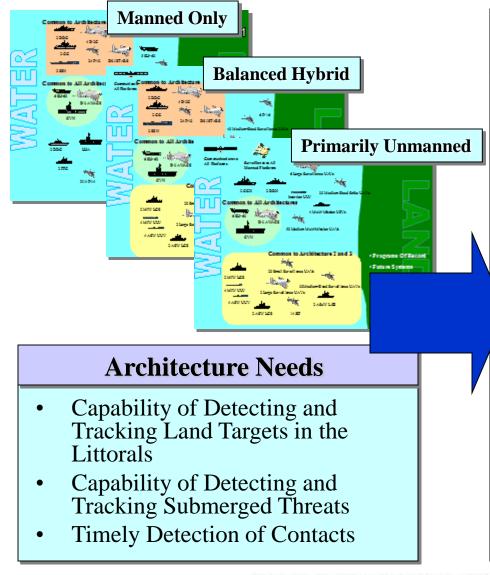

Information Assurance Outputs

- Performed Information Security Study on Means of Securing and Authenticating UV Communications
- Defined Inherent Organic Capabilities of UVs That Could Be Exploited
- Defined Ways to Minimize Enemy Exploitation of Captured UVs

Land Systems Track

Architecture Needs

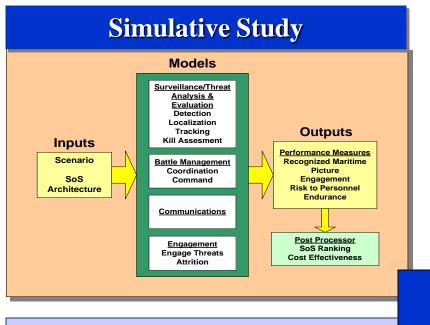
• Link Blue Water Platforms with Littoral Platforms (Long Range UV Insertion)


Land Systems Outputs

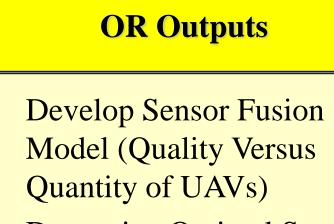
- Designed UV Craft Carrier
 - Submersible
 - Deployed from Surface Platform
 - Capable of Deploying and Recovering Mini UVs
 - Multi Mission Capable (MIW, ASW)
 - Extended Reach into Littorals

Sensors Track

Sensors Outputs


- Performed In-depth Environmental Analysis of Littorals
- Defined Requirements for Sensor Network to Detect Land Based Anti-Access Defensive Systems (FOPEN)
- Determined Means to Maximize Probability of Detection of Submerged Threats
- Developed Approaches to Detect Contacts That Operate on and Above the

Wayne E. Meyer Institute of Systems Engineering Timely Manner


Operations Research Track

Modeling/Simulation Needs

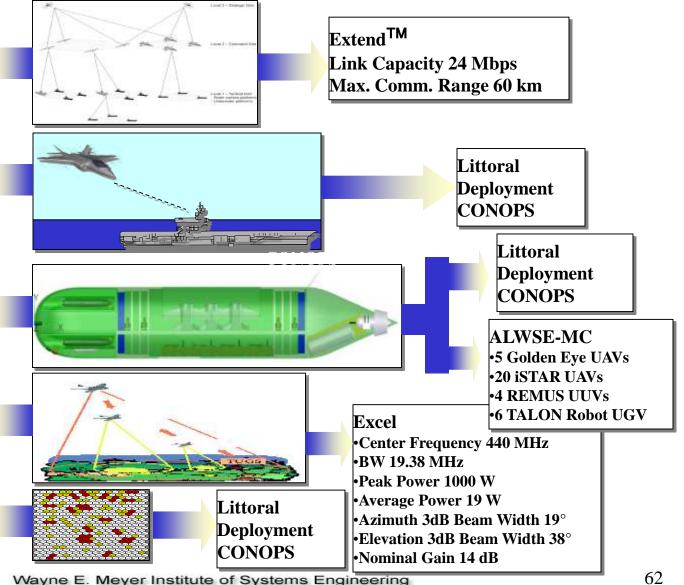
- Performance Analysis
- Analytical Support for TDSI Tracks

- Determine Optimal SearchPatterns for UAVs
- Determine Optimal Number of Comms Nodes for Undersea Network
- Provide Support to TDSI Tracks

Wayne E. Meyer Institute of Systems Engineering

TDSI Inputs to Integrated Project

COMMUNICATIONS Conceptual Communications Network


INFORMATION ASSURANCE

Technology Exploitation Study and Limitation Parameters

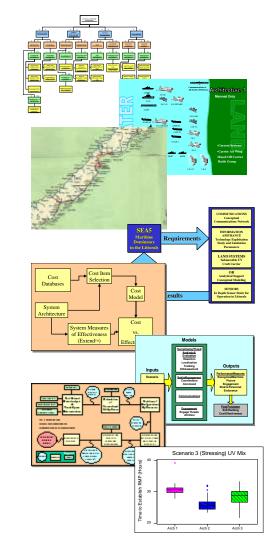
> LAND SYSTEMS Submersible UV Craft Carrier

SENSORS In Depth Sensor Study for **Operation in Littorals**

OR Analytical Support Conceptual Modeling

Naval Postgraduate School, Monterey, CA

Cost Analysis

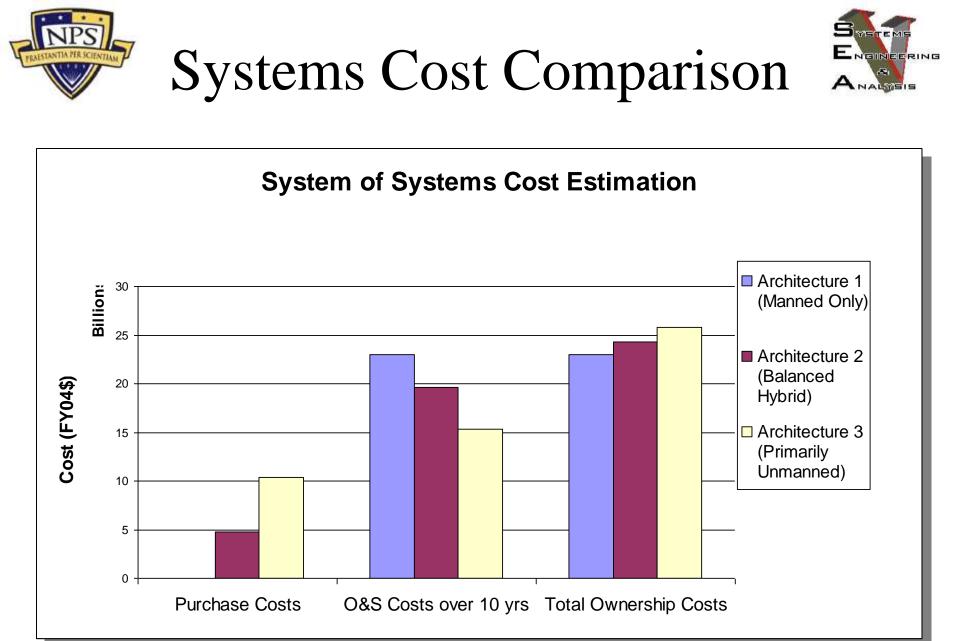

LT Rene Julien

SoS Development

- Functional Analysis
- Value Systems Design
- Architectures
- Threats & Scenarios
- TDSI Integration
- Cost Analysis
- Simulative Study
- Architecture Ranking
- Configuration Validation

Cost Analysis Preview

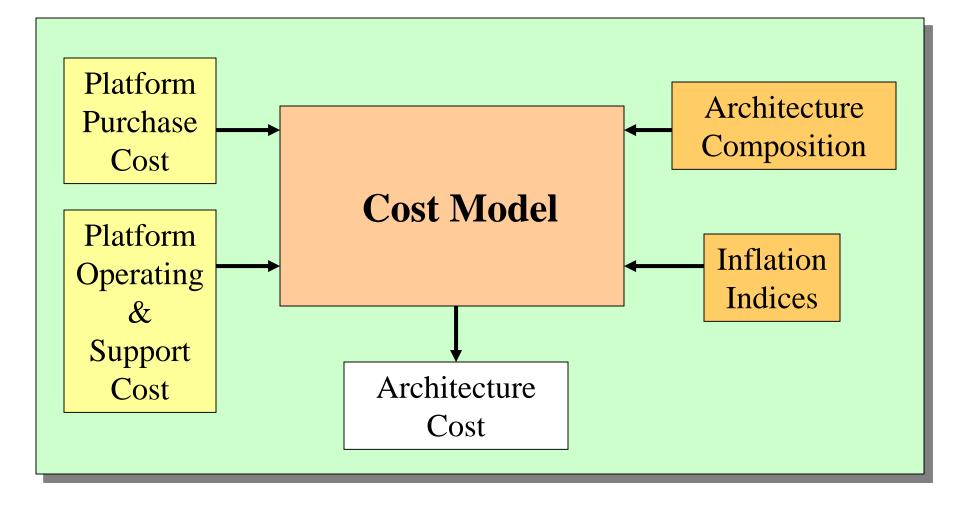
- Results
- Assumptions
- Methodology
- Process
- Data Collection
- Tools



	Cost in FY04\$B						
Architecture	Purchase Cost	O&S*	TOC**				
Manned Only (Arch 1)	0	1.53	23				
Balanced Hybrid (Arch 2)	4.7	1.34	24.3				
Primarily Unmanned (Arch 3)	10.4	1.13	25.8				

* Per 1-year Basis

****** Per 10-year Basis Including Inflation


Platform Cost Assumptions

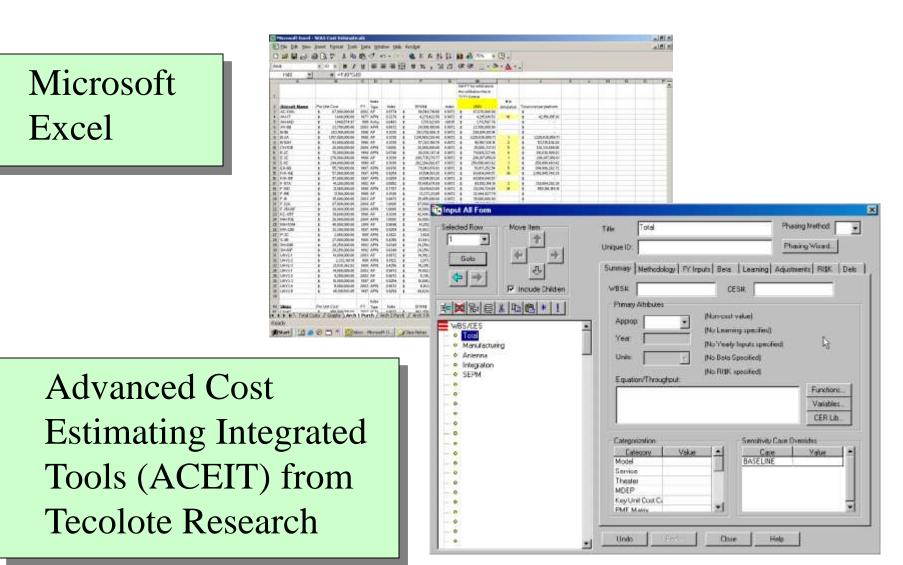
- Fiscal Year Estimates
 - Not Available From Open Sources
 - Based on Proprietary Sources
- Future Manned and Unmanned Systems Equivalent in Cost to Manned Systems
 - UAV2-1 Cost Equivalent to E-2C
 - F-35 (Joint Strike Fighter) Based on F/A-18F O&S Data
- Current UAV O&S Costs Approximately 10% of Manned Equivalents
 - Based on Air Force Predator O&S Costs

Cost Process Methodology

Cost Estimation Methodology

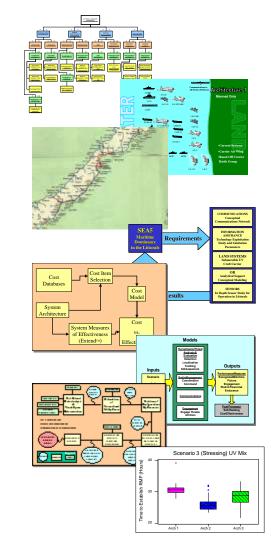
- All O&S Costs in FY2003 From VAMOSC, AFTOC and OSMIS Databases
- Costs for Future Systems (i.e., UVs and (X) Ships) Estimated Using Analogy Technique
- Derivation of Proposed Future System Unit Cost Using Cost Factors
 - Complexity
 - Miniaturization
 - Productivity Improvement

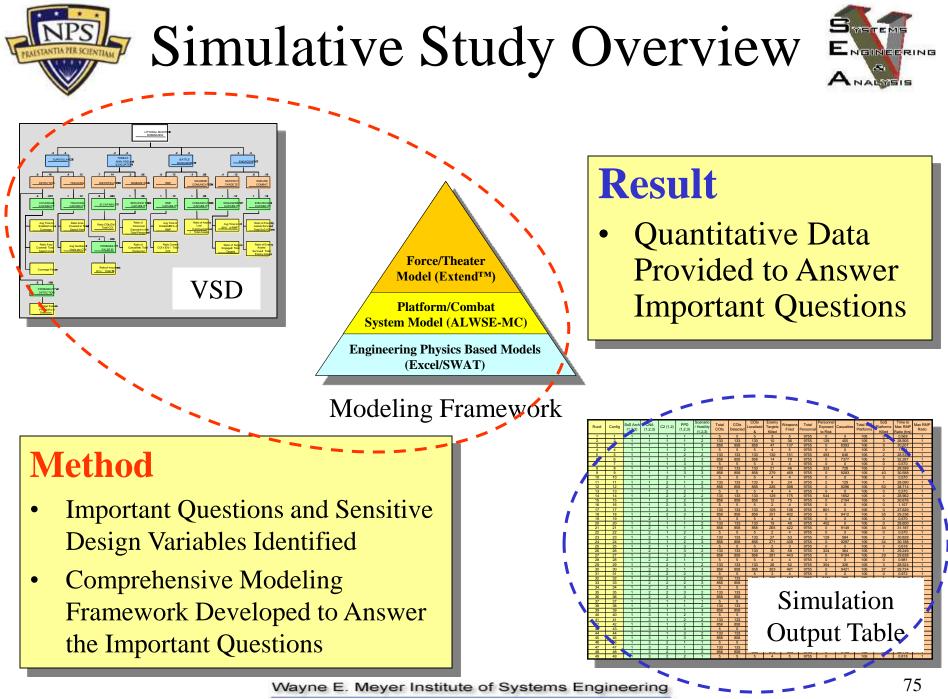
Cost Organizations


- Navy Center for Cost Analysis (NCCA)
- Air Force Cost Analysis Agency (AFCAA)
- US Army Cost and Economic Analysis Center (USACEAC)
- Defense Cost and Research Center (DCARC)
- Tecolote Research (ACEIT Software)

Cost Estimation Tools

Simulative Study


ENS Bryce Abbott



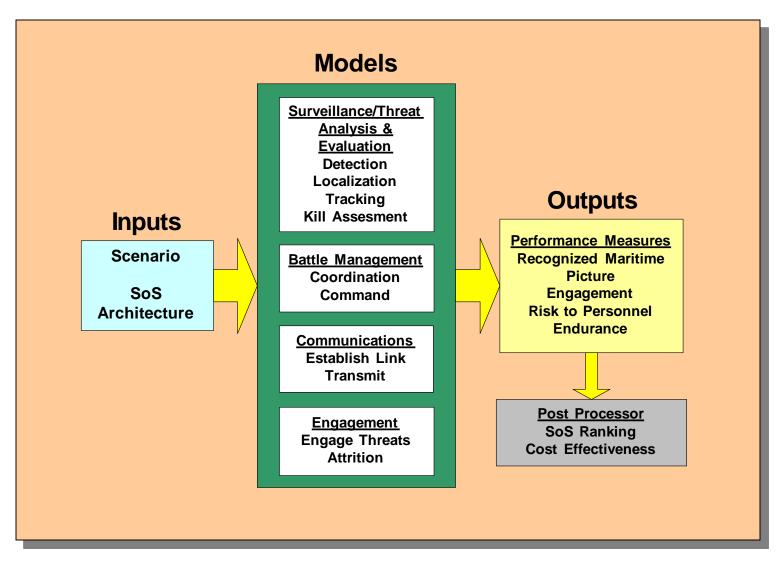
SoS Development

- Functional Analysis
- Value Systems Design
- Architectures
- Threats & Scenarios
- TDSI Integration
- Cost Analysis
- Simulative Study
- Architecture Ranking
- Configuration Validation

Naval Postgraduate School, Monterey, CA

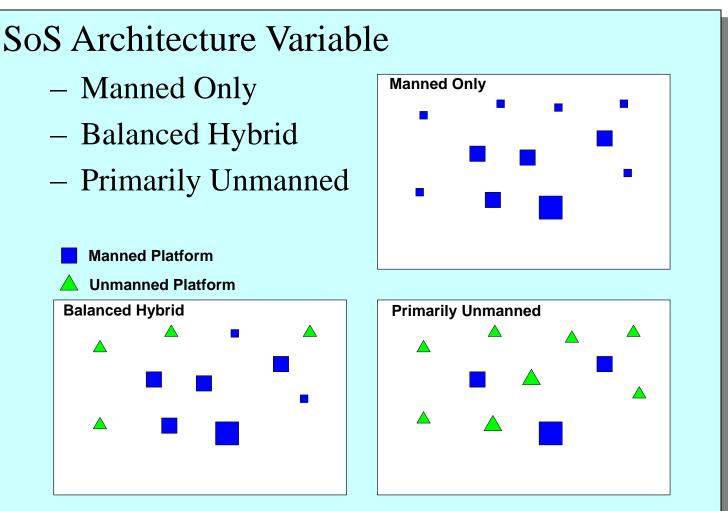
Simulative Study

- Objective
- Design
- Modeling
 Framework
- Modeling Tools
- Modeling Output


Simulative Study Objective

- Conduct a Simulative Monte Carlo Analysis to Quantify the Effectiveness of Alternative SoS Architectures by Answering
 - How Much Time Does the SoS Require to Establish the Recognized Maritime Picture?
 - How Well Does the SoS Engage Threats?
 - How Well Does the SoS Protect Personnel From Risk?
 - How Well Does the SoS Endure Combat?

Simulative Study Design

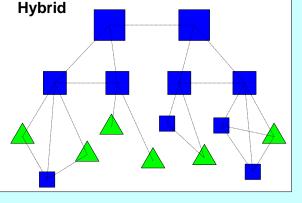


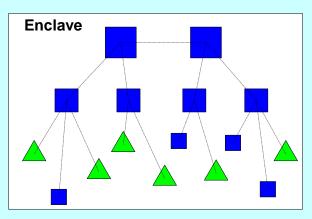
Simulative Study Design Variables

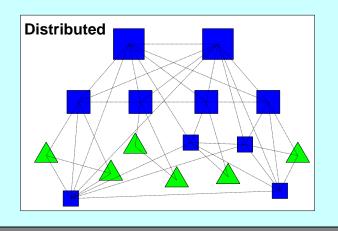
- SoS Architecture
 - Communications Network Architecture
 - Command and Control
 - Platform Physical Distribution
- Scenario

Wayne E. Meyer Institute of Systems Engineering

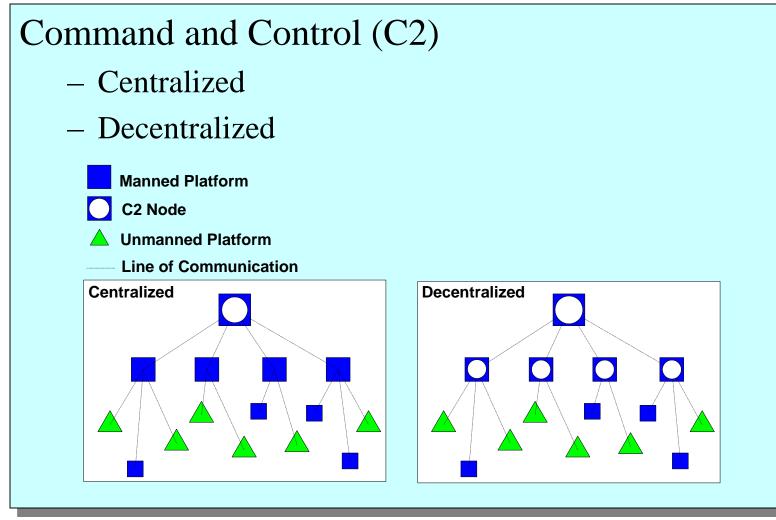
ANALISIS

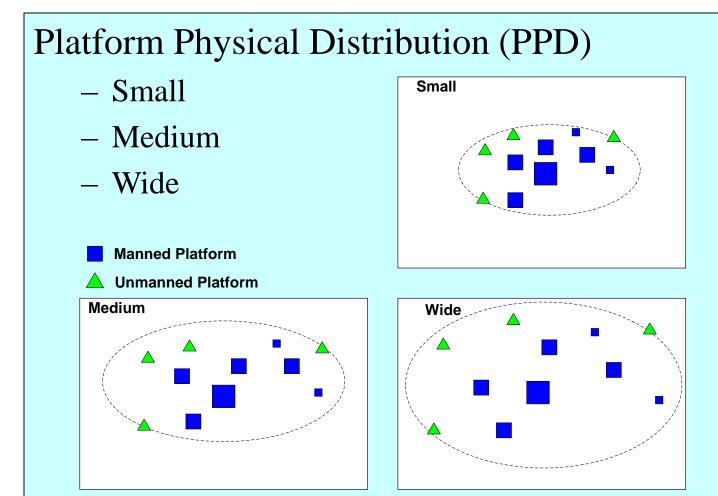


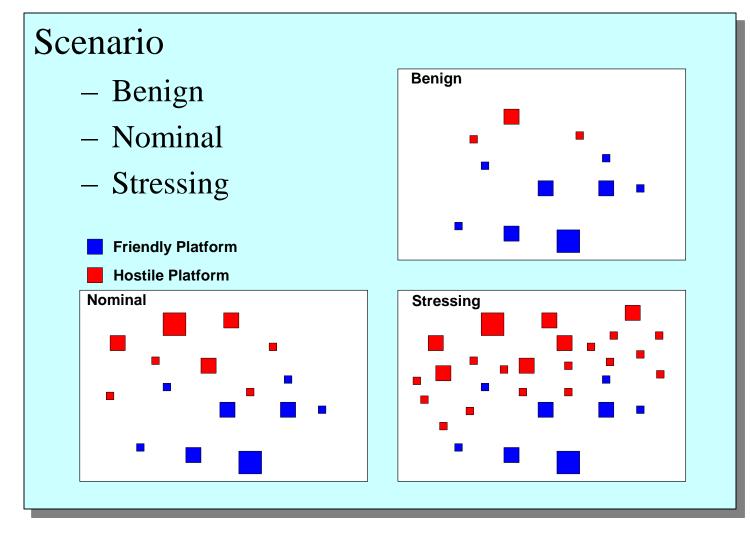



Communications Network Architecture (CNA)

- Enclave
- Hybrid
- Distributed




Simulative Study Design -C2 Variable

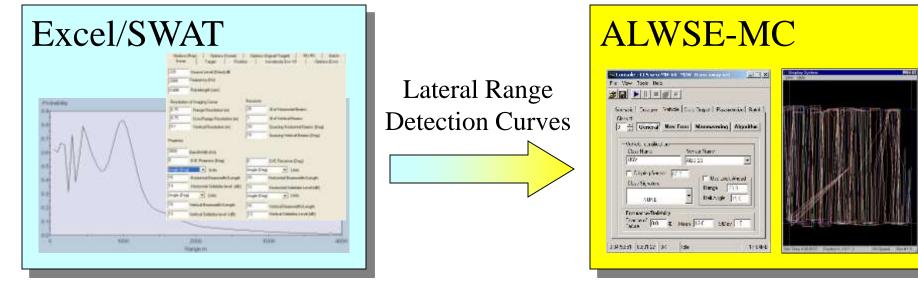

Simulative Study Design -PPD Variable

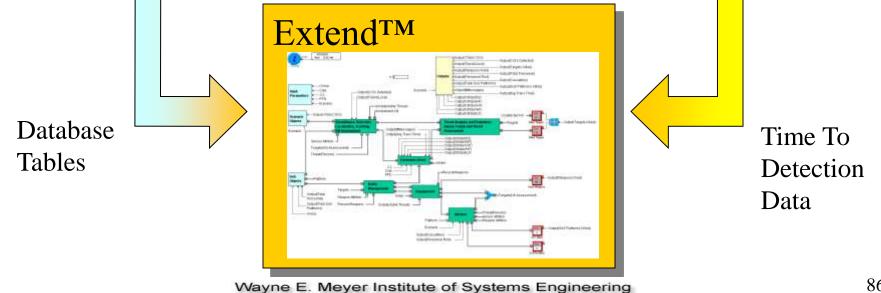
Simulative Study Design -Scenario Variable

Modeling Framework

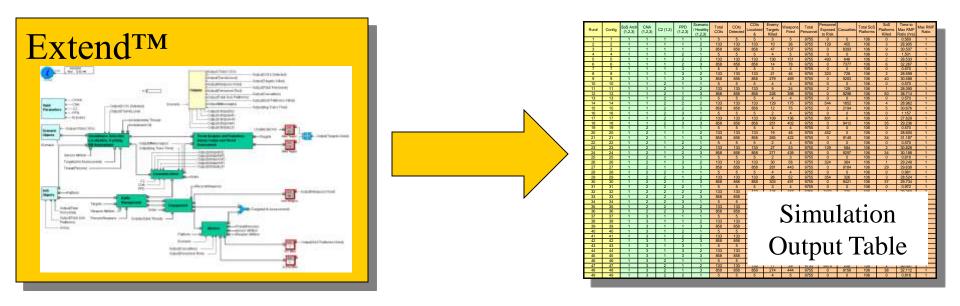
Lower Levels Interface With & Support Upper Levels

Force/Theater Model (ExtendTM)


\$10th of People's **Platform/Combat** System Model (ALWSE-MC)


Engineering Physics Based Models (Excel/SWAT)

Modeling Tools Interface



Naval Postgraduate School, Monterey, CA

Modeling Output

Quantitative Data Provided to Fulfill Simulative Study Objective

Engineering Physics Models (Excel/SWAT)

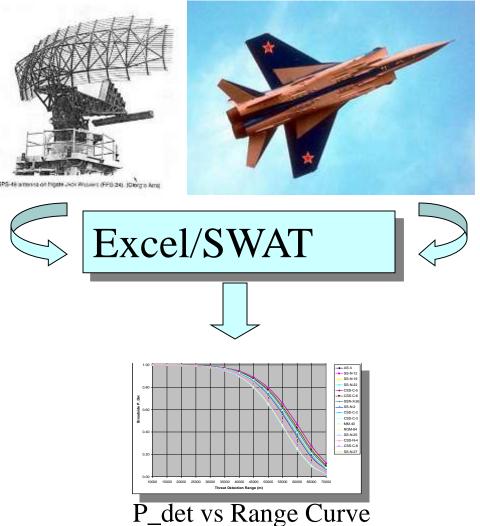
ENS Scott Poitevent

Modeling Framework

Force/Theater Model (Extendтм)

Platform/Combat System Model (ALWSE-MC)

Engineering Physics Based Models (Excel/SWAT)



Sensor

- Provide Flexible Tool for Detection Simulation with Sensor/Target Pairs
- Implement Physical Laws for Analytical Application
- Generate P_det vs Range Curves

Engineering Analysis Models (Excel/SWAT)

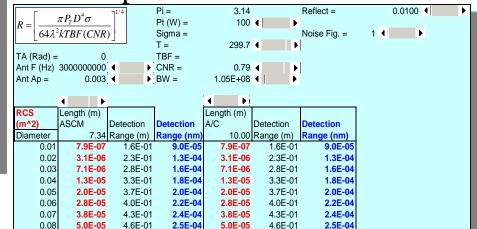
- Engineering Physics Based Modeling Performed to Create Database Tables and Lateral Range Detection Curves for Sensors / Threats Pairs
- Sensor-Target Models
 - Probability of Detection (P_det) vs Range Curves
- Physics Models*
 - Radar Based on Swerling II
 - Acoustic Based on Manning P_det
 - Infrared (IR) Based on Johnson's Criteria

*R. Harney, *Combat Systems Sensors Vol. I & II*, Naval Postgraduate School 2004, Unpublished Manuscript

Engineering Model Inputs

• Sensor Parameters

- TDSI FOPEN Radar
 Performance Parameters
- Specific Enemy Threat Characteristics From Scenario
- Environmental Parameters

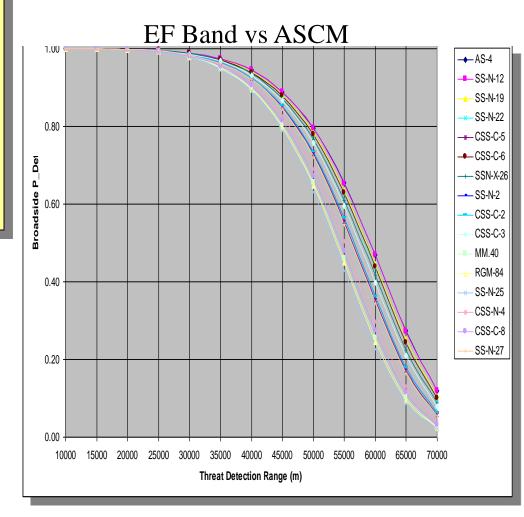

km/hr	m/s	Mach	km/hr	m/s	Mach
720	200	0.6061	1,098	305	0.92
738	205	0.6212	1,116	310	0.93
756	210	0.6364	1,134	315	
774	215	0.6515	1,152	320	0.96
792	220	0.6667	1,170	325	0.98
810	225	0.6818	1,188	330	1.00
828	230	0.6970	1,206	335	1.01
846	235	0.7121	1,224	340	1.03
864	240	0.7273	1,242	345	1.04
882	245	0.7424	1,260	350	1.0
900	250	0.7576	1,278	355	1.0
918	255	0.7727	1,296	360	1.0
936	260	0.7879	1,314	365	1.1
954	265	0.8030	1,332	370	1.1
972	270	0.8182	1,350	375	1.1
990	275	0.8333	1,368	380	1.1
1,008	280	0.8485	1,386	385	1.1
1,026	285	0.8636	1,404	390	1.1
1,044	290	0.8788	1,422	395	1.1
1,062	295	0.8939	1,440	400	1.21
1,080	300	0.9091	1,458	405	1.22

IR Input Table

Reflectance =	0.0100	4
Emissivity =	0.9900	
Pi =	3.14	
TA Radians =	0	
Sensor Freq(M) =	3.0E+09	•
Regd CNR	0.69	4
Power (watts)	3.0000E+09	
Aperture Diameter (m)	4.000	4
Bandwidth (Hz)	1.00E+08	4
Freq (Hz)	3.00E+09	
Noise figure	1	4
Antenna Temp (K)	300	4
· · · · · · · · · · · · · · · · · · ·		

Generic Threat Categories									
Threat	Length (m)	Diameter (m)	Reflectivity	RCS (m^2)	Body temp. (K)	Engine temp.	Emmisivity	Target angle (r	IR Area (m
ASCM-1	3.75	0.42	0.1	0.0138474	351.894	1000	0.9900		0.137089
ASCM-2	8.9	0.67	0.1	0.03523865	675	1000	0.9900		0.348862
ASCM-3	11.6	0.92	0.1	0.0664424	1800	1000	0.9900		0.657779
Ambient temp (K)	300								

RF Input Table



Engineering Model Outputs

- Threat Signatures (Radar, IR, Acoustic)
- P_det vs. Range for Sensor-target Pairings

Threat Signatures Wayne E. Meyer Institute of Systems Engineering

Engineering Models – SWAT

					SWAI IN	put	Table	
•	Shallow Water			Options (Sonar 220	(Ray) Options (Sonar) Target Position Source Level (Omni) dB		Signal/Target) PD/ sovelocity Env 1D	/PC Batch Options (Env)
	Acoustics Toolset			2000	Frequency (Hz) Pulselength (sec)			
	(SWAT) - NAVSEA			Resolution 0.75 0.75	of Imaging Sonar Range Resolution (m)	Receiver 28	# of Horizontal Beams	
•	Inputs			0.1	CrossRange Resolution (m) Vertical Resolution (m)	10 10	# of Vertical Beams Spacing Horizontal Beam Spacing Vertical Beams	
	– Environment			Projector 3600	BandWidth (Hz) D/E Projector (Deg)	0	D/E Receiver (Deg)	
	– Sensor Parameters	Probability		Angle (Deg)	Horizontal Beamwidth/Length	Angle (Deg) Units Horizontal Beamwidth/Le	-
	 Target Parameters 	07	$ \land \land \land $	13 Angle (Deg)	Horizontal Sidelobe level (dB)	13 Angle (Deg	Horizontal Sidelobe Leve)	
•	Outputs	0.5	\vee	13	Vertical Sidelobe level (dB)	13	Vertical Sidelobe Level (-
	– P_det vs. Range	0.3- 0.2- 0.1-						
		0.0	9000	2000 Range m	3000		4000	

P_det vs Range Output Chart

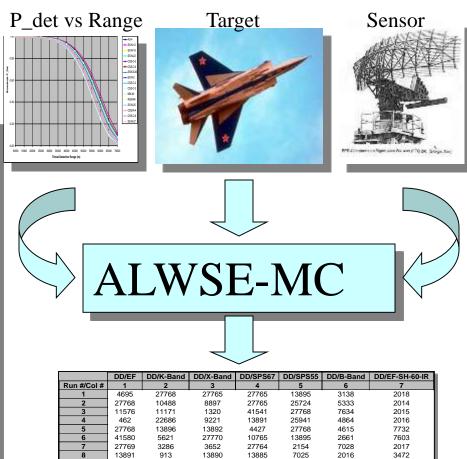
Platform/Combat System Model (ALWSE-MC)

ENS Scott Poitevent

Modeling Framework

Force/Theater Model (Extend^{тм})

Platform/Combat System Model (ALWSE-MC)


Engineering Physics Based Models (Excel/SWAT)

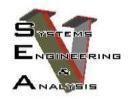
ALWSE-MC

- Simulate Tactical Level Employment of Sensors Against Threats
- Make Use of Sensor
 P_det vs Range Curves
 in Performance Analysis

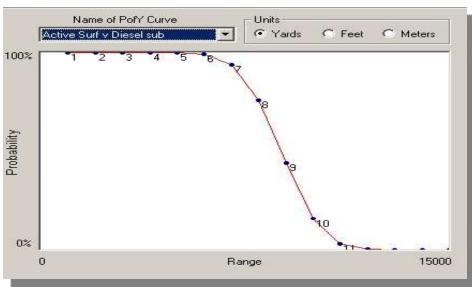
Time-to-Detect Distribution

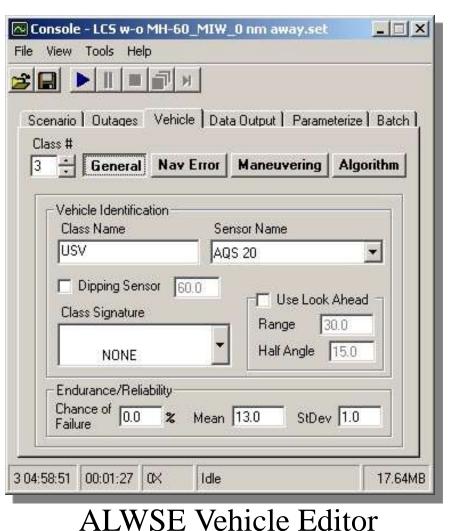
Wayne E. Meyer Institute of Systems Engineering

ALWSE-MC


- Discrete Event Simulation Tool Developed by NAVSEA Panama City, FL
- Integration of Engineering Level Detection Curves Into Tactical Simulation
- Simulation of Vehicle Characteristics, Sensor, and Employment for a Variety of Unmanned Systems
 ALWSE-MC

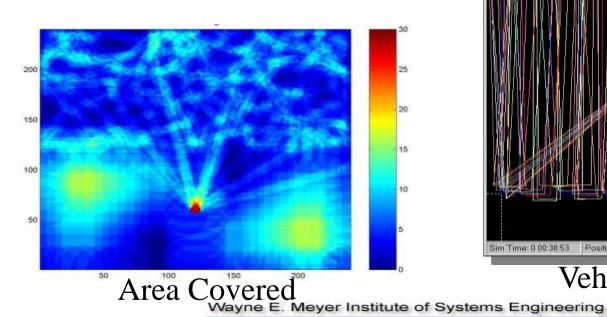
AUTONOMOUS LITTORAL WARFARE SYSTEMS EVALUATOR





ALWSE-MC Inputs

- P_det vs. Range Curves
- Vehicle Parameters
- Threats
- Environment


ALWSE P_det Input Chart



ALWSE-MC Outputs

- Effective Probability of DetectionVehicle Tracks
- •Time to Detection
- •Area Covered

ALWSE-MC Utilization

- Platform/Combat System Modeling Performed to Incorporate Operational Implementation of Sensors/Threats Pairs and Produce Time to Detection Data
- Monte Carlo Analysis (200 Runs per Sensor/Target Pair)
- ALWSE-MC Simulation Missions
 - Surface (ASuW) Threats: DD, FFG, PGM
 - Anti-submarine (ASW) Threats: Diesel, Mini, Nuclear
 - Air (AW) Threats: Fighter, Bomber
 - Mine (MIW) Threats: Moored/Bottom (25 Each)
 - Land Threats: 50 SAM Launchers
- Use of P_det Curves For Each Sensor/Target Pairing
- Generation of Distributions of Average Detection Time For Sensor–Target Pairings Used As Input Into Extend[™]

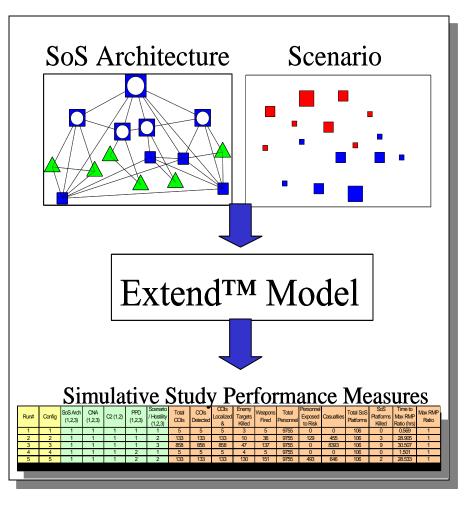
Force/Theater Model (ExtendTM)

ENS Rob Smith

Force/Theater Model (ExtendTM)

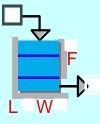
Force/Theater Model (ExtendTM)

Platform/Combat System Model (ALWSE-MC)


Engineering Physics Based Models (Excel/SWAT)

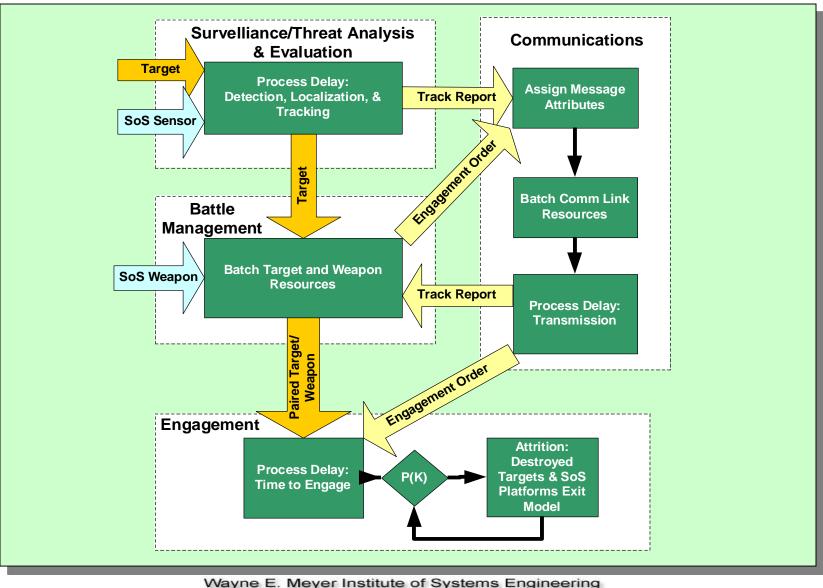
Force/Theater Model Overview

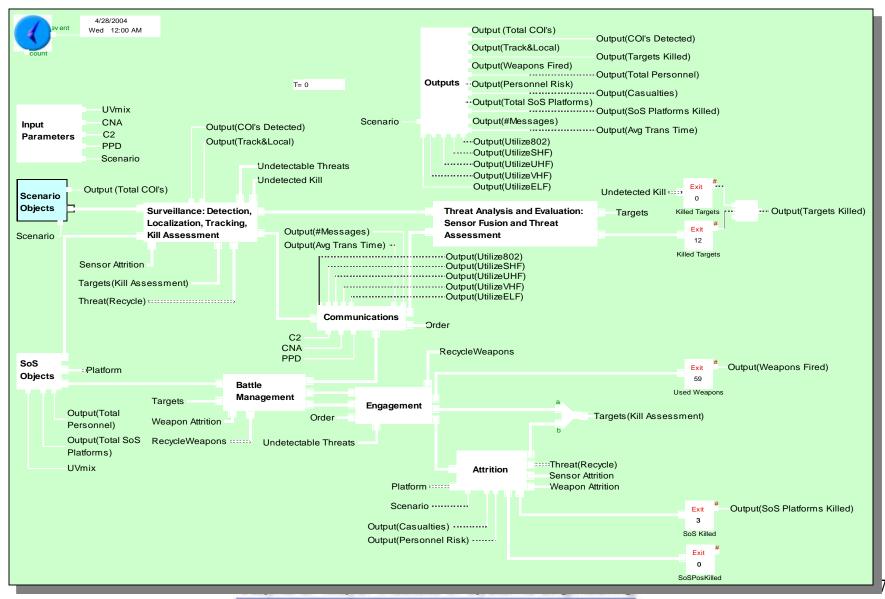
- Process Model of Maritime Dominance Concept
- High Level Interactions
 Between Opposing
 Forces
- Effects of Changing SoS Force Structure and Architecture Attributes on Outcome



Modeling Tool: ExtendTM

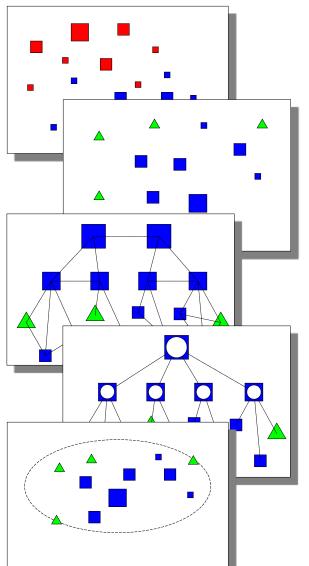
- Discrete-Event Simulation Tool
- Multi-Layer Simulation
- Object-Oriented Design


- Extensive Libraries of Alterable Icons Representing Simulation Processes
- Integrated Database Utility


ExtendTM Model Design

Naval Postgraduate School, Monterey, CA

Top-Layer ExtendTM Model


Naval Postgraduate School, Monterey, CA

- Full-Factorial Design With Configurations For All Combinations of Design Variables
 - 3 Scenarios (Benign, Nominal, Stressing)
 - 3 Architectures (Manned Only, Balanced Hybrid, Primarily Unmanned)
 - 3 Communications Network Architectures (Enclave, Hybrid, Distributed)
 - 2 C2 Structures (Centralized, Decentralized)
 - 2 Physical Platform Distributions (Small, Medium, Large)
- Run Matrix (162 Configurations with 50 Monte Carlo Runs Each) – 8100 Runs

Inputs

Attributes

- SoS Objects
 - Platform Types
 - Sensor/Weapon Capabilities
 - Sensor Performance
 - Communications Capability
 - Mission Area
- Scenario Objects
 - Threat Types
 - Mission Area
 - Arrival Times

Mission Area (ref)	Mission
1	Surface
2	Air
3	Subsurface
4	Mine
5	Land
5	Luna

Threat							
DDG							
FFG							
3 x PGM							
MIG-31 (Fighter)							
SU-30 (Bomber)							
Missile Swarm							
Diesel Sub							
Nuc Sub							
Mini Sub							
Mine Field							
ASCM Launcher							
Comm Link							
802.11							
SHF							
UHF							
VHF							
ELF							

Process Model Parameters

- Surveillance/Threat Analysis & Eval
 - ALWSE-MC Time To Detect Data
 - Sensor Availability
- Battle Management
 - Weapon Availability
- Communications
 - Network Architecture
 - Link Availability
 - Link Data Rates
- Engagement
 - $P_{SoS}(K)$
 - Time To Engage
 - $P_{\text{enemy}}(\mathbf{K})$

Simulation Outputs – Performance Measures

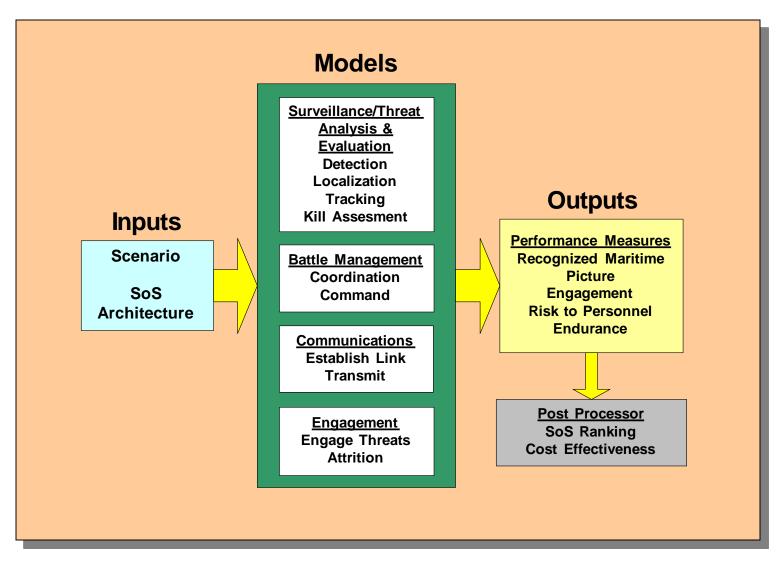
Config	SoS Arch (1,2,3)	CNA (1,2,3)	C2 (1,2)	PPD (1,2,3)	Scenario / Hostility (1,2,3)	Total COIs	COIs Detected	COIs Localized &	Enemy Targets Killed	Weapons Fired	Total Personnel	Personnel Exposed to Risk	Casualties	Total SoS Platforms	Platforms	Time to Max RMP Ratio (hrs)	Ratio
1	1	1	1	1	1	5	5	5	3	5	9755	0	0	106	0	0.569	1
2	1	1	1	1	2	133	133	133	10	36	9755	129	455	106	3	28.905	1

Recognized Maritime Picture

- Time to Develop RMP

• Engagement

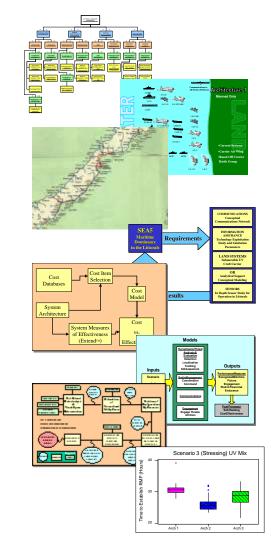
- Targets Killed / Targets
 Engaged
- Targets Killed / Total Targets


Risk to Personnel

- Number of Personnel Exposed to Risk
- Number of Casualties
- Combat Endurance
 - Number of Surviving SoS Platforms

Simulative Study Design

Architecture Ranking

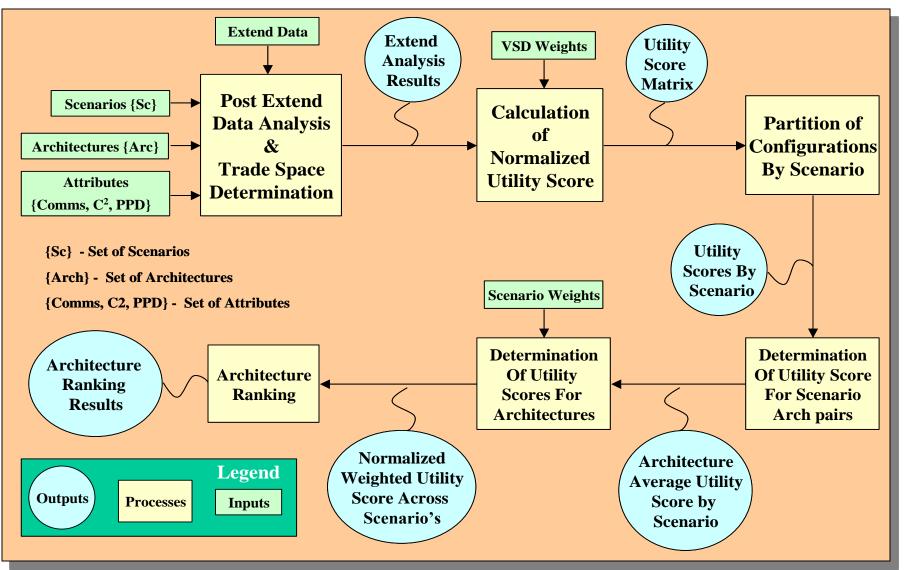

LT Chad Graham

SoS Development

- Functional Analysis
- Value Systems Design
- Architectures
- Threats & Scenarios
- TDSI Integration
- Cost Analysis
- Simulative Study
- Architecture Ranking
- Configuration Validation

- Data Analysis
- Architecture Ranking Process
- Architecture Ranking Results
- Configuration Ranking Process
- Configuration Ranking Result

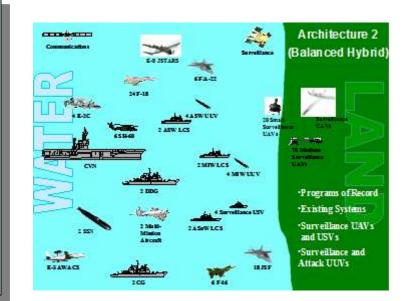
Data Analysis

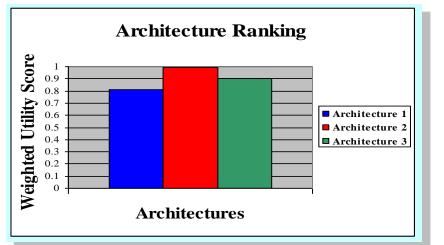


Extend Outputs		Extend Processed Data Output					
Total Contacts of Interest	Evaluation Measure	GlobalConfiguration NumberWeight123456					
Enemy Targets Killed	Surveillance	0.3 1.039331 28.772294 30.59990644 1.0379031 28.556723 30.461 0.08 14.2 2189.62 0 2.58 1872.56					
. 0	Risk Exposure Casualties	0.08 14.2 2189.62 0 2.58 1872.56 0.12 0 716.38 7334.36 0 356.78 731					
• Avg Time to Establish RMP	RMP Capability	0.12 1.1164263 0.0348017 0.032721644 1.1647954 0.0350882 0.0328					
Sos Platforms Killed	Communication Capability	0.08 0.4060147 0.293401 0.217374375 0.4042391 0.3062207 0.214					
Casualties	Combat Effectiveness	$\begin{array}{c} 0.06 \\ 0.4000147 \\ 0.233401 \\ 0.21737437 \\ 0.4042391 \\ 0.3062207 \\ 0.5082207 \\ 0.5144 \\ 0.5082207 \\ 0.5144 \\ 0.5082207 \\ 0.5144 \\ 0.5082207 \\ 0.5144 \\ 0.5082207 \\ 0.5144 \\ 0.5082207 \\ 0.5144 \\ 0.5082207 \\ 0.5144 \\ 0.5082207 \\ 0.5144 \\ 0.5082207 \\ 0.5144 \\ 0.5082207 \\ 0.5144 \\ 0.5082207 \\ 0.5082207 \\ 0.5144 \\ 0.5082207 \\ 0.5082207 \\ 0.5144 \\ 0.5082207 \\ 0.5082207 \\ 0.5144 \\ 0.5082207 \\ 0.508207 \\ 0.50807 \\ 0.508207 \\ 0.508207 \\ 0.508207 \\$					
	Engagement Capability	0.1 0.6712812 0.0498008 0.014249879 0.6898679 0.0541287 0.0183					
• Personnel Exposed to Risk		0.09 1 0.9892453 0.713773585 1 0.9911321 0.7226					
• Avg Message Transmission	Data Analysis Process	0.09 0.3 0.4933835 0.731748252 0.3 0.5085714 0.7223					
Time Total Personnel 	 Averaged 50 Runs of Output Data Per Configuration Extracted Averages for Every MOE for 162 Configurations Imported Averages Into Excel Data Sheet for Further 						
config SoS Arch (1,2,3) (1,2,3) (1,2,3) (1,2,3) (22 (1,2) PPD (1,2,3)	 Manipulation Processed Data Output to Match Total Utility Inputs 	 Data Outputs Surveillance Risk Exposure 					
1 1 1 1 1 5 5 5 1 1 1 1 1 5 5 5 1 1 1 1 1 5 5 5 1 1 1 1 1 5 5 5 1 1 1 1 1 5 5 5	4 7 9755 129 4 4 9755 0 4 5 9755 0	Casualties					
1 1 1 1 1 5 5 5 1 1 1 1 1 5 5 5 1 1 1 1 1 5 5 5 1 1 1 1 1 5 5 5 1 1 1 1 1 5 5 5 1 1 1 1 1 5 5 5	4 4 9755 0 3 4 9755 0 3 4 9755 0 3 5 9755 0	 Communication Capability Combat Endurance Engagement Capability Recognized Maritime 					
1 1 1 1 1 5 5 5 1 1 1 1 1 5 5 5 1 1 1 1 1 5 5 5 1 1 1 1 1 5 5 5	4 4 9755 0 4 6 9755 0 3 4 9755 0						
1 1 1 1 1 5 5 5 1 1 1 1 1 5 5 5 1 1 1 1 1 5 5 5 1 1 1 1 1 5 5 5 1 1 1 1 1 5 5 5 1 1 1 1 1 5 5 5	3 4 9755 0 4 4 9755 0 4 8 9755 129 4 4 9755 0 4 4 9755 0						
1 1 1 1 1 1 5 5 5 1 1 1 1 1 1 5 5 5 1 1 1 1 1 5 5 5 1 1 1 1 1 5 5 5 1 1 1 1 1 5 5 5 1 1 1 1 1 5 5 5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
		Picture Capability					

Architecture Ranking Process

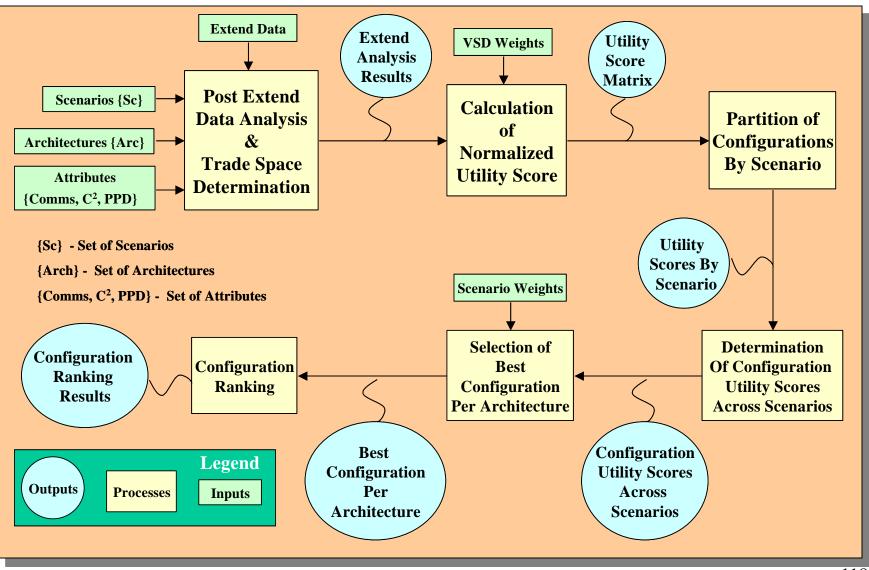
Wayne E. Meyer Institute of Systems Engineering


Naval Postgraduate School, Monterey, CA



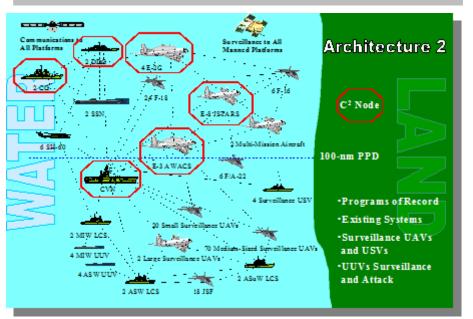
Architecture Ranking Summary

- Balanced Hybrid Architecture
 With Unmanned/Manned Ratio of
 1.5:1 is Selected Based on Overall
 Performance
- UV to Manned Ratio Greater Than 1.5:1 Decreases Overall SoS Performance


• These Results Are Based on Defined Scenarios With Weights Provided by Primary Stakeholder

• Architecture Ranking is Insensitive to Scenario Weights

Configuration Ranking Process


Configuration Ranking Results

Best Configuration

- Balanced Hybrid Unmanned/Manned Architecture (Architecture 2)
- Distributed Communication
- Decentralized Command & Control

• 100-nm Platform Distribution

Distributed Communications

- Faster Dissemination of Information
 - Average Message Delay 1/10th Hybrid's & 1/100th Enclave's
- Minimum Impact on Throughput with Node Failures

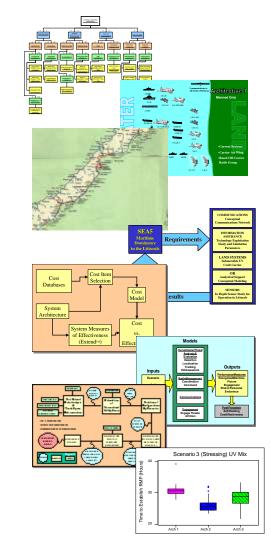
Decentralized Command and Control

- Faster Dissemination of Command Messages
 - Average Message Delay 1/10th Centralized C2's
- Faster Reaction Times
- Less Network Demand
- Reduced Single C2 Node Workload
- Single C2 Node Failure Avoidance

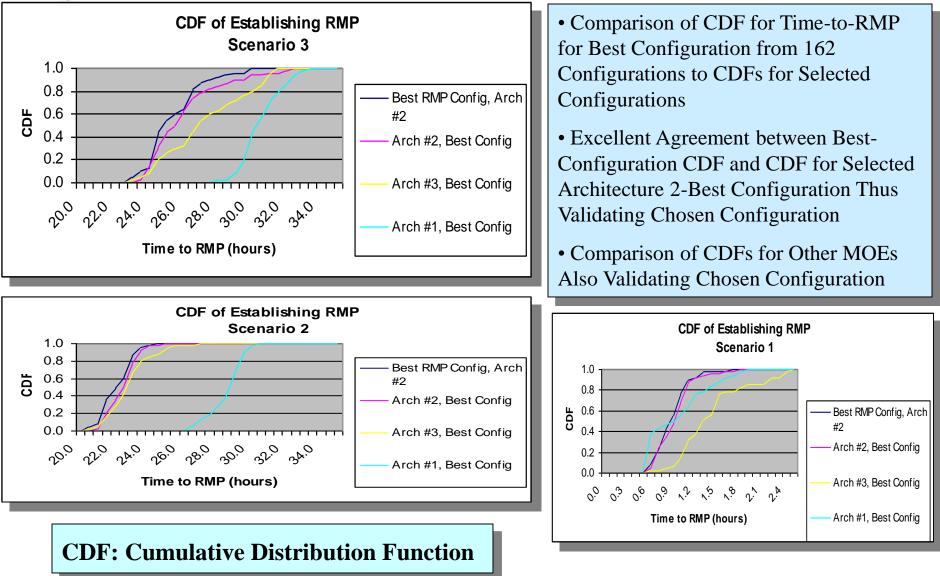
Platform Distribution

- 100-nm Platform Distribution Exhibiting Superior Performance Albeit Statistically Insignificant

Configuration Selection Validation

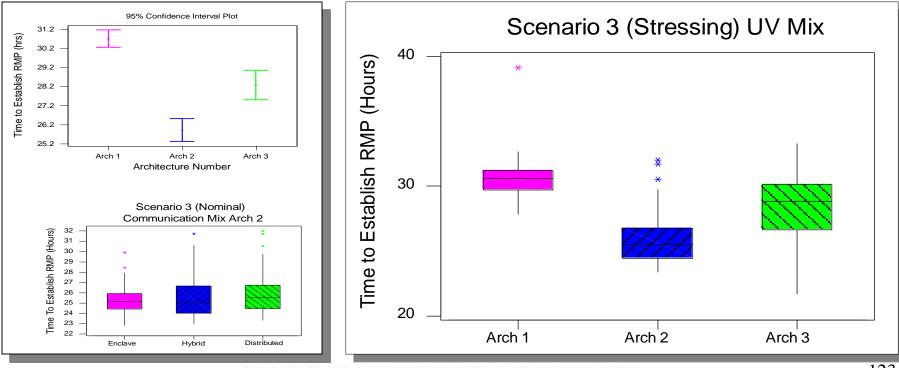

LT Jeff Winslow

SoS Development


- Functional Analysis
- Value Systems Design
- Architectures
- Threats & Scenarios
- TDSI Integration
- Cost Analysis
- Simulative Study
- Architecture Ranking
- Configuration Validation

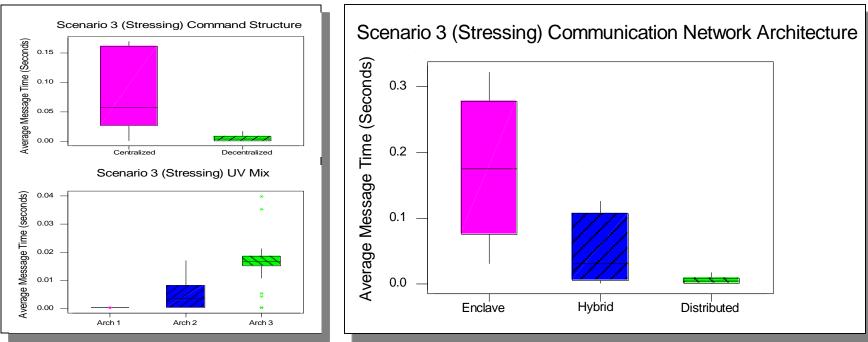
Selected Configuration Validation

Wayne E. Meyer Institute of Systems Engineering


Naval Postgraduate School, Monterey, CA

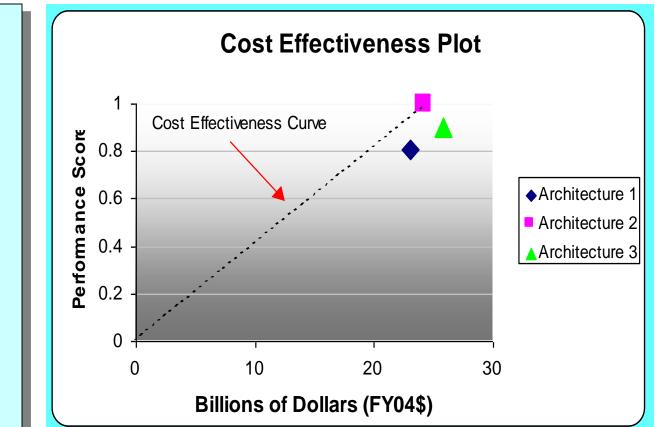
Effects of Configuration Attributes On RMP

- Significant Effects of Unmanned/Manned Ratio on Time-to-RMP
- Insignificant Effects of Command and Control Structure & Communication Network Architecture


Naval Postgraduate School, Monterey, CA

Effects of Configuration Attributes On Communications Performance

• Significant Effects of Unmanned/Manned Ratio, Command & Control and Communication Network Architecture on Communication Performance (Message Delay)



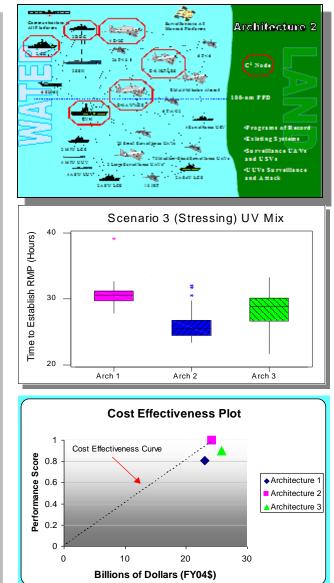
for Architecture Recommendation

• Balanced Hybrid (Architecture 2) Cost Effective & Cost Efficient

•Manned Only (Architecture 1) Cost Effective Not Cost Efficient

Primarily Unmanned (Architecture 3)
Dominated (Neither Effective or Efficient)

Architecture 2 Recommended Based on Cost & Performance


Recommended SoS Configuration

Recommended SoS Configuration

- Balanced Hybrid Unmanned/Manned Architecture (Architecture 2)
- Distributed Communication
- Decentralized Command & Control
- 100-nm Platform Distribution
- •Recommended Configuration Validated
 - Based On Independent Statistical Analysis
 - Involving All MOEs
- •Balanced Hybrid Unmanned/ Manned Architecture Recommended Based on Cost & Performance

•Cost Effective and Cost Efficient

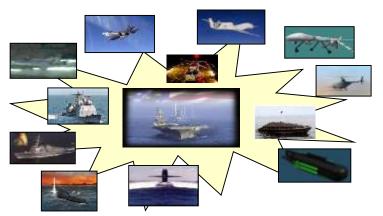
Naval Postgraduate School, Monterey, CA



Project Conclusion

LCDR Quoc Tran

Project Overview


- <u>Tasked</u> With A Complex Problem of Maritime Dominance in the Littoral
- <u>Developed</u> a Project Management Plan
- <u>Executed</u> The Plan Using Systems Engineering Design Process
- <u>Generated</u> Conceptual SoS Architecture Alternatives
- <u>Used</u> Modeling and Simulation to Assess Architecture Performance
- <u>Ranked</u> SoS Architecture Alternatives

Recommended System of Systems for Maritime Dominance in Littorals

•Unmanned Vehicles Complement But Cannot Replace Manned Platforms

•Recommended System of Systems Enabling SEA BASING and SEA STRIKE in 200 nm by 200 nm Littoral Operation Area in 2020 Timeframe

- Consists of Unmanned/Manned Vehicle Ratio of Approximately 1.5 to 1
- Utilizes Distributed Communications with 100nm Physical Platform Distribution
- Employs Decentralized Command & Control Structure
- Is Cost Effective Relative to Other Alternatives

• Distributed Communications

- Faster Dissemination of Information
- Minimum Impact on Throughput with Node Failures

• Decentralized Command and Control

- Shorter Reaction Times
- Less Network Demand
- Single C2 Node Failure Avoidance
- 100 nm Platform Distribution
 - -Superior Overall Performance

- Family and Friends
- Project Advisor Dr. Huynh
- Military Advisor– CAPT Kline
- Supporting Temasek Defense Systems Institute Teams
- Department of Defense Organizations and Defense Industry
- Professors

Questions and Answers

Questions May Be Reserved for the Break Out Session at 1300 in the Bullard Hall Computer Lab (If So Desired)

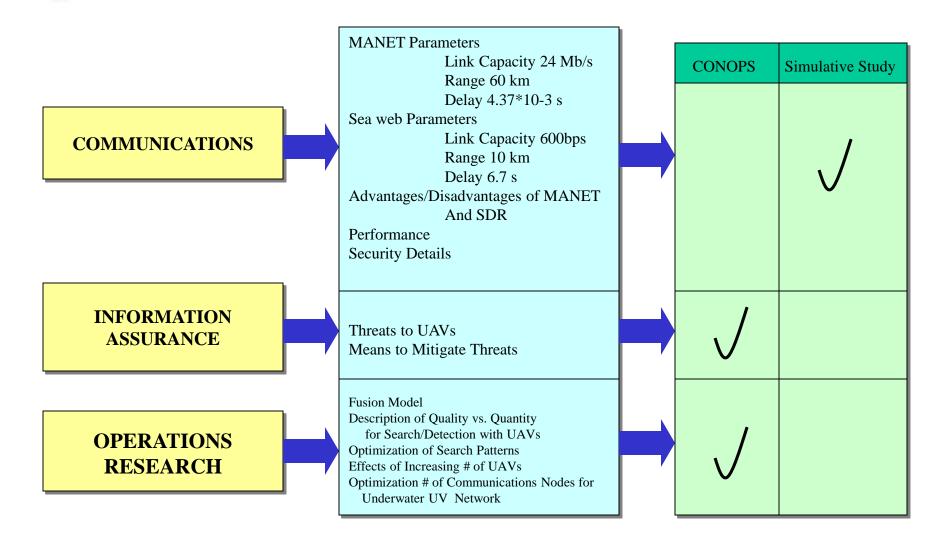
• Report and Presentation Will Be Available After 18 June 2004

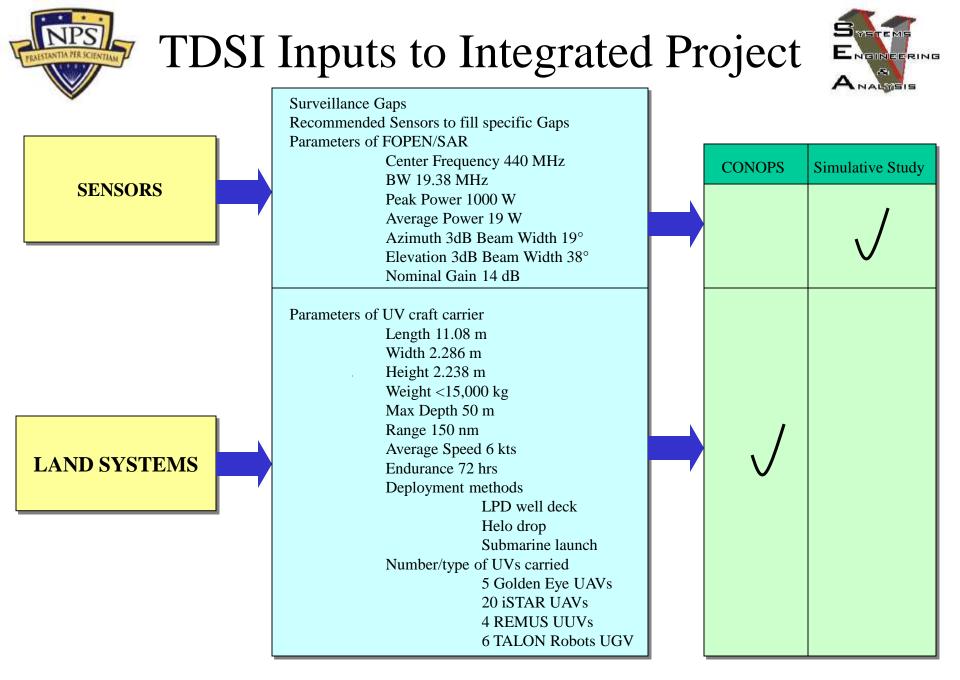
http://www.nps.navy.mil/SEA/MaritimeDominance

Backup Slides

Differences in Architectures

Architecture 1	Architecture 2	Architecture 3
CVN	CVN	CVN
SH-60	SH-60	SH-60
E-3 AWACS	E-3 AWACS	E-3 AWACS
CG	CG	DDX
DDG	DDG	CGX
SSN	SSN	Insertion UUV
E2-C	E2-C	Multi-Mission USV
F/A-18	F/A-18	Strik UAV
E-8 JSTARS	E-8 JSTARS	Medium-Sized Multi-Mission UAV
P-3	LCS	LCS
CH-53	MIW UUV	MIW UUV
MH-53	ASW UUV	ASW UUV
F-14	JSF	JSF
S-3	Large Surveillance UAVs	Large Surveillance UAVs
E/A-6B	Medium-Sized Surveillance UAVs	Medium-Sized Surveillance UAVs
AH-1	Small Surveillance UAVs	Small Surveillance UAVs
B-2	F-16	
B-52	F/A-22	
F-117	Multi-Mission Aircraft	

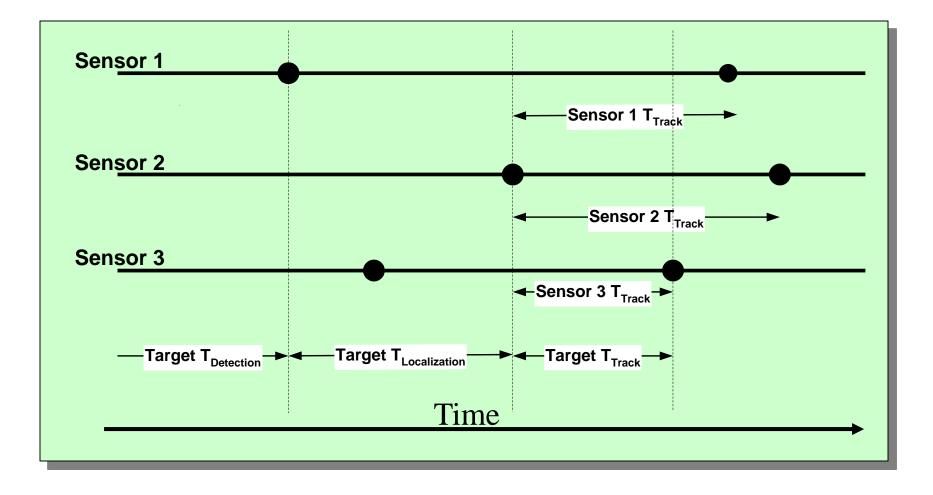

All Architectures


Arch1 and Arch 2

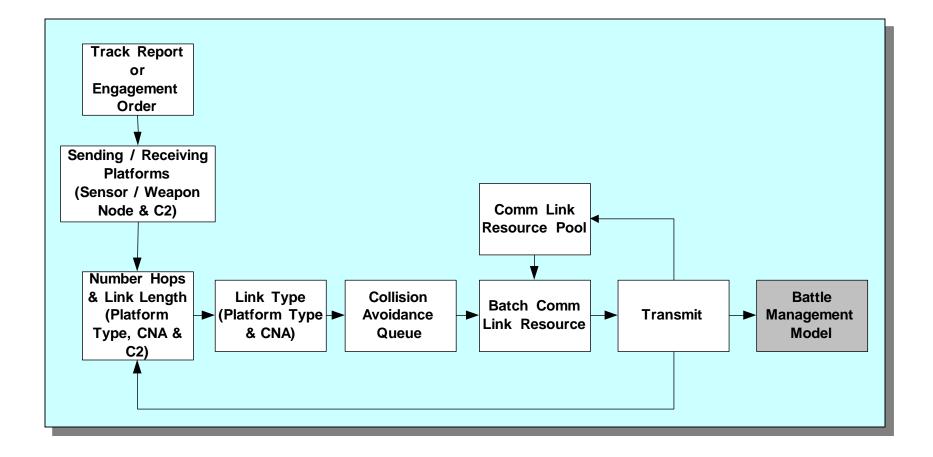
Arch 2 and Arch 3

TDSI Inputs to Integrated Project

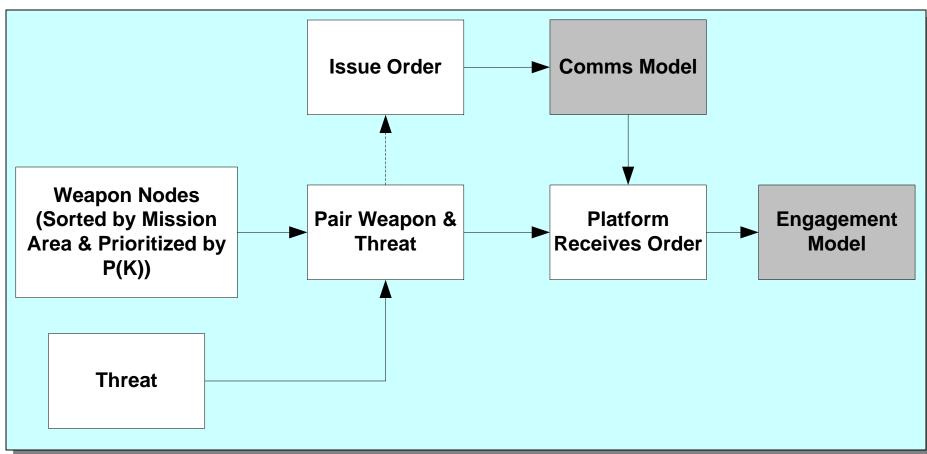
- Visibility and Management of Operating and Support Costs (VAMOSC) Database from NCCA
- Air Force Total Ownership Cost (AFTOC) Database from AFCAA
- Operating and Support Management Information System (OSMIS) Database from USACEAC
- Jane's Online
- Navy and Air Force Online Fact Files
- Federation of American Scientists (FAS)
- Defense Automated Cost Information System (DACIMS) Database from DCARC

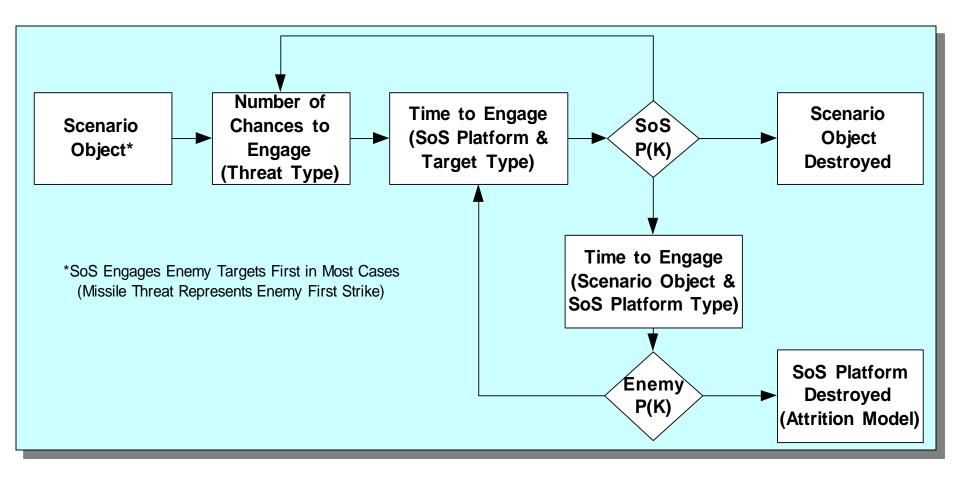

Platform Cost Assumptions

- O&S Costs for USVs and UUVs Not Available
- Total Ownership Costs (TOC) Based on 10 year Service Life



Surveillance Algorithm





Engagement Algorithm

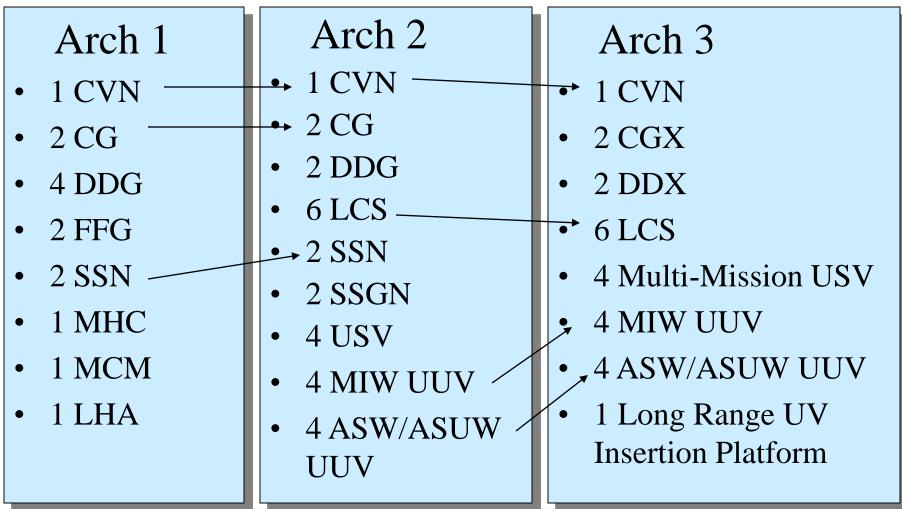
Bounded and Weighted VSD

- Maritime Dominance
 - a. Surveillance (.3)
 - i. Detection (.6 / .18)
 - 1. Coverage Capability (.4 / .072)
 - a. Average Time to Establish Complete Area Coverage
 - b. Ratio Area Covered / Total Search Area
 - c. Coverage Factor (Confidence)
 - 2. Probability of Detection (.6 / .108)
 - a. Average System Probability of Detection
 - ii. Tracking (.4 / .12)
 - 1. Tracking Capability (1 / .12)
 - a. Ratio Contacts of Interest (COI) tracked / Total COI
 - b. Average Number of Visits per COI
 - b. Threat Analysis and Evaluation (.2)
 - i. Identification (.7 / .14)
 - 1. ID Capability (.6 / .084)
 - a. Ratio COI's ID'd / Total COI
 - 2. Probability of False ID (.4 / .056)
 - a. Ratio of Incorrect ID's / Total ID's

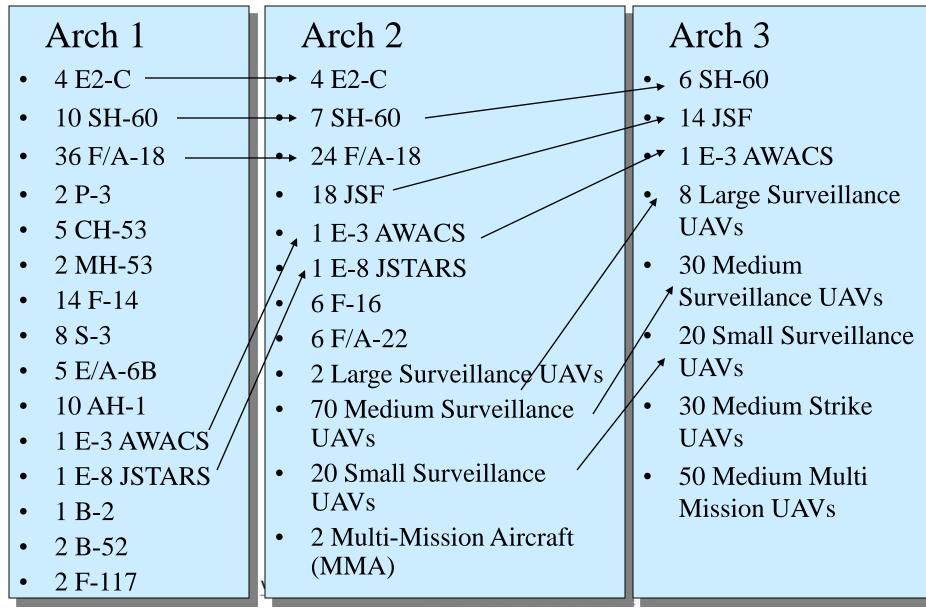
- ii. Minimize Risk (.3 / .06)
 - 1. Reduced Exposure to Risk Capability (1 / .06)
 - a. Ratio of Personnel Exposed to Risk / Total Personnel
 - b. Ratio of Casualties / Total Personnel
- c. Battle Management (.2)
 - i. Recognized Maritime Picture (RMP) (.6 / .12)
 - 1. RMP Capability (1 / .12)
 - a. Average Time to Establish 80% of RMP
 - b Ratio Correct COI's ID'd / Total COI
 - ii. Maximize Communication (.4 / .08)
 - 1. Communication Capability (1 / .08)
 - a. Ratio of Number of Assets Lost **Communications / Total Assets**
- d. Engagement (.3)
 - i. Destroy / Disable Targets (.4 / .12)
 - 1. Engagement Capability (1 / .12)
 - a. Average Time to Kill 80% of Targets
 - b. Ratio of Targets Engaged / Total Targets
 - ii. Endure Combat (.6 / .18)
 - 1. Endurance Capability (1 / .18)
 - a. Ratio of Friendly Assets Survived / Total SoS Assets
 - b. Ratio of Enemy Assets Survived / Total **Enemy Assets**

Assumptions and Constraints

- Calculations were done by approximating relative sizes of the UAVs to the manned systems they would be replacing.
- The calculations on the number UAVs capable of fitting on a carrier is based off the size of the predator UAV.
- We assumed that it would be possible to fold the wings in 2020 and that they would be capable of launching off and landing onto a carrier


UV Calculations

Arch 3								Arch 2				
		Wingspan	Length	Area	Total					Wingspan	Length	Area
	Med Surveillance	40						58	Med Surveillance	40		
25	Med Strike	50		1500				14	JSF	30	45	
	Med Multi	48	27	1296	32400				E-2	42	60	2520
	JSF	30	45	1350	18900			7	Sh-60	15		
4	E-2	42	60	2520	10080			24	FA 18	29	55	1595
7	Sh-60	15	50	750	5250							
					129130	sq ft						
Current Carrier												
				Area	Total							
8	S-3	39			16536							
	F/A-18 E/F	29	55	1595	57420							
	E-2	42			10080							
14	F-14	38	62	2356	32984							
5	EA-6B	30	59	1770	8850							
7	Sh-60	15	50	750	5250							
					131120	sq ft	Approx. Carrier space					
	h Wing Fold the win	gspan is appr	oxamatly 2	2/3 the size								
Arch 3								Arch 2				
		Wingspan		Area	Total					Wingspan		Area
	Med Surveillance	32						-	Med Surveillance	30		
	Med Strike	32							JSF	30		
	Med Multi	32							E-2	42		
	JSF	30							Sh-60	15		
	E-2	42						24	FA 18	29	55	1595
7	Sh-60	15	50	750	5250							
					129270	sq ft						
			26.66667	17.7777778								

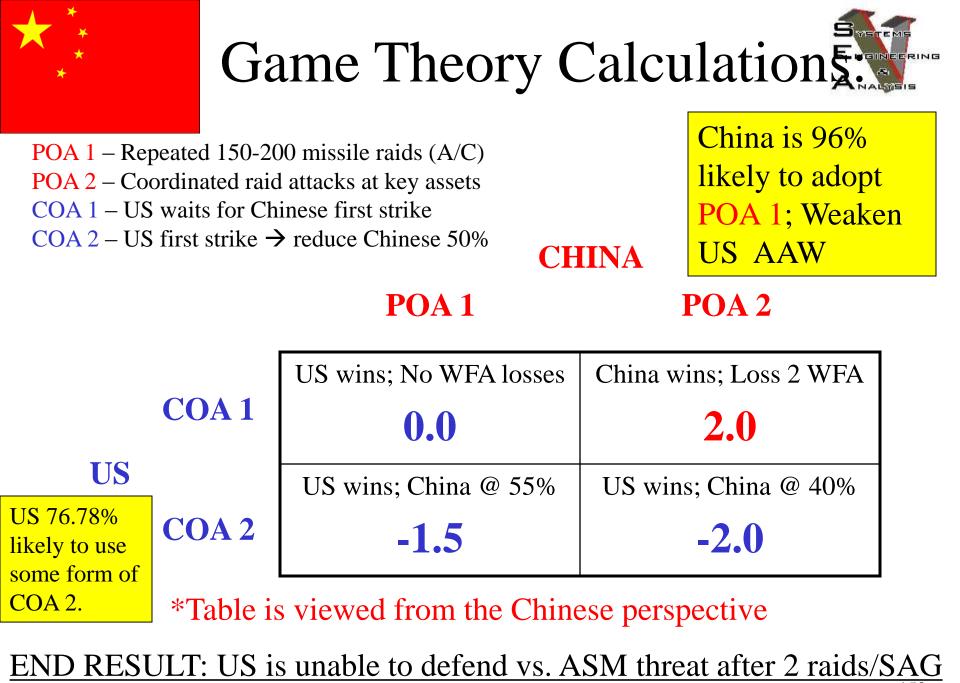

Changes In Sub & Surface Vessels

Changes In Air Assets

Land Forces Estimate in JAOA

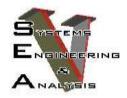
- Estimate of PRC forces
 - 3 Infantry Divisions = 45K
 - -1 Arty Division = 15K
 - Total = 60K
- Estimate of JUMPVISA Coalition forces

- 1 MEB	=	17K
- 1 OFB	=	3K
– 1 Airborne Division	=	12K
 – 1 Infantry Division 	=	11K
– Total	=	43K



Game Theory Definitions

IMPACT Table Breakdown


Mission Area Def		
1	TBMD	
2	AAW	
3	Land Warfare	
-		
4	SUW/USW	
5	LOC	

NPS	7	Probability of Kill:			Non-selective			
	Displacement	Multiple	Number	Wt Mult	P9H)	Hits to Kill	AP(k)	
LPD-17	25000	24.57	6.00	147.43	0.669261	5	0.223087	
CVN	97,000	27.71	1.00	27.71	0.125811	5	0.041937	
CG	9,000	2.57	4.00	10.29	0.046693	2	0.006226	
DDG	8,500	2.43	9.00	21.86	0.099222	2	0.01323	
LCS	3,500	1.00	13.00	13.00	0.059014	1	0.003934	
Totals:	204,000	58.28571	33	220.2857	1	15	0.288413	
P(MA) =	0.85							
P(MH) =								
	P(SHMK):							
Ex-War	0.0061							
CVN	0.0054							
CG	0.15							
DDG	0.15							
LCS	0.365							
P(MA) =	Probability of Missile Acquire							
P(MH) =	Probability of Missile Hit ; standard measure of missile accuracy							
P(SHMK) =	Probability of Single Hit Missile Hill (per ship class)							
Multiple =	The number of times that a ship is more likely to be targeted than an LCS positioned near it based on size difference							
Number =	Number of ships in that class that are in the targeting area simultaneously							
Wt Mult =	Likelihood that a particular ship class will be target based on the number of ships in that class that are present							
P(H) =	Weighted probability of hit for each ship class based on the numbers of that ship class in the area							
Hits to Kill =	Number of hits required per class of ship to achieve mission kill Wayne F. Meyer Institute of Systems Engineering 149						149	
P(k) =	Weighted total probability, adjusted by number of ships per class present, of mission kill per class CA							

Modeling Tools Description

Higher Level Models Build on Lower Level Models

Excel/SWAT

- Based on Physical Laws
 - High Fidelity
 - Limited Breadth
- Establishes
 Fundamental Physical
 Characteristics for all
 Other Models

ALWSE-MC

- Implements Concepts of Operation
 - Less Depth
 - Consideration of "Real World" Effects
 - Application of Tactical Environment
- Provides Performance Characteristics for Higher Level Models

ExtendTM

- Implements Process
 Algorithms to
 Provide
 - Increased Breadth
 - Abstraction
 - Assessment of
 Multiple
 Configurations of
 Variable
 Parameters
- Produces
 Comprehensive and Quantitative Results for Decision Making

Wayne E. Meyer Institute of Systems Engineering

Modeling Outputs

Excel/SWAT

• Engineering Physics Based Modeling Performed to Create Database Tables and Lateral Range Detection Curves for Sensors/Threats Pairs

ALWSE-MC

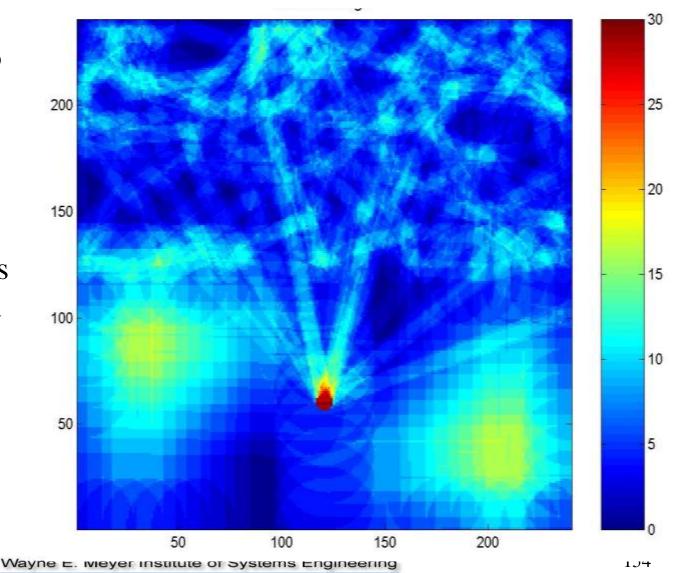
 Platform/Combat System Modeling Performed to Incorporate Operational Implementation of Sensors/Threats Pairs and Produce Time to Detection Data

ExtendTM

• Force/Theater Modeling Performed to Incorporate Multiple Architectural and Scenario Parameters and Provide the Necessary Outputs to Fulfill the Simulative Study Objectives

Carrier Analysis

- Used ALWSE-MC to evaluate the area coverage by payload of the TDSI Land Systems Unmanned Vehicle Carrier
- 10 nm x 10 nm
- 4 UUV (search speed 3 kts)
- 5 Crawler UGV (search speed 1.3 ft/sec)
- 20 iStar UAV (search speed 30 kts)
- 6 Goldeneye UAV (search speed 30 kts)
- Area split horizontally between water and land
- UUVs conducted ladder search of area, UAVs/UGVs conducted random search patterns

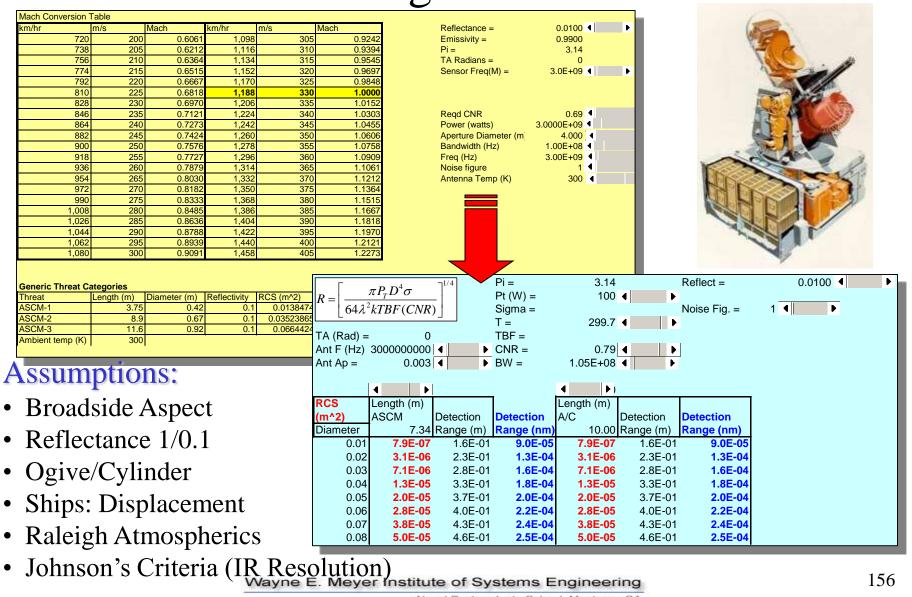

Area Covered

•Area divided into 25 ft x 25 ft squares

•Color scheme scaled according to number of times square was visited

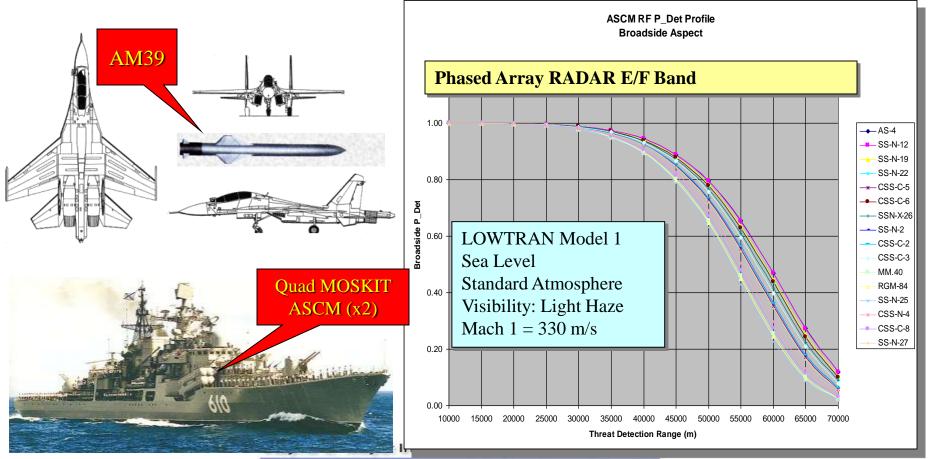
•98.43% area covered in 22 hrs (maximum endurance of UV)

Naval Postgraduate School, Monterey, CA


Results

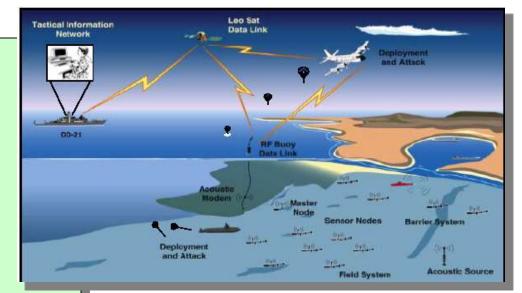
- Significant littoral surveillance capability can be achieved at distance with reduced risk to personnel
- Rapid, Modular Deployment options
- 150 nm operating range of Unmanned Vehicle Carrier
- 98.43% area (10 nm x 10 nm) covered in 22 hrs of operation

Engineering Models – **Threat Signature Tool**


Naval Postgraduate School, Monterey, CA

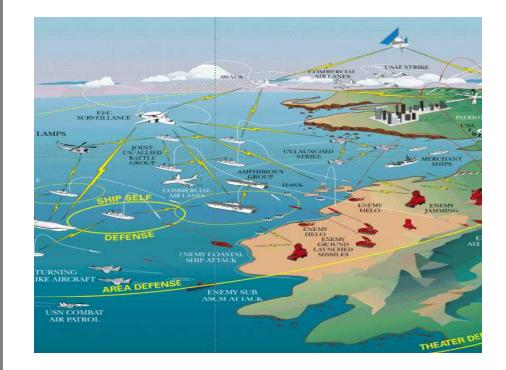
Engineering Models – Representative P_det Curves

Acoustic/RADAR/EO-IR Longitudinal Probability of Detection Curves
SA/SS/AS Envelopes Characterized By Unclassified Physics Models
Swerling II Detection Model / NVESD ACQUIRE Algorithm


Naval Postgraduate School, Monterey, CA

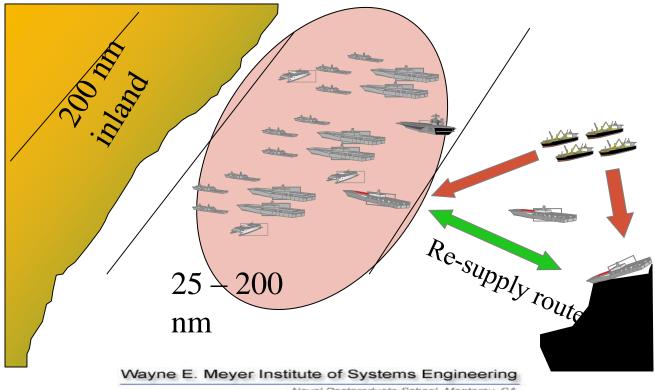
Concept of Operations 1

- Employment of UV Assets
 - Introduce Less
 Capable/less Costly
 Assets First
 - More Advanced Assets
 Follow
- Search Pattern
 - Alternating Waffle Search

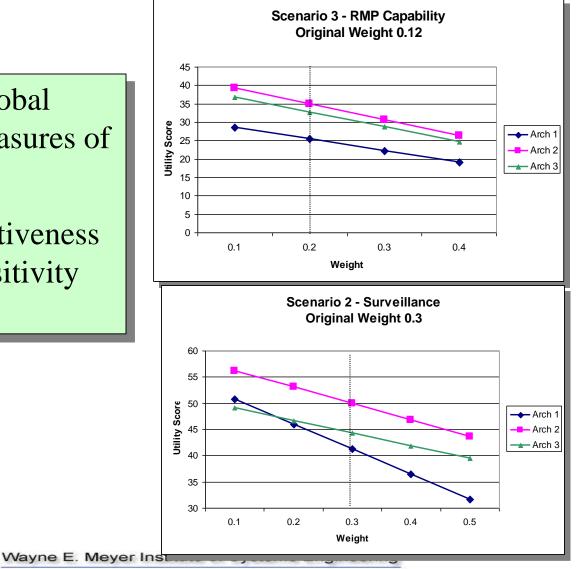

stems Engineering

Concept of Operations 2

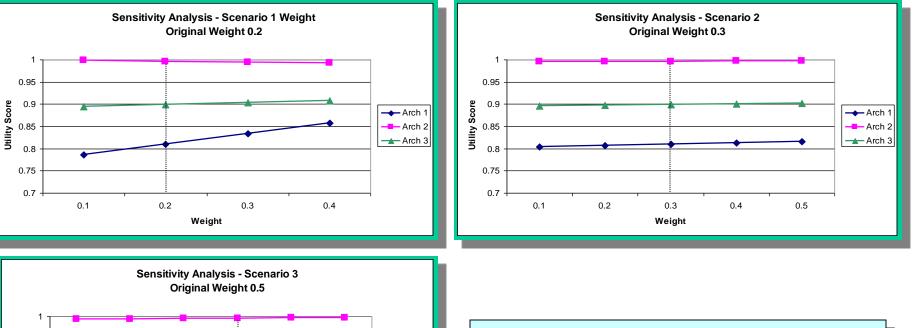
- Distributed Communications
 - All Platforms Have Communication Capability
- Decentralized Command and Control
 - Performed by Manned Platforms

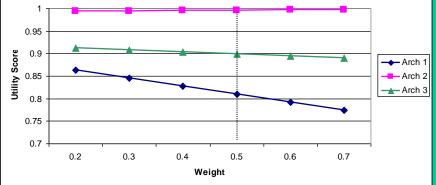


Concept of Operations 3


- Medium Platform Distribution
 - 150 Nautical Mile Distance

•Insensitivity of Global Weights within Measures of Effectiveness

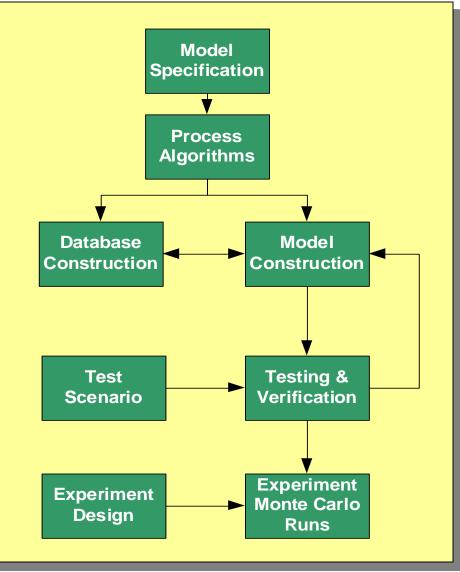

•Measures of Effectiveness Were Within Insensitivity Range



Naval Postgraduate School, Monterey, CA

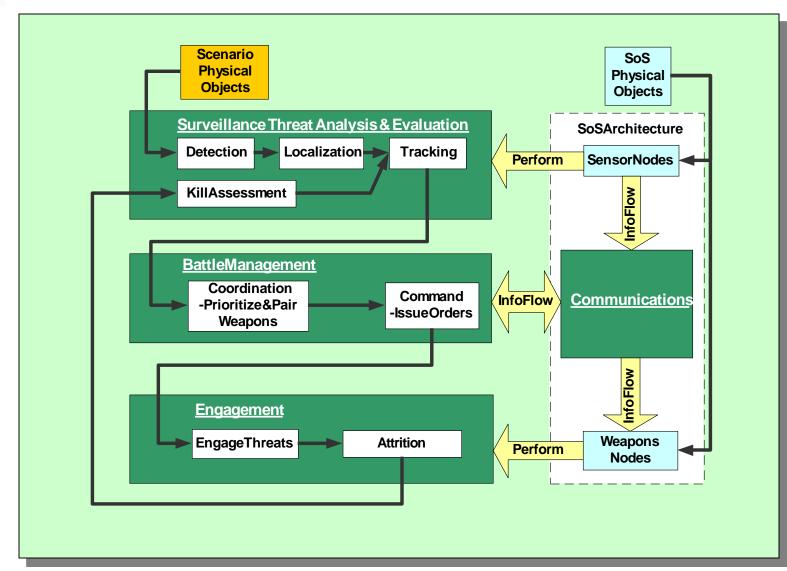
Scenario Weight Sensitivity Analysis BU

Insensitivity of Architecture Selection to Scenario Weights


Wayne E. Meyer Institute of Systems Engineering

ALMEIS

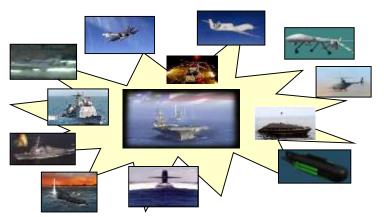
Model Development Process

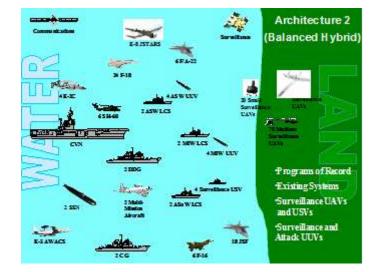

•Allowed Efficient Extend[™] Model Development in Compliance with Schedule

•Focused and Standardized Programmer/Modeler Efforts

•Coordinated Modeling Efforts With Data Collectors and Post-Processors

ExtendTM Model Design

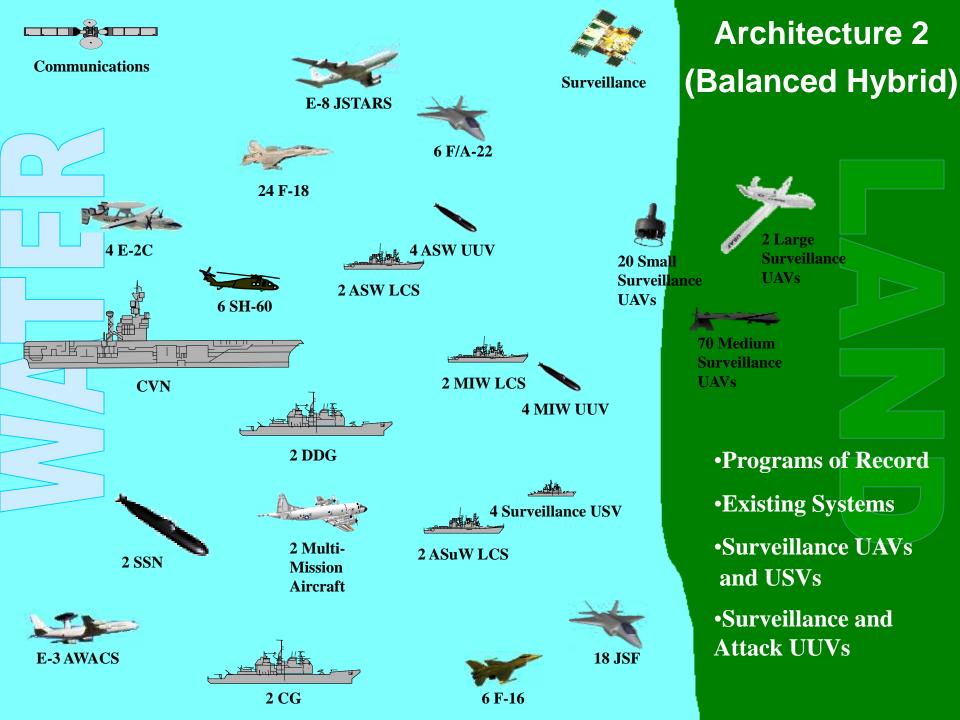



Recommended System of Systems for Maritime Dominance in Littorals

•Unmanned Vehicles Complement But Cannot Replace Manned Platforms

•Recommended System of Systems Enabling SEA BASING and SEA STRIKE in 200 nm by 200 nm Littoral Operation Area in 2020 Timeframe

- Consists of Unmanned/Manned Vehicle Ratio of Approximately 1.5 to 1
- Utilizes Distributed Communications with 100nm Physical Platform Distribution
- Employs Decentralized Command & Control Structure
- Is Cost Effective Relative to Other Alternatives



• Distributed Communications

- Faster Dissemination of Information
- Minimum Impact on Throughput with Node Failures

• Decentralized Command and Control

- Shorter Reaction Times
- Less Network Demand
- Single C2 Node Failure Avoidance
- 100 nm Platform Distribution
 - -Superior Overall Performance

