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INTRODUCTION
The term “intelligence, surveillance, and reconnais-

sance” (ISR) encompasses a variety of activities related 
to planning and operating sensors and related systems 
that collect, process, exploit, and disseminate data in 
support of military operations. ISR data can take many 

forms, including electronic signals, message traffic from 
various modes of communication, a wide variety of still 
and motion imagery [e.g., panchromatic, multispectral, 
hyperspectral, infrared, wide-area motion imagery, and 
full-motion video (FMV)], and a wide variety of addi-

ntelligence, surveillance, and reconnaissance (ISR) encompasses activities 
related to planning and operating sensors and systems that collect, process, 

exploit, and disseminate data in support of military operations. As the number 
and diversity of sensing assets continues to expand, human operators are less able 

to effectively manage, control, and exploit the ISR ensemble. Automated support for 
processing sensor data and controlling sensor assets can relieve the burden on human 
operators, particularly in dynamic environments, where it is essential to react quickly to 
information. Our approach is to apply principles of feedback control to ISR operations, 
“closing the loop” from sensor collections through automated processing to ISR asset 
control. Closed-loop collaborative ISR (CLCISR) is a feedback process that continually 
reallocates ISR resources to respond to changing conditions, maximize the relevance of 
data collected, and reduce errors and uncertainty about a tactical commander's situa-
tion of interest. APL has developed a CLCISR prototype that dynamically tasks a diverse 
ensemble of ISR platforms and sensors in a closed feedback loop with an upstream 
data fusion process that combines information to produce an accurate and current 
tactical picture. This article introduces the CLCISR concept and details the primary 
technical elements, applications, and APL’s current research directions.
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toward a more time-critical role for ISR in tactical opera-
tions, and the demand for greater accuracy, precision, and 
continuous surveillance coverage with faster delivery of 
reconnaissance information, is rapidly increasing.

Attempting to meet this demand, the U.S. military 
has acquired a diverse ensemble of spaceborne, airborne 
(manned and unmanned), and surface-based ISR 
assets that it currently operates in theaters such as 
Afghanistan. Moreover, it envisions a future layered 
heterogeneous sensing environment including dedicated 
traditional ISR assets such as U-2 Dragon Lady, RC-135 
Rivet Joint, EP-3 Orion, Guardrail Common Sensor, 
E-8 Joint Surveillance Target Attack Radar System 
(JSTARS), Littoral Surveillance Radar System (LSRS), 
RQ-4 Global Hawk, MQ-1 Predator, and MQ-9 Reaper; 
small unmanned systems organic to tactical units such as 
ScanEagle, Shadow, and Raven; and attack systems such 
as F-35 Lightning II, F-22 Raptor, and B-2 Spirit equipped 
with a variety of highly capable imaging and electronic 
support sensors (Fig. 2). Each platform and sensor type 
has unique capabilities, strengths, and weaknesses.

The U.S. military and Congress recognize the need 
for agile and synergistic employment of the full spec-
trum of assets in such an ISR environment.1–5 Currently, 
however, ISR assets are tasked and exploited in self-con-
tained enterprises, often referred to as “stovepipes,” each 
of which is highly specialized to a particular ISR asset, 

tional measurements and signals. These data can come 
from a variety of sources including satellites, manned 
and unmanned aircraft, aerostats, ground-based and 
sea-based collection systems, and human intelligence 
sources. Some unmanned aircraft are as large as jet 
fighters; others are as small as radio-controlled model 
airplanes. ISR activities provide critical support across 
the full range of military operations and provide infor-
mation to battlefield commanders to understand and 
make decisions related to enemy activity and threats.

Many operational sensor systems and much of the 
processing of their data were designed to support deci-
sion makers at the strategic and operational levels. This 
approach was effective during the Cold War years when 
the Soviet Union was the principal threat to the United 
States and its deployed forces. But it has been less effec-
tive during recent conflicts such as those in Kosovo, 
Afghanistan, and Iraq, where fleeting and disguised 
targets require significantly greater speed and agility in 
operating and managing ISR assets. 

In recent conflicts, warfighters have increasingly used 
information from ISR systems to support tactical opera-
tions by providing an accurate and up-to-date picture of 
a complex and rapidly changing battlefield environment 
(Fig. 1). The quality and timeliness of this tactical picture 
has become a critical factor in the effectiveness of the 
tactical commander’s decision-making process. The trend 

Figure 1. ISR support of tactical operations.
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The ISR enterprise must function efficiently and effec-
tively to provide the tactical commander with timely, 
accurate, and actionable information in the face of adver-
sary countermeasures and stressing environmental con-
ditions. Improved and automated ISR asset management 
and exploitation capabilities are needed to satisfy war-
fighter accuracy, persistence, and timeliness requirements; 
reduce operator workload; support tactical operations; 
satisfy mission objectives; and realize the full potential 
of the envisioned integrated network. These new capa-
bilities will correlate diverse data streams, dynamically 
allocate resources among competing priorities, achieve 
the desired synergistic employment, and marshal the full 
spectrum of assets against a variety of missions.7 

Closed-Loop Collaborative ISR Resource Management 
Concept

Achieving the envisioned ISR capability involves the 
interplay of several key concepts:

• Fusion of sensor data. Exploiting the synergies of 
complementary sensors demands that sensor data 
be shared and combined (fused) in a manner that 
extracts useful information from the synergistic data 
collections.

• Coordinated control. Without coordinated control 
of sensor actions, exploitation of synergy in sensor 
data is merely opportunistic. Achieving the most 
out of any sensor data fusion process requires coordi-

data type, application, or military domain and does not 
systematically interact with other such stovepipes. This 
approach fails to exploit complementary capabilities and 
opportunities for collaboration. Moreover, the ISR task-
ing, processing, exploitation, and dissemination process 
is generally divorced from the rapidly evolving tactical 
picture and end-user need (e.g., theater commander or 
exploitation system operator). Consequently, the U.S. 
military’s combatant commands consistently report ISR 
shortfalls, coverage gaps, and failure to find or track high-
value targets, despite the rapidly increasing investment 
in and deployment of a wide variety of new ISR assets.

The term “collection management” refers to the 
planning and orchestration of the ensemble of available 
ISR assets to best satisfy the intelligence requirements 
of the military operation. Traditionally, ISR collection 
management operates on a 24-hour air tasking order 
cycle.6 Ad hoc tasking procedures are applied to pros-
ecute time-sensitive targets or respond to events that 
occur during the plan execution cycle. This is primarily 
a manual process requiring frequent or continual input 
from experienced operators. It is typical for a single 
ISR asset to require multiple operators and analysts to 
employ and exploit it effectively. However, in realistic 
operational scenarios, the capacity of human opera-
tors and analysts to make asset management decisions 
and interpret the available information can be severely 
challenged by the fast pace of operations, the enormous 
volume of incoming sensor data, and the sheer number 
of decision variables involved to effectively task and 
control a large number of diverse platforms and sensors.
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Figure 2. Examples of airborne ISR platforms: unmanned (left) and manned traditional and nontraditional (right).



A. J. NEWMAN AND J. T. DESENA

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 31, NUMBER 3 (2013)186

any and all manual and automated processes that con-
sume data and produce information or situational aware-
ness. This includes data exploitation and fusion processes 
at several levels of awareness [e.g., Joint Directors of 
Laboratories (JDL) level 1 entity assessment, level 2 situ-
ation assessment, and level 3 impact assessment].8 These 
processes use appropriate physical and statistical models 
of the platforms, sensors, and environment to derive 
estimates. The control element represents any and all 
manual and automated processes that generate com-
mands for ISR assets to execute based on current and 
predicted information. This includes centralized, hierar-
chical, and distributed control processes. In addition to 
using models of the ISR resources and environment, the 
control processes also use models of the exploitation and 
fusion processes to inform their decisions.

Note that the control loop for ISR resource man-
agement is different than the classical plant-controller 
feedback loop.9 In the former, actions for sensing assets 
are selected to improve information about the states of 
a process that the controller is not influencing. In the 
latter, actions that directly affect the evolution of the 
states of a process or system are selected to stabilize, reg-
ulate, or otherwise control its behavior. The Feedback 
Loop Realization section presents additional details on 
the feedback loop realization for CLCISR.

Application of this concept to tactical ISR operations 
leads to development of a feedback process that continu-
ally reallocates ISR resources to respond to changing 
conditions, maximize the relevance of data collected, 
and reduce errors and uncertainty about a tactical com-
mander's situation of interest. This process continuously 
retasks platforms and sensors to maximize the value of 
information collected and direct ISR resources to resolve 
evolving ambiguities, appropriately weighted according 

to mission priorities. The relevant control 
problem is to dynamically regulate an adap-
tive data acquisition process to optimize 
performance criteria related to the quality 
of the tactical picture in the face of decep-
tion and changing conditions.

CLCISR represents a major shift in the 
way ISR assets are used and managed. ISR 
assets have traditionally been managed 
within independent command hierarchies 
that were not designed to support dynamic 
and shortened operational planning and exe-
cution cycles required for tactical operations. 
ISR platforms and sensors have traditionally 
been deployed so as to enhance intrinsic 
sensor performance but not for contribution 
to the combined information needs of com-
mand. By contrast, in the CLCISR concept, 
assets are employed according to the tactical 
value of the information to be provided to 
the appropriate operational echelon within 

nated control with the deliberate intent of improv-
ing the output of the data fusion.

• Dynamic tasking. Relying on preplanned tasking 
(such as the 24-hour tasking order) limits the abil-
ity to respond to events that occur during the plan 
execution cycle and to prosecute time-sensitive tar-
gets. In addition, it limits tasks to those known at 
the time of planning, rather than considering all 
possible current tasks, and thus inhibits efficient use 
of sensor timeline. Dynamic tasking is essential to 
react quickly to current information and to avoid 
stale, suboptimal plans.

• Feedback control. It is well known that feedback is a 
key engineering principle for achieving robustness in 
the face of uncertainty. ISR missions are character-
ized by many sources of uncertainty related to tar-
gets, sensors, and environment. For this reason, ISR 
collection plans and the tactical ground picture go 
stale quickly; there is a rapidly diminishing value of 
information collected in support of tactical ground 
operations. Feedback of the tactical picture informa-
tion state is essential to guide ISR reconfiguration 
and retasking decisions.

A general closed-loop collaborative ISR (CLCISR) 
resource management and data exploitation concept, 
depicted in Fig. 3, addresses these key concepts in an 
integrated solution. The ISR resources element repre-
sents a heterogeneous ensemble of platform and sensor 
assets that execute motion and sensing commands and 
produce data of various types. They operate in an envi-
ronment that includes the entities under surveillance 
as well as factors that influence their behavior, perfor-
mance, and output. The processing element represents 
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Figure 3. CLCISR resource management and data exploitation concept. 
(Adapted from Ref. 23.)



CLOSED-LOOP COLLABORATIVE ISR RESOURCE MANAGEMENT

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 31, NUMBER 3 (2013) 187    

sources to produce new information and inferences and 
achieve more complete, clear, precise, accurate, and 
timely estimates of the unknown quantities than could 
be achieved by the use of a single source alone (see 
Newman and Mitzel, in this issue, and Ref. 10).

Research and development in the field of ISR resource 
management has been increasing in recent years. Com-
prehensive reviews of the various technical problems and 
issues can be found in Refs. 11–14. Effective and efficient 
employment of ISR assets involves a spectrum of relevant 
functions at different scales, such as mission planning 
(e.g., developing target decks and assigning priorities), 
resource deployment (e.g., assigning assets to different 
theaters or areas of responsibility), platform motion plan-
ning (e.g., orbit definition or dynamic routing), sensor 
scheduling (e.g., assigning sensor observations to targets), 
and low-level sensor waveform control (e.g., for multi-
mode radars). The work described in this article focuses 
on tactical-level asset employment (platform routing and 
sensor scheduling). It assumes that the available ensemble 
of ISR assets has been prescribed and that the platforms 
and sensors are capable of executing the required motion, 
pointing, and mode-switching commands.

History and Context of CLCISR Development 
APL has been active in CLCISR research and devel-

opment since the early 2000s. The current work traces 
back to the Effects-Driven Knowledge Management 
System for Command, Control, Communications, Com-
puters, ISR, and Targeting internal research and develop-
ment (IR&D) project led by Dr. David W. Porter during 
2001–2003. In that project, APL developed the initial 
concept for an ISR retasking controller inspired by the 
anticipated dynamic sensor tasking needs of APL’s Global 
Net-Centric Surveillance and Targeting (GNCST) pro-
gram. The Tactically Responsive ISR Management 
(TRIM) IR&D project led by Dr. Andrew J. Newman 
during 2003–2006 built on the initial concept and devel-
oped a software prototype ISR retasking controller15 that 
was applied to the problem of detecting, tracking, and 
identifying mobile ground threats using a mix of theater 
and national ISR assets. The TRIM prototype was dem-
onstrated using simulations based on scenarios motivated 
by APL’s GNCST and Dynamic Time Critical Warfight-
ing Capability programs.16 However, it did not fully real-
ize the closed-loop architecture because it used a static 
prediction model of the fusion process in the feedback 
loop rather than an operational multisensor fusion pro-
cess. The TRIM IR&D project won the APL Hart Prize 
for IR&D in the Development category in 2006. 

The Precision Engagement of Moving Ground Targets 
(PEMT) IR&D project led by Dr. Andrew J. Newman 
during 2006–2009 developed a complete software proto-
type realization of the CLCISR architecture,17, 18 includ-
ing an automated resource manager for multiple airborne 

timelines consistent with the operational command 
tempo. Moreover, the diverse sensor ensemble is man-
aged as an integrated and coordinated system to enable 
gains in effectiveness, productivity, and timeliness that 
cannot be achieved using legacy practices. By treating 
diverse platforms and sensors as an integrated ISR enter-
prise, CLCISR opportunistically exploits the strengths 
and mitigates the weaknesses of the different assets and 
provides an effective counter to adversary denial and 
deception techniques. 

The CLCISR approach involves the processing of very 
high volumes of sensor data and the continuous evalu-
ation of a very large number of decision variables that 
grows quickly with the number of sensors, the number 
of targets, and desired precision. In most situations, this 
will severely stress human operators relying on manually 
intensive tools and techniques. A semiautomated or fully 
automated closed-loop process that allows the operator 
to manage the activity is required to satisfy the rapidly 
changing information needs of tactical operations. 

Moreover, the need is magnified when the ISR ensem-
ble is coupled with an automated upstream data fusion 
(UDF) process, such as one of those under development 
by APL (see the article by Newman and Mitzel, in this 
issue), where sensor tasking can have a strong effect on 
the performance of the data fusion. In such a case, closing 
the loop between the data fusion process and the sensors 
that feed it via automated dynamic resource management 
can help exploit the full capabilities of the data fusion. 
CLCISR has the potential to be an important enabler for 
APL’s UDF capability and to dramatically enhance the 
U.S. military’s employment of its rapidly increasing and 
diverse inventory of ISR platforms and sensors.

CLCISR Scope and Assumptions
APL’s work in CLCISR resource management 

addresses the critical challenge of effectively employing 
and exploiting the U.S. military’s rapidly growing and 
diversifying ISR capabilities in support of tactical opera-
tions under challenging and uncertain battlefield condi-
tions. The goal can be stated in general terms as one of 
employing the available ISR resources to maximize their 
efficiency and productivity to satisfy commanders’ infor-
mation needs. Translating these general performance 
criteria to operationally relevant and quantifiable opti-
mization figures of merit is one of the key problems to 
realizing a useful CLCISR capability.

This article defines the value of information with 
respect to its contribution to a commander’s estimate of 
the current picture of the battlespace but does not go 
further in addressing the problem of determining util-
ity of information with respect to overall mission effec-
tiveness. Moreover, the article assumes a framework in 
which such tactical picture estimates are derived through 
data fusion techniques that combine data from multiple 
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DESIGN OVERVIEW AND PRIMARY TECHNICAL 
ELEMENTS

CLCISR Design Overview
Technical Foundations

The technical foundations of the CLCISR approach 
are sequential decision theory, stochastic control theory, 
and information theory. The fundamental ISR resource 
management problem is a sequential decision problem in 
the presence of uncertainty, where the sequence of deci-
sions influences the information that is acquired about 
the underlying process or evolving situation. Sequential 
decision theory and stochastic control theory provide 
a framework for optimal decision making concerning 
how to steer, point, and otherwise use the available ISR 
platforms and sensors to acquire information where the 
outcome of any decision or control action is uncertain.27 
Information theory provides a framework for quantifying 
the information that is gained through sensor observa-
tions and lost over time as the situation evolves without 
being observed.28

The core elements of an applicable formal probabi-
listic framework are states, measurements, actions, and 
reward. The states represent the unknown and possibly 
evolving quantities of interest that describe the tacti-
cal situation (e.g., target presence, position, class, or 
intent). The measurements represent observed quanti-
ties of interest (e.g., azimuth angle, slant range, bright-
ness, signal frequency, or signal time of arrival). They 
are state dependent and modeled statistically. In certain 
cases measurements can correspond directly to states, 
but in general, states can be inferred from measurements 
only via some estimation process. Sources of uncertainty 
include sensor noise and bias error, platform dynamics, 
target motion, variations in clutter and background, 
occlusions, weather, illumination, and other environ-
mental factors. To differentiate between the actual and 
estimated or inferred states, the term “information state” 
is used to refer to the ISR system’s current knowledge or 
representation of the actual states. 

The actions correspond to platform and sensor com-
mands that influence actual or potential measurements. 
For example, an action to slew a radar in the direction of 
a particular target can result in a measurement of range 
to target (with some error), whereas an action to turn an 
airborne platform to a new trajectory can result in the 
potential to observe a target not otherwise in view (with 
some probability of success). Each action causes an infor-
mation state transition with some error or uncertainty in 
the actual outcome. Actions are constrained by platform 
maneuverability, airspace restrictions, occlusions, time 
windows of opportunity, sensor precision, communica-
tions bandwidth, power and fuel consumption, environ-
mental phenomena, and other physics of the situation 
(e.g., slew limits and signal loss). The reward quantifies 

platforms and an automated multiple-target tracker 
capable of supporting real-time closed-loop operation 
for scenarios with a modest number of sensor platforms 
and targets. The PEMT prototype was applied mainly 
to scenarios focused on controlling and coordinating 
teams of unmanned aerial vehicles (UAVs) to track and 
engage ground targets performing unpredictable maneu-
vers and operating in cluttered environments, such as 
urban areas. The project developed a closed-loop simula-
tion test bed integrated with APL’s Augmented Reality 
Environment at APL (ARENA) physics-based simula-
tion environment19 and demonstrated the closed-loop 
surveillance and tracking capability against a realistic 
simulated irregular warfare scenario in an urban area of 
Baghdad.20 The project also performed experiments that 
integrated the APL mission-level autonomy capability 
into the closed-loop implementation. 

The Closed-Loop Layered C4ISR (CLLC4ISR) IR&D 
project led by Jonathan T. DeSena during 2009–2012 
demonstrated a fully realized distributed, asynchronous, 
real-time CLCISR processing and control system. The 
project dramatically extended the algorithms, software 
prototype, and simulation test bed capabilities to vali-
date technical feasibility of the concept in more complex 
irregular warfare scenarios featuring a wider variety of 
ISR assets operating in a future layered ISR environ-
ment21 and more realistic operating constraints and bat-
tlespace conditions. The project demonstrations more 
fully take advantage of a variety of APL simulation capa-
bilities and present compelling illustrations of CLCISR 
benefits in realistic irregular warfare scenarios in the 
Kabul region of Afghanistan.22, 23 In addition, the proj-
ect implemented a decentralized control approach that 
gracefully degrades ISR performance as communications 
links degrade, yet still achieves performance equivalent 
to that achieved by the centralized approach when the 
network allows full communication connectivity.

In recent years, APL has transitioned capabilities 
developed under IR&D to government-sponsored pro-
grams. The Dynamic ISR Management Service (DIMS) 
project led by Ms. Teresa Fitzpatrick during 2009–2010 
and sponsored by Air Force Electronic Systems Center 
developed, deployed, demonstrated, and evaluated a 
dynamic ISR management decision aid provided as an 
application in a service-oriented architecture (SOA).24 
The Dynamic Space Surveillance Network Sensor Task-
ing for Space Situational Awareness project led by Dr. Eric 
Klatt during 2010–2012 and sponsored by the Air Force 
Research Laboratory Information Directorate developed 
a closed-loop dynamic sensor tasking prototype and 
demonstrated proof of concept for a capability that would 
support rapid decision making in space surveillance sce-
narios where the current deliberative, manually intensive 
process for tasking the U.S. Space Surveillance Network 
is insufficiently responsive, such as in response to space-
craft maneuvers, new launches, and lost objects.25, 26
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The relative importance to the mission of each target, 
spatial region, and piece of information at any given time 
is determined by a risk model (described in the Sensor 
Resource Manager section). The control policy then spec-
ifies platform and sensor retasking actions at each time 
step to maximize the aggregate value of information col-
lected (or, equivalently, minimize aggregate uncertainty 
or entropy) and maximize the aggregate expected mis-
sion risk reduction over the planning horizon.

The sequential decision process models the influence 
of the ISR platform and sensor information gathering 
actions on the unknown or uncertain quantities of inter-
est to the mission (e.g., target attributes). In many cases 
of interest, the state transitions of a decision process 
possess the Markov property, i.e., the new state depends 
on only the current state and the action and is condi-
tionally independent of all previous states and actions. 
In these cases, the sequential decision process is called 
a Markov decision process (MDP).29 Moreover, in ISR 
applications, it is often the case that sensor observations 
do not exactly determine the current system state, i.e., 
there is residual uncertainty due to the various sources 
of error. This class of problem is called a partially observ-
able MDP (POMDP). There is a vast literature concern-
ing MDP, POMDP, and dynamic programming and 
approximate dynamic programming solution approaches 
(e.g., Ref. 30). APL CLCISR prototype development 
efforts apply some of these techniques as described in 
the Policy Optimization section.

Design Principles
The key design principles and technical challenges 

for implementing an effective and practical CLCISR 
capability that applies to the scenarios of interest to 
APL sponsors are 

• applying the principles of feedback control to ISR 
operations by regulating aggregate uncertainty via 
feedback of a suitable information state;

• orchestrating and coordinating heterogeneous 
ensembles of ISR platforms and sensors to best 
exploit the strengths and mitigate the relative weak-
nesses of different ISR systems and modalities;

• concurrently optimizing and balancing attention 
among area coverage, surveillance persistence, and 
tracking, classification, and identification of multiple 
targets;

• trading current benefit against future cost and vice 
versa through nonmyopic (far-sighted) dynamic 
replanning; and

• enabling scalable real-time operation by apply-
ing principled approximations to maintain com-
putational tractability while meeting performance 
objectives.

the expected improvement in information known about 
the states (i.e., information state) derived from an action 
or sequence of actions and the consequent state transi-
tions and trajectories.

The notions of control policy and optimality are also 
needed to complete the framework. A control policy is a 
function that specifies the action given the information 
state. For example, one possible control policy would be to 
assign each sensor to its closest target (i.e., by geographic 
distance); another would be to assign sensor aimpoints 
to maximize the expected number of targets detected; 
another would be to assign each sensor to observe the 
fastest moving target within a certain distance; another 
would be to assign an imaging sensor if the target is 
stopped, or a radar sensor if the target is moving; another 
would be to minimize target track estimate covariance.

An objective function (or value function) is a func-
tion of the reward accumulated over stages and possibly 
modulated by factors of importance to the particular 
mission. For example, reward accrued on state informa-
tion for certain targets could be scaled higher or lower 
depending on their respective importance to the mis-
sion. As another example, it is common to apply a dis-
count factor that diminishes expected reward according 
to the time delay between the decision and actual execu-
tion of the action. An optimal control policy is one that 
maximizes the chosen objective function (or minimizes 
the corresponding cost function). 

A policy for sensor control is a mapping from the 
current information states to a feasible sensor tasking. 
Intuitively, a sensor control policy can be viewed as a 
table or a function that specifies which sensor action to 
take under different conditions. For example, a possible 
surveillance-based policy is to activate the sensor that 
makes maximum detection improvement; similarly, a 
tracking-based policy can be designed by choosing the 
sensor that minimizes the expected uncertainty for all 
ongoing tracks. Hence, the concept of a sensor control 
policy is very general and can be used to encode the 
desired mission objectives.

The fundamental engineering problems for CLCISR, 
therefore, are to

• formulate a suitable information-theoretic objective 
function that incorporates relevant mission-related 
factors; and 

• design tractable algorithms that compute an approx-
imately optimal control policy for a discrete time 
sequential decision process. 

The objective functions used for APL CLCISR pro-
totype implementations are based on measures of net 
information gain and expected mission risk reduction 
accumulated over a finite planning time horizon and 
scaled by time discount factors that reflect the dimin-
ished predictive value of state estimates over time.
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The ISR resource management problem suffers from 
a combinatorial explosion of decision variables. Specifi-
cally, computing the optimal control policy for a sequen-
tial decision process suffers from Bellman’s “curse of 
dimensionality” and is intractable for all but trivial prob-
lem sizes. However, the control algorithm must gener-
ate platform and sensor commands in a timely manner, 
which means that the method must be computationally 
tractable and able to terminate if necessary after achiev-
ing a good but suboptimal solution to keep latency 
below a suitable threshold. There are several classes of 
techniques used to achieve a computationally tractable 
method that scales to realistic scenarios of interest:

• Judiciously decompose the problem into subprob-
lems for which the couplings are relatively weak 
or can be mitigated. This can significantly reduce 
the dimensionality of the state space or action 
space. For example, despite the interdependencies of 
platform motion and sensor pointing, they can be 
controlled sequentially rather than jointly without 
a catastrophic sacrifice of performance. By using 
this approach, an algorithm would generate a plat-
form route segment and then the sensor pointing 
commands along that segment rather than gener-
ating the combined plan together. Note that fully 
decentralized cooperative autonomy approaches 
fall into this category. In these approaches, system-
level optimization is achieved through the emergent 
cooperative behavior of autonomous agents making 
decisions according to local beliefs and optimization 
criteria.31 Thus, the decomposition into subproblems 
is highly granular. This approach provides effective 
performance in many applications.

• Restrict or dynamically adjust the planning hori-
zon. For example, this can be accomplished by a 
greedy, short time-horizon or receding time-horizon 
algorithm.

• Optimize the policy for the MDP with respect to 
an approximation of the objective function. The 
idea is to obtain a policy that is nearly optimal with 
respect to the true objective function. For example, 
this can be accomplished by approximating the 
objective value for future time steps (referred to as 
the “value-to-go”) using policy rollout, off-line learn-
ing, or other techniques that substantially shrink 
the space of action sequences.

• Approximately optimize the policy for the MDP 
with respect to the true objective function. These 
techniques produce solutions that are suboptimal but 
still good enough and provide the flexibility to trade 
performance against latency by terminating the 
process when thresholds or deadlines are met. For 
example, stochastic optimization algorithms such as 

In realistic scenarios where demand from decision-
makers for information exceeds the capacity of ISR 
resources to produce it, there will be inherent trade-offs 
among persistence (temporal coverage), area or spatial 
coverage, and interrogation of individual targets. The 
ability to adjudicate among competing priorities requires 
a methodology that evaluates and ranks decisions based 
on aggregate benefits and costs. This can be accom-
plished by centralized global optimization, emergent 
cooperation among autonomous sensor nodes, or hybrid 
combinations. 

Moreover, the ability to optimize exploitation and 
employment of heterogeneous ISR ensembles to search, 
track, classify, and identify all areas and targets of interest 
requires the fusion and control processes to treat diverse 
data types and information attributes using a common 
mathematical and engineering framework. This is 
enabled by the use of multiple modality UDF techniques 
(see article by Newman and Mitzel, in this issue, and the 
Upstream Data Fusion section) and information-theoretic 
representations of sensing, dynamics of the environ-
ment, and reward.28 The CLCISR Prototype Realization 
and CLCISR Design Elements sections present additional 
details on the application of these techniques to CLCISR. 

The ability to optimize platform and sensor planning 
over a time horizon beyond the current time step is impor-
tant in situations where the information-based reward 
depends on time and the sequence of control actions 
executed. This is typically the case in the ISR scenarios 
of interest. Specifically, the reward evolves over time due 
primarily to sensor and target motion (relative and abso-
lute), which continually changes the sensor–target access 
(e.g., line-of-sight intervisibility and illumination) and 
view geometry (range and view angles) as the targets and 
sensors move with respect to each other, the earth, terrain 
features, other occlusions, the sun, and other changing 
phenomena that affect data collection. The dynamics are 
particularly exacerbated in the case of an aware adversary 
applying denial and deception techniques.

This situation suggests that a nonmyopic, or far-
sighted, approach that plans over an appropriate time 
horizon (e.g., a sequence of actions) will be superior to 
a greedy, myopic, or near-sighted approach that plans 
only for the current time step (e.g., a single action). This 
approach is analogous to a chess player planning sev-
eral moves ahead, accounting for the possible moves of 
his opponent at each stage, to gain an advantage. The 
planning horizon is selected (or dynamically adjusted) 
to account for current and future cost and reward while 
still supporting a tractable computation. The controller 
trades current cost for future reward and vice versa over 
the planning horizon and then slides the planning hori-
zon forward in time as it executes the plan. The Receding 
Time Horizon Control of MDP section presents additional 
details on the application of the receding time horizon 
control method to CLCISR. 
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situational complexity, situational entropic drag, and 
the processing characteristics of the system to optimize 
information processing and control of sensing assets. 

Prior work has focused primarily on myopic sensor 
management, i.e., optimizing over a single time step or 
very short planning horizon. Some results on nonmyo-
pic sensor management for simplified scenarios have 
appeared recently.41 The various ISR system optimization 
techniques have primarily been applied to ISR problems 
in the ground surveillance domain. However, several 
researchers have recently applied variations of these tech-
niques to sensor management for space surveillance.42–46

CLCISR Prototype Realization
Feedback Loop Realization

APL projects have realized the general CLCISR feed-
back loop depicted in Fig. 3 in prototype form for specific 
applications by developing automated data process-
ing and resource management algorithms and scenario 
simulations. APL CLCISR prototype implementations 
feature a number of common elements that are tailored 
for each particular application. The ISR resources and 
environment elements are realized by a set of scenario 
simulation components. The processing element and 
supporting models are realized by a set of UDF compo-
nents and a pseudo-track manager component. The con-
trol element and supporting models are realized by a set 
of dynamic resource manager components. The feedback 
loop realization and its core components are illustrated 
in Fig. 4 and described in the following subsections.

Scenario Simulation
The feedback loop is integrated and exercised within 

a simulation test bed as described in the Simulation Test 
Bed section. The scenario simulation consists of an inte-
grated set of software components providing a repre-
sentation of scenario truth and generation of synthetic 
sensor data. These components simulate essential ele-
ments of ISR scenarios including platform aerodynamics, 
satellite orbit propagation, sensor phenomenology, target 
dynamics, target features, natural and man-made terrain, 
background traffic, weather, sun illumination, and other 
factors influencing the time evolution of the scenario. A 
sensor simulator for each sensor modality generates syn-
thetic measurement data (including applicable random 
and bias error) for processing by fusion components. 

The current simulation capability includes gen-
eration of synthetic optical and infrared imagery and 
idealized radar contacts to support experiments and 
demonstrations based on typical ground and space sur-
veillance scenarios. The simulation test bed components 
and underlying algorithms are configurable, accepting 
parameter adjustments to support variations and experi-
ments. Additional details are contained in the Simula-
tion Test Bed section. 

particle swarm, evolutionary, genetic, and simulated 
annealing quickly converge to near-optimal solu-
tions, at which point they can be terminated and 
reset for the next planning time step.

• Apply heuristics and simplifications that are 
specific or tailored to the particular application. 
These techniques are typically designed to reduce 
the dimensionality of the state space or action space 
by taking advantage of an inherent characteristic 
of the problem. For example, the action space for 
dynamic sensor tasking may be limited to small per-
turbations of a nominal tasking plan approved by 
decision makers.

APL CLCISR prototype implementations use various 
combinations of these techniques as suited to the tempo 
and complexity of the particular application, e.g., coun-
ter enemy air defense, irregular warfare, or space surveil-
lance. The Policy Optimization section presents additional 
details on some of these techniques as applied to CLCISR.

Operational Practices and Prior Work
In practice, ISR planners and operators apply static 

optimization techniques to generate daily plans and 
rely on ad hoc retasking procedures for opportunistic 
or otherwise time-sensitive asset management. Current 
automated platform and sensor management tools pre-
dominantly apply to a single platform or sensor system 
and handle search, track, and classification functions 
separately. A number of researchers have recently pre-
sented approaches for controlling ISR assets or ensembles 
by using feedback of uncertainty or information derived 
from sensor data and dealing with the inherent intrac-
tability of the stochastic dynamic resource management 
problem. Some of these are listed and described below. 

Sinha et al.32, 33 presented algorithms using a Fisher 
information-based reward function for UAV path plan-
ning. Mahler and co-workers34, 35 have presented tech-
niques and principled approximations based on point 
process and random set theory, most prominently 
including the posterior expected number of targets 
method and its subsequent derivatives. Kreucher et al.36 
have presented techniques based on a particle filter rep-
resentation of the joint multitarget probability density 
(JMPD) and reward from information-theoretic diver-
gence metrics between prior and posterior JMPD. Stein 
et al.37 apply similar techniques using a Gaussian mix-
ture approximation of the multitarget probability density 
and a mutual information-based reward. Kalandros et 
al.38 have presented a covariance control technique for 
minimizing multiple-target tracking uncertainty. Yang 
et al.39 have presented a thorough analysis of sensor 
management performance measures derived from cova-
riance and information matrices. Scheidt and Schultz40 
have presented techniques for representing and using 
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Pseudo-Track Manager
The pseudo-track manager (PTM) is an automated 

software component that creates, destroys, and updates 
potential but unobserved tracks (i.e., pseudo-tracks) that 
represent the information gain available by discover-
ing previously undetected or lost targets and informa-
tion loss induced over time when not observing.18, 32, 33 
The PTM is considered a processing component (versus 
control) because it updates pseudo-tracks on the basis 
of data inputs and provides a partial representation of 
the system information state that complements the rep-
resentation provided by the UDF components. 

The PTM and the UDF components are complemen-
tary. Whereas UDF tracks encourage the controller to 
direct sensor attention to currently tracked objects, the 
PTM pseudo-tracks encourage the resource manager 
components to direct sensor attention to regions where 
new or lost objects may be discovered or reacquired. The 
controller objective function treats both real tracks and 
pseudo-tracks in the same way. This provides unified 
treatment of search and track and a mechanism to score 
and balance sensor actions on an equivalent basis.

Upstream Data Fusion
UDF (see Newman and Mitzel, in this issue, for a 

detailed exposition) refers to the processing, exploita-
tion, and fusion of sensor data as closely to the raw 
sensor data feed as possible. The UDF functionality 
consists of a distributed set of automated screener and 
fusion software components performing object-level 
upstream data exploitation to detect, locate, track, and 
classify objects observed by the sensors. The screener 
components are sensor specific; typically there is one 
for each physical sensor or data type. They process data 
captured as closely to the sensor source as possible and 
generate detection data including false alarms. The 
object-level fusion component uses Bayesian evidence 
accrual to combine data from multiple sources. It is 
realized by a multiple hypothesis tracker (MHT)47, 48 
specialized for the particular data types to be pro-
cessed that performs state estimation (filtering) and 
data association to generate track information includ-
ing state and classification estimates with quantified 
uncertainties. 
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Figure 4. Realization of CLCISR feedback loop. (Adapted from Ref. 23.)
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where D(k, s, j) is the probability of sensor s detecting 
pseudo-track j at step k. Equation 1 represents the infor-
mation gain from observing a pseudo-track (directing a 
sensor to search a cell). The probability of each pseudo-
track j is updated as time passes by 

 k k e1– – – /
max maxj j

t t k– –k j   = ^ ^^ ^^h hh hh , (2)

where max specifies the a priori probability of an unde-
tected target in a cell, tk is the time at step k, tj(k) is the 
time of the last collection on pseudo-track j up to step k 
and  specifies the probability growth rate. Equation 2 
is simply the solution to the time evolution equation for 
pseudo-track probability given by

 dt
d

t1 –max
j

j



  = ^^ hh, (3)

and represents the information loss or decay over time.
Figure 6 shows an example where the PTM injects 

pseudo-tracks after a satellite target is lost after maneuver-
ing from low Earth orbit (LEO) to geosynchronous orbit 
(GEO). The controller is encouraged to direct attention 
of sensors to the pseudo-tracks. Consequently, the satel-
lite and its track are reacquired, at which point the PTM 
destroys the pseudo-tracks and the controller directs 
attention of the sensors back to tracking known targets.

The PTM injects pseudo-tracks judiciously to model 
possible locations of lost or undiscovered objects. The 
concept is illustrated through examples in Fig. 5. The 
example on the upper left shows pseudo-tracks arranged 
in a fixed search grid. The example on the upper right 
shows pseudo-tracks placed at fixed surveillance points 
corresponding to major intersections in a city on transit 
routes of interest. The example on the lower left shows 
pseudo-track dispersal over a search region as the pre-
dicted trajectory of a lost target moves from the point 
at which the target was lost and becomes more uncer-
tain over time. The example on the lower right shows 
pseudo-tracks along the expected trajectory of a satellite 
target immediately after it went undetected by multiple 
sensor observations and was deemed lost.

For a track representing a real object, the track cova-
riance and probability are given directly by the MHT. 
By contrast, a pseudo-track covariance is initialized such 
that its three-sigma error ellipse roughly fits within the 
search cell of interest. The pseudo-track probability rep-
resents the certainty of information about the number of 
targets in a search cell. It is updated by sensor observa-
tions and over time to model information gain and loss. 
The probability of each pseudo-track j is updated after 
each sensor scan by

 , ,k k k s j1 1– –j j D
s

  =^ ^ ^^h h hh% , (1)
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Figure 5.  Example pseudo-track distributions over search regions. (Upper left) Uniform grid. (Upper right) Major road intersections. 
(Lower left) Predicted path of lost maneuvering ground target. (Lower right) Predicted path of lost satellite. (Reprinted from Ref. 23.)
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Platform Resource Manager

The PRM is a nonmyopic algo-
rithm in the sense that it con-
siders future platform states in 
addition to the next states being 
planned during the process of 
assigning routes to platforms. The 
PRM component utilizes a reced-
ing horizon controller coupled 
with a particle swarm optimizer 
as detailed in Refs. 17 and 18. 
The use of maneuver automa-
tons and non-Markovian reward 
decision processes were employed 

as an alternative model instead of POMDPs.50, 51 The 
PRM was modified to convert the classification estimate 
information from the MHT into a priority value that 
scales the reward for collecting on a track in order to 
encourage platforms to keep high-priority tracks inside 
the field of view.

The controller uses an objective function based 
on the Fisher information expected to be gained by a 
sequence of platform actions.18, 32, 33, 39 The Fisher infor-
mation can be interpreted as inverse covariance for 
purposes of this discussion. The gain in Fisher informa-
tion is summed over tracks generated by the MHT to 
encourage improving and maintaining existing tracks, 
and over pseudo-tracks that encourage searching for 
lost or previously undetected targets. The reward func-
tion treats both real tracks and pseudo-tracks in the 
same manner. 

The objective function scales the information gain by 
subjective priority factors corresponding to each target 
and a time discounting factor to represent decay of pre-
diction accuracy. Specifically, the reward function J(k) at 
time step k to be maximized is defined recursively over 
the N future time steps of the finite planning horizon, 
for all sensors and all tracks j (real and pseudo-), as

log logJ k I l l I l l 1– –l k

j
j

l k

k N

j j
– =

=

+
t t^ ^ ^`h h h j// , (4)

where  is the reward discount factor, j is the target 
priority, I l l 1–j

t ^ h is the expected Fisher information 
matrix after predicting the track state estimate to time 
step l, and I l lj

t ^ h is the expected updated Fisher infor-
mation matrix for the track after all sensor suite collec-
tions up to time step l.

For l = k (current time step), the predicted Fisher 
information matrix is initialized using the track covari-
ance Pj(k|k – 1) and the track probability j(k) according 
to I k kk Pk k 1 1– –j j j

1–=t ^ ^ ^h h h . The track covari-
ances and probabilities come from the MHT (for real 
tracks) and PTM (for pseudo-tracks). For l  k (future 
time steps), the predicted information matrix for each 

Dynamic Resource Management Realization
The dynamic resource management functionality 

is implemented as a set of automated software compo-
nents that continually optimize ISR resources to collect 
the most informative and relevant data while respect-
ing physical and operational constraints. It is realized 
by an interacting pair of stochastic optimal control-
lers: one functioning as a platform resource manager 
(PRM) that generates platform navigation commands 
(e.g., waypoints or motion primitives) and the other 
functioning as a sensor resource manager (SRM) that 
generates sensor commands (e.g., aimpoints and modes). 
Each component optimizes an information-based objec-
tive function within constraints and given current and 
predicted information states provided by the MHT and 
PTM components, models internal to the controller, 
information regarding the current states of the platforms 
and sensors, and (optionally) plans generated by other 
resource manager components.

The POMDP representing the sequential decision 
process is typically computationally intractable without 
forms of approximation.49 By breaking the joint routing 
and scheduling problem into a two-step process where 
the results from the PRM are used as inputs to the SRM, 
several practical advantages are gained:

• The problem is more computationally tractable.

• Planning timescales and sensor model abstraction 
can be more appropriately tuned to either the rout-
ing or scheduling problems (e.g., longer planning 
timescales and higher sensor model abstraction for 
routing than scheduling).

• Modularity is increased. The SRM can operate with 
sensors on platforms being dynamically routed or 
not. The PRM can control platforms without con-
cern for the specific underlying sensor scheduling 
algorithm.

In this scheme, the SRM generally operates with 
shorter planning cycles than the time required for plat-
forms to reach their next planned waypoint.

Processing

GEO orbit GEO orbit

LEO orbit

Sensor FOV

Pseudo-tracks

Track restarted

EarthEarth

Track lost due 
to maneuver Sensor FOV

LEO orbit

Figure 6. Pseudo-tracks dispersed over a region where a satellite was lost due to a LEO-to-
GEO maneuver. (Illustration by S. Martin.)
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track is computed recursively using a motion model with transition matrix F and 
process noise covariance Q according to

 I F l I l l F l Q ll l 1 1 1– – –j j
T1 1– –

= +t t^ ^ ^ ^ ^`h h h h hj . (5)

The expected Fisher information after an update at time step l by all sensors s in 
the ensemble is given by

 , , , , , , , ,I l l I l l k l s j H l s j R l s j H l s j1–j j j
s

D
T 1– = +t t^ ^ ^ ^ ^ ^ ^h h h h h h h/ , (6)

where the probability of detection D, measurement matrix H and measurement 
noise covariance matrix R depend on the sensor-to-track geometries.

Sensor Resource Manager
After the next waypoint has been planned nonmyopically in the PRM for each 

platform via maneuver automatons, a separate myopic algorithm is used to schedule 
sensors using the risk-based objective function detailed in the next section of this 
article. This objective function combines both classification and kinematic informa-
tion. The myopic algorithm uses Monte Carlo simulation52 over random assignments 
of tracks to sensors with the assignments of lowest risk being used as the final sensor 
schedule. This approach does not consider future track states like a POMDP model 
does. However, because the PRM and SRM are separate optimizations, the SRM is 
kept at a much smaller time step, on the order of seconds, such that schedules are fre-
quently replanned. This allows the closed-loop system to respond quickly to changes 
in track state and/or classification estimates that would necessitate replanning.

The SRM uses a risk-based reward approach that attempts to minimize and bal-
ance the risks of misclassifying and losing track on an object. It supports the require-
ment to generate tasking for metric and feature data concurrently and synergistically 
and to account for both tracking accuracy and object characterization, jointly, in 
computing reward and cost for optimizing tasking decisions. The algorithm used is 
based on work by Papageorgiou and Raykin on risk-based sensor management.53 It 
was first presented by the authors in Ref. 22 in simplified form for the case of discrimi-
nating objects into one of two classes (e.g., nominal versus anomalous). A more gen-
eral treatment is presented by the authors in Ref. 23 and is summarized below. 

The system estimates target state composed of a continuous kinematic state vector 
x Rn!  and a discrete object class 1y Kg! " ,. Together these form the mixed 
continuous-discrete state (x,y). A decision process seeks to choose a specific (x,y) 
to declare as the solution but incurs a cost for that decision that depends on the 
actual state as defined by the cost function c(x,y;x,y). Given that the actual state 
is unknown and can be characterized by the joint probability density function (pdf) 
pXY(x,y), the decision process then seeks to declare a state with minimal expected 
cost, or risk. The risk for a particular declaration (x,y) is the expected value of the 
cost, given that declaration:

 R x ,y c x,y;x ,y p x,y dxy x XY/=l l l l^ ^ ^h h h# . (7)

It is presumed that the decision process always chooses the minimum risk declara-
tion according to R = minx,yR(x,y). In this context, the job of the sensor manager 
is to pick a sensor parameter vector  for the next sensing action that affects the 
probability density of the updated estimate pXY(x,y) in such a way as to minimize the 
expected future risk for the decision process after the sensing action is completed. 

The sensors provide metric and feature data with each observation. Define the 
metric portion of the measurement as the vector z Rm! . The feature data are pro-
cessed to generate a discrete class output .1w Lg! " ,  The risk after a measurement 
update with a particular measurement (z,w) is determined by predicting the state 
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pdf forward to the measurement time, applying the Bayes update using the measure-
ment likelihood function pZW(z,w;), and substituting the updated pdf into Eq. 7. The 
result is

 minR z,w; c x,y;x ,y dxx ,y y x p z,w;
p z,w x,y; p x,y

ZW

ZW XY/ =
;



+
+

l ll l^ ^ ^
^ ^h h h

h h# , (8)

where pXY
+(x,y) is the pdf of the state predicted forward to the measurement time. 

Because the actual measurement outcome is unknown, the sensor manager must rely 
on the expected value of the risk, given by

 R R z,w; p z,w; dzw z ZW/  =+ +^ ^ ^h h h# . (9)

After substituting Eq. 8 into Eq. 9, the pZW(z,w;) term can be canceled, yielding

R min c x,y;x ,y p z,w x,y; p x,y dx dz
x ,y x ZW XY

yzw ; =+ +l l
l l

^ ^ ^ ^eh h h h o// ## . (10)

Although it is reasonable to use Eq. 10 directly as a sensor manager objective 
function, the sensor manager described in this article instead uses the expected risk 
reduction achieved through a sensor action:

 J R – R = + +^ ^h h , (11)

where R+ is the risk achieved in the absence of a measurement update, given by

 R min c x,y;x ,y p x,y dxx ,y y x XY/=+ +l ll l ^ ^h h# . (12)

The SRM then chooses sensor actions to maximize expected total risk reduction 
over all targets at each time step. 

For a particular application, the sensor manager designer must choose an appropri-
ate cost function suitable for the ISR mission. One such useful cost function is the 
so-called “notch” cost function, defined as:
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This function provides a class-specific cost cyy, independent of kinematic state, 
that is incurred for any misclassification of a target truly of class y as class y. For a 
correct classification (y = y), it yields zero cost if the true target kinematic state x 
is within a class-dependent distance from the declared kinematic state x; otherwise 
the cost cyy is incurred. The distance parameter (y) is a mission-specific parameter 
that acts as a form of resolution requirement. It is allowed to depend on the target 
class to potentially allow different such requirements for each class. Both it, as well as 
the cyy term, could also be allowed to depend on the declared target state x to allow 
interesting formulations such as proximity-based cost, but this is deferred for future 
work. Specifying a particular notch cost function is achieved by defining a square, but 
not necessarily symmetric, cost matrix 
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Mathematically rigorous 
and highly general treat-
ments often use the con-
cept of a belief density (or 
multitarget belief density), 
Markov time-prediction 
integrals (e.g., Chapman–
Kolmogorov), Bayesian 
update via likelihood func-
tions or appropriate ana-
logs, Shannon entropy, 
and mutual information or 
Kullback–Leibler divergence 
(see Refs. 16, 46, and 54 for 
detailed expositions and 
applications to ISR scenar-
ios with multiple dissimilar 
sensor types). 

To develop a practical 
CLCISR capability, APL 
has adopted simpler rep-
resentations and measures 
that are based on principled 
approximations and provide 
engineering design flexibility 
and scalability to scenarios 
and applications of interest. 
The state of knowledge, or 
information state, is derived 
from track and pseudo-track 
information. The UDF com-
ponents create, destroy, and 
update tracks that repre-
sent the information known 
about discovered objects. The 
PTM creates, destroys, and 
updates pseudo-tracks that 
represent the information 
known about undiscovered 
or lost objects. The compo-
nents are complementary 
from the standpoint of pro-
viding a practical representa-
tion of the information state. 
The evolution of the infor-
mation state due to scenario 
dynamics and the incorpora-
tion of new information from 
sensors are modeled by track 
and pseudo-track data and 
time update functions. The 
information-based reward 
is computed as a function 
of the updated track and 
pseudo-track uncertainties 
via suitable computationally 

and an epsilon vector � �E 1 Kg= ^ ^^ h hh. The elements of the cost matrix are subjec-
tive parameters based on the operator’s judgment of the relative impact of an incor-
rect classification for the particular application or situation of interest. For example, 
incorrectly classifying a threat as a safe object may result in damage caused by the 
threat, whereas incorrectly classifying a safe object as a threat may result in expend-
ing resources on responding to a nonexistent threat. The elements of the epsilon 
vector are subjective parameters based on the operator’s judgment of the relative 
impact of an incorrect kinematic state estimate for each class.

Using the notch cost function of Eq. 13 with cyy = 1 in combination with the sim-
plifying independence assumptions pXY(x,y) = pX(x)pY(y) and pZW(z,w|x,y) = pz(z|x)
pw(w|y), as well as with the standard Gaussian assumptions that allow use of Kalman 
filter variants to handle the kinematic state estimation process, leads to the following 
simplified version of the expected risk:

R min c p w y w y p y y ,Pp y p q
y y y wy yw YY w = +!

+ +l l l
l ll^ ^ ^ ^ ^ ^h h h h h h// . (14)

Similarly, under these conditions, the risk prior to any sensor action becomes

 R p y y ,Pmin c p y qYy y y y y Y/ = +!
+ l ll l l^ ^ ^ ^h h h h. (15)

In Eqs. 14 and 15, P and P+ are kinematic state estimate covariance matrices pre-
dicted forward to the measurement time, but the latter also accounts for the result of 
applying the measurement update. The function q(y,P), also called the track risk, rep-
resents the risk due to uncertainty in the kinematic state, which is a function of the 
kinematic state estimate covariance matrix and the declared class y [acting through 
the resolution parameter (y)]. The dependence on x has been removed because, for 
Gaussian pdf, the risk is always minimized by setting x equal to the kinematic state 
estimate mean xt , for any choice of y. The track risk function q(y,P) is equal to the 
probability mass of the kinematic state falling more than (y) away from the kine-
matic state estimate mean. The discrete likelihood function pw(w|y) is characterized 
by a confusion matrix that need not be square (because the number of state classes K 
need not equal the number of measurement classes L). The risk formulation of Eqs. 14 
and 15 are substituted into Eq. 11 to form the risk-based SRM objective function. 

CLCISR Design Elements 
Information-Theoretic Representations

Information-theoretic representations of sensing, dynamics of the environment, 
and reward allow the fusion and control processes to treat diverse data types and 
information attributes using a common mathematical and engineering framework. 
The approach requires:

• a representation of the state of knowledge about a collection of areas and targets 
under surveillance;

• a representation of the evolution of the state of information due to motion, 
arrival, departure, and other processes;

• a representation of the effect of combining the new information contained in a 
sensor measurement with the current state of knowledge; 

• a measure of the change in information content caused by time evolution or 
updating with new data;

• an information-based reward metric relating information gain (uncertainty 
reduction) to mission value.
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For example, the action of pointing a sensor at a par-
ticular track or pseudo-track will improve its covariance 
and probability according to a sensor observation model, 
which produces a corresponding positive reward. Con-
versely, when a particular track is not observed by any 
sensor, its covariance and probability degrade according 
to some dynamics model, which incurs a corresponding 
negative reward, or loss. The reward gained (or lost) for 
observing (or not observing) a track or pseudo-track is 
cumulative over all sensors that may observe it and over 
the planning time horizon. The system reward consid-
ered by the optimization is accumulated over all tracks 
and pseudo-tracks, over all sensors, and over the plan-
ning time horizon. 

MDP State and Action Space Representation

A MDP29, 30 is a discrete-time stochastic system with 
state transitions that are influenced by partially or 
entirely random dynamics and the actions of a controller 
or decision maker. The random dynamics create uncer-
tainty in the system state that will result from applying 
any given control action. At each time step, the process 
is in some state s, with a set of actions a available from 
that state. The controller or decision maker chooses one 
of the available actions, which causes the process to tran-
sition into a new state s. The state transition is governed 
by the state transition function Pa(s, s), which repre-
sents and incorporates all random, uncontrolled deter-
ministic, and control action influences on the system to 
give the probability of transitioning from state s each 
possible new state s after taking action a. The transition 
from state s to state s after taking action a gives reward 
Ra(s, s). 

The MDP state transitions possess the Markov prop-
erty; i.e., the new state s depends only on the current 
state s and the action a and is conditionally indepen-
dent of all previous states and actions. A control policy 
for the MDP is a function  that specifies the action 
(s) chosen when the MDP is in each state s. The goal 
of the controller is to choose a policy that maximizes 

a function of the rewards accumulated 
over some period of time. The finite 
horizon MDP can be represented as a 
graph where vertices represent states, 
and edges represent available actions. 
Figure 8 shows an example with a two-
time-step look-ahead horizon and three 
available actions per state.

For CLCISR, the state space (or 
information state space) represents the 
information known about the environ-
ment under surveillance. This is mod-
eled by pseudo-track probabilities and 
track kinematic state estimates, classi-
fication state estimates, and statistical 

tractable means. Practical alternatives to approaches 
using the Shannon entropy or Kullback–Leibler diver-
gence include the method using the determinant of the 
Fisher information matrix given in the Platform Resource 
Manager section and the risk-based reward formulation 
as given in the Sensor Resource Manager section.

The spatial distribution of information at any given 
point in time can be thought of as a landscape of attrac-
tive value as seen by the resource management algo-
rithms. Figure 7 shows a simulated scenario in which the 
surveillance region has been discretized into area sectors 
where dark sectors indicate high information availabil-
ity (lower current knowledge or certainty) and light sec-
tors indicate low information availability. It is clear from 
the figure that recently searched area sectors have lower 
current information availability as expected. The spa-
tial distribution of available information will evolve over 
time as governed by the dynamics models. In particular, 
information decay will cause light sectors to darken and 
become more attractive over time. The image on the 
right shows an example of how terrain and other fac-
tors can affect the information landscape as the scenario 
evolves. In particular, the central obscuration results in 
more localized information gain as the platforms move 
along their trajectories and, hence, a wider distribution 
of available information.

The controller requires a representation of informa-
tion-based reward that can be achieved through sensor 
actions. As stated earlier, the PTM and the UDF compo-
nents are complementary in this regard. The UDF pro-
cess produces track information representing real objects 
observed by the sensors, whereas the PTM provides the 
controller with a representation of information-based 
reward that can be achieved through sensor actions 
observing areas where the number of targets present is 
unknown, new targets may be discovered, and lost targets 
may be recovered. The tracks and pseudo-tracks, along 
with sensor models and target or environment dynamics 
models, provide a means of computing the information-
based reward available through observations in the sense 
of a Bayesian evidence accrual process. 

Processing

Information availability
by sector

With terrain and
viewshed constraint

Current plan
(future)Path

executed
(past)

Figure 7. "Information landscape" snapshots—spatial distribution of information 
at fixed times in different scenarios with platform trajectories resulting from the 
sequence of control decisions. (Simulations by S. Martin.)
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that each platform maintains a constant velocity (i.e., 
trim trajectory) for a period of time between maneuvers. 
Hybrid maneuver automatons have continuous time 
variables and discrete maneuvers that can be repre-
sented as a graph, where the nodes represent trim trajec-
tories and the edges represent maneuvers. For example, 
a simple maneuver automaton for an airborne platform 
might have three trim trajectory states: straight forward, 
climb, and descend; five transitions for each state: no 
change, turn right, turn left, tilt up, and tilt down; and a 
constant discrete time step. 

Receding Time Horizon Control of MDP
CLCISR requires a feedback control policy for which 

approximately optimal platform actions can be com-
puted in a tractable manner, i.e., without excessive 
exploration of future actions and system states. The 
receding time-horizon control approach [also referred 
to simply as receding horizon control (RHC) and as 
model predictive control] has been shown to produce 
good results for a variety of applications where a time-
varying environment (plant model) results in a time-
varying reward function.55 The RHC generates an 
approximately optimal sequence of control actions for 
a finite horizon MDP. Essentially, the RHC approxi-
mates the infinite horizon optimal control policy with 
an iterative series of finite horizon optimizations. The 
basic RHC algorithm56 determines the optimal open-
loop control  ,u t x t* lt^^ hh over a finite length interval 

,t t t T! +l l6 @ starting at the current time t and given 
a current state estimate x tlt^ h; then sets the control at 
the current time equal to u*(t); and then repeats this 
calculation continuously to yield a feedback control 

,u t x t* t^^ hh for all t. 
The process of planning platform and sensor actions 

over a finite horizon (N steps), executing only the actions 
for the next step, sliding the planning window forward 
in time, and repeating the procedure is illustrated in 
Fig. 9. The planning horizon and time step size must 
be chosen to meet the performance and computation 
latency needs of the given application. Experimenta-
tion with APL CLCISR realizations against ground and 
space surveillance scenarios of interest has determined 

uncertainties. The system’s information state is given 
by the entire collection of tracks and pseudo-tracks at 
a given time step. State transitions result from sensor 
actions, sensor data processing, and system dynamics. 
For example, sensor actions generate detections (or lack 
thereof) in observed regions of space and corresponding 
measurement data on detected objects. The MHT and 
PTM process these sensor data and apply system dynam-
ics models to update or propagate the system information 
state. In general, state transitions are stochastic; they 
are influenced by unpredictable factors such that the 
resulting state can only be predicted statistically. The 
random factors influencing the state transitions include 
sensor noise, platform deviations from expected trajec-
tory (e.g., due to wind), unpredictable target dynamics 
(e.g., maneuvers, drag fluctuations, etc.), unpredictable 
obscurations (e.g., clouds) and other sources of missed 
detections, false detections, mis-associations, prior track 
uncertainties, and processing order dependencies in the 
exploitation algorithms.

For CLCISR, the action space consists of platform 
motion primitives (e.g., forward, backward, left, right, 
ascend, descend) or waypoints, sensor aimpoint assign-
ments (e.g., to tracks and pseudo-tracks), and sensor 
mode assignments. The action space is constrained by 
platform maneuverability, time windows of opportunity 
(deadlines), launch and recovery points, no-fly zones, 
sensor timeline availability, power and fuel consump-
tion, and communications bandwidth. The policy opti-
mization algorithm must enforce these constraints. 

For moving or maneuvering sensor platforms, the 
action space can be modeled using a set of maneuver 
automatons (one for each plat-
form) to provide a simple abstrac-
tion of the air vehicle dynamics 
suitable for generating action 
sequences that correspond to fea-
sible trajectories accounting for 
motion constraints. The maneu-
ver automaton framework50 pro-
vides a modeling language based 
on motion primitives that corre-
spond to feasible vehicle maneu-
vers. This formulation assumes 

Time 2

Time 1

Time 0

Figure 8. Example graph representation of finite-horizon MDP; 
states (blue circles) may represent target tracks and pseudo-
tracks; actions (arrows) may represent the choice of which track 
or pseudo-track to observe; tree structure is a special case often 
applicable to CLCISR. (Illustration by S. Martin.)

Execute the next 1 time step

Optimize for the 
next n time steps

Figure 9. RHC approach to generating an approximately optimal feedback control.
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until the optimal value and policy is determined over 
the entire planning horizon. For this reason, dynamic 
programming is also referred to as backward induction.

The value iteration and policy iteration algorithms 
are recursive algorithms that converge to the optimal 
reward (solution of Bellman’s equation). The value itera-
tion algorithm computes a sequence of value functions 
that is guaranteed to converge under conditions that 
will generally be satisfied by the MDPs of interest. The 
optimal policy is then derived from the optimal value 
function. The policy iteration algorithm computes a 
sequence of policies directly. The policy iteration algo-
rithm has a much faster convergence rate than value 
iteration but at the cost of a much more complex com-
putation at each iteration. 

These algorithms suffer from Bellman’s “curse of 
dimensionality.” They become intractable as the number 
of states and actions and the length of the planning 
horizon grow large. For realistic ISR scenarios, these 
algorithms are not practical because of the computation 
latencies incurred. Therefore, approximate dynamic 
programming techniques are applied to achieve a com-
putationally tractable method that scales to realistic sce-
narios of interest.

One approach is to optimize the policy for the MDP 
with respect to an approximation of the objective func-
tion. This approach is often referred to as approximate 
dynamic programming.59 The idea is to obtain a policy 
that is nearly optimal with respect to the true objective 
function. Techniques in this category include policy 
rollout, reinforcement learning, and multiarmed ban-
dits. These methods substantially shrink the space of 
action sequences under consideration at each iteration 
of the optimization algorithm.

The policy rollout method60 approximates the objec-
tive value for future time steps (referred to as the “value-
to-go”) with the objective value that would be achieved 
using a base policy. For example, a base policy could be a 
greedy policy or other low-complexity policy. In theory, 
the schedule derived via policy rollout is guaranteed to 
outperform the schedule derived by following the base 
policy. Hence, it is expected that its performance will 
depend on the choice of base policy in rollout. In prac-
tice, it has been demonstrated that the policy rollout can 
effectively trade-off performance over time in applica-
tions including waveform optimization and scheduling 
in radar and sonar systems, as well as various problems 
in dynamic resource allocation in communication net-
works. By contrast, the reinforcement learning method61 

approximates the objective value for future time steps 
with a function derived from offline trial and error learn-
ing. Finally, the multiarmed bandit method efficiently 
computes approximately optimal solutions to dynamic 
programming problems through forward induction and 
priority index rules that are linear, rather than exponen-
tial, in the number of targets.62, 63

that a dynamic planning horizon of three or fewer steps 
(current time plus two-step look-ahead) is often suffi-
cient to achieve good performance.

Policy Optimization
The controller computes the optimal policy at each 

time step, where the policy is optimal with respect to 
the objective function and subject to the various con-
straints on platform motion, sensor–target intervisibil-
ity, resource consumption, communications bandwidth, 
etc. The objective function is time varying, nonlinear, 
multimodal, and discontinuous. The dimensionality of 
the state space depends on the scope of the surveillance 
problem, i.e., the number of targets and surveillance 
points or areas of interest and the number of kinematic 
and other attributes of the targets that are of interest. 
The dimensionality of the action space depends on the 
number of degrees of freedom available for controlling 
the different ISR platforms and sensors, the granular-
ity with which each actuator can be controlled, and the 
constraints. In realistic scenarios, the state and action 
spaces are complex and can be enormous. Given the 
complexity of the objective function and the combina-
torial growth of the state and action spaces, standard 
optimization methods will not generally apply or be 
effective for this problem.

In light of this, controller design has predominantly 
been devoted to simplifying the problem to fit the profile 
of a computationally tractable algorithm or to design-
ing heuristics that exploit characteristics of the specific 
problem. There is a vast number of such application-spe-
cific solution approaches, which often do not translate 
from one problem setting to another.

In certain cases it is possible to decompose the problem 
into subproblems for which the couplings are relatively 
weak or can be mitigated. In the extreme, the problem 
can be decomposed into highly localized subproblems, 
each assigned to an autonomous platform or sensor agent 
making decisions according to local beliefs and optimi-
zation criteria. In such fully decentralized approaches, 
system-level optimization is achieved through the emer-
gent cooperative behavior of the autonomous agents. 
This approach provides effective performance in many 
applications but is beyond the scope of this article. See 
the article by Scheidt57 for a description of recent APL 
work applying decentralized control of autonomous sens-
ing agents to ISR problems.

Dynamic programming58 is a recursive method for 
solving MDPs (and sequential decision problems in gen-
eral) and is based on Bellman’s principle of optimality. 
The optimal policy is computed recursively by iterat-
ing on subproblems that optimize over a subset of the 
planning horizon. The algorithm begins by determining 
the optimal value (solving Bellman’s equation) for the 
final decision stage and then iterates backwards in time 
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global optimum. Individual candidate solutions in the 
swarm are referred to as particles and are represented as 
coordinates in the domain space of the function to be 
optimized, along with a velocity along each dimension 
of the domain. APL projects have recently applied par-
ticle swarm techniques to CLCISR for ground surveil-
lance scenarios.17, 18 

In addition, APL CLCISR prototypes have recently 
used Monte Carlo tree search algorithms,68 which have 
been shown to be highly effective in planning problems 
over large domains consisting of an exponential search 
space. Monte Carlo tree search algorithms attempt to 
intelligently sample paths through the MDP tree by 
determining which areas of the tree have been least 
explored. They have been shown empirically to approach 
the performance of an optimal value iteration algorithm 
under certain conditions.

APL CLCISR prototype implementations use various 
combinations of the above techniques as suited to the 
characteristics of the particular application. For exam-
ple, see Ref. 69 for a comparison of different stochastic 
optimization techniques applied to scheduling the tasks 
(observations) of an ensemble of space-observing kine-
matic sensors. 

CLCISR Design Summary
In the CLCISR approach, automated PRM and 

SRM components coordinate and synchronize the ISR 
ensemble as an integrated unit to continuously maxi-
mize aggregate net fused information gain (accounting 
for search, track, and characterization-based informa-
tion) and adjudicate tasking among competing priori-
ties across the entire search volume and all targets, as 
well as over a configurable finite planning time horizon. 
The objective function and optimization constraints 
provide a natural adjudication of competing priorities in 
a resource-limited setting. The far-sighted, or nonmyo-
pic, planning approach requires the resource managers 
to make decisions based on predictions using uncertain 
current estimates. 

A receding horizon optimal control algorithm deter-
mines a set of current and future sensing actions that 
approximately maximizes net accrued priority-weighted 
fused information gain over the look-ahead horizon. The 
net reward accrued from combined actions by multiple 
platforms over several time steps incorporates relative 
geometry, time discounting to reflect prediction error, 
information decay, predicted occlusion, and nonlinear 
effects resulting from combining multiple dissimilar sens-
ing modalities. Real-time adjudication among competing 
targets and search versus track priorities is incorporated 
naturally in the optimization constraints and cost func-
tion. The multiasset tasking plan is continually optimized 
by selecting the best sensor or combination of sensors to 
reduce the current aggregate statistical uncertainty state.

Another approach is to approximately optimize the 
policy for the MDP with respect to the true objective 
function. These techniques produce solutions that are 
suboptimal but still good enough and provide the flex-
ibility to trade performance against latency by terminat-
ing the process when thresholds or deadlines are met. 
The family of techniques known as stochastic optimi-
zation algorithms64 can be particularly effective in this 
regard. They fall into a number of categories such as 
evolutionary computation, simulated annealing, and 
tabu search. These algorithms have attracted consider-
able attention for application to resource management 
problems because they often perform well for problems 
where there is a positive correlation between the form 
that candidate solutions take and their resultant objec-
tive values, i.e., for problems where similar solutions yield 
similar objective values.65, 66 They are particularly useful 
for CLCISR because they can be terminated and reset 
for the next planning time step after quickly converging 
to a near-optimal solution at the current time step.

Stochastic optimization techniques are advantageous 
for dealing with the time-varying, nonlinear, multi-
modal, and discontinuous objective function and large, 
complex state and action spaces of the CLCISR policy 
optimization problem. They can optimize over a discrete 
or hybrid continuous-discrete action space where deriva-
tive information is not available and hence gradient-
based search methods are not feasible. They perform a 
parallel search, which can prevent the algorithm from 
becoming stuck in one particular local optimum and can 
efficiently sample a very large decision space. However, 
stochastic optimization techniques generally do not offer 
guarantees of convergence or bounds on convergence 
rate. Moreover, they often require complex data encod-
ing and design of heuristics for generating new solutions 
from a prior set of solutions. The design trade space is 
large and complex. Design and implementation is often 
more art than science. 

Evolutionary algorithms employ a heuristic approach 
based on genetic operators such as gene crossover and 
mutation. These operators are applied to a collection of 
parents chosen through a selection algorithm. Genetic 
algorithms are one such class of evolutionary computa-
tion methods. They are inspired by the biological pro-
cess of natural selection. The search space is encoded 
by a genome representation, and the population is ini-
tialized by a set of randomly generated individuals. The 
algorithm evolves new solutions and searches the deci-
sion space by testing individuals for objective fitness, 
mating the better ones and continuing the process until 
an acceptable solution is found or until time or other 
resources are exhausted. 

Particle swarm algorithms67 are another class of sto-
chastic optimization techniques that use a swarm model 
to simulate a type of social interaction among candidate 
solutions that often results in convergence toward a 
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terminated at each step to control latency according to 
the current needs of the application.

APPLICATIONS AND SIMULATION-BASED 
EXPERIMENTS

Simulation Test Bed
The CLCISR system prototype design has been imple-

mented and is fully realized as distributed, asynchronous 
components that communicate via message passing over 
an Internet Protocol (IP)-based network. Test, develop-
ment, experimentation, and demonstration of the closed-
loop sensor exploitation and tasking system are facilitated 
by integrating with a simulation test bed. The architec-
ture is modular; individual control and processing com-
ponents can operate within or outside the simulation test 
bed environment. One current realization of the simula-
tion test bed for ground surveillance scenarios emphasiz-
ing the use of multiple FMV sensors is shown in Fig. 10. 

The simulation test bed provides a representation of 
scenario truth and sensor and tasking operation to sup-
port experimentation without incorporating excessive 
or irrelevant detail. It integrates a set of software compo-
nents for propagating target motion, simulating airborne 
platform flight, generating synthetic sensor observation 
data with specified error statistics, tasking the sensors, 
displaying the scenario as it evolves in real time, and 
compiling performance metrics. The simulation test 

The information state is derived from feedback of track 
uncertainties and probabilities computed by the MHT 
and pseudo-track uncertainties and probabilities com-
puted by the PTM. The information-based reward func-
tion accommodates a heterogeneous ensemble of sensors, 
distributed geographically (and possibly in space) and 
including different sensor modalities, by scoring sensor 
actions according to their predicted improvement of 
track (and pseudo-track) precision and probability. The 
information gains and losses are scaled by mission-driven 
priority factors that quantify the relative importance of 
different targets and search regions. This results in the 
lowest achievable aggregate priority-scaled uncertainty 
in number of targets present, target kinematic state, and 
target class or identity. The algorithm also accounts for 
urgency (reward for earlier information) and predictive 
value of estimates (discounting gains achieved further 
out in time) via scale factors in the reward function. 

Computing the optimal control policy requires solu-
tion of a large-scale constrained optimization problem at 
each time step, which in general is not tractable. Com-
putational tractability is achieved by decomposing the 
problem into manageable weakly coupled subproblems, 
optimizing subproblems over a finite receding look-ahead 
horizon, approximating the objective function value-to-
go, applying stochastic optimization techniques, and 
applying application-specific heuristics where appropri-
ate. These techniques produce an approximately opti-
mal control policy while allowing the optimization to be 
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Figure 10. A realization of the CLCISR simulation test bed for ground surveillance scenarios emphasizing the use of multiple FMV sensors. 
(Adapted from Ref. 23.)
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For example, Monte Carlo simulation trials were run 
using two sensors with different fields of view and mea-
surement error covariances. Figure 11 shows snapshots at 
800 s from one selected trial of the open-loop (left) and 
closed-loop (right) cases, respectively. Figure 12 provides 
a comparison of the open-loop and closed-loop root 
mean square (RMS) error performance. The closed-loop 
platform control results in significantly reduced track-
ing error compared to when using the open-loop loiter 
patterns. Tracker confusion is kept to a minimum at 
target crossing points; track accuracy and probability are 

bed components are configurable, accepting parameter 
adjustments to support variations and experiments.

Support for data exchange among simulation test 
bed components is provided by the Apache ActiveMQ 
(http://activemq.apache.org) open-source Java Mes-
sage Service broker. ActiveMQ provides a platform-
independent interface for passing messages between 
components. Messages between components use the 
JSON (JavaScript Object Notation; http://www.json.
org) format. JSON is a lightweight, text-based, human-
readable open standard for data interchange that uses 
unordered string-value pairs.

APL’s ARENA laboratory19 provides a real-time high-
fidelity physics-based simulation environment including 
urban terrain generation, platform aerodynamics (i.e., six-
degree-of-freedom flight models and auto-pilots), urban 
aerodynamic environment airflows and vehicle interac-
tions, sensor operation and phenomenology (e.g., syn-
thetic optical and infrared imagery), target features, target 
motion, and obscurations (terrain, buildings, and clouds).

Simulations are populated with high-resolution 
imagery and terrain for the region of interest. However, 
detailed models of man-made urban structures were not 
yet included in the simulation capability. This limita-
tion means that occlusions due to such structures are 
not accounted for in the current simulation realization 
described in this article.

Simulation-Based Performance Assessment 
Experiments

In 2009 the PEMT IR&D project conducted a set of 
simulation-based experiments to provide a quantitative 
performance assessment of CLCISR algorithms execut-
ing multiple-platform trajectory control in a multiple-
target, search-and-track setting. The simulation test bed 
was used to simulate relatively simple ground surveillance 
scenarios featuring representative sensors with varying 
fields of view and typical target densities and motion 
profiles. The experiments used the centralized RHC for 
motion planning of a heterogeneous ensemble of air-
borne sensor platforms operating in a closed feedback 
loop with the centralized MHT that fused the disparate 
sensor data to produce target declarations and state esti-
mates. The RHC action space for each air vehicle was 
represented via maneuver automaton with simple motion 
primitives. The reward function was based on expected 
Fisher information gain and priority scaling of target 
tracks and ground regions. A customized particle swarm 
optimization algorithm was used to handle the result-
ing non-Markovian, time-varying, multimodal, and dis-
continuous reward function. Simulation results showed 
improved aggregate target detection, track accuracy, and 
track maintenance for closed-loop operation as compared 
with typical open-loop surveillance plans. The results of 
this study were originally documented in Ref. 18.
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Figure 11. Snapshots of simulation at 800  s with two hetero-
geneous sensors flying fixed loiter patterns (left) and running 
closed-loop (right). The closed-loop performance exhibits signifi-
cantly less confusion (red tracks) and more continuous and accu-
rate tracks.
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more consistent results. Closed-loop provides improved 
performance over open-loop for fraction of time tracked 
(target 1, 0.50 versus 0.46; target 2, 0.45 versus 0.42; 
target 3, 0.42 versus 0.24). The significant improvement 
is for target 3; its remote location and motion pattern 
created difficulty for the open-loop surveillance that was 
overcome to a large degree by the closed-loop controller. 

Irregular Warfare Applications
The CLCISR prototype system has been exercised 

using the networked simulation test bed against irreg-
ular warfare scenarios in Baghdad, Iraq, and Kabul, 
Afghanistan. The simulation scenarios were designed to 
exercise, demonstrate, and assess the following capabili-
ties of the full closed-loop system:

• Joint search, track, and classification of multiple tar-
gets of interest among background traffic

• Routing of multiple platforms

• Multisensor pointing

• Collaborative ISR control

• Multisensor data fusion

Baghdad Scenario
In 2009, APL conducted a simulation-based experi-

ment and demonstration of CLCISR applied to an irregu-
lar warfare scenario set in Baghdad, Iraq (Fig. 13). The 
purpose was to assess and demonstrate CLCISR capabili-
ties in persistent surveillance, multiple-target tracking, 
and cooperative, dynamic routing of UAVs. The ISR mis-
sion was to maintain persistent surveillance on multiple 
known safe houses and maintain accurate track on any 
vehicles leaving safe houses. In the scenario, three high-
value targets (HVTs) flee a safe house and scatter over 
a broad area in the midst of background traffic as the 
scenario progresses. The available ISR assets consist of 
a small UAV (SUAV) that has an infrared sensor with a 
narrow field of view and a radar sensor with a wider field 
of view (modeled as an idealized radar detector). Both 
sensors were restricted to look straight down from the 
platform. The automated exploitation processes in the 
feedback loop consisted of a video moving object detec-
tion component and a ground target tracker component 
realized by MHT. 

The scenario presented several challenges, includ-
ing multiple targets scattering over a broad area, targets 
employing evasion maneuvers, the possibility of undis-
covered targets, background traffic (clutter), and sensor 
false alarms. The number of decision variables and the 
tempo required to actively manage the two platforms 
would severely challenge a human operator. The auto-
mated CLCISR capability successfully managed the two 
platforms to maintain persistent surveillance on the 

recovered quickly. Intervals where open-loop RMS error 
is better than closed-loop RMS error are short and infre-
quent and can be attributed to inherent trade-offs among 
targets and search sectors in the global optimization.

The open-loop case shows the bimodal behavior 
caused by the predetermined routes (causing tracking 
lapses seen in Fig. 12), whereas the closed-loop case shows 
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Figure 12. Comparison of average RMS tracking error (blue: 
open-loop; red: closed-loop) for Target 1 (top), Target 2 (middle), 
and Target 3 (bottom) in simulation with two heterogeneous 
sensors.
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Targets may be found by monitoring the safe houses as 
well as by maintaining surveillance on potential target 
travel routes between safe houses and around the area. 
Nonhostile (neutral) elements are not of interest, so ISR 
resources should not be wasted tracking them. Conse-
quently, as entities are detected and tracked it is vital to 
determine whether the entity can be classified as hostile 
or neutral. 

maximum possible number of targets at any given time 
and to minimize the target tracking errors.

Kabul Scenario
In 2010 and 2011, APL conducted simulation-based 

experiments and demonstrations of CLCISR applied to 
an irregular warfare scenario set in the region of Kabul, 
Afghanistan (Fig. 14). The Kabul region under surveil-
lance in the simulated sce-
nario was significantly larger 
than the Baghdad region that 
was used in the prior experi-
ment. The size of the area 
and the number of targets 
under surveillance were suf-
ficient to create significant 
resource contention. 

The ISR mission was to 
find and track a small number 
of hostile HVTs expected 
to be operating in the 
Kabul area of approximately 
15 sq. km. In the simulation, 
the exact number of HVTs is 
unknown, but more than one 
are expected. Two previously 
identified safe houses act as 
potential centers of activity; 
and therefore these should be 
monitored closely. The two 
safe houses are at cross-town 
locations, so ISR resources 
must divide their attention. 

Figure 13. Simulated irregular warfare scenario set in Baghdad.

Kabul, Afghanistan

HVTs meet

HVT-1 end

HVT-2 end

HVT-2 start
HVT-1 start

Background 
traf�c (green)

Figure 14. Simulated Kabul scenario target truth including HVT (hostile) routes, safe house loca-
tions, and background traffic (neutral) routes. (Adapted from Ref. 23.)
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is outfitted with an image 
sensor capable of output-
ting object-level detections 
once per second. The detec-
tions from Predator’s image 
sensor contain both location 
and classification informa-
tion. The classification capa-
bility is presumed to result 
from a process (automated or 
manual) that can be charac-
terized in terms of a square 
confusion matrix. For this 

simulation experiment, the 2 × 2 confusion matrix is set 
to be diagonal such that the sensor’s classification output 
of hostile or neutral is correct 95% of the time. All imag-
ing sensors (those on the Predator and both SUAVs) can 
be dynamically pointed. Additionally, all image sensors 
exhibit noisy pixel measurements, a near-unity probabil-
ity of detection, and a low but non-zero false alarm rate.

The CLCISR system was configured for the scenario 
as follows. To bootstrap the system (i.e., start from a state 
of zero information about the number, location, or class 
of targets) and to stimulate the UAVs to search for targets 
throughout the scenario timeline, the PTM is initialized 
with 12 pseudo-tracks (Fig. 16). A high-probability, fast-
growth-rate pseudo-track is positioned at each safe house 
location. In the figure these are shown as bright red 
opaque spheres. These serve to encourage the system to 
continually monitor these locations for possible activity 
during the whole mission. In addition, 10 other low-prob-
ability, slow-growth-rate pseudo-tracks are positioned at 

The simulation scenario was populated with eight 
ground vehicles. Of these, two are designated as hostile 
and, therefore, are HVTs for the ISR mission. These are 
designated HVT-1 and HVT-2. The remaining six vehi-
cles are neutral and provide background traffic to the 
scenario. All vehicles follow prescribed routes. Figure 14 
shows these routes along with the locations of the safe 
houses, which are identified as SH-1 and SH-2. In the 
figure, HVT-1 follows the red path, HVT-2 the orange, 
and neutrals travel roads marked in green. HVT-1 starts 
on the southeast side of town, while HVT-2 starts on the 
southwest side. The two travel to meet at SH-1 at about 
4 min into the scenario. They remain stopped there 
together for a little over 1 min before HVT-2 leaves and 
travels to a location in the northwest. About 2 min later, 
HVT-1 leaves SH-1 and travels to a location in the north 
of the city. By approximately 10 min into the scenario 
the HVTs have reached their final locations. The simu-
lation is allowed to continue to run beyond this for up 
to 25 min as neutrals continue to 
drive around the city. No activity 
actually occurs at or near SH-2. It 
serves as a distraction away from 
the real action to the ISR system.

The ISR ensemble consists 
of two SUAVs and one Predator 
drone (Fig. 15). The two SUAVs 
can be dynamically routed and 
operate at an altitude of approxi-
mately 1200 m above the terrain. 
The Predator drone flies a fixed 
orbit over the center of Kabul at an 
altitude of approximately 4000 m 
above the terrain and cannot be 
dynamically routed. Each SUAV 
is outfitted with an image sensor 
capable of outputting object-level 
detections twice per second. These 
detections contain only location 
information (derived from the pixel 
position); they provide no informa-
tion distinguishing between hostile 
and neutral classes. The Predator 

Approximate altitude above terrain:
• Predator: 4000 m
• SUAVs: 1200 m

SUAV-1 SUAV-2

Predator

HVT-1 HVT-2

Figure 15. Simulated Kabul scenario ISR platforms and their relative altitudes.

Kabul, Afghanistan

SH-2

SH-1

Figure 16. Simulated Kabul scenario pseudo-track locations (red spheres). More opaquely 
colored spheres indicate higher-probability pseudo-tracks. (Adapted from Ref. 23.)



CLOSED-LOOP COLLABORATIVE ISR RESOURCE MANAGEMENT

JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 31, NUMBER 3 (2013) 207    

to allow post-run visualization and analysis. In the follow-
ing subsections, the tracking performance, PRM behavior, 
and SRM behavior for this simulation run are presented.

Tracking Performance
The system produced only two tracks persisting for 

any substantial amount of time. Both of these are quickly 
determined with high probability to be hostile. These 
two hostile tracks directly correspond to the two HVT 
vehicles, as can be seen in Fig. 17. HVT-1 is detected 
early in the scenario as it travels through an intersection 
in the southeast that is covered by a pseudo-track. This 
gives rise to track T3-3, shown by the green line in the 
figure. This track follows HVT-1, unbroken, to the safe 
house where HVT-1 and HVT-2 meet. Meanwhile, just 
before HVT-2 arrives at the meeting location, the ISR 
system detects it and produces track T12-416, shown as 
the yellow line in Fig. 17. This track then follows HVT-2 
to the meeting place. While the HVT vehicles remain 
stopped at the safe house together, the two tracks formed 
on them persist, but because of the close proximity of 
the targets, their covariance ellipsoids overlap and the 
tracking system cannot distinguish sufficiently between 
them. Thus, when HVT-2 leaves the safe house, it is 
understandable that track T3-3 follows it, although it 
previously followed HVT-1. When HVT-1 subsequently 
leaves and travels north, it is track T12-416 that follows 
it. Both tracks follow their targets, unbroken, to their 
final destinations and maintain track on the targets on 
the stopped HVT vehicles for many minutes until the 
scenario concludes.

Qualitative analysis using a 3-D visualization tool 
reveals that during the times that HVT-1 and HVT-2 
are being tracked, their positions are generally contained 
within the track’s 95% confidence ellipsoid. An example 
of this track containment for each HVT-1 and HVT-2 at 
an instant in time can be seen in Fig. 18.

various intersections to allow the system to potentially 
find hostiles en route. Pseudo-tracks represent only the 
potential existence of targets of interest, which in this 
case are hostiles. The PTM dynamically updates the 
pseudo-track probabilities using scan data from each of 
the three image sensors and sends the pseudo-tracks to 
the PRM and SRM components.

The MHT processes scans of object-level detections 
from the all three image sensors to form the fused tacti-
cal picture. MHT tracks, each including a classification 
estimate distinguishing between hostile and neutral, are 
forwarded to the PRM and SRM components. The SRM 
jointly plans for all three sensors every second. The PRM 
jointly plans for the two SUAV platforms. Waypoints for 
the platforms are generated by the PRM at 15-s inter-
vals. Its receding horizon control look-ahead considers 
three such intervals into the future for a total planning 
horizon of 45 s. The PRM does not consider the Preda-
tor in its planning process. The effect of this limitation 
is mitigated by the fact that the Predator’s field of regard 
covers the entire area of interest for the full length of 
time of the scenario; thus, the best coverage given by 
the two SUAV platforms is independent of the Predator 
position.

The system is configured to avoid wasting effort col-
lecting on background traffic (neutrals) via the PRM and 
SRM objective functions. The PRM scales the informa-
tion gain for collecting on a track by the probability that 
that track represents a hostile. The SRM sets the track 
risk cost (the term depending on the track uncertainty) 
for the neutral class near zero such that there is little risk 
associated with not collecting on tracks that are classi-
fied with high probability as neutral.

Kabul Scenario Simulation Experiment Results
One simulation realization of the Kabul scenario was 

run at real-time speed. Data from this run were captured 

Figure 17. Simulated Kabul scenario with truth and track history. (Left) HVT-1 (red) and HVT-2 (orange) history trails. (Right) Track T3-3 
(green) and track T12-416 (yellow) history trails. (Reprinted from Ref. 23.)
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before HVT-2 has been detected, SUAV-1 approaches 
and attempts to follow HVT-1. Meanwhile, SUAV-2 
positions itself away from SUAV-1 near SH-2. During 
the meeting of the HVTs at SH-1, SUAV-1 enters a cir-
cular loiter pattern over the safe house while SUAV-2 
continues to cover SH-2. As HVT-2 leaves SH-1, the 
PRM must decide whether to follow it or leave SUAV-1 
over the safe house where the other target resides. Given 
that the positioning of SUAV-2 allows it to shift west-
ward to help out at SH-1, it is sensible that the PRM 
sends SUAV-1 after HVT-2 at this point. Subsequently, 
as HVT-1 continues to egress from the city and moves 

RMS error statistics as a function of time for HVT-1 
and HVT-2 are given in Fig. 19. In the figure, RMS 
error is not plotted at times when the target is not being 
tracked. While under track, RMS error is held mostly 
below 5 m with a few spikes above 10 m. RMS error is 
generally lower while the vehicles are stopped, which 
occurs while the vehicles are at the safe house (at approx-
imate scenario times 250–430 s for HVT-1 and 200–320 s 
for HVT-2) and again from time 10 min to the end.

With respect to the goals of the mission, the ISR 
system was largely successful. Both HVTs were found, 
correctly identified as hostile, and maintained under 
constant track thereafter. In 
addition, although it was by no 
means guaranteed, one of the 
HVTs (HVT-1) was discovered 
while en route and was able to be 
tracked well before their arrival at 
the safe house. Furthermore, the 
system was not confused by the 
background traffic. Neutrals were 
tracked mostly just as long as it 
took to classify them with high 
probability.

PRM Behavior
The behavior exhibited by the 

SUAV platforms under control of 
the PRM is sensible and intuitive. 
Snapshots of the platform routes 
at different times in the scenario 
can be seen in Fig. 20. The two 
platforms start the scenario 
across town from each other, with 
SUAV-1 in the southwest and 
SUAV-2 in the northeast. Early 
in the scenario, once a track has 
been formed on HVT-1 but still 

HVT-1

T12-416

HVT-2

T3-3

Figure 18. Simulated Kabul scenario example of track containment. The transparent red ellipsoids correspond to track 95% contain-
ment ellipsoids. The current true location of target is indicated by the small red trucks. The red trail indicates true prior locations of the 
target (history). (Adapted from Ref. 23.)
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responsive. The technical and operational feasibility 
of the concept was validated by developing a dynamic 
SSN sensor-tasking prototype and simulation test bed, 
conducting simulation-based performance assessment 
experiments, and quantifying performance in terms of 
track maintenance (target custody), search efficiency, 
and responsiveness to emergent information needs and 
changing priorities.25 

The prototype interfaces with and complements the 
special perturbations (SP) Tasker system70 that is currently 
in operational use. It accepts the SP Tasker daily SSN 
tasking plan as input and dynamically retasks the SSN 
sensors in a continuous feedback loop with a data exploi-
tation (fusion) process for opportunistic and synergistic 
data collection and exploitation. It optimizes and coor-
dinates the tasking of multiple geographically dispersed 
space-observing sensors for timely response to emer-
gent targets while maintaining the integrity of the daily 
plan as much as possible. It retasks sensors in real time 
when cued by emergent tasking events for stressing time-
sensitive needs such as new launch, lost object (Fig. 22), 
unknown object, maneuver, transfer orbit, and a variety 

northward, SUAV-2 does indeed move over from its 
position near SH-2 to help track HVT-1 while SUAV-1 
can continue to concentrate on HVT-2.

SRM Behavior
It is much harder to intuitively understand the behav-

ior of the SRM than the PRM. This is in part due to 
the larger action space and faster pace of operation. 
The behavior is perhaps best understood with respect 
to the search–track–classify performance. Nevertheless, 
a sense of the collaborative behavior can be seen in the 
snapshots of the joint sensor pointing given in Fig. 21.

Space Surveillance Applications
During 2010–2012, APL completed the first two 

phases of a project sponsored by the Air Force Research 
Laboratory Information Directorate to demonstrate 
proof of concept for a semiautomated dynamic sensor-
tasking capability that supports rapid decision making 
in space surveillance scenarios where the current delib-
erative, manually intensive process for tasking the U.S. 
Space Surveillance Network (SSN) is insufficiently 

SH-1

SH-2SH-2

SH-1

SH-1

SH-2

SH-1

SH-2

Figure 20. Simulated Kabul scenario PRM routing behavior snapshots. (Upper left) Before HVTs meet at safe house. (Upper right) During 
HVT meeting. (Lower left) Just after HVTs meet. (Lower right) Scenario end. Trails indicate current positions and 2 min of history for 
SUAV-1 (cyan), SUAV-2 (yellow), HVT-1 (red), and HVT-2 (orange).  (Adapted from Ref. 23.)
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of ISR assets performing surveillance and reconnais-
sance tasks in an irregular warfare scenario. The DIMS 
was designed to conform to and take advantage of the 
general characteristics of a SOA, which include services 
mapping to business processes, services exchanging data 
via messages, distributed architecture, discoverable and 
loosely coupled components, granular service definition, 
and implementation neutrality.

The DIMS application was exercised in a simulation-
based experiment using an irregular warfare scenario 
set in Afghanistan (scenario constructed by Tim Kehoe 
of the MITRE Corporation). The ISR mission was to 
observe activities around 25 known safe houses, located 
throughout a valley running from the southwest to the 
northeast in northeastern Afghanistan, that have been 
determined to be of interest (persistent surveillance) and 
to support engagement of positively identified enemy 
operatives (track moving HVTs). The available ISR assets 
consisted of dedicated Predator and ScanEagle UAVs 
with FMV sensors and a Global Hawk with an electro-
optical camera that was also tasked with a large number 
of strategic targets throughout the theater. The DIMS 
periodically generated retasking recommendations for 
the ScanEagle, Predator, and Global Hawk assets. These 

of potential threats. The core algorithm showed improved 
performance over several alternative tasking policies in 
acquiring track, maintaining track, and recovering after 
maneuvers. It effectively balances attention among many 
targets judiciously and gives sufficient attention to high-
priority emergent targets while sacrificing only modest 
tracking performance on catalog maintenance tasking.

Dynamic ISR Management in a Service-Oriented 
Architecture

In 2010, APL completed a project sponsored by the 
Air Force Electronic Systems Center to develop, deploy, 
demonstrate, and evaluate a dynamic ISR management 
decision aid provided as an application in a SOA. The 
project implemented the prototype decision aid as a 
Web service called Dynamic ISR Management Service 
(DIMS).24 The DIMS is exposed to users by and inte-
grated within the iC2ISR (improved command and con-
trol of ISR) simulation environment (Fig. 23) developed 
for the Air Force Electronic Systems Center by MITRE 
Corporation (see, e.g., Ref. 71). 

The DIMS application provides a semiautomated 
dynamic tasking optimization capability supporting 
operator decision making (Fig. 24) for managing a fleet 

Figure 21. Simulated Kabul scenario SRM sensor pointing behavior snapshots. Scheduled aimpoints are shown by colored cones from 
sensor to aimpoint for SUAV-1 (cyan), SUAV-2 (yellow), and Predator (magenta). (Reprinted from Ref. 23.)
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featuring the full spectrum of ISR platforms including 
satellites, aerostats [e.g., Persistent Ground Surveillance 
System (PGSS)], traditional airborne platforms (e.g., 
E-8  JSTARS, U-2 Dragon Lady, and MQ-9 Reaper), 
nontraditional airborne platforms (e.g., F-35 Lightning 
II and F-22 Raptor), quick-reaction capabilities [e.g., 
Vehicle and Dismount Exploitation Radar (VADER), 
MC-12W Liberty, and Blue Devil], swarms of autono-
mous SUAVs, fixed-location camera networks, and 
unattended ground sensors equipped with a variety 
of sensor payloads including electro-optical, infrared, 
multi-spectral, and hyper-spectral imaging, FMV, wide-

recommendations were presented to an operator for fur-
ther action, ignored, or automatically accepted.

CURRENT RESEARCH DIRECTIONS
APL is currently pursuing research and development 

to enhance the CLCISR capability in several directions 
with the goal of supporting experiments and demonstra-
tions featuring an increasingly broad spectrum of ISR 
assets, data exploitation techniques, control architec-
tures and techniques, and battlespace operating condi-
tions. The goal is to ultimately demonstrate scenarios 

Figure 22. Simulation of closed-loop sensor tasking enabling recovery of satellite track lost because of satellite maneuver. (Simulations 
by J. Clarke and S. Martin.)
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of different levels of awareness (object, situation, impact, 
process); incorporation of dissimilar and unstructured 
information sources (e.g., text and human intelligence 
reports); the use of different performance figures of 
merit; net-centric services; the interface to the human 
operator; and, more generally, enabling humans and 
automated systems to act in concert in collection, pro-
cessing, and control.

CONCLUSIONS
CLCISR applies the principles of feedback control to 

ISR operations. It coordinates a diverse ISR ensemble 
consisting of traditional and nontraditional air, space, 
and surface platforms and sensors to operate and pro-
duce information as an integrated enterprise. APL 
has made significant progress in developing prototype 
CLCISR capabilities and applying them to critical chal-
lenges in the ground and space domains. CLCISR has 
the potential to be an important enabler for APL’s UDF 
capability and to dramatically enhance the U.S. mili-
tary’s employment of its rapidly increasing and diverse 
inventory of ISR platforms and sensors.

ACKNOWLEDGMENTS: The authors recognize Sean Martin for 
his immense contribution to development of the algo-
rithms and software prototypes described in this article. 
The authors also recognize the vast and varied contribu-
tions of the following individuals (listed in alphabetical 
order) to the development of CLCISR applied to criti-

area motion imagery, multi-camera systems [e.g., Gorgon 
Stare and Autonomous Real-time Ground Ubiquitous 
Surveillance Imaging System (ARGUS-IS)], synthetic 
aperture radar, and signals intelligence. Another goal 
is to enhance performance in the face of challenging 
factors such as varying terrain, daylight, weather, and 
contested airspace conditions. Improvements in com-
putational efficiency to enable architectures and algo-
rithms that scale to highly complex problems will be 
needed. It will also be important to continue extend-
ing the CLCISR capability within the ground and space 
domains as well as to apply it to new domains such as 
maritime and cyber.

It is reasonable to expect that the ensemble of ISR 
assets at the disposal of a commander, and the mis-
sion that those ISR assets are supporting, will vary over 
time, perhaps drastically. Different control architectures 
and techniques will be required to manage the assets 
depending on the current situation. Research to under-
stand the performance of hierarchical and fully or par-
tially decentralized CLCISR management approaches 
and development of techniques to integrate short-term 
and longer-term resource planning are required. To deal 
with an aware adversary, game-theoretic ISR resource 
management will be an increasingly important area of 
research. Algorithms will be needed to estimate the 
adversary’s intent and to adapt to the adversary’s strategy.

Additional important topics for future research in 
CLCISR management include integration of national, 
theater, and tactical ISR; representation and feedback 
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Figure 24. DIMS operator console. (Web interface by S. Subbarao.)
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