
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

A SIGNAL PROCESSING PERSPECTIVE OF
HYPERSPECTRAL IMAGERY ANALYSIS TECHNIQUES

by

Marcus Stavros Stefanou

June, 1997

Thesis Advisors:                                          Richard C. Olsen
                                                                 Roberto Cristi

Approved for public release; distribution is unlimited.



i

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2.  REPORT DATE
June 1997

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE TITLE OF THESIS      A SIGNAL PROCESSING
PERSPECTIVE OF HYPERSPECTRAL IMAGERY ANALYSIS
TECHNIQUES

5. FUNDING NUMBERS

6. AUTHOR(S)   Marcus Stavros Stefanou
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey CA 93943-5000

8. PERFORMING
ORGANIZATION
REPORT NUMBER

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect
the official policy or position of the Department of Defense or the U.S. Government.

12a.  DISTRIBUTION/AVAILABILITY STATEMENT   Approved for public
release; distribution unlimited

12b. DISTRIBUTION CODE

13.  ABSTRACT (maximum 200 words)
       A new class of remote sensing data with great potential for the accurate identification of surface materials is termed
hyperspectral imagery.  Airborne or satellite imaging spectrometers record reflected solar or emissive thermal
electromagnetic energy in hundreds of contiguous narrow spectral bands. The substantial dimensionality and unique
character of hyperspectral imagery require techniques which differ substantially from traditional imagery analysis.  One
such approach is offered by a signal processing paradigm, which seeks to detect signals in the presence of noise and
multiple interfering signals.
       This study reviews existing hyperspectral imagery analysis techniques from a signal processing perspective and
arranges them in a contextual hierarchy.  It focuses on a large subset of analysis techniques based on linear transform and
subspace projection theory, a well established part of signal processing. Four broad families of linear transformation-
based analysis techniques are specified by the amounts of  available a priori scene information. Strengths and weaknesses
of each technique are developed. In general, the spectral angle mapper (SAM) and the orthogonal subspace projection
(OSP) techniques gave the best results and highest signal-to-clutter ratios ( SCRs).  In the case of minority targets, where a
small number of target pixels occurred over the entire scene, the low probability of detection (LPD) technique performed
well.

14.     SUBJECT TERMS    Hyperspectral, Digital Imagery Analysis, Signal Processing,
Remote Sensing

15. NUMBER OF
PAGES  238

16. PRICE CODE

17. SECURITY CLASSIFICA-
TION OF REPORT
Unclassified

18. SECURITY CLASSIFI-
CATION OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICA-
TION OF ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500  Standard Form 298 (Rev. 2-89)



ii

Prescribed by ANSI Std. 239-18 298-102



iii

Approved for public release; distribution is unlimited

A SIGNAL PROCESSING PERSPECTIVE OF HYPERSPECTRAL
IMAGERY ANALYSIS TECHNIQUES

Marcus Stavros Stefanou
Captain, United States Marine Corps

B.S., United States Naval Academy, 1990

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

June, 1997

Author:
_____________________________________________

Marcus Stavros Stefanou

Approved by:
_____________________________________________

Richard C. Olsen, Thesis Advisor

_____________________________________________
Roberto Cristi, Thesis Advisor

_____________________________________________
Herschel H. Loomis, Jr.,

Chairman, Department of Electrical and
Computer Engineering



iv



v

ABSTRACT

A new class of remote sensing data with great potential for the accurate

identification of surface materials is termed hyperspectral imagery.  Airborne or satellite

imaging spectrometers record reflected solar or emissive thermal electromagnetic energy

in hundreds of contiguous narrow spectral bands. The substantial dimensionality and

unique character of hyperspectral imagery require techniques which differ substantially

from traditional imagery analysis.  One such approach is offered by a signal processing

paradigm, which seeks to detect signals in the presence of noise and multiple interfering

signals.

This study reviews existing hyperspectral imagery analysis techniques from a signal

processing perspective and arranges them in a contextual hierarchy.  It focuses on a large

subset of analysis techniques based on linear transform and subspace projection theory, a

well established part of signal processing. Four broad families of linear transformation-

based analysis techniques are specified by the amounts of  available a priori scene

information. Strengths and weaknesses of each technique are developed. In general, the

spectral angle mapper (SAM) and the orthogonal subspace projection (OSP) techniques

gave the best results and highest signal-to-clutter ratios (SCRs).  In the case of minority

targets, where a small number of target pixels occurred over the entire scene, the low

probability of detection (LPD) technique performed well.
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I.  INTRODUCTION

A remote sensing system may be viewed in its broadest context as three parts.
The first is the scene, that is, the earth’s surface and the atmosphere through which energy
passes.  The second is the sensor system, which is designed so that the scene will be
adequately represented for the extraction of desired information.  The third component is
the processing system, which is optimized with respect to specific information extraction
applications. This overarching view of the remote sensing philosophy was introduced by
Swain and Davis (1978).  Figure 1.1 illustrates the remote sensing system concept, with
additional details in the sensor and processing systems.  It is important to note that the

Figure 1.1:  Components of a Remote Sensing System.
From Swain and Davis, 1978, p. 337.

ordering of these elements reflects our increasing level of control over them.  The focus
of this study is on the element of remote sensing systems over which we have the most
control, the data processing.  This study will review all currently known techniques for
analyzing data from one of the newest family of remote sensing systems, hyperspectral
imagery.  The particular emphasis of the study is a detailed examination of the techniques



2

with signal processing origins that have been applied to the specific task of target
detection.

The advent of imaging spectroscopy with the Airborne Imaging Spectrometer in
1982 established a new tool for immediate application to several topics in the earth
sciences but also created a fundamentally new class of data requiring new approaches to
information extraction (Vane and Goetz, 1988, p. 1). This new class of data measures the
spectral character of materials on the ground and is referred to as spectral imagery
throughout this study.  Hyperspectral data, a particular type of spectral imagery, is
produced when solar electromagnetic energy reflected form the earth’s surface is
dispersed into many contiguous narrow spectral bands by an airborne spectrometer (Vane
and Goetz, 1988, p. 3).  Each picture element (pixel) of a hyperspectral image can be
thought of as a high resolution trace of radiation versus wavelength, or a spectrum
(Rinker, 1990, p. 6).  The characteristic wavelength dependent changes in the emissivity
and reflectivity of a given material can be related to the chemical composition and types
of atomic and molecular bonds present in that material (Gorman, Subotic, and Thelen,
1995,  p. 2805).  The chemical composition of different materials is thus manifested in
the spectral properties of these materials, and can serve as a means of differentiating
materials observed in a hyperspectral image with great detail.

The task of analyzing hyperspectral imagery is complicated by several factors,
however.  The first is the sheer amount of data inherent in a hyperspectral image.  A
typical 224-band Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) image,
considered to be the state-of-the-art in hyperspectral imaging systems, occupies about 134
Mbytes (Roger and Cavenor, 1996, p. 713).   Algorithms for processing such vast
quantities of data must be computationally efficient to be of any service, and must seek to
eliminate redundant data prior to processing.  The second factor is that the radiances
recorded at the spectrometer output are subjected to additive noise from the atmosphere,
the sensor instrumentation, the data quantization procedure, and transmission back to
earth.  The cumulative effect of these noise terms is a spectrum that has been corrupted by
noise, and detecting a target is no longer a simple proposition.  It is here where a signal
processing point of view is helpful, as the problem has now become the classical signal in
noise problem.  The third factor is that owing to the finite spatial resolution of the
imaging spectrometer and the actual ground scene, the observed spectrum for a pixel
may not be that of a single material.  Rather, it could be a mixture of several different
materials which exist within the spatial dimensions of the sensor’s ground instantaneous
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field of view (GIFOV).  The GIFOV of the AVIRIS sensor at sea level is nominally 20 m
x 20 m (Farrand and Harsanyi, 1995, p. 1566), and the implication is that several
materials could contribute to the observed spectrum for that pixel depending on the
complexity of the ground scene.  A fourth factor that complicates analysis efforts is that
spectra of the same type of material often appear very different.  This variability within
the spectra of a species dictates a statistical approach vice a deterministic one.

There are many types of data processing techniques which address the unique
issues raised by hyperspectral imagery.  Many of them grew out of earlier techniques
which had been successfully applied to multispectral imagery, the precursor of
hyperspectral imagery.  Others have a foundation in the discipline of pattern recognition.
A newer approach, which is naturally suited to the task of detecting signals in the
presence of noise and multiple interfering signals, is based on signal processing.  It
efficiently handles the data by viewing it from the vantage of vectors and  matrices, and
performs processing by various linear transformations.

A major goal of this study is to logically order the many techniques available for
the analysis of hyperspectral data in such a manner that potential users understand the
optimum situation for specific techniques to be applied.  This goal is best stated in the
words of E. T. Jaynes, a pioneer in the field of maximum entropy spectral estimation
research.  In describing the importance of considering the problem to be solved prior to
applying specific techniques he writes:

There are many different spectral analysis problems, corresponding to
different kinds of prior information, different kinds of data, different kinds
of perturbing noise, and different objectives.  It is, therefore, quite
meaningless to pass judgment on the merits of any proposed method
unless one specifies clearly: “In what class of problems is this method
intended to be used?” Today, programming and running a computer is
much easier than actually thinking about a problem, so one may program
an algorithm appropriate to one kind of problem, and then feed in the data
of an entirely different problem.   If the result is unsatisfactory, there is an
understandable tendency to blame the algorithm and the method that
produced it rather than the faulty application (Jaynes, 1982, p. 939).

Jaynes’ argument is appropriate to the issue at hand, and a desired major end result of this
study is a clear picture in the reader’s mind of the capabilities of various hyperspectral
analysis techniques.  The signal processing approach will assist in the objective
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evaluation of the theoretical concepts behind each  technique and the circumstances in
which the technique is best applied.

This study is organized in a manner that will facilitate the goal of an orderly
approach to many different hyperspectral analysis techniques.  Chapter II presents an
overview of all currently known methods that can be applied to the analysis of
hyperspectral imagery based on various user community paradigms.  It also develops the
historical context for these paradigms.  Finally, the chapter narrows the scope of the study
to those techniques with a signal processing flavor, and establishes a method of
categorizing these techniques based on the amount of information available to the user at
the start of the problem.  Chapter III defines some basic statistical and linear algebra
concepts using spectral imagery as illustrative examples. This chapter is important in that
it introduces the mathematical foundation that underlies this study. The next four chapters
address four major families of techniques that have been grouped according to a priori
knowledge.  Each of these chapters includes the broad concepts that motivated each
technique as well as specific examples of the operation and applicability of each
technique to real data sets. Chapter IV discusses the principal components family of
techniques, Chapter V considers the matched filter family of techniques, Chapter VI
studies the unknown background family of techniques, and Chapter VII examines the
limited image endmember family of techniques. Chapter VIII is a summary of the results
of the previous chapters. Chapter IX concludes the paper. It seeks to solidify the
connections between specific families of techniques and emphasize the situations in
which the techniques are most appropriate.
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II.  BACKGROUND

A.  PROBLEM STATEMENT

This study concentrates on the application of hyperspectral imagery analysis
techniques to the particular task of target detection.  Some of the techniques considered
have this as their original goal.  Others have never been applied in this context.  Before
beginning an overview of all techniques, it is appropriate to define the problem at hand.
The nature of hyperspectral data is such that the detection of a target in the image is best
achieved by using the large amount of information inherent in the observed spectra.
Thus, the problem is to localize the spectrum which is characteristic of the target material.
Although this seems simple enough, there are a myriad of methods that can be applied to
solve this problem.  The reason for the multiplicity of methods is due to factors such as
the amount of a priori information assumed, the view of  the type of data, and the data
model assumed.  These factors dictate which approach is optimally suited to the particular
task of target detection.  The various approaches or strategies to the problem are
highlighted in the next section.

B.  STRATEGIES FOR SPECTRAL IMAGERY ANALYSIS

Transformation and Projection
- Linear transformation performed on each pixel
- Goal is to find the "right" set of basis functions and project image into "target" subspace
- May act as a preprocessing step prior to classification

Classification
- Pixels assigned to spectral classes based on similar statistics
- Stochastic outlook on data
- Assumes spectrally pure pixels

Linear Prediction
- Exploits the spatial and spectral redundancy inherent in spectral images
- Each pixel is viewed as a linear combination of its neighbors
- Originally applied to data compression

Optimal Band Selection
- Goal is to pick the best spectral bands that will discriminate a target
- Band selection process may be deterministic or stochastic
- Scene dependent

Multiresolution Analysis
- Goal is to use different spatial resolution images to form a high resolution composite image
- Exploits spatial correlation between neighoring pixels
- Concepts related to and involving wavelets

Spectral Imagery Analysis Strategies

Figure 2.1:  Taxonomy of Spectral Imagery Analysis Strategies.
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In a broad survey of the pertinent literature, five major strategies are perceived
into which the many methods for hyperspectral imagery target detection can be placed.
Figure 2.1 illustrates these major strategies and the noteworthy aspects of each. In this
context, the discussion of each strategy is simplified. The creation of this particular
taxonomy is driven by four  major determinants. The first is  the model of the data.  As
mentioned above, the observed spectrum of each pixel recorded at the hyperspectral
sensor can be viewed as a combination of multiple spectra within the spatial boundaries
of the GIFOV.  The individual spectra contributing to the observed spectrum are assumed
to represent spectrally pure materials called endmembers and are assumed to mix in a
linear fashion.  When this model of the data is assumed, as is often the case with
hyperspectral imagery, the data model is called the linear mixture model or mixed pixel
model.  An illustration of this concept is seen in Figure 2.2, where the imaged pixel is
composed of three unique material types. The finite spatial resolution of the sensor is the

Figure 2.2:  The Mixed Pixel Concept. After Harsanyi, 1993, p. 17.

cause of this situation.  Each small square in Figure 2.2 represents the observed pixel on
the ground.  The expanded view of one of the pixels shows that it is composed of three
different endmembers.  The alternative to this model is the assumption that each observed
pixel spectrum represents a unique material, which will be classified according to its own
properties with respect to all other observed spectra in the scene.  This  model actually
predates the mixed pixel model and is a simpler view of the matter.  The  second
determinant of the type of strategy is the nature of the data.  In considering hyperspectral
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data, one can either view each observed pixel spectrum as a totally deterministic vector, a
deterministic vector with additive random noise, or a random vector.   It can be argued
that the individual vector which represents the observed spectrum at each pixel is
deterministic since it represents a unique material with its own peculiar absorption
features.  Likewise, the case can be made that the observed spectral vectors simply
represent realizations of a random process because of the large amount of variability that
one encounters when looking at various specimens of the same material. Figure 2.3
illustrates the high degree of variation that can exist in the spectra of the same material.

Figure 2.3:  Spectral Variability Within Material Species. From Price, 1994, p. 183.

The spectra in Figure 2.3 were produced by field measurements using radiometers, and
constitute a rough idea of laboratory spectra.  Note that the high within-species variability
makes deterministic identification of spectra a challenging matter, even with a spectral
reference library.  The third determinant of type of strategy is related to the scene itself.
In a naturally occurring homogenous background, adjacent pixel spectra should have very
similar statistical qualities.  They could be expected to exhibit a high degree of correlation
between neighbors.  The occurrence of an object not belonging to the uniform



8

background would display a lower correlation with its neighbors.  If no relation between
neighbors is assumed, then each pixel spectrum is treated independently in the
processing.  Thus, whether or not the strategy assumes that such a relation between
neighboring  pixel spectra is a discriminant among strategies.  The fourth determinant
deals with the amount of a priori information provided at the outset of the problem.  The
a priori knowledge ranges from complete knowledge of the target and the background to
no knowledge at all.  The a priori knowledge categorization will be detailed in a
subsequent section, as it is  the most important distinguishing characteristic in the linear
transform and projection strategy. It is important to note that these discriminants of the
strategies do not produce mutually exclusive sets of strategies.  In many cases, there is
overlap, and the assignment of a particular technique to this strategy or another can be
argued either way.  This study seeks to be consistent in assigning techniques to strategies,
and attempts to strictly follow the above discriminants as guidelines.  Also, more than one
strategy can be applied to the analysis of an image, and is often done in practice.  The
strategies may be viewed as building blocks which allow the user flexibility in
implementation.

The first strategy, the techniques of which will be examined in detail by this study,
is that of linear transformations and projections from the signal processing perspective.
Data is visualized as belonging to either a signal subspace or a noise subspace, where a
subspace is a linear algebra term which describes vectors with similar characteristics. It
will be seen that the general approach is to project the observed image into a subspace
where possible targets are easily discriminated.  The key to the proper projection is
having the right basis functions to construct a projection operator.  The mixed pixel
problem is assumed in most techniques of this strategy, and the statistics of the data,
particularly the covariance matrix, play a major role in determining the proper basis
functions for a projection operator.  Each pixel is treated independently, as no assumption
is made concerning the spatial arrangement of the pixel vectors.  It should be noted that
this strategy is often applied as a preprocessing step which aids in the later classification
of image pixels using another strategy.  This observation underscores the fact that these
strategies do not necessarily have to be applied independently.

The second strategy in analyzing spectral imagery is a classification approach.  It
assigns observed pixel spectra to classes based on similar statistical characteristics.  This
strategy necessarily assumes a stochastic outlook of the data.  The mixed pixel problem is
not assumed, and the target spectrum is discriminated based on its membership in a class
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separate from the background pixels.  Techniques are further differentiated based on the
need for training pixels from known classes and on the assumptions made about the
statistical distribution of the pixels in each class.

The third strategy is based on the ideas of linear prediction.  It assumes that each
pixel vector is a linear combination of its neighbors, and seeks to exploit this relationship.
The idea is to create a residual image in which there is less redundancy spectrally and
spatially.  Although applied to compression, this strategy has potential for target
detection.  Data is viewed statistically and modeled as such.

The fourth strategy is optimal band selection.  The intent is to select the best
original bands of the hyperspectral image that can be used to discriminate the target. The
band selection process can be  guided by a deterministic or statistical view of the target
and background spectra.  No explicit assumption about the linear mixing model is made.  

The fifth strategy involves the use of multiresolution techniques.  Concepts such
as wavelets are used to pick out varying levels of detail from the image.  The spatial
correlation between neighbors is exploited, though a statistical outlook is not necessarily
required.

C.  AN OVERVIEW OF SPECIFIC METHODS WITHIN THE STRATEGIES

This subsection provides the reader an overview of where specific techniques
belong in the taxonomy of the above strategies.  The techniques are described in only the
briefest detail, with the pertinent references included for further research.  The
categorization of techniques within strategies is guided by the discussion of the previous
subsection.

The transform and projection strategy has as the underlying assumption the mixed
pixel problem in most cases.  The segregation of techniques within this family is
determined by the a priori knowledge that one has of the image endmembers.  Figure 2.4
shows the breakdown of various techniques within this strategy.   An endmember is
defined as the spectrum associated with a pure material which is a constituent of the
scene.  The next four paragraphs address the techniques found within each family of the
linear transformation and projection strategy.

If nothing is known about the data prior to processing, then the principal
components analysis (PCA) family of techniques is best suited to the task.  The basic
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Principal Components Analysis  (PCA)

Maximum Noise Fraction (MNF) or
 Noise Adjusted PC (NAPC) Transform

Standardized PCA (SPCA)

Principal Components Family
No a priori knowledge

Simultaneous Diagonalization (SD) Filter

Orthogonal Subspace Projection (OSP)

Least Squares OSP (LSOSP)

Filter Vector Algorithm (FVA)

Matched Filter Family
Target and background endmembers known

Low Probability of Detection (LPD)

Constrained Energy Minimization (CEM)

Adaptive Multidimensional Matched Filter

Unknown Background Family
Only target endmember known

Endmember Identification based on
Multiple Signal Classification (MUSIC)

Partial Unmixing

Spectral Angle Mapper (SAM)

Singular Value Decomposition (SVD)

Limited Image Endmembers Family
Only Reference Library Spectra Available

Transformation and Projection Strategy

Figure 2.4:  Hierarchy of Techniques in the Linear Transformation and Projection
Strategy.

PCA is well described by Richards (1986).  The noise adjusted principal components
(NAPC) transform is a variant of PCA that orders images based on signal to noise ratio
by whitening the additive noise and is described by Green, Berman, Switzer, and Craig
(1988) and redefined by Lee, Woodyatt, and Berman (1990) as the maximum noise
fraction (MNF) transform.  Standardized principal components analysis is a technique
that uses the standardized covariance matrix instead of the covariance matrix and is
developed in Singh and Harrison (1985).  Though the PCA does not explicitly assume the
mixed pixel model, an interesting application by Smith, Adams, and Johnson (1985)
allows the determination of the relative abundance of endmembers in each pixel spectrum
using PCA.  This technique represents a move towards the linear mixture model, and is
important in that it sets the stage for the family of techniques which operates on no a
priori knowledge except the presence of a reference library of endmember spectra.

The second major family of the linear transformation and projection strategy  is
generalized as the matched filter family because of the similarity to the signal processing
concept of a matched filter.  If all endmembers are known including the target, then the
simultaneous diagnolization (SD) filter (Miller, Farrison, Shin, 1992), a special case of
the matched filter, is applied.  The SD filter was developed for a wide range of
applications, of which spectral imagery analysis is a subset.  A special case of the SD
filter when the noise term is assumed to be of zero variance is the orthogonal subspace
projection (OSP) first introduced by Harsanyi (1993).  The OSP technique takes an a
priori least squares approach to the data, and represents an extension of ideas from the
array processing community. A further improvement of the OSP proposed by Tu, Chen,
and Chang (1997) is the least squares OSP (LSOSP), which assumes an a posteriori
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model of the data to improve the signal to noise ratio of the OSP technique. Filter vectors
(Palmadesso, Antoniades, Baumback, Bowles, and Rickard, 1995) are a similar technique
based upon the use of a matched filter to detect the target spectrum.

The third family of techniques is characterized by no a priori knowledge of the
background endmembers.  Only the target endmember is known.  If the target signal is
assumed to occur with a very low probability in the scene, then the low probability
detection (LPD) technique (Harsanyi, 1993) can be applied.  This technique is based on
the concept of eigenfiltering.  If the low probability of target occurrence is relaxed, then
another technique also developed by Harsanyi (1993), called the constrained energy
minimization (CEM) technique, may be employed.  This technique is developed from the
concept of beamforming in array processing. The matched filter can also be derived from
a hypothesis test approach, which is more commonly associated with statistically based
classification approaches.  Stocker, Reed, and Yu (1990) derive such a matched filter
which exploits spatial and spectral differences between a target and the background.
Winter (1995) gives an interesting application of this spectral matched filter to the
problem of hyperspectral mine detection.

The last family of techniques is one in which no a priori knowledge of any
endmembers exists, but a spectral library or limited ground truth is available.  If no
knowledge of endmembers exists, then they may be estimated using a technique similar to
the multiple signal classification (MUSIC) technique used in signal direction of arrival
estimation problems. This technique, proposed by Harsanyi, Farrand, Hejl, and Chang
(1994), employs elements of the OSP technique and principal components analysis, and
requires a reference library of spectra.  The spectral angle mapper (SAM) described by
Yuhas, Goetz, and Boardman (1992) is a technique which treats spectra in a deterministic
manner and attempts to measure the closeness of an observed pixel vector to one from a
reference library.  This technique does not assume mixed pixels.  The partial unmixing
technique developed by Boardman, Kruse, Green (1995) uses the ideas of convex sets to
isolate the pixels most representative of pure endmembers in the scene, and then
constructs a subspace which is orthogonal to the background endmembers in order to
isolate the target.  This technique builds upon the PCA endmember identification
technique of Smith, Adams, and Johnson (1985). Another technique described by
Danaher and O’Mongain (1992) and Herries, Selige, Danaher (1996) employs the linear
algebra concept of the singular value decomposition (SVD) to efficiently estimate the
abundance of a target material in the image.  The technique requires ground truth in one
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instance to create an operator, or key vector, which will isolate the target spectrum.
Following the one time derivation of the key vector, no a priori knowledge of the image
endmembers is required for subsequent applications.

The classification strategy is well documented in the literature of remote sensing
data processing.  It is a technique primarily used in two-dimensional photointerpretation
and is an effective means of analyzing multispectral imagery. Figure 2.5 shows the
various techniques within this strategy. The first discriminator of techniques in this family

Discriminant Analysis

Likelihood Ratio Tests

Superv ised

Clustering Algortihms

Unsupervised

Parametric Techniques

Parzen Estimator

Nonparametr ic Techniques

Classification Strategy

Figure 2.5:  Hierarchy of Techniques Within the Classification Strategy.

is whether or not a form for the statistical model of the data is assumed.  If no
assumptions are made then the techniques are termed nonparametric.  The Parzen
estimator is a nonparametric method applied by Nedeljkovic and Pendock (1996) as a
means of finding spectral anomalies in hyperspectral imagery.  If the statistics of the data
are assumed to be Gaussian, then  classification techniques are termed parametric.  A
further division of parametric techniques is achieved by considering the availability of
training pixels at the start of the problem.  A training pixel is a pixel which is known to
belong to a specific class.  If training pixels are used, then the techniques are categorized
as supervised classification techniques.  Richards (1986) describes the most common
supervised classification techniques, those based on maximum likelihood classification,
in the context of multispectral imagery.  These techniques are based on the statistical
concept of Bayesian estimation which is described in detail with respect to two-
dimensional image processing by Therrien (1989).  Another technique called discriminant
analysis, described by Fukanaga (1971) for application to pattern recognition, and
Hoffbeck and Landgrebe (1996) for hyperspectral imagery, seeks to maximize the
separation of classes.  If no training pixels are used to assist in the classification process,
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then the techniques are termed unsupervised classifiers.  These techniques are described
by Mather (1987) as clustering techniques which seek to classify pixels by the
compactness of their groupings in multispectral space.  Further discussions of
classification techniques can be found in Swain and Davis (1978).

The linear prediction strategy seeks to capitalize upon the spatial and spectral
redundancy inherent in hyperspectral imagery.  The purpose of these techniques is to
remove this redundancy for data compression.  The techniques can take advantage of
spatial redundancy as described by Therrien, Quatieri, and Dudgeon (1986) for
application to two-dimensional image object detection. Other techniques in this strategy
seek to reduce spectral redundancy as Rao and Bhargava (1996) describe.  Techniques
can also attempt to reduce the redundancy in  both the spatial and spectral dimensions, as
discussed  by Wang, Zhang, and Tang (1995), and objectively evaluated by Roger and
Cavenor (1996).

  The optimal band selection strategy can be implemented by a technique
introduced by Solberg and Egeland (1993) that uses Markov chain theory to select an
optimal set of bands which is subsequently used for classification purposes.  A different
technique that has been proposed if all endmembers are known is to select the optimal
bands to enhance the target signature using wavelets (Gorman, Subotic, Thelen, 1995).

The multiresolution strategy of hyperspectral imagery analysis is closely related to
the concept of the wavelet transform.  Burt (1992)  has pioneered  several applications of
multiresolution techniques to the problems of image fusion and alignment.  The
application of these techniques to hyperspectral imagery analysis is described by Wilson,
Rogers, and Meyers (1995).  The techniques associated with multiresolution analysis lend
themselves to the use of neural networks as tools in classifying hyperspectral images
(Moon and Merenyi, 1995, p. 726).

D.  HISTORY

In order to fully appreciate the significance of the hierarchy of hyperspectral
imagery analysis strategies, a review of the historical perspective and paradigms in the
analysis of hyperspectral images is necessary.  Figure 2.6 illustrates the major image
analysis paradigms over the past seventy years. This is by no means an all inclusive
history, but rather a quick synopsis of the major ideas that led to the area specifically
addressed in this study.  The analysis of imagery began in the early part of this century
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with photointerpretation.  This analysis of aerial photographs to extract information of
interest was a strictly human operation.  The strength of the human element in
interpretation was the ability to recognize large scale patterns (Richards, 1986, p. 75) and
make inferences based on these patterns.  The weakness of the human element was the
inability to accurately quantify the results in a consistent manner.  The computing power
that began to become available in the 1960’s and the ability to represent data in a digital
fashion provided the impetus for automation of the photointerpretation task  into digital
imagery analysis. Here, the computer was programmed to work within narrow
parameters, such as counting the number of occurrences of certain brightness values, a

Photointerpretation (1930s - )
- 2D Images
- good qualitative analysis (human)
- poor quantitative analysis

Digital Imagery (1960s -)
- 2D Images
- Pattern Recognition/ Computer Vision
- Emphasis on Classification Techniques

Multispectral Imagery (1970s -)
- 3D Images
- Principal Components Analysis 
- Land Usage Classification

Hyperspectral imagery (1980s -)
- Need to reduce data dimensionality
- Software Packages with Spectral Libraries
- Need efficient processing techniques

Figure 2.6:  Major Imagery Analysis Paradigms.

job that it performed better than any human analysts.  The fields of pattern recognition
and computer vision became important, and a statistical description of the data was
needed to form the basis of classification schemes which could accurately determine the
number of pixels in the scene belonging to a certain class.  Linear prediction and principal
components analysis (PCA) were tools that could assist in the automated detection of a
target in the two-dimensional digital images.  The advent of multispectral imagery with
Landsat data in the 1970’s added the spectral dimension to the problem of imagery



15

analysis.  PCA played a significant role in reducing the dimensionality of the data and
assisted in the classification of large land areas.  The relationship between PCA
techniques and classification techniques was a sequential operation, in that PCA was first
applied to an image to remove the redundant information or create a better class
separation and then a classifier was applied.  This preprocessing application of PCA
continues today. Improved classification techniques helped separate classes more
consistently and accurately, but the majority of the techniques continued to be those
found in pattern recognition disciplines.  The 1980’s and hyperspectral imagery ushered
in a new challenge to the existing methods of analyzing data.  Compression became an
important concern.  The search for new techniques to deal with the large amount of
information and commensurate amount of redundancy prompted new views of the
analysis paradigm.  Ideas from the signal processing community provided a means of
handling the large amount of data and confronting the mixed pixel problem.  Software
packages dedicated to the analysis of hyperspectral imagery incorporated spectral
libraries, and found particular interest in the geological remote sensing community.  The
generation of innovative approaches and techniques  is continuing as computing power
increases.

E.  CREATION OF A TAXONOMY FOR THE LINEAR
TRANSFORMATION  AND PROJECTION STRATEGY

As discussed above, the guiding rule for establishing the families within the linear
transformation and projection strategy is the amount of a priori knowledge available to
the user at the start of the problem.  This is the analyst’s perspective, which seeks to use
the appropriate tool for the job.  The four major divisions of a priori knowledge are:  no
knowledge of the scene endmembers, knowledge of all scene endmembers, knowledge of
the target endmember only, limited knowledge of endmembers through a reference library
or ground truth.  The detailed discussion of these families of techniques constitutes the
Chapters IV, V, VI, and VII.  Each family is viewed as part of a hierarchy and has been
categorized according to the taxonomy based on a priori knowledge.  In the interest of a
consistent approach, each family is treated using a common framework, which is reflected
in the sections of each of the four chapters, and quickly described here.  First, the
techniques within a family are given a general description, which seeks to highlight some
common major concepts.  Second, the background concepts of the family are presented.
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Statistical, linear algebra, and signal processing concepts  are developed in detail to
provide a good idea of the impetus for the specific techniques that follow.  Third, the
operation of the specific techniques are discussed and illustrated with examples. This
framework is intended to concentrate all of the information required to fully understand a
technique in one location.  In an effort to enhance the basic concepts involved with the
some of the statistical descriptions of the data,  Chapter III discusses and illustrates some
important definitions used frequently throughout this study.
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III.  DEFINITIONS

An understanding of the fundamental ideas behind the various spectral imagery
analysis techniques is important since it leads to the intelligent application of these
techniques.  The fundamental ideas involve concepts from statistics, linear algebra, and
signal processing theory.  Discussion of these ideas in the context of spectral imagery sets
the stage for the detailed discussion of specific techniques that follow.  This section
presents multispectral and hyperspectral images as a means of further highlighting certain
properties of the spectral concept.  The images are also characterized from a statistics
view, which assists in better understanding the image content and the statistical principles
used in spectral imagery analysis techniques. Some concepts from linear algebra and
signal processing are defined to provide a framework through which to understand certain
spectral imagery analysis techniques. These perspectives offer a means of defining key
concepts that appear throughout this study.  An effort has been made to make these
definitions simple yet comprehensive through the use of illustrative examples.

A.  SPECTRAL IMAGERY

Spectral imagery is the acquisition of images at multiple wavelengths by
spectrometers onboard aircraft or spacecraft.  Two primary classes of such measurements
are the traditional multispectral images, as with those produced by the thematic mapper
(TM) radiometer on the Landsat satellites, and hyperspectral imagery, produced by
imaging spectrometers in the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
and Hyperspectral Digital Imaging Collection Experiment (HYDICE) systems.  Typical
images from Landsat and HYDICE data will be used here to introduce many of the
concepts needed for this study.  These data sets will also be used to illustrate analysis
techniques in future sections. The Landsat TM scene is a seven-band 1000 x 1000 pixel
image of Boulder, Colorado, made in August, 1985. The scene includes urban and
mountainous areas.  The presentation of the data as seven distinct image planes
representing the various wavelength ranges is highlighted by Figure 3.1.   The color
version of this figure may be found in Appendix A.  Notice how objects which appear
bright in one band may appear dark in another band.  The Flatiron Mountains of the Front
Range, found in the left third of the image, illustrate this effect.  Through this sort of
contrasting effect, Landsat imagery offers a very basic means of discerning the spectral
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Figure 3.1:  A Typical Multispectral Image Produced by  Landsat TM.

character of a particular class of material.
 A representative  HYDICE scene was chosen from the FOREST RADIANCE I

collect of Aberdeen Proving Grounds, MD, made in 1995 from a Convair CV-580 aircraft
flying at 20,000 feet.  The scene shows multiple vehicles parked in a field and treeline
with roads running predominantly vertically through the scene. Figure 3.2 shows the
hyperspectral image consisting of 320 samples, 320 lines, and 210 bands. A color version
of this figure may be found in Appendix A.  This image is a red,green,blue composite
formed using bands 176 (2198.1 nm), 91 (1172.3 nm) and 31 (518.4 nm).  One way of
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Figure 3.2:  A Typical Hyperspectral Image Cube.

visualizing this type of data that has two spatial and one spectral dimension is as a cube.
The vertical axis of the ‘hypercube’ represents the spectral response of individual spatial
locations.  The two dark bands which stretch horizontally across the spectral response
faces of the hypercube correspond to atmospheric absorption bands.  The ability to
identify materials based on spectral detail is clearly more effective with hyperspectral
imagery as opposed to multispectral imagery.   As an example, note on the hypercube
how the spectra associated with the road pixels appear clearly different than the spectra
associated with the field or the trees.  Figure 3.3 emphasizes the high spectral resolution
of hyperspectral data by extracting information in the spectral dimension, or downward in
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Figure 3.3:  The Concept of a Pixel Vector. From Vane and Goetz, 1988, p. 2.

the axes of the cube.  It shows the construction of an observed spectrum associated with a
particular spatial location, called a pixel vector.  The pixel vector is central to the
discussion which follows, since the pixel vector may be viewed as a unique  signal
associated with a material of interest.  Figure 3.4 further illustrates the pixel vector

Figure 3.4:  Typical Pixel Vectors From Multispectral and Hyperspectral Images.
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concept using randomly chosen observed spectra from the Landsat and HYDICE images.
The fine spectral detail that can be discerned in the hyperspectral image spectrum is a
stark contrast to the coarse detail that comes from seven data points, as in the Landsat
observed spectrum. Band seven precedes band six in the Landsat data to accurately reflect
the corresponding wavelengths.  The implication is that the characteristic shape of the
pixel vectors obtained using hyperspectral imagery allows a more definitive identification
of material based on unique spectral characteristics.  Note also that the range of
brightness values for the Landsat data is from zero to 255, corresponding to eight bit
quantization of the data by the sensor.  The HYDICE sensor has 12-bit quantization of the
data.

In a hyperspectral sensor such as HYDICE, the spectral bands are configured to
cover a range of 400 to 2500 nm. The observations of this reflected energy at the sensor
are measured in terms of radiance, which has units of watts per square meter. A
significant portion of the spectrum imaged in the HYDICE system is dominated by solar
energy reflected from the earth’s surface. This solar energy accounts for the characteristic
“hump” in roughly the 50th to the 70th bands.  At times, it is desirable to mitigate the
effect of the dominant solar curve so that other spectral details may be discerned.  One
means of doing so entails converting radiance measurements to reflectance measurements
by dividing the radiance observations by the scene average spectrum. Other methods
include an offset based on in-scene brightness calibration points. The net effect is to
normalize the radiance measurements in such a manner that the solar bias is removed and
the resulting reflectance spectrum appears flatter.  Figure 3.5 shows typical

Figure 3.5:  Radiance and Reflectance Spectra of Aberdeen HYDICE scene.
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reflectance and radiance measurements for the same pixel of the HYDICE Aberdeen
scene. The radiance data has been divided by a factor of ten in order to give it a dynamic
range closer to that of the reflectance data.  In spite of the scaling, note how the large
peaks in the radiance data have been smoothed in the reflectance data.  In both Figures
3.4 and 3.5, the wavelength range of the particular sensor has been annotated on the upper
horizontal axis.  This accentuates the fact that the HYDICE sensor employs narrower
spectral bandwidths than does the Landsat TM.

B.  STATISTICAL INTERPRETATION

In order to assist in the quantitative discussion of characterizing the data
statistically, we need to formally define the concept of the observed pixel vector. Assume
that the observed pixel vector x is a real valued random vector

x =
L

N
MMM

O

Q
PPP

x

xl

1

M      (3.1)

where the components {x1,...,xl} correspond to measured brightness values in each of l
spectral bands. Since a stochastic view of the data assumes that these vectors are random
entities, one means of characterizing them is to describe their behavior using statistical
concepts.  Exact statistical descriptions of their behavior are unavailable in real
applications, so we must rely on methods that estimate the statistics of the observed
random vectors.  There are three major statistical definitions of interest in this respect.
The first is the concept of expectation.  The expectation of a random vector is called the
mean or the average value that the random vector assumes, and is denoted as E{x}.  The
mean is also called the first moment since it involves only the random vector itself and
not products of the components of the vector x (Therrien, 1992, p. 33).   In using the
observed data, is desirable that the statistical expectation of the estimated mean equal the
actual mean. This is called an unbiased estimate of the mean. The framework for this
estimation is to view the spectral image or scene as a collection of N random pixel
vectors.  This implies that the scene is comprised of N pixel vectors, each consisting of an
l-band spectrum.  The unbiased estimate of the mean spectrum for the scene is given by:
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where xj  represents the spectrum of the jth pixel of the scene. The mean spectrum vector,
m, of Equation 3.2 can also be interpreted as a l-dimensional vector with each component
representing the average brightness value over the entire image for one particular band.
Figure 3.6 illustrates the scene mean spectra for the Boulder Landsat TM and Aberdeen
HYDICE images. It also shows the standard deviations for the Landsat image as error
bars and the spectra of fifty randomly chosen pixel vectors for the HYDICE image as
dots.  These additional statistical characteristics of the data will be defined shortly.  The
important characteristic of Figure 3.6 with respect to the definition of mean spectra is the
degree of similarity that exists between the mean spectra and the randomly chosen spectra
of Figure 3.4.  By the nature of its definition, the mean spectrum will appear to match  the
shape of the pixel vectors which occur most frequently in the scene.

 

Figure 3.6:  Mean Spectrum with One Standard Deviation of Landsat Image and
Mean Spectrum with Representation of Variance of HYDICE Image.
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The second definition of importance in characterizing random vectors is that of
the covariance matrix. The covariance matrix is defined in vector and expanded
component form as:

Sx  = E{(x-m)(x-m)T} = 

E x m E x m x m E x m x m
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where m is the mean vector of the entire image defined in Equation 3.2. The covariance
matrix is symmetric and the elements of the main diagonal represent the variances
associated with each of the component variables of the random vector x.  In the case of
spectral imagery, the variance is a measure of how the brightness value of a particular
band varies over all spatial image pixels.  Figure 3.6 gives a rough idea of variance as the
amount of distance between the mean spectrum and the 50 randomly chosen spectra
plotted with it.  It is also considered to be a measure of the power or contrast associated
with  each band.  The off-diagonal elements are called the covariances, and measure how
different variables vary with respect to each other.  In the spectral sense, this is a measure
of how much a band varies compared to another band over the image. When the
covariance of two random variables is zero, then the random variables are said to be
uncorrelated, which implies that those random variables were generated by separate
random processes (Leon-Garcia, 1994, p. 337).  The covariance matrix is the set of
second central moments of the distribution, which are also referred to as moments about
the mean since the mean component is subtracted from each random variable.  The
unbiased estimate of the covariance matrix is generated by:

S
X

x m)(x m)= - - -
=
Â1

1 1N j j
j

N

( T     (3.4)

where xj is again the pixel vector associated with the jth spatial location (Richards, 1986,
p. 128). This is an outer product operation, which is performed N times, and is in a sense
the average outer product of the vector xj-m. In the calculation of the unbiased estimates
of statistical quantities, the computational expense of  the covariance matrix for a large
number of samples, N, must be balanced with the desired degree of accuracy for the
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estimate.  More samples imply better estimates, and in order to ensure sufficient accuracy,
the number of samples must be sufficiently large (Fukunaga, 1971, p. 242) .

The third statistical definition involves an issue that requires clarification
regarding the term “correlation” matrix.  In signal processing terminology, the correlation
matrix stated as E{xxT}is formed exactly as the covariance matrix, except that the mean
vector is not subtracted from the random vector x (Therrien, 1992, p. 33).  Figure 3.7
demonstrates the concept of mean removal using the scatter plots of two bands of Landsat
data.  The scatter plots are a representation of many two-dimensional random vectors
which have a two-dimensional mean vector.  The subtraction of this mean vector from
every random vector results in a centering of  the data about the origin.  This introduces
negative numbers into the previously positive data values.  While the correlation matrix is
more frequently used in signal processing where zero mean signals are the norm, remote
sensing uses the covariance matrix since negative brightness values do not have a clear
physical significance.

Figure 3.7:  Mean Removal Illustrated With Scatter Plots.
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In statistical and remote sensing applications, the correlation matrix is defined in
terms of the covariance matrix.  The ijth element of the statistical version of the
correlation matrix is:

 ρ
σ
σ σij

ij

ii jj

=
2

2 2
     (3.5)

where sij
2

 is the covariance between bands i and j in Σx, sii
2 represents the variance of the

ith band of data, and the square root of variance is defined as the standard deviation
(Richards, 1986, p. 128).  The statistical and signal processing versions of correlation do
not produce the same matrix.  The statistical definition produces a matrix which has a
unit main diagonal and can be represented as:
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(Searle, 1982, p. 348).  It is apparent that dividing the covariance matrix elements by their
standard deviations has the effect of reducing all the variables to an equal importance
since all have unit variance. The signal processing definition does not produce a unit
diagonal matrix, though it is symmetric.  The off-diagonal elements of Rx, represented by
rij, are called correlation coefficients.  They range between -1 and +1 in value, and
provide a measure of  how well two random variables vary jointly by quantifying the
degree of fit to a linear model (Research Systems, Inc., 1995, p. 20-6).  A value near +1
or -1 represents a high degree of fit between the random variables to a positive or
negative linear model, whereas a values near zero implies that the random variables
exhibit a poor fit to the model.  The conclusion that may be drawn is that a high degree of
fit implies well-correlated random variables, whereas a correlation coefficient of zero is
indicative of statistically orthogonal random variables.  We will assume that we are
dealing with the statistical definition of the correlation matrix, though a more descriptive
term for the “correlation” matrix might be the “normalized” or “standardized” covariance
matrix.

The definitions of statistical properties become clearer when they are linked to a
physically observable phenomenon.  The next few illustrations attempt to show the large
amount of information revealed by the statistics of the data.  Table 3.1 shows the
covariance and correlation matrices for the Landsat data.  In examining the Landsat
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covariance matrix, we see that the highest variance results from band five, the lowest
covariance is between bands four and six, and the highest covariance is between bands
five and seven. The correlation coefficient is highest between bands one and two and is
lowest between  bands four and six.  We can draw some conclusions from these statistics.
First, band five has more variance, or contrast over the scene, than any other band. Before
we assume that this means that band five can detect some sort of unique information
better than other bands, we must ask if this variance was caused by signal coming from
the ground or if it was noise introduced by our sensor or the atmosphere in that particular
band.  If we know the signal-to-noise ratio of our sensor in band five then we can answer
the question. Signal-to-noise ratio (SNR) is the ratio of signal power to noise power, and

COVARIANCE MATRIX OF LANDSAT IMAGE:
BAND BAND 1 BAND 2 BAND 3 BAND 4 BAND 5 BAND 6 BAND 7

1 276.6
2 173.1 114.5
3 293.3 194.7 350.3
4 86.3 71.8 96.2 487.7
5 407.3 282.2 534.9 340.2 1265.7
6 124.7 77.4 146.9 36.6 318.5 181.3
 7 277.1 186.6 353.7 113.9 709.9 185.8 447.4

CORRELATION MATRIX OF LANDSAT IMAGE:
BAND BAND 1 BAND 2 BAND 3 BAND 4 BAND 5 BAND 6 BAND 7

1 1
2 .973 1
3 .942 .972 1
4 .235 .304 .233 1
5 .688 .741 .803 .433 1
6 .557 .537 .583 .123 .665 1
 7 .788 .824 .893 .244 .943 .653 1

Table 3.1:  Covariance and Correlation Matrices of Landsat TM Image.
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can be obtained using the variances as the power.  Second, band four exhibits the lowest
correlation coefficient when compared to all other bands.  Again, before we assume that
band four detects unique information, we must ask about the signal-to-noise
characteristics of band four.  For example, if band four were purely noise, then it would
exhibit an even lower correlation with other bands, perhaps even zero.  This is because it
is independent of the other bands, not because it carries any information.  A further
explanation of these effects is seen in examining the histograms of the individual bands.
Figure 3.8 shows the histograms of four of the Landsat bands. The histogram of band four
indicates that an anomaly of some sort exists which places a sizable number of pixels at a
lower brightness value than the rest.  The “different” nature of band four brightness

Figure 3.8:  Histograms of Four of the Boulder Landsat TM Bands.

values accounts for the low correlation coefficient.



29

The scatter plot is another means of characterizing the statistics of the data by
visually presenting the two-dimensional histogram using two selected bands.  The scatter
plot is a means of visualizing two of the seven dimensions of  Landsat data and is shown
two band combinations in Figure 3.9.  It is a representation of all of the two-dimensional
random pixel vectors formed by the two bands of interest.  By plotting the data of one
band against that of another, information regarding the statistical similarity of bands may
be inferred.   The scatter plots for the Landsat image show a definite linear feature when

Figure 3.9:  Scatter Plots of Boulder Landsat TM Data Showing Highly Correlated and
Uncorrelated Band Combinations.

a high correlation coefficient exists, as between bands one and two.  Thus, bands one and
two are statistically similar, to the extent that there appears to be a near linear relationship
between their random variables.  The correlation coefficient of 0.973 substantiates this
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observation.  This is a sharp contrast to the more distributed shape for the scatter plot of
band four data versus band one.  This graphically depicts the independent and
uncorrelated nature of the data in band four, as evidenced by the low correlation
coefficient of 0.235.  The scatter plot has also historically provided those involved in
image classification with a method of grouping pixels with statistically similar
characteristics into a statistical class.  This can be seen in the Figure 3.9 scatter plot of
band four and band one.  The bottom of the plot reveals a smaller cluster of points away
from the main body of points.  This is an indicator that the pixels corresponding to these
points belong to a different spectral class.  In this case, these points are known to
correspond to ground water that appears in the scene.

In order to show the second order statistics of a hyperspectral image, another
visualization technique is introduced.  With 210 bands, manually examining the
covariance matrix would be tedious, and comparing two bands at a time with scatter plots
would be similarly ineffective.  For hyperspectral data statistics, the elements in the
covariance matrices are assigned color values corresponding to their value.  The result is
a matrix which helps in explaining trends.  Figure 3.10 illustrates the covariance and
correlation   matrices for both radiance and reflectance data in the HYDICE Aberdeen
scene. A color version of this figure may be found in Appendix A. There are several
notable features which are worth discussion in the four matrices. In the radiance
covariance matrix, we see the effect of the sun on bands 50 to 70 manifested in the higher
(redder) variance and covariance values. This is because the covariance matrix is
constructed in a manner that uses the absolute radiance values, which are very large in
these bands for radiance data.  The correlation matrix of the radiance does not show this
uneven weighting of variances.  Instead, the correlation coefficients closest to the main
diagonal exhibit a fairly similar value over all image bands, indicating that the correlation
matrix has normalized the variances and covariances with respect to their standard
deviations. The high values in the vicinity of the main diagonal are indicative of an
important characteristic of hyperspectral imagery, namely the high correlation between
adjacent bands.  The covariance matrix of the reflectance data exhibits more distributed
variances over the main diagonal than the radiance covariance matrix.  This is due to the
fact that the reflectance data has removed the bias of the sun from the data.  The
correlation matrix of the reflectance is in some sense the most unbiased estimate of the
statistics since the effects of the sun and unequal variances have been eliminated.  All of
the matrices show the effects of the absorption bands as areas of very low covariances
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Figure 3.10:  Second Order Statistics of the HYDICE Aberdeen  Scene.

and correlation coefficients.  This is intuitively pleasing, since the absorption bands
should be very uncorrelated with all other bands. These dark vertical and horizontal
features on the matrices represent the presence of atmospheric absorption features and are
a good illustration of the effect of additive noise.  The bands corresponding to these
absorption features have had the “signal” drowned out by “noise” introduced by the
atmosphere.  Note also that the main diagonal or trace of these matrices represents the
variance associated with each band.

The blocky, segmented nature of the second order statistics matrices reveals
important details about the scene.  The low covariances in the absorption bands are easily
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explained because the brightness values in those bands are so statistically different than
all other bands.  More subtly, these matrices show the degree of difference or similarity
between the brightness values in other parts of the observed spectra.  In order to illustrate
this concept, another HYDICE data set is introduced.  This is a scene made during the
DESERT RADIANCE collect in 1994.  Figure 3.11 shows a red-green-blue false color
composite image of Davis Monthan Air Force Base formed using bands 119 (1567.4 nm),
81 (1023.4 nm), and 57 (713.8 nm).  Figure 3.11 is annotated with the different type
aircraft that are found in the scene.  The color version of this image may be found in
Appendix A.  The scene is a good contrast to the Aberdeen image because the
predominant background material is sand instead of grass.  Recalling the plots of various
pixel vectors seen in Figure 3.4, note how the spectrum of the trees sharply spiked up at
band 55 whereas the spectrum of the road remained smooth.  This corresponds to a
wavelength of about 0.7 mm, and is referred to as the “infrared ledge”.   In Figure 3.10
note how a “block” of high covariances rapidly transitions to a “block” of low
covariances at band 55.  This feature is an indicator of the fact that there are significant
differences in the spectral shapes of the observed pixel vectors which start at band 55.
This can be interpreted to mean that the scene consists of both vegetation and non-
vegetation pixel vectors.  If the pixel vectors did not posses significantly different shapes,
then this feature would not have manifested itself.  Figure 3.12 shows such an instance,
and the color version of it may be found in color in Appendix A. The Davis Monthan
scene has predominantly sandy background, and as a result, the area between bands one
and 100 appears to have high covariances and correlation coefficients without a sharp
transition at band 55.  The blocky appearance in the first hundred bands, evident when
vegetation was present, is now not apparent.

While these observations are very cursory, they demonstrate how the statistics of
the scene reveal a great deal of useful information.  A more refined study of scene
statistics, such as that pursued by the Rochester Institute of Technology, finds that the
scene statistics can be used to differentiate urban and rural areas (Brower, Haddock,
Reitz, and Schott, 1996, p. 56).  This idea can be carried further to the problem of
differentiating small man-made objects in a natural background.  The challenge is that in
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Figure 3.11:  HYDICE Scene of Davis Monthan Air Force Base.
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Figure 3.12:  Davis- Monthan Radiance Covariance and Correlation Matrices.

order to be statistically significant, the target material must occur in many of the observed
pixels.  Considered independently, the scene statistics are interesting in that they provide
further perspective and understanding into the nature of the scene.  More importantly,
they bring us closer to the target detection problem by setting the stage for an
understanding of the techniques which use statistics to describe the background.

C.  RELATED SIGNAL PROCESSING AND LINEAR ALGEBRA
CONCEPTS

1.  Linear Transformations of  Random Vectors

The fundamental basis of the hyperspectral image analysis techniques addressed
by this study is that of linear transformations.  Our statistical definitions of the data using
the covariance matrix and its standardized form, the correlation matrix, are important.
Understanding the effect of a linear transformation on these matrices is also important.  A
linear transformation of a vector x into a vector y is accomplished by the matrix A in the
relation y = Ax. Figure 3.13 illustrates this concept using two-dimensional vectors. The
transformation matrix A rotates and scales the vector x into the new vector y.  Since we
are working with symmetric matrices in the second order moments of random vectors, we
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may assume that A is symmetric.  The expectation operator is linear, which implies that
the mean of the random vector x is transformed as:

E{y} = E{Ax} = AE{x}         (3.7)
which can be restated as my = Amx, where the subscript on the mean vector denotes

x
 

     y = Ax

Figure 3.13:  Linear Transformation of  a Two-dimensional Vector.

which random vector the mean vector represents.  Similarly, using the definition of the
second order moment, the covariance matrix  is transformed by the matrix A so that

Sy = ASxAT                 (3.8)
(Therrien, 1992, p. 45).

A particularly interesting and useful transformation is one which transforms a
random vector, x, into another random vector, y, whose kth and lth components have the
property of statistical orthogonality such that:

E{ykyl} = 0   k lπ     (3.9)
(Therrien, 1992, p. 50).  The statistically orthogonal or uncorrelated random variables
which result from such a transformation cause the transformed data covariance matrix to
be diagonal.  The means of achieving such a transformation which diagonalizes the
covariance matrix is provided by the idea of eigenvectors and eigenvalues.

2.  Eigenvectors and Eigenvalues

The eigenvalues of a l x l matrix A are the scalar roots of its characteristic
equation, and are denoted as {l1,...,ll}.  The nonzero vectors, {e1,...,el} which satisfy the
equation:

Aek = lkek   (3.10)
are called the eigenvectors of A.  Stated another way, an eigenvector defines a one-
dimensional subspace that is invariant with respect to premultiplication by A (Golub and
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Van Loan, 1983, p. 190).  In applying the above definitions of the eigenvalue and
eigenvector to the l-band x l-band covariance matrix, we obtain:

Sxek = lkek   (3.11)
The covariance matrix in this relation may be viewed as a linear transformation which
maps the eigenvector ek into a scaled version of itself (Therrien, 1992, p. 50).  Because of
the symmetry of the real covariance matrix, the l eigenvalues are guaranteed to be real
(Searle, 1982, p. 274).  It is also possible to find l orthonormal eigenvectors {e1,...,el},
that correspond to the l eigenvalues (Therrien, 1992, p. 50).

3.  Unitary Transformations

Suppose that the eigenvectors of the l x l covariance matrix  Sx are packed into a
matrix E as column vectors.  Then, because of the orthonormality of the eigenvectors, the
matrix E transforms the covariance matrix in the following manner:
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following the rules of linear transformations (Therrien, 1992, p. 45).  The transformation
matrix ET defines a linear transformation of a random vector x into a random vector y, by
the relation

y = ETx   (3.13)
in which the covariance matrix of y is a diagonal matrix represented by L.  This
diagonalization of the covariance matrix Sx is another manner of stating that the
components of random vector y are now uncorrelated since all off-diagonal elements of L
are zero.  The orthonormal columns of E imply that the transformation matrix ET

represents a unitary transformation defined by:
ETE = EET = I   (3.14)

(Therrien, 1992, p. 51).

4.  A Geometric Interpretation of the Unitary Transform

If we assume that our data has a Gaussian distribution, then we can describe its
probability density function (pdf) with  a family of ellipsoids as:

(x-mx)T Sx
-1(x-mx) = constant   (3.15)
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Because the matrix E is orthonormal, the implication is that the eigenvectors of Sx are the
same as those of its inverse, and the eigenvalues of Sx

-1 are simply the reciprocals of
those of Sx (Jolliffe, 1986, p. 14).  Thus, the inverse transformation may be written as

x = ETy   (3.16)
 and the equation defining the contours of constant density may be rewritten as:

(x-mx)T EL- 1ET(x-mx) = (y-my)T L- 1(y-my) = 
y mk k

kk

l -
=
Â

2

1 λ
 =constant = C   (3.17)

which is the equation for an ellipse with the principal axes of the ellipse being aligned
with the eigenvectors and the magnitudes proportional to lk

1/2 (Jolliffe, 1986, p. 19).  This
geometrically illustrates the role that eigenvalues and eigenvectors play in the unitary
transform.  Figure 3.14 shows that the unitary transformation is equivalent to a rotation of
the coordinate axes. The tilt of the ellipse with respect to the original coordinate system is
indicative of the fact that correlation exists between the original vector components
(Therrien, 1992, p. 59).  In the new coordinate system defined by the unitary transform,

Figure 3.14:  The Unitary Transformation as a Rotation of Axes.
From Richards, 1986, p. 131

the axes of the ellipse are parallel to the new axes, showing that the vector components
are indeed uncorrelated in this coordinate system. Although  the assumption was made
that the data was Gaussian, this concept of two-dimensional ellipsoids is a useful one in
understanding the workings of the transformation.  In this context, the scatter plots of the
Landsat data are useful in portraying a rough idea of the distribution of the probability
density function of the random vectors.
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5. Simultaneous Diagonalization of Two Covariance Matrices

Often times, we cannot make the assumption of additive white Gaussian noise of
equal SNR in all bands.  At such times, in order to pose the problem in terms of  a signal
in white noise, we employ a diagonalization technique that transforms the noise
covariance matrix into the identity matrix, or in effect whitens it.  This transformation is
referred to as the whitening transformation (Therrien, 1992, p. 60).  It is assumed that the
noise can be characterized by a covariance matrix SN and the signal by the covariance
matrix SS, depicted as Gaussian ellipses in Figure 3.15(a).  The transformation begins
with the diagonalization of the noise covariance matrix SN by a unitary transformation
created from the noise covariance eigenvalues packed in the matrix ΛΝ and eigenvectors
packed in the matrix EN as follows:

ΣN = ENΛΝEN
T    (3.18)

The whitening transformation is formed as:
y = (ΛΝ

-1/2EN
T)x   (3.19)

where the matrix ΛΝ
-1/2 is the inverse of the diagonal matrix ΛΝ

1/2, whose diagonal
elements are the square roots of the eigenvalues (Therrien, 1992, p. 60).  The whitened
covariance matrix is formed by applying the whitening transform to the original ΣN:

                ΣWN = (ΛΝ
-1/2EN

T)ΣN(ΛΝ
-1/2EN

T)T = I   (3.20)

Figure 3.15:  Simultaneous Diagonalization of Signal and Noise Covariance Matrices.
After Therrien, 1992, p. 61.
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The whitening transformation is also applied to the signal covariance matrix to yield the
new signal covariance:

ΣWS = (ΛΝ
-1/2EN

T)ΣS(ΛΝ
-1/2EN

T)T =  ΛΝ
-1/2EN

TΣSEN ΛΝ
-1/2   (3.21)

The important effect of this transformation is to rotate the coordinate system and scale the
noise covariance matrix to the identity matrix as shown in Figure 3.15(b). The final step
in simultaneous diagonalization entails diagonalizing the noise-whitened signal
covariance matrix. It is depicted in Figure 3.15(c), and accomplished by finding the
eigenvectors and eigenvalues of ΣWS  and packing them into the matrices EWS and ΛWS.
The unitary transformation which represents the last step of simultaneous diagonalization
is applied as:

¢=y E yWS
T   (3.22)

The transformed signal covariance matrix is then:
ΣYS = EWS

TΣWSEWS = ΛWS   (3.23)
and the transformed whitened noise covariance matrix is still the identity matrix because
of the nature of the unitary transform:

ΣYN = EWS
TΙEWS = I   (3.24)

Note that in Figure 3.15, the labeling of the coordinate axes corresponds to the two scalar
components of the vectors x, y, and ¢y .  The simultaneous diagonalization of the noise

and signal covariance matrices is sometimes  written as a one step transformation:
z =  (EN ΛΝ

-1/2EWS)x   (3.25)
The simultaneous diagonalization technique lies at the heart of several hyperspectral
imagery analysis techniques.
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IV.  THE PRINICPAL COMPONENTS ANALYSIS FAMILY OF TECHNIQUES 

A.     DESCRIPTION 

Principal components analysis (PCA) as applied in multispectral and 
hyperspectral remote sensing is an analytical technique based on the linear 
transformation of the observed spectral axes to a new coordinate system in which 
spectral variability is maximized. The impetus for such a transformation is the high 
correlation that exists between adjacent bands in spectral imagery.  The spectral overlap 
of the sensors and the wide frequency range of the energy reflected from the ground 
account for this high correlation (Rao and Bhargava, 1996, p. 385).  This implies that a 
great deal of spectral redundancy exists in the data.  The principal components 
transformation decorrelates the information in the original bands and allows the 
significant information content of the scene to be represented by a smaller number of 
new bands called principal components.  The transformation effected by the PCA is a 
unitary transformation and is graphically depicted in Figure 4.1 as operating on observed 

Ex y
observed image
pixel vector

principal component image
pixel vector

UNITARY 
TRANSFORMATION

T

Transposed matrix composed of  
data covariance matrix eigenvectors 

  
Figure 4.1:  PC Transformation Depicted as a Linear Transformation. 

 
pixel vectors to produce new pixel vectors with uncorrelated components.  This basic 
linear transformation lies at the heart of the PCA family of techniques. Two immediate 
applications of the principal components transformation are data compression and 
information extraction.  In the problem of target detection, the latter is of considerable 
interest.   The PCA family of techniques is based exclusively on the statistics of the 
observed variables, requiring no a priori deterministic or statistical information about 
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the variables in the image.  The techniques that are included in this family of techniques 
are the basic PCA, the noise adjusted principal components (NAPC) or maximum noise 
fraction (MNF) transform, and the standardized PCA (SPCA).  The PCA family of 
techniques serves as a building block in the formulation of more elaborate analysis 
techniques, and is fully explored in this chapter to emphasize its importance.  

B.    BACKGROUND DEVELOPMENT    

Principal components analysis is an extremely versatile tool in the analysis of 
multidimensional data.  In tracing the historical roots of this technique, it is clear that it 
is based upon ideas drawn from the fields of statistics and linear algebra. The 
mathematical underpinnings of PCA deal with the diagonalization of the covariance 
matrix of the data by unitary transform. This diagonalization is accomplished through an  
eigendecomposition of the covariance matrix to form a unitary transform and serves as a 
bridge between matrix algebra and stochastic processes (Haykin, 1996,  p. 187).  The 
wide applicability of PCA is due to the fact that it assumes a stochastic outlook of the 
data, which is fundamental to the analysis of data in many scientific disciplines.  We will 
investigate the views of three disciplines which employ PCA to better understand some 
of the mechanics of this seemingly simple transformation. The three views are those of 
multivariate data analysis, signal processing, and pattern recognition.  A thorough 
understanding of the ideas that motivate the PCA will assist in understanding why it is 
such a commonly used technique in remotely sensed imagery analysis, and when it is 
most appropriately applied.     

1.  Multivariate Data Analysis View 

PCA was described by Pearson in 1901 and introduced as the Hotelling transform 
in 1933 by Hotelling for application in educational psychology (Singh and Harrison, 
1985, p. 884). Hotelling’s goal was to find a fundamental set of independent variables of 
smaller dimensionality than the observations that could be used to determine the 
underlying nature of the observed variables (Hotelling, 1933, p. 417).  In many scientific 
experiments, the large number of variables makes the problem of determining the 
relative importance of specific variables intractable.  Hotelling’s method makes the 
problem manageable by discarding the linear combinations of variables with small 
variances, and studying only those linear combinations with large variances. Since the 
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important information in the data is usually contained in the deviation of the variables 
from a mean value, it is logical to seek a transform which provides a convenient means 
of identifying the combinations of variables most responsible for the variances 
(Anderson, 1984, p. 451). The linear combination of the original variables which behave 
sufficiently similarly are combined into new variables called principal components. In 
this context, principal components analysis studies the covariance relationships within a 
data set by investigating the number of independent variables, and identifies the natural 
associations of the variables.      

 Mathematically represented, each principal component is a scalar formed by a 
linear combination of the elements of the observed random vector x, where each vector 
component corresponds to a random variable.  The principal components are constructed 
in such a manner as to be uncorrelated with all other principal components and ordered 
so that variance is maximized (Jolliffe, 1986, p. 2).  The kth principal component is 
obtained by multiplying the transposed kth eigenvector of the covariance matrix of x by 
the data vector x, as depicted in the equation   

yk = ek
Tx       (4.1) 

The kth principal component is also called a score, and the components of the eigenvector 
are called loadings because they determine the contribution of each original variable to 
the principal component. Generalizing the scalar result of Equation 4.1 to a vector result: 

y = ETx       (4.2) 
we obtain a vector of l principal components when we take the product of all of the 
transposed eigenvectors of Σx and the data vector, x.   

  While the property of the unitary transform to produce new uncorrelated 
variables has been previously discussed, the property of the unitary transform to 
maximize the variance, which is central to the PCA, merits further discussion.  The best 
illustration of this property is the algebraic derivation of the PCA. The goal is to 
maximize the variance of the first principal component, denoted as VAR[y1] or 
VAR[e1

Tx].  By the definition of variance as a second order moment, this is equivalent to 
maximizing e1

TΣx e1, where the eigenvectors are orthonormal, so that e1
Te1 =1.  The 

method of Lagrange multipliers is employed so that the expression to be maximized is 
differentiated with respect to the eigenvector and set equal to zero as: 

( )1 0 ( ) 0∂ λ
∂

 Σ − − = ⇒ Σ − = 
T T
1 x 1 1 1 x 1

1

e e e e I e
e

λ     (4.3) 
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In Equation 4.3, λ is a Langrangian multiplier in the left hand expression and 
corresponds to the largest eigenvalue of Σx in the right hand expression, and e1 is the 
eigenvector corresponding to the largest eigenvalue (Jolliffe, 1986, p. 4).  Thus, the 
eigenvalues of Σx represent the variances of the principal components, and are ordered 
from largest to smallest magnitude.  If the original variables have significant linear 
intercorrelations, as spectral imagery does, then the first few principal components 
account for a large part of the total variance.  (Singh and Harrison, 1985, p. 883).  

2.   Signal Processing View 

 In the analysis of random signals, the key is to have a set of basis functions that 
also make the components of the signal statistically orthogonal or uncorrelated  
(Therrien, 1992, p. 173).  The Karhunen-Loeve Transform (KLT) was introduced in 
1947 for the analysis of continuous random processes, and is developed here in its 
discrete form, the DKLT. It is the same unitary transform previously presented, but is 
posed to solve the problem from a different perspective.  The motivation for the DKLT 
is actually an expansion, best seen by Figure 4.2, which shows a discrete observed signal 
as a weighted sum of basis functions, which are in fact the eigenvectors of the 
covariance matrix.  The observed pixel vector spectrum may be thought of as a discrete  
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Figure 4.2:  The Karhunen- Loeve Expansion in Terms of Discrete Signals.  

After Therrien, 1992,  p. 175. 
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signal, indicated by the square brackets in the notation of Figure 4.2.  Whereas in the 
PCA approach the original variables are weighted by eigenvector components to form 
principal components, in the DKLT the eigenvector basis functions, {e1,...,eN}, are 
weighted by the principal component scores, {y1,...,yN}, to form a representation of the 
observation. The DKLT has an optimal representation property in that it is the most 
efficient representation of the observed random process if the expansion is truncated to 
use fewer than N orthonormal basis functions.  This makes it very attractive from a 
compression perspective, and explains the popularity of DKLT as a compression 
scheme. 

 Another important property associated with the DKLT is the equivalence 
between the total variance in the vector x and  the sum of the associated eigenvalues.  
This property is mathematically stated by the equation  

s i i
i

l

i

l
2

11

=
==
ÂÂ l         (4.4) 

where the σi
2 are the variances of the original variables, the λi are the eigenvalues, which 

also represent the variances of the transformed variables, and the index i ranges over all l 
bands. This property only holds for the orthonormal vectors which are eigenvectors of Σx 
and not for other orthonormal basis sets of vectors (Kapur, 1989, p. 501).  When a 
representation of a signal is formed by using fewer than l basis functions, the mean 
square error (MSE) is a means of quantifying how well the representation corresponds to 
the original signal by measuring the power of the difference between the representation 
and original signals.  The MSE incurred by truncating the representation is equal to the 
sum of the eigenvalues of the covariance matrix that were left out of the representation.  
(Therrien, 1992, p. 179)  Conversely, the largest eigenvalues and their corresponding 
eignevectors can be used to represent the intrinsic dimensionality of the signal.  This 
corresponds to the number of dimensions that would be needed to represent the signal to 
some predetermined MSE.  

 In signal processing applications, the DKLT is a means of compressing data by 
representing it with a truncated number of eigenvectors.  It is also an optimum way of 
detecting a signal in noise and works particularly well for the detection of narrowband 
signals.  Since a  significant portion of the signal energy lies in the direction of the first 
few eigenvectors, those eigenvectors can be said to define a subspace for the signal and 
all other eigenvectors define the subspace for the noise.  This simple example is the basis 
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for several high resolution methods of spectral estimation used to detect sinusoids in 
noise  (Scharf, 1991, p. 483). 

3.   Pattern Recognition View 

 The optimal representation properties of the DKLT were extended to pattern 
recognition by Watanabe in 1965 (Singh and Harrison, 1985, p. 884).  The application of 
the DKLT for feature extraction is a first step in the pattern recognition process. Figure 
4.3 shows the pattern recognition process. The goal of feature extraction is to find a 

 

 
Figure 4.3:  Paradigm of the Pattern Recognition Process. From Kapur, 1989, p. 497. 

 
transformation from an n-dimensional observation space to a smaller m-dimensional 
feature space that retains most of the information needed for the next step in pattern 
recognition.  The second step in pattern recognition involves classifying the pixels in an 
image by using some measure of separability.  Feature extraction seeks to maximize the 
separation between classes in order to make classification easier and more accurate.  The 
mutually uncorrelated coordinate axes (principal components) that define the feature 
space are called features.   

 The effectiveness of each feature in terms of representing x is determined by the 
magnitude of its corresponding eigenvalue.  There are various criteria for measuring the 
effectiveness of these features in representing x. The MSE is one mentioned above.  In 
addition, the scatter and entropy are criteria that could be used.  The scatter is the 
expected value of the squared distance between elements of two different random 
vectors of the same random process.  The entropy is a measure of the diversity of a 
distribution.  Entropy is defined as: 

    H = -E{ln[p(x)]}       (4.5) 
where p(x) is the probability density function (pdf) of the random vector and E is the 
expectation operator.  It is a complicated criterion since knowledge of the pdf of x is 
required. The eigenvector decomposition given by the DKLT turns out to be the 
transform which maximizes the scatter and entropy of the distributions under 
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consideration (Fukunaga, 1971, p. 236).  The maximization of entropy is equivalent to 
maximizing variance or uncertainty or information content, and is desirable in a feature 
extraction context, since the goal is to separate the unique classes in the data.  It is 
important to note that this maximization of entropy occurs in the small number of 
principal components associated with the intrinsic dimensionality, and not over the 
entire range of the transformed variables.  This is another means of stating that the PC 
transform concentrates the variance of highly correlated original data in the first few 
variables of the transformed data. 

 The topic of entropy is a complicated one, and a little more elaboration is 
required.  A slightly different view would be to minimize the total amount of entropy in 
order to send less volume of data but retain the original information content, as is done 
with compression.  In contrast to the above view, which maximized the entropy for a 
portion of the transformed variables, this outlook applies to all of the transformed 
variables.  Ready and Wintz (1973) define the entropy in spectral imagery as: 
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where the indices i and j range over the l bands, ρι is the probability defined over the 
variances,  and  is the variance of the is xi

2 th spectral band (Ready and Wintz, 1973, p. 

1124).  In pattern recognition, structures in the data imply that the system is being 
constrained, that the amount of uncertainty has decreased,  and hence that the entropy is 
smaller  (Kapur, 1989, p. 514).   According to Kapur (1989), the key is the uncertainty in 
the system.  A system is completely unstructured, random, or simple if its entropy is the 
maximum possible.  It is said to be completely structured, deterministic, or maximally 
complex if the entropy is zero.   The DKLT minimizes the entropy defined in this 
fashion, and gives the least objective, most biased, the least uniform, the least random, 
and most predictable pdf that is consistent with imposed constraints. The DKLT lowers 
the entropy over the entire range of transformed variables because it has in effect 
provided structure to the data. 
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C.  OPERATION 

The family of techniques considered in this section are motivated by the principal 
components transform.  Though the techniques all share the common basic roots 
discussed in the context of multivariate data analysis, the DKLT, and pattern 
recognition, they are specifically designed for application to spectral imagery analysis.  

1.   Basic Principal Components Analysis (PCA) 

 PCA uses the eigenvectors of Σx to assemble a unitary transformation matrix 
which, when applied to each pixel vector, transforms the original pixel vector into a new 
vector with uncorrelated components ordered by variance. The eigenvector components 
act as weights in the linear combination of the original band brightness values that form 
the principal components  (Richards, 1986, p. 137).  The new image associated with each 
eigenvector is referred to as the principal component image. The principal component 
images are ordered from largest to smallest in terms of variance, and are revealing in 
their composition.  As Singh and Harrison (1985) point out, it must be kept in mind that 
the PCA is an exploratory technique that constructs new variables called the principal 
components (PCs).  These new variables are artificial and do not necessarily have a 
physical meaning, as they represent linear combinations of the observed variables, but 
cannot themselves be observed directly.  In traditional application of PCA, the hope is 
that the transformation will enhance the contrast of the image to such an extent that 
objects or areas of interest can be more readily discriminated in the principal component 
images. Jenson and Waltz (1979) give an analogy which clearly explains the role of PCA 
in the traditional application.  They imagine a tube filled with ping pong balls.  Looking 
at the tube directly from an end, only one ball is apparent, the same way that  the original 
spectral image is highly correlated.  Turning the tube sideways, all of the balls become 
visible (Jenson and Waltz, 1979, p. 341).  PCA has the effect of decorrelating the data so 
that independent sources of spectral features can be discerned.      

 Though PCA assumes no a priori knowledge of the scene, it cannot be applied 
totally independently of the specific scene.  Scene-specific features will dictate the 
behavior of the PCA. Nevertheless, certain general observations can be made regarding 
the PCA and an associated physical meaning without any knowledge of the scene.  The 
following two figures seek highlight these observations.   Figure 4.4 shows the first 25  
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Figure 4.4: First 25 PC Images of Davis Monthan Radiance Scene. 
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PC images of the Davis Monthan HYDICE scene.  A color version of this figure appears 
in Appendix A.  The first principal component image is a typically a representation of 
the scene average brightness. This is due to the fact that in forming the first principal 
component image, the first eigenvector has heavily weighted the original bands 
possessing the most variance.  Thus, the first principal component image will have a 
variance that is larger than that of any single original band image.  It is the sum of the 
overall response level in all original band images.  The second principal component 
image is typically the difference between certain original band images.  As the principal 
component image number increases, the PC image holds less of the data variance.  This 
effect manifests itself as a rough decrease in image quality with increasing PC image 
number.  In Figure 4.4, the fact that the first seven PC images contain relatively clear 
details of the scene indicates that these PC images together account for the majority of 
the overall spectral variance in the scene.  An interesting point to note when using PCA 
is that the higher numbered PC images sometimes contain a large amount of local detail.   
Though it is tempting to dismiss the higher numbered PC images as not containing any 
useful information because they have low variance, one must keep in mind that the 
covariance matrix on which PCA is based is a global measure of the variability of the 
original image (Richards, 1986, p. 138).  This implies that small areas of local detail will 
not appear until higher PC images since they did not make a  statistically significant  
impact on the covariance matrix.  Another point that is noteworthy is the issue of SNR.  
PCA orders PC images based on total variability.  It does not differentiate between the 
variability representing desirable information and the variability representing 
undesirable noise (Jenson and Waltz, 1979, p. 338).   Ready and Wintz (1973) argue that 
PCA improves the SNR of the spectral image.  Their definition of noise is additive white 
Gaussian noise with a variance of σn

2. The SNR of the original image is: 

( ) maxSNR x
x

n

=
s
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2

2        (4.7) 

which is the maximum original band variance over the noise variance.  The SNR of the 
PC images is:  

( )SNR y
n

= l
s

1
2         (4.8) 

which is the largest eigenvalue (or new variance) over the noise variance.  Since the first 
eigenvalue always has a greater variance than any of the original bands, the 
improvement in SNR is: 
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and will be greater than one.  The SNR improvement applies as long as the variance of 
the eigenvalue exceeds that of the original bands.  The diminishing SNR manifests itself 
in Figure 4.4 as striping patterns that begin to appear at the eighth PC image.  Figure 4.5 
further accentuates the above observations using the Aberdeen radiance and reflectance 
images.  The first ten PC images are shown for each data set. A color version of Figure 
4.5 appears in Appendix A.  The same general trends noted for Figure 4.4 appear.  The 
first few PC images offer the greatest amount of contrast.  The effects of noise become 
apparent sooner in decreased image quality with the reflectance data than the radiance 
data.   

A traditional means of presenting PCA images is to form a false color composite 
image consisting of the first, second, and third PC images as the red, green ,and blue 
colors.  Appendix B presents such false color images for the Davis Monthan radiance 
and Aberdeen radiance and reflectance PC images in Figures B.1, B.2, and B.3.  This 
mode of presentation captures the major sources of spectral variability in one image.  
The levels of detail and contrast apparent in the composite image are interesting to 
compare with the original image cube shown in Figure 3.2.  

A facet of PCA rarely mentioned in the pertinent literature on PCA is the 
characterization of the original and PC images using the behavior of the eigenvalues, 
entropy, and eigenvectors.  These attributes form an important part of analyzing the 
scene information content. In spectral images, the typical trend in the eigenvalue 
magnitude is that a very small number of eigenvalues have a disproportionately large 
magnitude compared to the others.  The obvious reason for this distinct grouping of 
eigenvalues is that the data in the original image exhibits a high degree of interband 
correlation and the magnitude of the eigenvalues reflects the degree of redundancy in the 
data.  (Richards, 1986, p. 137). Phrased another way, the intrinsic dimensionality, which 
is represented by the number of large eigenvalues of the data, is very small.  This is good 
from a compression view, since the image variance will be accounted for by a very small 
number of principal components.  From an analysis vantage, it does not reveal as much 
information.  If the problem were that of a narrowband signal embedded in noise, then 
the large eigenvalues would be associated with the signal.  In the hyperspectral imagery 
analysis problem, the spectrum associated with a target is not narrowband, and hence is  
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Figure 4.5:  First Ten PC Images of Aberdeen Radiance and Reflectance Scenes. 
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not clearly delineated from the eigenvalues of the background and other interfering 
signatures. The eigenvalues can be divided into a primary and a secondary set, where the 
secondary set roughly corresponds to the effects of instrumentation noise (Smith, 
Johnson, and Adams, 1985, p. C798).  The primary set corresponds to the linear 
combinations of original bands that cause the most variance in the scene.  Figure 4.6 
illustrates the eigenvalues of the Davis Monthan and Aberdeen radiance images together. 

 

 
 

Figure 4.6:  Eigenvalue Behavior of the Davis Monthan and Aberdeen  Radiance Scene 
Covariance Matrices. 

 
The y-axis of these plots is logarithmic, and represents the variance of each PC image.  
The lower plot is a detailed view of the first twenty eigenvalues.  The Davis Monthan PC 
images exhibit slightly higher variances (eigenvalues) than the Aberdeen scene.  The 
quality of the first eight PC images noted in Figure 4.4 corresponds to the steeper initial 
slope of the detailed eigenvalue plot.  Likewise, the first six images of the Aberdeen 
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radiance PC images in Figure 4.5 are reflected in the steeper slope of the first six 
eigenvalues of Figure 4.6   

 Figure 4.7 shows the eigenvalues of the Aberdeen reflectance image. The sharp 
drop in the slope of the eigenvalues is paralleled by the drop in image quality noted in 
Figure 4.5 after the second PC image.  In general, the HYDICE reflectance eigenvalues 
are lower in magnitude than those of the radiance.   

 

 
 

Figure 4.7:  Eigenvalue Behavior of the Aberdeen Reflectance Scene Covariance Matrix. 
 
 The behavior of the entropy is another attribute of the original scene and the PC 

images.  Ready and Wintz’s (1973) definition of entropy found in Equation 4.6 is used to 
calculate the entropy of the representative scenes.  The next three figures seek to 
demonstrate the concept of entropy by presenting it along with the behavior of the scene 
variance before and after the PC transform.  The comparison with variance is necessary 
because entropy is defined in terms of variance.  All of the plots are on a logarithmic x- 
and y-axes.  Figure 4.8 portrays the variance and entropy behavior of the Davis Monthan 
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original and PC transformed data.  The variance behavior of the original and transformed 
data shows that the original variance is highest in bands 20 to 60, corresponding to the 
effect of the sun on the variance of radiance data.  The bands with high variance for the 
transformed data are concentrated in the first few bands, showing that the PC transform 
orders the PC images based on decreasing variance.  It is important to note that the 
variance of the original data is equal to that of the transformed data. This property shows 

  
 

 
 

Figure 4.8:  Variance and Entropy Behavior of Davis Monthan Radiance Covariance 
Matrix. 
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that the PC transformation merely redistributes the concentration of variance in the 
bands of a spectral image so that the higher variances occur in the first PC bands.  While 
the shape of the entropy curve of the original data resembles that of the variance, the 
entropy curve of the transformed data has a different shape.  The difference is the peak 
in entropy that occurs at the second band.  Another observation is that the total entropy 
of the scene is not conserved in the PC transformation.  The entropy associated with the 
transformed data is an order of magnitude less than that of the original data.  The 
explanation for this behavior lies in the fact that the PC transformation reduces the 
entropy because it forms new variables which are linear combinations of the original 
variables. 

 Figures 4.9 and 4.10 demonstrate the same general observations noted above for 
the Aberdeen radiance and reflectance data and their PC transforms. The variance of the 

  

 
 

Figure 4.9:  Variance and Entropy Behavior of Aberdeen Radiance Covariance Matrix.  
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Figure 4.10:  Variance and Entropy Behavior of Aberdeen Reflectance Matrix.  
 
 
original reflectance data has a flatter shape than that of the original radiance data 
because of the removal of the sun’s effect on variance  by the conversion to reflectance.   

The eigenvector behavior is less clear than that of the eigenvalues.  The 
eigenvectors form the bases of the principal components subspace. Physically, the 
eigenvectors correspond to the principal independent sources of spectral variation.  As 
such, the wavelengths at which the maxima and minima of the eigenvectors occur 
account for the wavelengths that contribute the most to a particular independent axis of 
variation  (Smith, Johnson, and Adams, 1985, p. C808).  Another interpretation of the 
eigenvectors is that the eigenvectors act as band pass filters that transform an input 
observed spectrum into a new spectrum that has fewer data points (Johnson, Smith, and 
Adams, 1985, p. C808).  This interpretation is analogous to the optimum representation 
property of the DKLT.   Figure 4.11 shows two-dimensional color representations of the 
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eigenvector matrices of the representative HYDICE data sets.  The eigenvectors appear 
in the color plots as row vectors with the first eigenvector across at the bottom of the 
plot. The yellow and blue colors corresponding to large positive and negative 

 
         (a)            (b)             (c) 

Figure 4.11:  Eigenvectors and Traces of the Covariance Matrices of Davis Monthan and 
Aberdeen Radiance and Reflectance. 

 
 
values serve to highlight the overall trends in eigenvector behavior.  The x-axes of the 
eigenvector plots are labeled as the original bands to emphasize the fact that the 
eigenvector is a sequence of weights which are applied to original bands.  In the case of 
this plot, the weight magnitude corresponds to the color as indicated by the 
accompanying bar scales. The y-axes of the plots are labeled as PC bands to emphasize 
the role of that particular eigenvector in forming the corresponding PC image.  
Specifically, the ith PC image is formed by application of the ith eigenvector to the 
original data.  Above each eigenvector plot is a plot of the trace of the associated 
covariance matrix.  The trace of a covariance matrix is the variance, and the PC 
transform orders the original variables according to their variances.  By noting where the 
variance is high in the plot of the trace and comparing these band numbers with the 
magnitude of the weights in the corresponding eigenvector band numbers, one can 
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determine the relative importance placed on those original bands in forming a particular 
PC image.  Further, by noting the relative position of large weights with respect to PC 
band, one can see the effect of a large variance in the original data manifested as an 
appearance of large magnitudes in a low numbered PC band.  For example, note how the 
peak in variance of the Davis Monthan data manifests itself as significant weight activity 
in the early PC bands while the original bands corresponding to the very small variances 
do not experience significant weight activity until the last PC bands.  

Additional insight into the foregoing discussion about weights and relative 
importance of PC bands is gained by viewing the eigenvector matrix as a surface plot.  
The following three figures attempt to capture the eigenvector behavior of each of the 
three data sets. Figure 4.12 shows the eigenvectors for the Davis Monthan data.  As in  

 

 
Figure 4.12:  Eigenvectors of the Davis Monthan Radiance Covariance  Matrix. 

 59



 
 

 Figure 4.13:  Eigenvectors of Aberdeen Radiance Covariance Matrix.  
 

the eigenvector plots of Figure 4.11, the original bands are indicated on  the x-axis and 
the PC bands or eigenvector numbers are indicated on the y-axis. The z-axis represents 
the weights.  Note how the first 100 eigenvectors all heavily weight original bands one 
to 120  and provide virtually no weight to the remaining original bands.  Original bands 
120 to 210 are weighted in eigenvectors 100 to 200, which implies that these original 
bands had small variances.  The absorption bands (original bands 100 to 110 and 140 to 
150) are weighted heavily in the last ten eigenvectors since the variance in absorption 
bands is effectively zero.  The abrupt checkerboard appearance of this surface plot is 
contrasted by the more linear appearance of the surface plot in Figure 4.13.  Figure 4.13 
displays the eigenvectors of the Aberdeen radiance data.  There appears to be a roughly 
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linear relationship between the eigenvector number and the original band number.  The 
placement of major weights in the eigenvectors corresponds to this diagonal line. The 
implication is that the low numbered original bands receive greater emphasis in the PC 
transform by virtue of their weighting in the low numbered eigenvectors.  This is  
 

 
Figure 4.14:  Eigenvectors of Aberdeen Reflectance Covariance Matrix.  

 
a statement about how radiance data variance is highly concentrated in the first 100 
bands due to the sun’s effect.  In contrast to this, Figure 4.14 reveals that the 
eigenvectors of the Aberdeen reflectance data have a more distributed appearance.  The 
effect of the sun on the low numbered original bands has been mitigated in the 
conversion to reflectance.  The patterns observed in Figures 4.12 and 4.13 for the 
radiance data are missing from this eigenvector plot. 
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  In further examining eigenvector behavior for the three representative HYDICE 
data sets, the first eight eigenvectors are plotted.  The plots are superimposed on a slice 
across the image hypercube to which those eigenvectors apply.  The purpose of this 
portrayal is to emphasize eigenvector behavior with respect to the variance occurring in 
the original image bands.  The background images in the next three figures are oriented 
so that bands range horizontally from left to right and spatial samples range vertically.  
Note the presence of the absorption bands across all samples as dark vertical lines.  The 
previous figures have explained how the eigenvectors of the PC transform tend to 
emphasize those original bands that contain the most variance with larger weights and 
inclusion in the low numbered eigenvectors.  These three figures, which may be found in 
their color version in Appendix A, emphasize the point more specifically.   Since the 
first eight eigenvectors are those which are used to generate the PC images with the 
highest variances, they will tend to weight the original bands with the greatest variances.  
In the background plots, the amount of variance may roughly be discerned as the amount 
of change occurring in the colors of a particular band as one ranges over the samples.  
Figure 4.15 shows a great deal of background image variance in the first 80 bands.  
Consequently, the eigenvectors show much weighting in this region.  The first 
eigenvector heavily emphasizes bands ten to 40 because these bands show the greatest 
variance as noted in the variance plot of Figure 4.11. In the background of Figure 4.16, 
the greatest variance can be seen to occur between bands 30 to 70.  Note how the 
weights of the eight eigenvectors place emphasis on different portions of this region.  
The eigenvectors in this figure all place no weight on the absorption bands, as seen in 
Figure 4.13.  The majority of weighting in the first eigenvector appears between bands 
55 to 70, which corresponds to the area of greatest variance in the original data.  The 
difference in Figures 4.15 and 4.16 makes it clear that the predominant spectra in the 
Aberdeen scene are those of vegetation.  The existence of an infrared “ledge” at band 55 
is associated with the spectra of vegetation. Figure 4.17 displays different eigenvector 
behavior for the reflectance data of the Aberdeen scene.  The first eigenvector appears to 
place the emphasis on bands 50 to 100, but also emphasizes later bands as well.  This is 
indicative of the more uniformly distributed variance of the reflectance data.  The 
reflectance data eigenvectors also seem to place emphasis on the bands in the vicinity of 
band 200.  This corresponds to the spike in variance seen in Figure 4.11 for the 
reflectance data. 
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Figure 4.15:  First Eight Eigenvectors of Davis Monthan Scene Superimposed on a 

Random Slice Across the Hypercube.  
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 Figure 4.16:  First Eight Eigenvectors of Aberdeen Radiance Scene  Superimposed on a 

Random Slice Across the Hypercube. 
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Figure 4.17:  First Eight Eigenvectors of Aberdeen Reflectance Scene Superimposed on 

a Random Slice Across the Hypercube.  
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The PCA technique has been examined from the perspective of its results and the 
significance of its inner workings.  In general, PCA provides an analysis of the data 
which guarantees an output set of images ordered by variance.  It improves the SNR in 
the transformation from the original image cube to the PC images.  The PC images 
accentuate spectral regions of high variance.  An area of local detail may not be 
accentuated by a PC image due to its statistical insignificance.  The user, in searching for 
a target of interest, has no control as to the emphasis that will be placed on the target 
spectrum in the PC transform.  Because the variability of the data is scale-dependent, 
PCA is sensitive to the scaling of the data to which it applied, and as a result, the PCA of 
radiance data will place more emphasis on the visible bands due to the sun than the PCA 
of reflectance data.   PCA  does not differentiate between noise and signal variances, 
because it operates strictly on the variance of the observed data.  As a practical note in 
the implementation of PCA, the computation of the eigenvectors and eigenvalues of Σx is 
an expensive operation.  Specific methods from computational linear algebra such as 
inverse iteration, QR factorization, and singular value decomposition (SVD) are all 
applicable in their calculation (Watkins, 1991, p. 251). 

2.   Maximum Noise Fraction (MNF) or Noise Adjusted Principal 
Components (NAPC) Transform 

In noisy image data, the noise may contribute substantially to a principal 
components’ variance, so that the useful information, or signal, contained in a large 
eigenvalue may actually be less than that of a smaller eigenvalue (Roger, 1994, p. 1194).  
Since the PCA is based strictly on constructing new components that maximize the 
variances of the original bands without regard to signal or noise, it cannot reliably 
separate the signal and noise components of spectral imagery.  The maximum noise 
fraction (MNF) was introduced by Green, Berman, Switzer, and Craig in 1988 to help 
solve this basic undesirable feature of the PCA and equivalently derived as the noise 
adjusted principal components transform (NAPC) transform in 1990 by Lee, Woodyatt, 
and Berman.  

The impetus for the MNF transform was to design a unitary transform that would 
order PC images based on image quality, commonly measured by signal-to-noise ratio 
(SNR) (Green, Berman, Switzer, and Craig, 1988, p. 65).  The model of the observations 
is that of a signal and additive noise, as given by the equation:     
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x = s + n         (4.10) 
where the vectors are all l-band pixel vectors.  It is assumed that the signal and noise are 
uncorrelated, which implies that the second order statistics of the model may be written 
as: 
      Σx = Σs + Σn        (4.11) 

where the covariance matrices are of dimension l x l.  The noise fraction of the ith band is 
defined as the ratio of the noise variance to total variance for that band and stated 
mathematically as:  

noise fraction = [ ]
[ ]

 
 

i

i

n
VAR x
VAR

      (4.12) 

where ni is the ith component of the noise vector n and xi is the ith component of the 
observed pixel vector x over all spatial locations in the image.  (Green, Berman, Switzer, 
and Craig, 1988, p. 66). The MNF is the linear transformation which maximizes the noise 
fraction in the new variables while guaranteeing that the new variables are  uncorrelated.  
The MNF transform is derived in a similar fashion to the principal components transform 
with the exception that the transformation matrix is built using the transposed 
eigenvectors of the matrix ΣnΣx

-1 (Green, Berman, Switzer, and Craig, 1988, p. 66).   
 

x i
i

i

x

x
l

=
L

N
MMM

O

Q
PPP

1

      Eigenvectors of ΣnΣx
-1    yi

i

i

y

y
l

=
L

N
MMM

O

Q
PPP

1

 

 
Figure 4.18:  The MNF Transform. 

 
Figure 4.18 shows the MNF transform as a linear transformation much like that of Figure 
4.1 for the PC transform.  The eigenvalues of ΣnΣx

-1 are actually the noise fractions of the 
corresponding new variables created by the transformation. They are ordered from largest 
noise fraction to smallest, implying that the image quality increases with component 
number.  The MNF can also be constructed so that the image quality decreases with 
increasing component image number.  This reversed form is called the minimum noise 
fraction transform.  This is the form of the transform that is displayed in this discussion, 
though it is still referred to as the MNF transform.  Figure 4.19 shows the eigenvalues  
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Figure 4.19:  Eigenvalues of the Estimated Noise and Noise-whitened Covariance 
Matrices of the Davis Monthan Scene. 

 
associated with the covariance matrices used in the MNF transform.  The eigenvalues in 
Figure 4.19 are ordered from largest to smallest, implying that the noise fractions are 
arranged in increasing order in this representation.  The solid line and open circles in 
Figure 4.19 represent the noise fractions of ΣnΣx

-1, also called the noise-whitened 
covariance matrix.  These eigenvalues are seen to be smaller than those of the noise 
covariance, represented by the solid line and filled circles.  The noise covariance was 
estimated from a subset of the data corresponding to uniform background. This difference 
in eigenvalue magnitude is due to the presence of the Σx

-1 term in the noise-whitened 
covariance matrix.   

 The MNF transform, unlike the principal components transform, is invariant to 
scale changes to any band because it depends on the SNR instead of  variance to order the 
PC images (Green, Berman, Switzer, and Craig, 1988, p. 66).  The MNF is equivalent to 
PCA when the noise has equal variance σn

2 in all bands.  This is because the eigenvectors 
of  the matrices σn

2Σx
-1 and Σx are identical from the properties of unitary transforms. 
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Figure 4.20:  First 25 MNF Component Images of the Davis Monthan Scene. 
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The common case of equal noise in all bands explains the observation that PCA tends to 
order component images by image quality in most cases (Green, Berman, Switzer, and 
Craig, 1988, p. 67).  To illustrate this point, Figure 4.20 presents the 25 MNF component 
images for the Davis Monthan radiance scene.  A color version of this figure may be 
found in Appendix A.  To determine the advantage of MNF with respect to PCA, 
comparison of this figure with Figure 4.4 is required.  In Figure 4.4, the PC image quality 
is good until the eighth image. In later PC images, the effects of instrumental noise 
produce striping.  In Figure 4.20, the image quality of the first few MNF images does not 
appear to have significantly improved over that of the PC images.  The effects of noise 
and striping are less pronounced in the higher MNF images than in the corresponding PC 
images.  The MNF transform in Figure 4.20 seems to arrange higher image quality in the 
first few images, with the exception of the first two.  
  The NAPC is based on viewing the MNF as a two-step process.  This approach 
makes it more obvious that an estimate of the noise covariance is required in order to 
apply this technique. It first transforms the data to a coordinate system in which the noise 
covariance matrix has been whitened so that it is now the identity matrix, and then applies 
a principal components transformation (Lee, Woodyatt, and Berman, 1990, p. 295). This 
technique is equivalent to simultaneously diagonalizing the noise and a signal covariance 
matrices as was illustrated in Figure 3.15.  Figure 4.21 shows a  representation of the  
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Figure 4.21:  The NAPC Transform. 
 
NAPC transform as first a whitening transform and then a PC transform.  The whitening 
transform discussed in Chapter III uses the eigenvalues and eigenvectors of the estimated 
noise covariance matrix form the whitening operator, W. Application of W to the 
observed pixel vector x is in effect a unitary transform which produces the noise-whitened 
pixel vector, ywx.  The eigenvectors of the noise-whitened covariance matrix are then used 
to rotate ywx so that it will have uncorrelated components in the new pixel vector, y.  
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Chapter VI illustrates the intermediate covariance matrices which result from the  
whitening transformation. 

The NAPC technique is applicable when there is noise that has affected the SNR 
in certain bands of the data, and its covariance matrix can be estimated. The significance 
of the NAPC is that the eigenvectors associated with the most significant eigenvalues can 
truly represent the “signal.”  By whitening the noise, the noise variance is made equal 
over all bands, and the effects of noise variance do not create undesired “mixing” with the 
signal variances (Lee, Woodyatt, and Berman, 1990, p. 299). An important aspect of the 
NAPC is that it can be implemented using standard principal components software.  The 
authors of the NAPC illustrate its operation using data from the 64-channel Geophysical 
and Environmental Research (GER) scanner that possessed an instrumental noise  artifact 
that caused a significantly lower SNR in one band. The NAPC successfully allows a 
separation of noise and signal because the eigenvectors corresponding to the largest 
eigenvalues display signal effects whereas those associated with the smallest eigenvalues 
show noise effects (Lee, Woodyatt, and Berman, 1990, p. 298).  

 Both the MNF and NAPC require a knowledge of the noise covariance matrix.  
This information may be available from the dark current measurements of the sensor.  If it 
is not available, then it must be estimated.  Green, Switzer, Berman, and Craig (1988) 
propose a method of estimating the covariance structure of the noise in various bands of 
multispectral imagery directly from the data.  Their approach is to select an appropriate 
spatial filter that will extract the noise portion of the observations using the spatial 
characteristics of noise and signal by subtracting neighboring pixels.  A procedure known 
as minimum/maximum autocorrelation factors (MAF) was developed by Switzer and 
Green in 1984 to estimate the noise covariance matrix for certain types of noise by using a 
characteristic found in most remotely sensed images.  This characteristic is that the signal 
at any point in the image exhibits a high degree of correlation with its spatial neighbors, 
while noise is only weakly correlated with its spatial neighbors.  The covariance structure 
of the observations and their spatially lagged counterparts is proportional to the estimate 
of the noise covariance:   

ΣN  COV[xµ i - (xi+∆)]                    (4.13) 
where xi is the observed pixel  vector at spatial location i, ∆ is the spatial lag, and COV 
denotes calculation of the covariance matrix.  This covariance structure of the lagged 
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observations is a measure of the noise covariance structure, ΣN, in the sense the two are 
proportional depending on the amount of spatial correlation present in the image.   

3.   Standardized Principle Components Analysis (SPCA) 

A major drawback of using PCA based on the data covariance matrix is the 
sensitivity of the principal components to the units of measurement used for each variable 
(Jolliffe, 1986, p. 17).  In the context of remotely sensed data, the units of measurement at 
the sensor from band to band are the same, but unequal SNR in all bands creates a 
problem which can have a similar deleterious effect on the PCA.  The basic problem is the 
same as that solved by the MNF in that ordering principal components based strictly on 
variance does not account for the fact that noise in some bands may contribute a 
significant portion to the variance.  The solution to this problem in the standardized 
principal components analysis (SPCA) technique is to normalize the variances of all 
bands to be unity.  This standardization or normalization of the covariance matrix results 
in the correlation matrix earlier defined. Singh and Harrison (1985) have argued that the 
use of Rx ,or the standardized covariance matrix, is pertinent when it is undesirable to 
have the relative importance of components be weighted by the individual band signal-to-
noise ratios (SNR).  The application of SPCA forces each band to contribute equal weight 
to the analysis since each band has equal variance.  Since the original variables have been 
scaled in the standardization process, and linear transformations are not invariant under 
such scalings, the eigenvectors and principal components of Σx will not be the same as 
those of Rx  (Singh and Harrison, 1985, p. 888). Singh and Harrison assert that the 
eigenvectors of Rx are  equally sensitive to all bands irrespective of the SNR in the 
original data, and hence provide an unbiased set of eigenvalues.  Figure 4.22 shows the 
eigenvalue behavior of the Davis Monthan correlation matrix. In comparing the shape of 
the eigenvalue curves in Figure 4.22 with those of Figure 4.6, it can be noted that the 
dynamic range of the correlation matrix eigenvalues is smaller by an order of magnitude 
than that of the covariance matrix eigenvalues.  Also, the shape of the correlation matrix 
eigenvalue curve is somewhat smoother than the covariance matrix eigenvalue curve. 
Singh and Harrison (1985) state that SPCA actually improves the visual contrast in each 
successive component image to a greater extent than PCA.  Figure 4.23, also found in 
Appendix A in color,  is presented for comparison with Figure 4.4, to further explore this 
claim. The most obvious aspect of the standardized PC images is the remarkably better  
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Figure 4.22:  Eigenvalue Behavior of the Davis Monthan Correlation Matrix. 

 
image quality than the PC images.  While in Figure 4.4 the effects of noise become 
apparent after the eighth PC image, Figure 4.23 shows no such effects in the 25 
standardized PC images.  Recalling Ready and Wintz’s (1973) argument about SNR 
improvement using the PC transform, Singh and Harrison (1985) state that the SPCA 
improves the SNR to a greater extent because the maximum variance, which is the only 
variance  in a correlation matrix, is always one.  Thus, the improvement in SNR achieved 
by SPCA is greater than that which can be gained by PCA as is shown in the following 
relation: 

 D DSNR SNRPCA
x

SPCA
PCA PCA= £ =

l
s

l1
2

1

1
max

     (4.14) 

Note that the eigenvalues in this relation are different because they are associated with 
different second order statistics.  As Figure 4.22 illustrated, the eigenvalues of the 
correlation matrix are smaller than those of the covariance matrix.  The difference implies 
that  the information conveyed by the eigenvalues and eigenvectors of the correlation 
matrix is not equivalent to that conveyed by the covariance matrix. The normalization of 
the data by its variance creates new characteristics that are not simple linear scalings.   
  A further appreciation for the effects of using the correlation matrix is gained by 
examining the entropy  and eigenvector behavior of the SPCA transform and contrasting 
this with the PCA transform.  Figure 4.24 shows the variance and entropy behavior of the 
SPCA transform for the Davis Monthan data.  Comparing this figure with Figure 4.8, the  

 73



 
 

Figure 4.23:  First 25 Standardized PC images of the Davis Monthan Scene Using the 
Correlation Matrix. 
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Figure 4.24:   Variance and Entropy Behavior of the Davis Monthan Correlation Matrix.    

 
Figure 4.25: Eigenvectors and Trace of the Correlation Matrix of Davis Monthan Scene. 
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unit variance and entropy of the original data  are immediately apparent.  The behavior of 
the transformed variance and entropy is much like that of the PC transform in Figure 4.8. 
The behavior of the eigenvectors is shown in Figure 4.25.  Recall from Figure 4.11, the 
eigenvectors used in PCA, that a checkerboard pattern was apparent.  This corresponded 
to a heavy weighting of original bands one to 100 by the low numbered eigenvectors and 
a weighting of the higher numbered original bands by the higher numbered eigenvectors.  
In Figure 4.25, also found in Appendix A, the checkerboard pattern is not apparent.  The 
emphasis of the eigenvectors is more distributed.  This is further depicted in Figure 4.26, 
where the surface plot of the eigenvectors is shown. There appears to be no clear trend of  

  
Figure 4.26: Eigenvectors of the Davis Monthan Correlation  Matrix. 
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Figure 4.27:  First Eight Eigenvectors of Davis Monthan Normalized Scene 

Superimposed on a Random Slice Across the Hypercube. 

 77



eigenvector weights in this surface plot.  Several of the eigenvectors place emphasis on 
the very first and last original bands.  The behavior of the first eight eigenvectors 
presented against a normalized slice of the Davis Monthan hypercube is shown in Figure 
4.27.  The color version of this figure may be found in Appendix A.  The first eigenvector 
places a uniform weighting on all original bands except the last few and the absorption 
bands.  This underscores the fact that SPCA is totally unbiased in the formation of 
component images.  In quite different behavior than their covariance counterparts, the 
eigenvectors of the correlation matrix actually weight the absorption bands in the first few 
eigenvectors.  Some of the weights around band 50 are similar to the PCA eigenvectors, 
but the behavior of the first eight is mostly different than the eigenvectors of the 
covariance matrix.    
 The three techniques within the PCA family are based on subtle changes to the 
basic PCA technique.  One means of further understanding the implications of each 
technique is to show the effect of each on the same image pixel.  Figure 4.28 does this by  
 

 
 

Figure 4.28:  Comparison of Pixel Vectors from Component Images of the PCA Family of 
Techniques. 
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portraying a B-52 pixel vector and a background pixel vector from the component images 
of the PCA, MNF, and SPCA techniques.  The trend in all techniques is to order the 
components by decreasing magnitude.  Components with large variances appear in the 
early bands with a sharp decrease in variance by about the tenth band.  The SPCA pixel 
vectors display the greater dynamic range, while those of the MNF display the least.  This 
is reflected in the image quality achieved by each technique.  A higher dynamic range 
equates to better contrast and image quality.  In general, the target vector appears to 
display more oscillation into higher band numbers than the background vector. 
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V.  THE MATCHED FILTER FAMILY OF TECHNIQUES 

A.   DESCRIPTION 

Complete a priori knowledge of the scene endmembers reduces the problem of 
detecting a target spectral signature to one very much like that of the matched filter 
scenario in communications and signal processing.  The matched filter developed below 
is based on problem of detecting a deterministic signal in white noise.  The problem is not 
as simple when dealing with target detection in a hyperspectral image due to the effect of 
multiple interfering background material signatures as is illustrated in the mixed pixel 
concept of Figure 2.2. Four hyperspectral imagery analysis techniques that use a matched 
filter approach are introduced and developed in this chapter.  They are the simultaneous 
diagonalization filter, the orthogonal subspace projection, the least squares orthogonal 
subspace projection, and the filter vector algorithm.  The techniques deal with the  
problem of multiple interfering signatures in a deterministic fashion derived from the 
theory of least squares.  The significance of these techniques is that given a priori 
information regarding the endmembers of the scene, the target detection problem can be 
reduced to the matched filter problem. 

B.    BACKGROUND DEVELOPMENT    

In order to understand the motivation behind this family of techniques, it is 
necessary to study its origins.  They share a common theme that is based on the signal 
processing idea of detecting a known signal embedded in noise.  The starting point in this 
development is the spatially invariant image sequence, which is a general model that is 
applicable to any problem which assumes mixed pixels.  Next, the theory of least squares 
is viewed geometrically and in terms of subspaces.  Finally, the matched filter is 
developed from a signal-to-noise ratio (SNR) perspective.  These concepts are central to 
the matched filter family of techniques. 

1. Linearly Additive Spatially Invariant Image Sequences  

   Miller, Farison, and Shin (1992) introduce the idea of image sequences in a 
context general enough to include multispectral images as a subset.  Their definition is 
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insightful, and is briefly described here.  An image sequence is defined as a series of 
images obtained by varying a property of the imaging system so that the intensity of the 
image features changes from image to image.  The spatial invariance property comes 
from the fact that all image features are in the same spatial position in each image of the 
sequence. There are three salient types of these sequences: 1) functional images, where 
temporal changes within an object are traced by making successive images  over time, 2) 
parametric images, that result by varying some parameter of the imaging device over 
successive images, and 3) multispectral images, in which successive images are formed 
by imaging in specific spectral ranges (Miller, Farison, and Shin, 1992, pp. 148-149).  
The linearly additive property of these sequences is based on the notion that a finite 
number of image formation processes (endmembers in hyperspectral terminology) 
contribute linearly and additively to each image of the sequence.  If the vector sm is 
defined as the mth image formation process (the mth endmember), then the observed pixel 
vector of brightness levels is given by: 

x s= Âa m m
m

              (5.1) 

The summation is over all of the image formation processes, and the scalar αm describes 
the relative abundance of the mth process (endmember) at a given spatial location (Miller, 
Farison, and Shin, 1992, p. 149).  In multispectral imagery, such a situation occurs when 
a single pixel of a given image may cover a variety of constituent scene elements due to a 
large GIFOV.  This situation is illustrated using the Davis Monthan scene.  The same two 
pixels that were chosen to show the effects of the PCA family of techniques in Figure 
4.28 are shown in Figure 5.1.  The target pixel vector corresponds to a pixel in the middle 
of a  B-52 aircraft wing.  The other pixel is from the prevalent sandy background.  These 
two pixels represent relatively “pure” pixels because they are not taken from areas where 
aircraft and background mixing might occur.  Equation 5.1 is illustrated in Figure 5.1 by 
mixing the two pixel vectors equally, so that each component of the relative abundance 
vector, α, is 0.5. The definition of Equation 5.1 forms the basis of the mixed pixel 
problem, which is to detect one of the endmembers over all pixels in the scene.  Mixing 
occurs to some extent over all pixels of the scene.  This is partially due to the finite 
GIFOV and also the natural variability of spectra. 
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Figure 5.1:  Linear Mixing of Target and Background Spectra. 
 

2.   The Theory of Least Squares: The A Priori Model 

    The least squares problem is one which arises in many scientific investigations 
when the task is to find the linear function which best “fits” a given set of data points 
(Watkins, 1991, p. 135).  Goodness of fit is determined by the sum of the squares of the 
residuals, where a residual is defined as the difference between an estimated and a true 
quantity.   In signal processing applications, the problem description is very similar, and 
the goal is to fit a signal model to the observations in such a manner that the residual 
error between model and observations is minimized.  The major philosophical difference 
between a least squares approach and a classical statistically-based signal detector or 
estimator is that least squares works with observed data as opposed to known or 
estimated statistics  (Therrien, 1992, p. 518).  Scharf (1991) develops the least squares 
problem and optimal solution in a manner which lends itself very nicely to application in 
the matched filter family of hyperspectral imagery analysis techniques.  His development 
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will be followed here, though the original notation has been altered to be consistent with 
that followed by this study.          
  Assume that the observations, x, consist of a signal component vector, s, and a 
noise component vector, n.  The vector equation describing this situation consists of the l-
dimensional column vectors: 

x = s + n            (5.2) 
The key to least squares is the assumption that the signal component can be modeled by a 
linear equation  

s = Mα         (5.3)  
where M is an l x p matrix describing the dynamics or modes of the signals, and α is a p-
dimensional vector of unknown parameters (Scharf, 1991, p.360).  In the notation 
paradigm used in this study, Equation 5.3 implies that the signal vector s is composed of 
various proportions of endmembers, contained in matrix M. The noise vector n can be 
viewed as the residual or error produced by fitting the model Mα to the observed data x.  
If we choose to view the matrix M as a collection of p l-dimensional column vectors, as: 

   M m m=
A A

B B

L

N
MMM

O

Q
PPP

1 p          (5.4) 

then the signal vector, s, can be represented as a linear combination of the columns of M:  

    s m=
=
Âa n n
n

p

1

          (5.5) 

where αn is a scalar parameter (Scharf, 1991, p.361).  The problem is to find the 
parameter vector, α, that fits the model, Mα, to the observation vector, x, in the least 
squares sense.  In the case where the number of measurements (dimensions of the 
observation vector or bands in spectral imagery), l, are greater than the number of 
parameters, p, an exact fit of the model to the data is not possible, and a least squares fit 
must be employed in this overdetermined situation.   

The least squares solution to the problem is found by minimizing the squared 
error between x and Mα.  This error is formulated as: 
    e2 = (x - Mα)T(x - Mα) = nTn        
(5.6) 
and is minimized by equating the gradient to zero and solving for α: 

    ∂
∂a

ae2 2= - =M x M 0T ( )         (5.7) 

Solution of Equation 5.7 leads to the optimal least squares solution: 
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( )a = -M M M xT T1           (5.8) 

(Scharf, 1991, p. 365). This estimate of the parameter vector may be used to estimate the 
signal vector as:  

s M P x= =a M          (5.9) 

The PM is termed an orthogonal projector and after a rearrangement and substitution of 
terms can be defined as:  

P M M M MM = -( )T T1         (5.10) 

(Scharf, 1991, p. 366).  The estimated noise is the difference between the measurements 
and the estimate of the signal.  This relationship is given by:  

( )n x s I P x P x= - = - =M A       (5.11) 

Equation 5. 11 introduces the projector PA, which Haykin (1996) calls the orthogonal 
complement projector.   The significance of the projectors will become clear shortly.  
When the p columns of M are linearly independent, then only l-p linearly independent 
vectors can be orthogonal to them.  If these orthogonal vectors are organized into the l x 
(l-p)  matrix A as: 

A a a=
A A

B B

L

N
MMM

O

Q
PPP

-1 l p        (5.12) 

where each column of A is orthogonal to all columns of M, then a vector u can be 
represented as:  

u = Aφ         (5.13) 
where φ is an l-p parameter vector (Scharf, 1991, p. 367).  Further, the orthogonal 
complement projector can be written in terms of A as  

P A(A A) AT 1 T
A =

-        (5.14)    
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Figure 5.2: Least Squares Illustrated Geometrically. After Scharf, 1991, p. 367. 
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The best way to describe the above discussion is with a picture.  As such, Figure 
5.2 illustrates the concepts of projectors and  least squares with a geometric 
representation of subspaces to put the above discussion into perspective. The xy-plane in  
Figure 5.2 represents the signal subspace, <M> which is spanned by the signal system 
model matrix, M.  It represents all vectors s = Mα that are linear combinations of the 
columns of M.  The  orthogonal subspace, <A>, is represented in the figure by the 
vertical axis.  This represents all the vectors u that are orthogonal to the columns of M.  
The projectors PM and PA decompose Euclidean space into the signal subspace <M> and 
its orthogonal complement subspace <A>, which implies that any arbitrary vector can be 
decomposed into the sum of a component projected onto <M> by PM and a component 
projected onto <A> by PA.  The decomposition of observation vector x is given by:  

x P x P x s n= + = +M A        (5.15) 

This orthogonal decomposition is depicted in Figure 5.2 by s , the estimated signal vector 
which lies in the subspace spanned by M, and the n , the estimated noise vector that is 
orthogonal to every vector in the signal subspace.  Similarly, the noise vector, n, is 
decomposed into the orthogonal components n  and (s s)-  (Scharf, 1991, p. 368). The 
principal of least squares is summarized in geometric terms by observing that there is no 
value of s  in the signal subspace that provides a smaller norm of the estimated error than 
that generated by the orthogonal decomposition of the observations. This 
orthogonalization procedure is used in the orthogonal subspace projection (OSP) 
technique to form the least squares optimal interference rejection operator, P.  

3.   The Theory of Least Squares: The A Posteriori Model 

There is another view of orthogonal projections that is described by Scharf (1991) 
and utilized in the least squares orthogonal subspace projection technique of Tu, Chen, 
and Chang (1997).  In it, the a priori model: 

x = Mα + n        (5.16)  
is replaced by the a posteriori model also seen in Equation 5.15: 

x = PMx + PAx        (5.17) 
where the projection of observations onto the signal subspace: 

s P x= M          (5.18) 

produces the  fitting error:  
n P x (x s)= = -A         (5.19) 
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of minimum norm.  The a priori model is often used in the signal-in-noise detection 
problem.  When the observations are not available at the beginning of processing, as is 
often the case in real-time signal processing, this model is useful.  When the observations 
are available before processing, as in the processing of a remotely sensed image, the a 
posteriori model can be used to improve the output SNR.  The key point of the a 
posteriori model is that if we can predict the signal prior to processing as s , then we only 
need to process the prediction error, n , which is caused by an inaccurate prediction plus 
additive noise (Tu, Chen, and Chang , 1997, p. 128).  The a posteriori model is restated 
as: 

x s n s (x s)= + = + -        (5.20) 
If a signal can be estimated completely from the observation, then the prediction error n  
must be orthogonal to the estimated signal, and further it is completely unpredictable and 
contains no information that could be retrieved from the observation.  This is the case 
with the least squares estimator.    

4.   The Matched Filter 

    Determining an optimum finite impulse response filter that maximizes SNR is a 
fundamental issue in communications theory (Haykin, 1996, p. 2).  The solution to this 
problem employs the generalized eigenvalue problem, and is applicable equally to 
maximizing the output SNR  of a filter which detects a random or a deterministic signal 
buried in noise.  Since our outlook in the matched filter family of techniques is 
deterministic, only the statistics of the noise are assumed. Therrien’s (1992) derivation of 
the matched filter from the perspective of maximizing the SNR of a known deterministic 
signal in noise, is followed, with the exception that all signals are real in this case and the 
notation has been tailored to fit this study. 

The input to the filter is the vector x, which is convolved with the impulse 
response of the filter, w, to give the output vector y.  Figure 5.3 illustrates this situation. 

  

T

Linear Filter
w

 x = s + n y = y  + ys n

 
Figure 5.3:  Simple Linear Filter Showing Signal and Noise Components.   
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It is assumed that the filter in question is a linear filter.  If the input can be represented as 
a sum of signal and noise, x = s + n, then the output can similarly be represented as a sum 
of response due to the signal and response due to noise, y = ys + yn.  The goal is to 
maximize the SNR, which is defined as the ratio of output signal energy to noise energy, 
defined as:     
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Φn  is the correlation matrix of the noise, which is formed as a consequence of the 
statistical description of the noise (Therrien, 1992, p. 242).  The correlation matrix in this 
context is the signal processing version.  In order to simplify the process of finding a 
filter impulse response weight vector, w, to maximize the SNR, we constrain the 
denominator to be equal to unity.  Now the SNR may be written as:  

SNR = w ss wT T        (5.22) 
The SNR is maximized by using Lagrangian multipliers and setting the gradient with 
respect to w equal to zero as shown below:  
       L = w ss wT T + λ(1 - w wT

nF ) 
—w  L = ss w w ss w wT

n
T

n- = fi =l lF F0     (5.23) 

The last equation is a generalized eigenvalue problem involving the matrices ssT and Φn, 
and w is termed the generalized eigenvector (Therrien, 1992, p. 242).  The matrix ssT has 
only one linearly independent column, which implies that it has rank one.  The 
generalized eigenvalue equation can be reconfigured by premultiplying both sides by   
Φn

-1 to obtain  
(sTΦn

-1s)w = λw         (5.24) 
The matrix on the left hand side multiplying w is also of rank one, implying that it has 
only one nonzero eigenvalue.  By equating the left and right sides of the equation, this 
eigenvalue is seen to be  

λmax= sTΦn
-1s        (5.25) 

and represents the maximum SNR.  The eigenvector associated with this eigenvalue is 
proportional to Φn

-1s (Therrien, 1992, p. 243). Thus, the matched filter vector, w, that 
maximizes the SNR corresponds to the generalized eigenvector associated with the 
largest eigenvalue. The matched filter vector is seen to be just a scaled version of the 
desired signature vector, s.  The process of deriving the optimal matched filter has also 
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been referred to as eigenfiltering because of the dependence on eigenanalysis (Haykin, 
1996, p. 181).   

C.   OPERATION 

The simultaneous diagonalization (SD) filter was developed by Miller in 1982 to 
filter linearly additive spatially invariant image sequences to enhance a desired feature  
while suppressing undesired features.  In the target detection context of hyperspectral 
imagery, the goal is to produce a single-band image which contains information regarding 
the abundance of a particular target spectrum in every spatial pixel.   While the SD filter 
of Miller, Farison, and Shin (1992) approaches the problem by deriving an optimal filter 
vector using an energy ratio and the generalized eigenvalue problem, Harsanyi (1993) 
obtains equivalent results in the orthogonal subspace projection (OSP) technique by 
breaking the process into two steps.  The first step employs an optimal least squares 
projection operator to minimize the undesired signature energy, and the second 
maximizes the SNR to find the optimal filter vector.  The OSP technique is actually a 
special case of the SD filter when the additive noise variance is zero (Harsanyi and 
Chang, 1994, p. 781).  The LSOSP technique improves the OSP output SNR by using a 
slightly different model. The filter vector algorithm directly applies the ideas of matched 
filters.  All of the techniques are deterministic in their view of the data and require full 
knowledge of the endmember spectra of the target and the background interfering 
signatures. 

1.   The Simultaneous Diagnolization (SD) Filter 

   The goal of the SD filter is to perform linear filtering on an image sequence to 
obtain a new image in which the scalar values at each pixel location are represented as: 
    y = wTx = <w,x>                  (5.26) 
The filtering operation is analogous to forming the inner product of each observed pixel 
vector x with the filter vector w, which has been optimized to maximize the output SNR 
of the target spectrum.  The magnitude of the gray scale values, y, in the filtered image 
corresponds to the pixel vectors that have a significant correlation with the filter vector, 
w (Miller, Farison, and Shin, 1992, p. 150). 

The nomenclature that Miller, Farison, and Shin (1992) use in describing the SD 
filter is recast here in terms of spectral imagery analysis.  The vector x represents a mixed 
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pixel that is composed of varying abundances, αm, of the endmember spectra, sm.  There 
are a total of m = 1,...,p endmembers contributing to the formation of mixed pixels in the 
hypercube.  There are l spectral bands.  The assumption is made that the image is 
corrupted by white noise with zero mean and zero interpixel correlation, represented by 
the l-dimensional vector n.  The filter vector which is derived is also an l-dimensional 
vector (Miller, Farison, and Shin, 1992, p. 150).  The observed pixel vector is written in 
accordance with the spatially invariant image sequence model with noise added: 
    x s n= +Âa m m

m

         (5.27) 

The scalar image resulting from filtering  this noisy image is explicitly written as the 
inner product:  
          y m m

m
m m

m

=< > + < >= < > + < >Â Âw s w n w s w n, , , ,a a    (5.28) 

These representations of the filtered image show that the SD filter is achieving two 
objectives at the same time: 1) collecting the abundance information about a target 
endmember spectrum in the image , and 2) suppressing interfering endmember spectra 
and additive noise (Miller, Farison, and Shin, 1992, p. 150). 

Assuming that all endmember spectra are known, let d represent the spectrum of 
the target endmember material and U represent a matrix of undesired interfering 
endmember spectra, the columns of which are individual endmember spectra.  Further, 
assume that the noise has a covariance matrix given by σ2I.  The derivation of the optimal 
filter vector w begins with the formation of an energy ratio of desired energy to undesired 
and noise energies.  Energy in this context is taken to the sum of the squares of the vector 
components.  The energy ratio of desired to undesired is defined as:
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where energies are expressed as the square of the inner product of a vector or matrix with 
the filter vector (Miller, Farison, and Shin, 1992, pp. 150-151).  The l x l matrices A and 
B are employed for ease of mathematical manipulation.  Miller, Farison, and Shin (1992) 
observe that the ratio is a generalization of Rayleigh’s quotient, and by setting the 
gradient of rE(w) with respect to w equal to zero, the energy ratio is transformed into the 
generalized eigenvector problem  

Aw = rE(w)Bw  fi  B-1Aw = rE(w)w    (5.30) 
as in Therrien’s (1992) derivation of the matched filter.  The difference in this derivation 
is that its “noise” component (the denominator) includes undesired endmember vectors 
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whose energy must also be minimized.  The objective is to obtain the filter wmax that will 
maximize the energy of the target spectrum relative to the multiple interfering 
endmember spectra and noise, so wmax is chosen to be the eigenvector associated with the 
largest eigenvalue, rE(wmax) (Miller, Farison, and Shin, 1992, p. 151).  The name of the 
SD filter stems from the property of the eigenvectors of B-1A  to simultaneously 
diagonalize the matrices A and B.  

The derivation of the optimum filter vector corresponds to that given in the 
development of the matched filter.  The matrix B-1A is singular because the matrix ddT 
has rank one.  This implies that there is only  one nonzero eigenvalue.  The nonzero 
eigenvalue is given by the trace of the matrix B-1A  and is represented in expanded form 
as:  

dT(UUT + σ2I)-1d       (5.31) 
The filter vector x must satisfy the eigenvector equation:        
                                 B-1Ax     =   λx  

     (UUT + σ2I)-1ddTw   =   dT(UUT + σ2I)-1dw 
                                              =   wdT(UUT + σ2I)-1d     (5.32) 
This implies that the eigenvector is the filter vector: 
     w = γ(UUT + σ2I)-1d        (5.33) 
where γ is a nonzero scalar (Miller, Farison, and Shin, 1992, p. 151). An alternative 
derivation using a subspace approach is also given by Miller, Farison, and Shin (1992).  It 
incorporates some of the elements of the least squares approach to orthogonal subspaces 
to arrive at the result that the filter vector is given by:                             

w = β[I - U(UTU + σ2I)-1UT]d      (5.34) 
where β is an arbitrary scalar (Miller, Farison, and Shin, 1992, p. 152).  Note the 
similarity of the quantity in brackets to the orthogonal complement projector of Equation 
5.11.  The filter vector of Equation 5.34 is formed so that it incorporates this projector. 

Two special cases of the SD filter are important in that they bring us back to the 
basic concepts that led to the SD filter.  In the case of no interfering spectra, U = 0, the 
optimum filter vector reduces to the result obtained for the matched filter: 

w = βd         (5.35) 
where the filter vector is a scaled version of the target spectrum.  In the case of no 
additive noise, σ2  = 0, the filter vector derived from the subspace interpretation results in 
the relation: 
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lim [s b2 0Æ
-= -w I U(U U) U ]dT 1 T       (5.36) 

in which the orthogonal complement projector of the least squares approach is evident in 
the brackets.  Thus, w in this case is in the direction of the target spectrum which is 
orthogonal to the undesired processes U (Miller, Farison, and Shin, 1992, p. 152). 

The common problem in the matched filter family of techniques is to identify the 
pixels which have nonzero abundances of the target spectrum present.  The general nature 
of this problem lends itself to the investigation of similar problems in many fields.  The 
SD filter was originally developed to process temporal x-ray image sequences which 
recorded the flow of a contrast medium injected into a vein or artery (Miller, Farisom, 
and Shin, 1992, p. 148).  The technique has been extended to processing various types of 
biomedical imagery.  Miller, Farison, and Shin (1992) mention the usefulness of the SD 
filter to multispectral imagery, but do not illustrate the specific application of the 
technique.  Their demonstration of the SD filter consists of extracting an endmember 
from a group of two to four endmembers embedded in a simulated image sequence. 

This study demonstrates the SD filter as broad-based technique of which the OSP 
technique is a special case.  In order to establish the connection between these two 
techniques, a 100 x 100 pixel sub-scene of the Davis Monthan image is chosen. Figure 
5.4 shows the sub-scene  image used for this discussion. It is a monochromatic image 
formed using band 80 of the Davis Monthan sub-scene, and clearly shows four B-52 
aircraft against a fairly uniform background.  The image also shows white boxes around 
the pixels corresponding to four various types of pixel vectors.  The desired endmember 
is chosen as the pixel chosen from the aircraft wing.  The other pixels are chosen from an 
aircraft fuselage, an engine nacelle, and an aircraft nose.  These last two pixels represent 
mixed pixels that have occurred because elements of aircraft skin and ground are mixed 
within the same spatial area defining a pixel.  These pixels appear darker than the 
background in the band 80 image of Figure 5.4.  A color version of Figure 5.4  may be 
found in Appendix A, where the four pixels are indicated by different box colors. Figure 
5.5 shows the spectra associated with the chosen pixels.  The logarithm of the pixel 
brightness values has been taken to accentuate the subtle differences that exist between 
spectrally pure and mixed pixels over all  210 bands.  Additionally, the plots 
corresponding to each pixel vector have been offset to make it easier to compare spectral 
details.  The pixel vectors chosen from the aircraft wing and fuselage correspond to the 
ideal pure target  pixel vector.  Note the similar shape of these two spectra. The pixel  
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Figure 5.4:  Sub-scene of Davis Monthan Image with Boxes Showing Chosen Pixels. 
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Figure 5.5:  Spectra of Selected Davis Monthan Sub-scene Pixel Vectors. 
 
vector corresponding to the averaged background has a positively-sloped  shape in the 
first 70 bands that is distinct from the target spectra.  The effect of mixing target and 
background endmembers is seen clearly in the engine and nose mixed pixels as spectral 
shapes that assume elements of both endmembers to various degrees.  The mixing seen in 
Figure 5.5 can be compared with the uniform mixing of two endmembers seen in Figure 
5.1. 
 

 
 

Figure 5.6:  The SD Filter Vector. 
 

 In order to fully appreciate the operation of the SD filter, a more detailed 
inspection of the filter vector, w, is useful.  Figure 5.6 plots the filter  of Equation 5.36 
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that was derived using the aircraft wing  as the desired pixel vector, d, and an averaged 
background pixel vector as the single undesired endmember, u. The scalar β in Equation 
5.36 corresponds to the inverse of the Euclidean norm of the desired pixel vector.  The 
significance of this filter vector is that it has been designed to maximize the response to 
the target spectrum while suppressing the effect of the undesired background spectrum.   

 
Figure 5.7:  The Orthogonal Complement Projector.  

 
A key part of the filter vector is the orthogonal complement projector.  This l x l-

band projector has a  structure that is very similar to that of the covariance matrix.  This is 
illustrated in Figure 5.7 and its color version in Appendix A.  The reason for this 
similarity is found in the explicit definition of the orthogonal complement projector found 
in the brackets of Equation 5.36.  The inner product UTU reduces to a scalar when only 
one undesired endmember is defined, as in this case.  The outer product UUT is then just 
the signal processing version of the correlation matrix of the undesired pixel vector.  In 
the case of the Davis Monthan sub-scene, the value of the inner product is roughly a 
scalar on the order of 109, and the outer product scaled by the inner product results in a 
diagonal matrix with small values, in the range of 10-9 to 10-2, with the largest values 
occurring along the main diagonal.  Like the covariance matrices typical of  hyperspectral 
imagery, shown in Figures 3.10 and 3.12, the outer product matrix results in a peak in the 
bands corresponding to the solar part of the spectrum.  When subtracted from the identity 
matrix, the result is the orthogonal complement projector, which has values very close to 
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one on the main diagonal and small negative values on the off-diagonal elements.  In 
Figure 5.7, the elements of the projector have been scaled by a factor of -104 and the 
logarithm of these numbers has been shown in the color plot.  The effect of the bands in 
the solar portion of the spectrum is evident as a lighter region.   

2.   Orthogonal Subspace Projection (OSP) 

A special case of the SD filter that occurs when the additive noise is assumed to be 
zero is the orthogonal subspace projection (OSP) technique.  The OSP technique is a two-
step process, which first applies the least squares orthogonal complement projector and 
then maximizes the SNR via a matched filter. In OSP, the l-band mixed pixel observation 
vector is described by  the equation: 
    x = Mα + n        (5.37) 
where n is the l-band noise vector assumed to be an independent identically distributed 
Gaussian process with zero mean and covariance matrix σ2I, α is a p-dimensional vector 
in which the ith element represents the fraction of the ith signature present in the observed 
pixel, and  M is a l x p matrix that represents the spectra of the p constituent endmembers 
of the scene:  

M u u d=
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-1 1p       (5.38) 

The ui represent the linearly independent endmembers corresponding to the undesired 
interfering spectra, and d is the target spectrum (Harsanyi and Chang, 1994, p. 780).  The 
result of Equation 5.37 is a combination of Equations 5.2 and 5.3, and serves as an 
important model for this and subsequent techniques.  The observed pixel vector may be 
written equivalently in a manner that separates the desired and undesired signatures: 

x = dαd + Uαu + n             (5.39) 
or more explicitly in terms of vectors and components: 
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where αd is the scalar representing abundance of the desired spectrum in the observed 
pixel, αu is the vector of abundances of the undesired spectra in the observed pixel, and U 
is the l x p-1 matrix comprised of the undesired spectra. 
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Rather than attempt to demonstrate OSP on an entire data set using several 
endmembers, a simplified model is assumed for didactic reasons.  It is difficult to gain an 
intuitive understanding of the OSP technique unless it is simplified to deal with two-
dimensional data. The mechanics of OSP are decomposed to their most fundamental level, 
that of projections of data onto subspaces. The emphasis in this discussion is to make the 
OSP technique a clear and logical progression of events.  The simplifying assumptions are 
as follows.  First, the Davis Monthan sub-scene of Figure 5.4 that includes only two major 
endmembers is chosen.  These endmembers are the B-52 aircraft and background.  
Second, two bands that provide relatively good discrimination between aircraft and 
background radiance values are chosen as the two spectral dimensions.  Third, the desired 
endmember is chosen from a pixel of the aircraft wing and the undesired endmember is 
formed from a averaged background value.  The following paragraphs progress through 
the steps of OSP.  

The first step of the OSP technique is to employ the idea of the orthogonal 
complement projector from the theory of least squares to eliminate the effects of the 
interfering signatures (Harsanyi, 1993, p. 27).  The least squares optimal interference 
rejection operator is given by the l x l matrix:  

P = (I - UU#)        (5.41) 
where U# is the Moore-Penrose pseudo inverse of U, defined as: 

U# = (UTU)-1UT       (5.42) 
This is the projector that is shown in Figure  5.7.  In OSP, P is analogous to PA from the 
theory of least squares since it projects the observed pixel vectors into a subspace 
orthogonal to the undesired endmembers. This minimizes the energy associated with the 
undesired signatures by reducing the contribution of U to zero when the operator is 
applied to the observed pixel vector as is seen in Equation 5.43: 
    Px = Pdαd + Pn       (5.43) 

Equation 5.43 is important and requires careful explanation.  As such, the same 
pixel locations chosen in Figure 5.4 are represented again in Figure 5.8 as vectors in a 
two-dimensional space which has been created by choosing bands 50 and 120.  Figure 5.8 
portrays all of the sub-scene pixels as points on the plane formed by plotting bands 50 and 
120 against each other.  The data from these two bands falls into two regions.  The upper 
region, in which the majority of points lie, is located at high radiance values for both 
bands.  These radiance values indicate that the points in this region correspond to 
background pixels, which is confirmed by noting this behavior for bands 50 and 120 in 
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Figure 5.6.  The other region in Figure 5.8 is an area in which band 50 radiance values are 
low and band 120 radiance values are significantly lower than the background region.  
Referring again to Figure 5.6, it is apparent that the target spectra display this behavior. 
 

 
 

Figure 5.8:  Scatter Plot of Davis Monthan Sub-scene Indicating Various Pixel Vector 
Locations and the Subspace Orthogonal to the Undesired Pixel Vector. 

 
The appearance of these regions in two-dimensional space varies greatly 

according to the two bands chosen for the scatter plot.  In the two-dimensional space of 
bands 50 and 120, the background region and target region show very strong 
consistencies between pixels of the same class. The important point is that the different 
spectral behavior of different types of  pixel vectors is manifested in the scatter plot.  The 
vectors emanating from the origin in Figure 5.8 confirm the fact that the upper region is 
composed of background pixels and the lower region of  target pixels.  The wing and 
fuselage pixel vectors are too close to each other to be discriminated as separate in Figure 
5.8.  A few observations about the five vectors plotted in Figure 5.8 are informative.  
First, points in spectral space may be represented as vectors.  Second, the mixed pixel 
vectors lie between the extremes represented by the pure target and background vectors.  
Third, the angles between all of these vectors are relatively small.  This confirms the fact 
that in hyperspectral imagery, the signals are not orthogonal.  The vectors could be 
discriminated easily if they were orthogonal.  This is precisely the goal of the first step of 
the OSP technique.  The orthogonal complement projector, P, is formed to project the 
data into a subspace which is orthogonal to the undesired endmembers.  This operator is 
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the same as PA in Figure 5.2, except that P is formed to projects signals into a space 
which is orthogonal to the undesired endmembers.  In our simplified scenario, the 
undesired endmember matrix, U, has one endmember, which implies that the subspace 
that is orthogonal to U is one-dimensional.  The orthogonal subspace is shown in Figure 
5.8 as the line labeled “P-axis,” perpendicular to the undesired endmember pixel vector.  
It is on this line that all of the data is projected by the first step of the OSP technique.  Its 
purpose is to cancel the effect of interfering undesired signals, which is readily apparent 
in the two-dimensional case. 

The second step in the development of the OSP technique is to find the l x 1 filter 
vector that will maximize the SNR  The filter vector to be derived, w, is applied to 
Equation 5.43: 

wTPx = wTPdαd + wTPn      (5.44) 
and results in a scalar quantity.  The signal-to-noise energy ratio is formed as: 
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As in the derivation of the matched filter, maximization of this ratio leads to a generalized 
eigenvalue problem given in this particular case by: 
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The eigenvector which maximizes the SNR is the optimum matched filter vector and is 
given by  

wT = dT       (5.47)  
Figure 5.9 shows the effect of  projecting the data onto the orthogonal subspace. 

The lower plot in the figure is a scatter plot of data in a projected space which results 
from application of the P operator to the original data.  The P operator is formed using a 
least squares criterion of optimality to be orthogonal to the undesired pixel vector.  The 
result of projecting the data onto P is that the pixels corresponding to the background 
have been reduced to very small magnitudes, as is evidenced by their location along the 
origin in the projected data scatter plot of Figure 5.9.  The target pixel vectors and mixed 
pixel vectors retain their positions away from the background, but the wing and fuselage 
pixel vector locations have changed relative locations, with the fuselage pixel actually 
showing a greater separation from the origin in the projected data space whereas the wing 
pixel has a slightly larger angle away from the background in the original data space.  The 
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Figure 5.9:  Davis Monthan Sub-scene Scatter Plot in Projected Space and Histogram of 

Final OSP Image. 
 

distribution of the background pixel vectors with respect to the target pixel vectors in the 
original data space determines the appearance of the projected data.  Recall that in Figure 
5.8, the background region data scatter plot is roughly elliptical in shape.  The major axis 
of this ellipse coincides with the averaged background pixel vector.  The minor axis of 
this ellipse is relatively small, and when the data is projected onto the subspace 
orthogonal to the background by P, the result is that the ellipse collapses onto a line 
whose length is the same as the magnitude of the minor axis. Also, the target data region 
appears as a separate region away from the background region along this one-dimensional 
projected subspace.  The situation would be different if the distribution of data in the 
original two-dimensional space did not separate the target and background regions when 
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projected by P.  For instance, if the background region was more circular rather than 
elliptical, and the circle radius was wide enough, then when the data was projected onto 
the one-dimensional subspace orthogonal to the average undesired pixel vector (the center 
of the circle), the target would be lost in the clutter of the background.  Recalling the 
results of eigendecomposition of spectral data, the eigenvalues of the covariance matrix of 
the background of the more elliptical case would show a large and a small value, whereas 
the more circular background distribution would show more equal eigenvalues.  The 
eigenvalues and the associated eigenvectors represent the natural bases of the data. The P 
operator could be formed from using an eigenvector associated with the major axis of the 
background ellipse to ensure that the projector P is truly orthogonal to the undesired 
endmember.  In the OSP technique, however, it is assumed that the undesired endmember 
is known and the use of eigenvectors of the background covariance matrix is discussed in 
the LPD technique in Chapter VI.  We will retain the assumption that the average 
background pixel is the known background endmember.   

The scatter plot of Figure 5.9 also shows the vector which represents the matched 
filter portion of OSP.  This serves as a second projection for the data in which SNR is 
maximized.  The result of projecting the projected data again is shown in the upper figure 
of Figure 5.9 as a histogram.  This is a histogram of the scalar image associated with the 
output of OSP.  The magnitude assigned to each pixel corresponds to the amount of the 
target endmember contained in each image pixel.  The histogram shows that a large 
number of pixels have very small values, associated with the background.  A smaller 
number of pixels have a significantly larger magnitude, which represent the target pixel 
vectors.  The locations corresponding to the five pixel vectors of interest are also 
indicated in the histogram of Figure 5.9.  The goal of the last step of OSP is to take the 
data which has already been projected into a subspace orthogonal to undesired signals and 
project it into another subspace which emphasizes the target signal. 

  The last step of OSP seeks to maximize the SNR of target to background.  The 
matched filter is the optimal means of maximizing the SNR, as noted in the derivation of 
the matched filter.  In order to demonstrate the concept of SNR maximization, Figure 5.10 
shows a situation which projects onto a pixel vector other than the desired target pixel 
vector.  The lower plot in Figure 5.10 is identical to that of Figure 5.9 except for the pixel 
vector that represents the final projector.  The pixel vector used corresponds to that of the 
engine and background mixed pixel.  In Figure 5.10, note that this matched filter vector 
has a different angle with respect to the horizontal than that of the matched filter vector 
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used Figure 5.9.  As a result, the histogram of the final OSP image shows values that are 
smaller than the case where the desired target pixel vector is used.  If SNR in this case is 
defined as the ratio of the magnitude of the wing pixel vector to the value of one standard 
deviation added to the average background  pixel magnitude, then the SNR for  
  

 
Figure 5.10: Davis Monthan Sub-scene Scatter Plot in Projected Space and Histogram of 

the Final OSP Image Using Mixed a Pixel Vector as the Matched Filter. 
 
the case in Figure 5.9 is 6.46 and the SNR for Figure 5.10 is 5.82.  The decrease in SNR is 
not large in this case. It is clear that the use of the target pixel vector as a matched filter 
improves the performance of the OSP in emphasizing target signal from background.  
Since target and background are being differentiated, the SNR could also be referred to as 
the signal-to-clutter ratio, or SCR. 

Harsanyi and Chang (1994) combine the orthogonal projection operator P and the 
matched filter vector into a single classification operator given by the 1 x l vector:   
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wOSP
T = dTP        (5.48) 

When the operator wOSP  is applied to a hypercube, each l x 1 pixel vector is reduced to a 
scalar which is a measure of the presence of the signal of interest (Harsanyi, 1993, p. 29). 
The final results of OSP are scalar images whose pixel values correspond to the relative 
existence of a target material.   

The use of two-dimensional vectors is helpful for visualizing the workings of 
OSP.  When all 210 bands of the HYDICE image are used, the differentiation between 
various pixel vectors is improved.  The discussion of OSP is continued from the two- 
 

 
 

Figure 5.11:  Histogram of the Davis Monthan Sub-scene OSP Output Image.  
 
band case to all 210 bands with Figure 5.11 showing the resulting histogram of the output 
image.  The SCR calculated using the same criteria as the two-band case yields a SCR of 
14.82.  This is an improvement over the two-band scenario.  The reason for such better 
performance is that the additional bands assist in the discrimination that can be achieved 
and allow a more accurate projection operator to be formed.  The image resulting from 
using OSP with all bands  is shown in Figure 5.12. The image has been thresholded 
around the target region brightness values to better contrast detail within the targets.  The 
color version of this figure is in Appendix A.  It shows the different pixel values that 
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result after OSP.  Note how the pixels corresponding to the original chosen fuselage and 
wing pixels show the highest values, while the mixed pixels around the aircraft show the  

 
 Figure 5.12:  Davis Monthan Sub-scene OSP Output Image. 

 
lowest.  The color bar also indicates the brightness values in terms of standard deviations 
away from the center of the center of the Gaussian distribution representing the 
background in Figure 5.11. 
 The final step in the discussion of the OSP technique uses the entire Davis 
Monthan scene.  The same B-52 wing pixel acts as the desired pixel vector.  In the case of 
the entire scene, a total of seven undesired endmembers are chosen to form the U matrix.  
These include other types of aircraft and elements from the background.  Figure 5.13 
shows the histogram associated with the output image in this case.  The fact that the road 
pixels are greater in magnitude than the target pixels suggests that the OSP technique did 
not have a complete enough characterization of the background endmembers to 
emphasize the target over the background.  The SCR also reflects this fact.  The center of 
the Gaussian curve corresponds to sand, which is intuitively pleasing, since we know that 
sand dominates this scene background.  The  output image is presented in Figure 5.14 and 
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its color version in Appendix A.  The image has been thresholded to emphasize the B-52 
pixels, but several undesired pixels corresponding to buildings and roads have higher  
 

 
 

Figure 5.13:  Histogram of Output OSP Image for Davis Monthan Scene. 
 
magnitudes than the target pixels.  

This series of simplified experiments with HYDICE data clarifies the operation of 
the OSP technique.  The concepts were simplified by using two dimensions for 
illustration purposes, and choosing an image subset in which only two endmembers 
existed.  The results show three important points.  First, that OSP operates by minimizing 
predefined deterministic undesired endmembers through the projection of the data onto a 
subspace which is orthogonal to these undesired elements.  Second, the second step of 
OSP is the matched filtering operation, in which the desired pixel vector provides the 
optimal response.  Third, OSP discrimination is improved when more spectral bands are 
used to form the associated pixel vectors.  The results of this experiment apply to any 
spectral imagery in which the mixed pixel model is assumed.  Thus, the results of 
Harsanyi’s (1993) work using AVIRIS data have been illustrated using HYDICE data, 
which has mixed pixels, but not on the large scale of AVIRIS data. With the OSP 
technique, Harsanyi (1993) slightly modifies the SD filter for application to hyperspectral 
imagery in which mixed pixels are assumed.  He demonstrates the performance of the  



 106

 
Figure 5.14:  Davis Monthan OSP Output Image. 
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OSP technique by applying it first to a simulated hyperspectral data set generated by 
linearly mixing three different endmembers, one of which is identified as the target 
spectrum.  The results show that the OSP technique identifies a target spectrum when 
mixed in greater than 5% abundance in a pixel. Next, Harsanyi uses an AVIRIS scene of 
the Lunar Crater Volcanic Field in Northern Nye County, Nevada, to test the OSP 
technique. Five mineral endmembers are extracted directly from the image, and OSP is 
used to generate five component images with each image showing the relative abundance 
of one endmember in the scene.  The results indicate that OSP accurately detects the 
presence of various mineral deposits, and compares favorably with ground truth 
(Harsanyi, 1993, p. 37).   

 3.   Least Squares Orthogonal Subspace Projection (LSOSP) 

A variant of OSP, based on the a posteriori model of the observations, improves 
the performance of OSP by reducing the effects of noise.  The least squares orthogonal 
subspace projection (LSOSP) technique developed by Tu, Chen, and Chang (1997), 
optimally estimates the desired signal abundance by minimizing a least squares error 
between the least squares estimate and the observations.  The first step of the technique 
entails decomposing the observation space into a signature and a noise space and 
projecting the observations into the signature space.  The second step of the process uses 
OSP to eliminate the undesired  signatures in the signature space.  Since the first step of 
LSOSP reduces the noise in the observations, it improves the ability of OSP to distinguish 
minority target spectra from the background.  Whereas OSP uses the a priori model of 
observations, the LSOSP employs the a posteriori model.  The following description of 
LSOSP details the first step of the technique. 

The LSOSP uses least squared error estimation to convert the a priori model to an 
a posteriori model.  As Settle (1996) observed, the optimal estimate of the abundance 
vector α described in OSP is produced by a least squares estimate and is formulated as: 

a = M x#         (5.49) 
where the notation used is identical to that developed in the OSP approach.  The a priori 
model can be rewritten as:  

x M n M n= + = +a a       (5.50) 

where: 
( )n x M M n= - = - +a a a                   (5.51) 



represents the estimation error term.  The projector  
    PM = MM#         (5.52) 
projects the observation x onto the signature space, and the projector  

    PA = (I - PM)         (5.53) 

projects the observations into the noise space <A>. Recall from Figure 5.2 that the entire 
signal signature space is designated as <M> and is comprised of the undesired subspace, 
<U> and the desired subspace, <d>.  When the projector PM is applied to the observation 
vector, x, the result is , the optimal least squares estimate of the signal.  Assuming that 
the noise n is Gaussian, N(0, σ

s
2I), this implies that the observed vector will likewise be 

normally distributed, N(Mα, σ2I).   Since  the least squares estimates of signal and noise 
are linear transformations of the observation vector, they are also Gaussian random 
vectors : N(s, σs 2PM) , and : N(0,σn 2PA).  Defining the SNR of  a random vector as the 
mean squared over the variance, the following SNRs apply to the a priori (pr) and a 
posteriori (ps) models and their ratio: 
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    (5.54) 

Note that p is the dimension of the signature space <M>, which is equivalent to the 
number of image endmembers, and l is the dimension of the observation space, which is 
expressed as the direct sum of subspaces:  

< > ≈ <M A        (5.55) 

Since in most hyperspectral images the dimension of the observation space, or the number 
of bands,  is greater than the number of image endmembers, the ratio of SNRs shows that 
the a posteriori model formulation and LSOSP result in a SNR improvement over the a 
priori model and OSP.  The remainder of the LSOSP technique is identical to OSP in 
finding the eigenvector which maximizes the SNR and applying this as the filter vector. 

 Tu, Chen, and Chang (1997) use LSOSP to improve the ability of OSP to detect 
target spectra resident in mixed pixels in very small abundances.  This improvement is a 
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result of the higher SNR afforded by LSOSP.  They create simulated hyperspectral images 
using varying combinations of three endmember spectra collected by the 60-band field 
spectrometer system (FSS).  The results show that target spectra in abundances smaller 
than the 5% can be detected (Tu, Chen, and Chang, 1997, p. 134).  Figure 5.15 shows the 
detection improvement that is afforded by the LSOSP approach in a low SNR situation.  
LSOSP is able to detect the target pixels in substantially smaller abundances than OSP.   

  
 

Figure 5.15:  Comparison of LSOSP and OSP Simulation Results for Three SNRs.   
From Tu, Chen, and Chang, 1997, p. 137.  

4.   The Filter Vector Algorithm (FVA) 

The goal of this algorithm is to demix the scene, which is comprised of mixed 
pixels.  The linear mixture model is assumed. The purpose of the demixing process is to 
find the relative abundance of each endmember in a pixel.  A set of matched filters called 
filter vectors is constructed to demix the entire scene using linear vector spaces and 
orthogonal projections.  The relative abundance of each endmember in a pixel is found by 
taking the inner product of the filter vector with the observed pixel vector.  The filter 
vector must satisfy some requirements.  First, it must be orthogonal to all endmembers in 
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the scene except for the one for which it is trained.  Assuming that wn is the filter vector 
and sm is the endmember of interest, this orthogonality is stated as:      

wnsm = δnm        (5.56) 
Second, the filter vector is zero mean and is uncorrelated with the noise random vector so 
that on average,  

wnn  0         (5.57) @
where n is the noise vector.  Third, the inner product of the filter vector with itself is a 
minimum, so that the residual value of wnn is minimized (Bowles, Palmadesso, 
Antoniades, Baumback, and Rickard, 1995, p. 150).  These requirements ensure that when 
the filter vector is applied to the observed pixel vector, x, it will yield a scalar 
corresponding to the abundance of the endmember of interest in that pixel.  This is stated 
in the nomenclature of the SD filter as: 

w x w s w nn n m m
m

n∑ = ∑ + ∑ @Âa na      (5.58)  

where αn represents the abundance of the nth endmember at a particular spatial location 
and wn is the filter vector designed to maximize the nth endmember.  The derivation of the 
filter vector is obtained by solving a constrained minimization problem using the calculus 
of variations (Bowles, Palmadesso, Antoniades, Baumback, and Rickard, 1995, p. 150).    
This is equivalent to the derivation of the matched filter described earlier. 

The FVA is applied by Bowles, Palmadesso, Antoniades, Baumback, and Rickard 
(1995) to 1000-band hyperspectral data collected by the Naval Research Laboratory’s 
Portable Hyperspectral Images for Low Light Spectroscopy (PHILLS) instrument flown 
on a P-3 aircraft.  The scene consists of a beach in the Florida Keys, and FVA is used to 
detect endmembers corresponding to water and sand.  The FVA is also demonstrated 
using a synthetic data set.  The top plot in Figure 5.16 shows a synthetic spectrum created 
by mixing 100 known endmembers and adding noise.  The lower plot shows the filter 
vector that was derived to detect this spectrum plotted together with the target spectrum.  
The peaks in the filter vector correspond to those in the target spectrum.  Negative values 
of the filter vector suppress the contributions of other interfering spectra (Bowles, 
Palmadesso, Antoniades, Baumback, and Rickard, 1995, p. 151). 
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Figure 5.16:  FVA Results for a Simulated Spectrum.  
From Bowles, Palmadesso, Antoniades, Baumback, and Rickard, 1995, p. 154 . 
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VI.  THE UNKNOWN BACKGROUND FAMILY OF TECHNIQUES 

A.   DESCRIPTION 

The matched filter scenario is made more challenging when the only a 
priori knowledge is the target spectrum.  Using an analogy from array signal 
processing, the endmembers which constitute the unknown background are the 
interfering signals which must be suppressed.  Without prior knowledge of the 
constituent background scene endmembers, however, the interfering signals must 
be estimated from the statistics of the scene.   This scenario returns to the ideas 
underlying the principal components transform, which relies on the covariance 
matrix of the observations.  In the low probability  detection (LPD) and the 
constrained energy minimization (CEM) techniques both  introduced by Harsanyi 
(1993), the problem of estimating endmembers from the background is addressed 
as a first step towards reducing the amount of a priori knowledge one needs to 
perform target detection in a mixed pixel hyperspectral image.  In a different 
approach, the adaptive multidimensional matched filter described by Stocker, 
Reed, and Yu  (1990) solves the problem of a known target in an unknown 
background using ideas from statistical signal processing. 

B.   BACKGROUND DEVELOPMENT    

The development of techniques that work with the target detection 
problem in unknown backgrounds is based on ideas from the statistical signal 
processing and array processing communities.  The background issues that 
support the framework of these techniques are grouped according to the technique 
that they support.  The intrinsic dimensionality and information theoretic criteria 
apply to both the LPD and CEM techniques, while the idea of beamforming is the 
basis for the CEM technique. 

1.   Determining the Intrinsic Dimensionality Based on 
 Information Theoretic Criteria     

One of the fundamental parameters when inferring information from the 
covariance matrix of data is the intrinsic dimensionality of the data.  In the 
eigendecomposition of a covariance matrix, the intrinsic dimensionality  is the 
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number of eigenvectors which are needed to adequately represent the original 
signal.  Recalling the results of PCA in characterizing the eigenvalues of the 
covariance matrix, this number can be deduced by noting the number of 
eigenvalues with significantly larger magnitudes than the others.  In principle, 
simply counting the number of significant eigenvalues should be an easy task 
because the smallest eigenvalues all are of magnitude roughly equal to the 
variance of the additive noise.  In practice, when the covariance matrix is 
estimated from a finite number of points, the resulting eigenvalues are different 
with probability one, and it is difficult to estimate the number of significant 
eigenvalues (Wax and Kailath, 1985, p. 388).  In Wax and Kailath (1985) the 
determination of the intrinsic dimensionality is pursued by modeling a vector of 
observations as a superposition of signals embedded in additive noise.  
Information theoretic criteria are then used to objectively determine the number 
of signals from the information inherent in the covariance matrix.  We will follow 
Wax and Kailath’s (1985) problem development, but we shall assume that the 
signals in question are real vice complex, and that the vectors are not functions of 
time. Also, the notation used here is consistent with that of the linear mixing 
model.  Their development starts with the model of the observed signal: 

x M n= +a          (6.1) 
where x is the l x 1 vector of observations, α is a p x 1 vector of scalars associated 
with each of the p signals, n is the l x 1 noise vector which is assumed to be 
Gaussian with parameters  N(0,σ2I), and M is the l x p matrix of signals: 

 

M m m=
A A

B B

L

N
MMM

O

Q
PPP

1 p         (6.2) 

Each of the p signals in M is a l x 1 column vector. Since the noise is assumed to 
be zero mean and independent of the signals, the covariance matrix of the 
observations is given by: 
     Σx = Σs + σ2I          (6.3) 
 Σs represents the covariance matrix of the signals, which is formed using the 
expression:  
     Σs = M E{ααT}MT          (6.4) 
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(Wax and Kailath, 1985, p. 388). All p columns of M are linearly independent, 
implying that the rank of Σs will be p. The number of signals, p, is the quantity 
that must be estimated, and is renamed  as the unknown variable k.   

 Information theoretic criteria address the general problem posed in the 
following statement, “Given a set of N observations, X = {x1,...,xN}, and a family 
of models, select the model that best fits the data.”  The models are analogous to a 
parameterized family of the probability density functions (pdfs) represented by 
f(X|θ), where θ is the vector of parameters.  Since the model can be used to 
encode the observed data, Wax and Kailath (1985) use Rissanen’s (1978) 
approach of selecting the model which represents the minimum code length to 
find the model which best fits the data.  This minimum description length (MDL) 
criterion is stated as: 

MDL = - +log ( | ) lof X k Nq 1
2

g       (6.5) 

where q  is the maximum likelihood estimate of the parameter vector θ, and k is 
the number of free adjusted parameters in θ.  The first term represents the log-
likelihood of the maximum likelihood estimator of the parameters of the model, 
and the second term is a bias correction term (Wax and Kailath, 1985, p. 388).   

 Implementing the above definition begins with the spectral representation 
theorem, which is used to decompose the correlation matrix of the data into 
eigenvalues and eigenvectors.  The parameter vector, θ, is formed by 
concatenating all of the eigenvalues, the noise variance, and all eigenvectors into 
a vector of length (k+1+pk). The joint pdf of the observations is represented as the 
product of the independent Gaussian random vectors, and the log-likelihood 
function  of the parameter vector is formed using the sample covariance matrix. 
The maximum likelihood estimates of the components of the parameter vector are 
substituted into this log-likelihood expression adjusted with the bias correction 
term using the number of free adjusted parameters.  The end result of the MDL 
criterion implementation is stated as: 
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where the li are the maximum likelihood estimates of the eigenvalues of  the 
sample correlation matrix (Harsanyi, Farrand, Hejl, and Chang, 1994, p. 270).  
The first term is the ratio of the geometric mean to the arithmetic mean of the l-k 
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smallest eigenvalues of the sample correlation matrix.  The number of signals is 
determined as the value of k Œ {0,1,...,p-1} for which the MDL is minimized. 

2.   Beamforming 

 In signal processing, a requirement that commonly occurs is to design a 
filter that minimizes the average output power of the filter while constraining the 
filter response to signals of a specific frequency to remain constant.  Haykin 
(1996) presents the spatial analogue of this constrained optimization problem in 
the process called beamforming by the array processing community.  The current 
development will follow Haykin’s (1996) presentation of the topic.  Figure 6.1 
illustrates the basic model used in depicting the beamforming concept.  It  

 
Figure 6.1: Uniform Linear Array. From Haykin, 1996,  p. 63. 
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represents a linear array of uniformly spaced antenna elements.  The plane wave 
impinges on the array along the direction θ with respect to the vertical measured 
at the reference antenna element.  The direction of arrival for our applications is 
translated into the electrical angle φ, where  

f p
l

q= 2 d sin          (6.7) 

The variable d represents  the distance between antenna elements and λ is the 
wavelength of the impinging wave.   The goal is to find the optimum set of 
weights represented by the l-dimensional vector wo, with elements wk, that 
minimize the mean square value of the beamformer output subject to the linear 
constraint: 

w e gk
k

l
jk*

=

-
-Â =

0

1
f         (6.8) 

where φ is a prescribed value of the electrical angle and g is a complex valued 
gain (Haykin, 1996, p. 222). This linear constraint is important, as it  preserves 
the signal of interest.  The asterisk indicates complex conjugation. The output of 
the beamformer is given by: 

y n x n w ek
k

l
jk[ ] [ ] *=

=

-
-Â

0

1
f                    (6.9) 

where the x[n] is the electrical signal picked up by an antenna element. The 
notation of the index n refers to fact that the signals in this scenario are discrete 
sequences.  

The method of Lagrange multipliers is employed to solve the constrained 
optimization problem using a real valued cost function, J, which combines the 
output power minimization and linear constraint into a single expression.  The 
gradient of the cost function with respect to the weight vector elements is formed 
and set equal to zero for the minimization.  The resulting condition for the 
optimality of the beamformer is recast in terms of vectors as: 

Fxw so =
-l f

*

( )
2

        (6.10) 

where Φx is the l x l correlation matrix of the observed signal, wo is the optimum 
weight vector of the constrained beamformer, λ∗ is the complex Lagrange 
multiplier, and s(φ) is the l x1 steering vector represented as: 
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(Haykin, 1996, p. 224).  Using the linear constraint of Equation 6.8 to solve for 
the complex Lagrange multiplier and substituting it in the optimality condition of 
Equation 6.10, we arrive at an expression for the optimum weight vector: 
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(Haykin, 1996, p. 225).  The significance of the beamformer is that signals 
incident on the array along directions other than φ are attenuated by virtue of the 
minimization of the output power subject to the linear constraint.   

In the special case of g = 1, the beamformer is constrained to produce a 
distortionless response along the electric angle φ, and is termed a minimum 
variance distortionless response beamformer (MVDR).  The optimum weight 
vector is then: 
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and the minimum mean square value is expressed in terms of the cost function: 

Jmin ( ) ( )
= = -w w
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(Haykin, 1996, p. 226).  Equation 6.14 also represents the average power or 
variance of the beamformer output, and is an estimate of the variance of the signal 
impinging on the array along the direction corresponding to φ.  The optimum 
beamformer passes the target signal with unit response while simultaneously 
minimizing the total output variance. 

In a broader context, the beamforming method is a non-parametric method 
of developing a spatial filter that can form a reception beam in a prescribed 
direction.  It can also be viewed as  a non-parametric method of spectral 
estimation with specific application to the direction-of-arrival problem (Stoica 
and Moses, 1996, p. 311).  Non-parametric refers to the fact that the method 
makes no assumptions about the statistics of the covariance matrix of the data.   
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C.   OPERATION 

The three techniques presented in this section are similar in that none  
assume a priori knowledge of the endmembers comprising the background.  They 
differ in their origins and conceptual framework.  The LPD technique is based on 
the application of the image covariance matrix eigenvectors to the task of 
suppressing the scene background endmembers. The CEM technique applies the 
beamforming methodology to minimize the total response of the target detection 
operator while constraining it to respond only to target pixels. The approaches 
lead to different techniques, which apply to different situations.  The LPD and 
CEM techniques were introduced by Harsanyi (1993), and this study follows the 
original development of the techniques found in Harsanyi’s (1993) work.  The 
adaptive multidimensional matched filter improves the idea of a matched filter by 
forming a likelihood test that depends on the second order statistics of the 
unknown background to determine the presence or absence of a target. 

1.   Low Probability of Detection (LPD)  

 The  basic premise of the LPD technique is that the contribution of 
unknown undesired signatures can be estimated directly from the data and 
eliminated using an orthogonal complement projector operator (Harsanyi and 
Farrand, 1995,  p. 1566).  The important assumption made by this technique is 
that the signature of interest occurs in the image with a low probability.  This 
implies that the target is only present in a small number of image pixels, so that 
the abundance of the target material, αd in Equation 5.34, can be set to zero for 
almost all of the image pixels (Harsanyi, Farrand, and Chang, 1994, p. 5).  
Harsanyi (1993) further assumes that the target spectrum occurs at subpixel 
levels, and the signatures of the unknown naturally occurring background 
endmembers dominate the observed pixel vectors.      

 The technique begins with modification of the linear mixture model of the 
OSP technique to account for the very small number of target-bearing pixels.  
This modification is made by setting αd = 0 in Equation 5.34. The resulting 
expression for the observed l x 1 pixel vector x is now: 

x = Uαu + n       (6.15) 
where the matrix U is the l  x  p-1 matrix whose columns are the spectra of the p-1 
unknown background endmembers, αu is the p-1 x 1 vector representing the 
relative abundances of the undesired endmembers, and n is the l x 1 noise vector, 
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which is not necessarily white.  The intent of the LPD technique is to 1) model 
the unknown background spectra, U, as a linear combination of eigenvectors of 
the sample covariance matrix of the image, and 2) derive an orthogonal subspace 
projector that minimizes the effects of U while maximizing the target-to-
background ratio (Harsanyi, 1993, p. 59).  This ratio is also termed the signal-to-
clutter ratio (SCR).  The image background may be modeled using the 
eigenvectors of the sample covariance matrix because the assumption is that the 
target-bearing pixels are not statistically significant. This key assumption of the 
LPD technique implies that the statistics of the scene are essentially the statistics 
of the background.     

Since most of the observation vectors, xi , are linear combinations of the  
p-1 independent undesired endmembers, {u1, ... ,up-1}, the first p-1 covariance 
matrix eigenvectors account for most of the image variance (Harsanyi, 1993, p. 
60).  This result follows from the optimal representation property of the DKLT.  
Though the eigenvectors are not the endmembers, they  can be used to account for 
the majority of spectral variation in the image (Harsanyi and Farrand, 1995, p. 
1571).  The l x p-1 matrix representing the most significant covariance matrix 
eigenvectors is given by: 
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      (6.16) 

The number of significant eigenvectors, p-1, is unknown, and must be estimated 
using the MDL information theoretic criterion. Following this estimation, the 
LPD technique closely resembles the OSP technique. The orthogonal subspace 
projection operator is formed using the above eigendecomposition-based estimate 
of  the background endmembers, , as:  ~E

~ ( ~ ~ )#P I EE= -        (6.17) 

 with the # denoting the pseudoinverse operation. As with the OSP technique P 
operator, the LPD projection operator, , serves to cancel the effect of the 
interfering undesired signatures. Finally, the target detection operator that is 
applied to each observation pixel vector is formed as: 

~P

w dT T
LPD = ~        (6.18) 

As in the OSP technique, the l x 1 d vector represents the desired endmember.  
The result of applying  to the image hypercube is a scalar image in which 

the pixel magnitudes represent the relative presence of the target material. 

w T
LPD
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The steps involved in estimating the intrinsic dimensionality are discussed 
and illustrated below in a sequential manner using the same 100 x 100 pixel Davis 
Monthan sub-scene as in the OSP technique.  As a first step to improve the 
determination of the intrinsic dimensionality of the data, the additive noise term, 
n, in Equation 6.15 must be whitened.  This provides a better separation of signal 
and noise subspaces in the MDL calculation (Harsanyi, Hejl, Farrand, and Chang, 
1994, p. 270). Since the noise and endmember pixel vectors of Equation 6.15 are 
assumed to be independent, the covariance matrix of the observations may be  
written as: 

Σx = Σs + Σn       (6.19) 
where Σs represents the covariance matrix of the known signal endmembers.  
Note that signal in this context includes both desired and undesired endmembers, 
but under the low probability assumption it contains only undesired endmembers. 
Σn represents the covariance matrix of the additive noise.  This matrix must be 
estimated from the data using the same method of shift differences as used in the 
MNF technique. The noise covariance matrix may be decomposed by a unitary 
transformation into: 

Λn = En Σn En
T          (6.20) 

where Λn is the diagonal matrix of eigenvalues and En is the matrix of 
eigenvectors of Σn.  This eigendecomposition of  Σn  is used to form the whitening 
transform: 

W = Dn
-1/2 En

       (6.21) 
which is applied to the sample covariance matrix to produce the following 
whitened signal covariance matrix: 

Σwx = WΣxWT = WΣsWT + I          (6.22)  
Figure 6.2 shows the results of applying the whitening transformation to the noise 
covariance matrix.  The noise covariance matrix is very similar in appearance to 
typical HYDICE radiance covariance matrices, with a region of high variance 
occurring in the solar portion of the spectrum.  The whitening transform converts 
the noise covariance matrix into the identity matrix shown in the right side of 
Figure 6.2.  Figure 6.3 shows the effect of the whitening transform on the 
observed data covariance matrix.  The resulting noise-whitened signal matrix 
bears no resemblance to typical HYDICE covariance matrices. The noise-
whitened signal matrix has relatively small variances uniformly distributed over 
all bands.  The absorption bands are notable features in addition to the diagonal 
elements which are evident in Figure 6.3.  The important point regarding this 
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 Figure 6.2:  Whitening of the Davis Monthan Sub-scene Noise Covariance 

Matrix.  
 

  

 
Figure 6.3:  Whitening of the Observed Davis Monthan Sub-scene Data 

Covariance Matrix.  
 
matrix is that the effects of noise have been  mitigated, so that the noise-whitened 
covariance matrix can be used as a basis for determining the intrinsic 
dimensionality of the data.  Both Figures 6.2 and 6.3 are presented in Appendix A 
as color plots, in which much of the finer structure of the matrices is accentuated. 

The MDL criterion is applied to the noise-whitened signal covariance 
matrix, and the value of k which minimizes the MDL expression of Equation 6.6 
is a strongly consistent estimate of the intrinsic dimensionality of the image 
background (Harsanyi, Hejl, Farrand, and Chang, 1994, p. 270).  In this study, the 
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application of the MDL criterion to HYDICE data did not yield a minimum value 
that could be construed as the intrinsic dimensionality.  Rather, Figure 6.4 
resulted from MDL(k) plotted against various values of k. This figure shows a 
montonically decreasing behavior in the MDL criterion. The MDL criterion was  

 

 
Figure 6.4:  MDL Criterion Applied to Davis Monthan Subscene. 

  
applied to Landsat data, which has more established noise characteristics than 
HYDICE data, in hopes that a minimum MDL value would be found.  The 
Landsat data produced the same decreasing behavior as the HYDICE data.  These 
results do not correspond with the predicted behavior described by Wax and 
Kailath (1985) nor to the applied results of Harsanyi, Hejl, Farrand, and Chang 
(1994) with AVIRIS data.  For the purposes of continuing with the LPD 
technique, an intrinsic dimensionality of between one and ten is assumed.  This is 
based on the general behavior of the eigenvalues of HYDICE imagery, which fall 
abruptly in magnitude after roughly the first ten eigenvalues.  

The following paragraphs describe the operation of the LPD technique 
under various conditions.  First, the Davis Monthan sub-scene is used as a simple 
test case for LPD performance.  This sub-scene only contains one type of aircraft 
and a uniform background.  The fact that the aircraft in the sub-scene do not occur 
in sub-pixel quantities challenges the basic low probability assumption of the 
LPD technique. Second, the effect of assuming various intrinsic dimensionalities 
to form the orthogonal subspace projection operator, P , are investigated using the 
entire Davis Monthan scene.  

~

 The Davis Monthan sub-scene shown in Figure 5.4 is simple because it 
only contains two endmembers.  Although the aircraft endmember appears in a 
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substantial number of pixels, the LPD technique is applied as a test of 
performance when the low target probability assumption is not satisfied.  The P  
operator is formed using the first eigenvector of the scene covariance matrix.  The 
desired pixel vector, d, is chosen from a wing of an aircraft, as in the OSP 
technique.  The application of w

~

LPD to the sub-scene results in a scalar image 
whose histogram is shown in Figure 6.5.  This figure appears very much like that  
 

 
 

Figure 6.5:  Histogram of Davis Monthan Sub-scene LPD Output. 
 

of Figure 5.11, the result of the OSP technique.  The relative position of the 
selected pixel vectors is the roughly the same.  The LPD technique has 
successfully separated the target from the background and achieved a higher SCR 
than the OSP technique.  SCR is defined here, as in the OSP technique, as the 
ratio of the target pixel magnitude to one standard deviation away from the center 
of the background distribution.  The brightness values of the scalar image 
produced by the LPD technique are thresholded to produce Figure 6.6.  This 
image also looks very similar to the corresponding OSP output of Figure 5.12.  
Here, though, the LPD algorithm achieves a better degree of target segregation as  
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Figure 6.6: Davis Monthan Sub-scene LPD Output. 

 
depicted in the bar scale which shows pixel magnitudes in absolute terms and in 
terms of number of standard deviations away from the center of the background 
distribution.  A color version of this figure may be found in Appendix A.  The 
simple Davis Monthan sub-scene has shown that the LPD technique actually 
performs slightly better than the OSP technique even when the low target pixel 
probability assumption is not met. 

The above example was conducted using the first eigenvector to construct 
the  operator.  The next series of images and histograms investigates the 
performance of the LPD technique when one eigenvector and then the first five 
eigenvectors are used to form P .  The entire Davis Monthan scene serves as the 
data for the LPD technique.  The pixel vector chosen from the B-52 wing is used 
as the desired pixel vector.  Figure 6.7 shows the histogram of the output image 
when the first eigenvector is used to form the projection operator.  The B-52 pixel 

~P

~

displays the highest scalar value and is well-differentiated from the background 
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Figure 6.7:  Histogram of LPD Scalar Image Using the First Eigenvector.  
 

clutter and other type aircraft.  The figure reaffirms the intuitive notion that the 
majority of the scene is composed of a sandy background, which is represented by 
the major peak in the histogram.  The image that this histogram represents is 
presented in Figure 6.8.  The image brightness values have been thresholded in a 
manner that accentuates the B-52 target aircraft.  These appear prominently in 
Figure 6.8.  The color version of Figure 6.8 in Appendix A shows that other 
aircraft actually have similar values, namely the C-130 aircraft.  This might be 
attributable to the fact that the paint used on these aircraft is similar to that used 
on the B-52s.  The application of thresholding was enabled by the good SCR that 
the LPD technique achieved as evident  in Figure 6.7.  It is interesting to note that 
the B-52 aircraft pixels are actually a minority element of the scene, though they 
still do not meet the strict requirements of Harsanyi (1993) to occur on a subpixel 
level. The case where  is formed using the first five eigenvectors of the 
covariance matrix would seemingly improve the performance of the LPD 
algorithm in theory, since more eigenvectors provide a better representation of the 
scene variability.  Five eigenvectors also correspond more closely with the 
expected intrinsic dimensionality for a hyperspectral scene than does one 
eigenvector.  The results of using the first five eigenvectors are seen in Figure 6.9,  

~P
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Figure 6.8:  Davis Monthan LPD Output Image Using the First Eigenvector. 
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which shows the histogram for the output LPD scalar image.  The large Gaussian 
distribution has subsumed the pixels that were outliers in Figure 6.7.  The SCR 
has decreased by an order of magnitude from the case using the first eigenvector. 
The scalar image associated with Figure 6.9 reflects the difficulty in 
differentiating targets. The closeness of pixel brightness values in magnitude is 
apparent in the image as objects such as roads and background that have large 
magnitudes, as do the targets.  Thresholding the values does little to accentuate 
the pixels of interest.  The situation does not improve as more eigenvectors are 
included in the formation of the projection operator.  The trend as more 
eigenvectors are included is that the histogram of the scalar image continues to 
appear Gaussian and target pixels cannot be distinguished. 

 

 
Figure 6.9: Histogram of LPD Scalar Image Using the First Five Eigenvectors. 

 
 As a means of trying to understand the dynamics of the LPD technique, it 
is informative to examine the projector matrices formed in the previous two cases.  
Figure 6.10 presents the projector matrix formed by using the first eigenvector on 
the left and the first projector matrix formed with the first five eigenvectors on the 
right.  The matrix created with one eigenvector has a more uniform appearance 
than that created with five eigenvectors.  This observation is put in perspective by 
recalling from Figure 4.15 that the first eigenvector of the Davis Monthan scene 
has all positive values and a relatively smooth shape, whereas the subsequent 

~P
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eigenvectors are more oscillatory in nature and posses negative values. As in 
Figure 5.7, the elements of  have been scaled by a factor of -10~P 4 and the 
logarithm of these numbers has been shown in Figure 6.10.   The ones on the 
diagonal appear as black.  The color version of this figure may be found in 
Appendix A.  The matrix corresponding to the first eigenvector looks very 
similar to that of the OSP operator.  The implication is that the first eigenvector 
captures the essence of the background in a manner that is very similar to when  

~P

 
Figure 6.10:  LPD Projector Matrices Created with the First Eigenvector and the 

First Five Eigenvectors. 
 

the background is known.  The first eigenvector acts as a scene average, and this 
scene is dominated by the background, so the use of one eigenvector has 
produced optimal results.   
 The inability of the LPD technique to successfully differentiate aircraft in 
the Davis Monthan Scene is a result of attempting to apply it in  a circumstance 
for which it was not designed.  The aircraft in the Davis Monthan are not minority 
elements.  Forming the LPD projector based on only the first eigenvector 
produces better results because the first eigenvector captures the scene average 
elements.  Inclusion of more eigenvectors does not characterize the background 
any better, instead it has converse effect and further characterizes the target. A 
greater understanding of this phenomenon is afforded if we look at the 
classification operator, wLPD, that is created in the case of including one through 
ten eigenvectors in the formation of the projection operator.  The operators are 
210-element vectors.  In order to demonstrate a more successful application of the 
LPD technique, the Aberdeen HYDICE reflectance scene is used.  This scene has 
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targets which are minority elements of the scene.  Figure 6.11 shows the 
progression in wLPD operators and image appearance as the number of 
eigenvectors included in the operator changes from one to ten starting from the 
top.  Note that the entire scene as shown in figure B.1 was used in processing. 
The left plots show the LPD operator behavior and the right plots show the 
changing appearance of a small subset of the image which contains the target 

HMMWV (Target)

 
Figure 6.11:  LPD Operators and Output Images for the First Ten Eigenvectors. 
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pixel. The target in this case is a HMMWV painted with a woodland camouflage 
scheme, and is the smaller group of dark pixels in the left third of the  image. The 
obvious trend in image target differentiation is that it improves as more 
eigenvectors are included.  The operator associated with the first eigenvector case 
shows the most dynamic range.  The result is apparent in the output images 
produced with these operators. The histograms of the LPD output images in 
Figure 6.11 have undergone a 0.1% “histogram stretch” for better contrast.  To  

 
 

Figure 6.12:  Aberdeen Scene LPD Output Image Using One Eigenvector. 
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emphasize the difference between the LPD technique application to the Davis 
Monthan and the Aberdeen scenes, Figure 6.12 shows the entire Aberdeen output 
scene along with the associated histogram and LPD operator.  The dark circle on 
the histogram indicates the target pixel, and the dark bar on the histogram 
indicates the dynamic range chosen for thresholding of the output image.  Figure 
6.13 shows the results of LPD on the same scene using the first ten eigenvectors.  
The background has been suppressed to a far greater extent than that of the first  

 

 
Figure 6.13:  Aberdeen Scene LPD Output Image Using Ten Eigenvectors. 
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eigenvector output image.  The opposite situation of Figures 6.7 and 6.8 for the 
Davis Monthan scene is seen in Figures 6.12 and 6.13 for the Aberdeen scene.  In 
the case of the Aberdeen scene, more than one eigenvector is needed to 
adequately characterize the background and construct an effective LPD operator.  
The primary cause of  this observed effect is that the Aberdeen scene contains the 
target as a minority element, whereas the Davis Monthan scene contains many 
similar aircraft target pixel vectors.  

The above results demonstrate the behavior of the LPD technique using 
HYDICE imagery.  In a broader context, the LPD technique is useful for 
detecting objects occurring as isolated  minority elements of a scene.  Harsanyi 
(1993) points out several specific applications of LPD such as: the detection of 
isolated vegetation, subpixel rock outcroppings, poorly exposed geological 
features, toxic materials in landfills, low level pollutants in waterways, scarce 
mineral deposits, and man-made objects in naturally occurring backgrounds.  All 
of these scenarios involve spectral signatures of materials of interest occurring 
with a low probability throughout the scene (Harsanyi, 1993, p. 56).  Harsanyi 
(1993) validates the LPD technique using simulations of a sparse vegetation 
detection problem.  He simulates AVIRIS data by mixing the known spectra of 
welded tuff and basalt with varying amounts of the black brush spectrum in a few 
pixels of a simulated scene.  The result of the LPD technique is detection of the 
pixels containing black brush down to 10% abundance (Harsanyi, 1993, p. 69).  
Harsanyi (1993) further demonstrates the utility of the LPD technique by 
detecting a large canvas tarp in an AVIRIS scene of Mono Lake, California.  
 More insight into the applicability of the LPD technique comes as a result 
of understanding some of its limitations.  Harsanyi and   Farrand (1995) observe 
that a drawback of LPD is that the target material cannot be in sufficient 
abundance to be included as a spectral component of any of the primary 
eigenvectors of the covariance matrix of the observations.  They further note that 
materials of low abundance which are not the target spectrum can be erroneously 
detected as target material because the LPD has been designed to suppress only 
the majority endmembers as identified by the significant eigenvectors.    With 
these limitations in mind, the LPD technique can be applied in  a nearly automatic 
manner, with only knowledge of the target spectrum required. 

 
 
 

 133



2.   Constrained Energy Minimization (CEM) 

 The CEM technique makes the same assumptions as the LPD technique 
except that of requiring a low probability of target material abundance in the 
image.  The CEM technique relaxes the constraint of LPD that target pixels 
appear with low probability, and also applies to pure and mixed pixels.  The CEM 
technique, based on the MVDR concept, seeks to create a linear operator which 
minimizes the total energy in the scene while constraining the response of the 
signature of interest to a constant level (Harsanyi, 1993, p. 82). 

The goal of the CEM technique is to find the weight vector wCEM which, 
when applied to each observation pixel vector, produces a scalar, yi.  The scalar yi 
is a weighted sum of the responses at each of the spectral bands within the 
observed pixel vector.   The l x 1 weight vector w is given by: 

Fx x x=
=
Â1

1N i i
i

N
T       (6.23) 

and the output of the combining process at each pixel is:  
yi = xiwCEM

T.       (6.24)   
Figure 6.14 graphically depicts the effect of the weight vector on an observed 
pixel vector.  
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Figure 6.14:  Effect of the CEM Weight Vector Components on the Observed 

Pixel Vector Components. 
 
The derivation of a wCEM is driven by two conditions. The first requires 

that the energy at each output image pixel,  

E = Â        (6.25) yi
i

q
2

1=

is minimized. The second requires that the result of applying the operator to the 
pixel vector of interest, d, be unity, or   

wCEM
Td = 1         (6.26) 

The solution to the minimization problem is the same as the MVDR beamformer.  
The  CEM operator is defined as: 
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w d
d d

x
T

x
CEM =

-

-

F
F

1

1       (6.27) 

  
The CEM operator in this case differs from the MVDR beamformer because it 
uses the known desired pixel vector, d, instead of the complex steering vector, s, 
which represents the frequency response for a particular electric angle.  The CEM 
operator defined in Equation 6.27 uses the  signal processing definition of the 
correlation matrix because this is the form used in deriving the MVDR.  The 
difference between the covariance and correlation matrices is that the covariance 
matrix is formed by removing the mean of the vectors.  The sample correlation 
matrix is also formed as an outer product, but the mean of the vectors is not 
removed. Assuming that there are N observation pixel vectors, (x1,...,xk,...xN) in 
the image, the sample correlation matrix is formed as: 

   F       (6.28) x x x=
=
Â1

1N i i
i

N
T

For the remainder of this chapter, the “correlation” matrix refers to the signal 
processing version vice the remote sensing version, as defined in the Chapter III 
of this study. 

The following paragraphs investigate the effect of using both the signal 
processing correlation and covariance matrices to form the CEM operator.  The 
CEM operator formed with the correlation matrix is applied to the Davis Monthan 
sub-scene.  The CEM operator formed with the covariance matrix is applied to the 
entire Davis Monthan scene.  Two types of aircraft are chosen as desired 
endmembers in the whole scene and the performance of the CEM technique in 
detecting each type is noted. 

The implementation of the CEM technique must take the numerical 
behavior of the second order statistical matrices into account.  In hyperspectral 
imagery covariance or correlation matrices, the ratio of the largest to the smallest 
eigenvalue is always very large.  This is a comment on the high spectral 
redundancy prevalent in this type of data.  The ratio of largest to smallest 
eigenvalues is referred to as the condition number. The condition number 
indicates the degree of accuracy that may be expected in numerical calculation of 
a matrix inverse (Golub and Van Loan, 1983, p. 26).  The large condition number 
of Φx or Σx for hyperspectral imagery leads to a highly inaccurate inverse if 
standard inversion methods are used (Harsanyi, 1993, p. 87). The correlation or 
covariance matrix is said to be ill-conditioned in this case.  The CEM technique 
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requires inversion of the correlation or covariance matrix, so an alternative that 
alleviates the problem of ill-conditioning is to use an approach based on the 
eigenstructure of Φx or Σx.  This approach takes advantage of two properties of the 
unitary transform, which will be demonstrated with the correlation matrix but are 
equally applicable to the covariance matrix.  First, Φx and Φx

-1 have the same 
eigenvectors. Second, Φx and Φx

-1 have eigenvalues that are reciprocals of each 
other.  The end result is  that Φx

-1 may be decomposed as:  
Φx

-1 = EΛ-1ET           (6.29) 
where E is the matrix of correlation matrix eigenvectors packed into the columns and 
Λ-1 is the diagonal matrix whose diagonal elements are the reciprocals of the 
eigenvalues of the correlation matrix.  Additionally,  the fact that only the first few 
eigenvectors of the sample correlation matrix contribute significantly  to the total 
energy of a hyperspectral scene allows a good estimate of Φx

-1  using only the 
eigenvectors and eigenvalues of Φx which correspond to the intrinsic dimensionality 
(Harsanyi, 1993, p. 88).  The resulting estimate of the inverse of the sample 
correlation matrix may be written in terms of the first p-1 eigenvectors and 
eigenvalues as  

Fx
-1  = -~ ~ ~E EL 1 T        (6.30) 

where ~E  is the matrix of the first p-1 eigenvectors defined in the previous LPD 
section and ~L-1  is the diagonal matrix containing the reciprocals of the first p-1 

eigenvalues of Φx (Harsanyi, 1993, p. 89).  The intrinsic dimensionality is derived 
using the MDL criterion, or in this case has been determined from the eigenvalue 
magnitudes to be ten. 

The CEM technique is applied to the Davis Monthan sub-scene using the 
correlation matrix to form the CEM operator.  The scalar image that results is very 
much like those formed by the LPD and OSP techniques with an important 
exception.  In the CEM output image, the target material is assigned values very near 
to unity.  This corresponds to the intended effect of the CEM operator as seen  in 
Equation 6.26.       Figure 6.15 presents the histogram of this output image and 
shows how the target pixel vector has been assigned a value of unity in the CEM 
output image.   The desired pixel vector was chosen from the wing of an aircraft.    
The wing pixel and the fuselage pixel appear in the opposite relative  positions  in 
the CEM output  histogram  than in the OSP and LPD output histograms.   The  
CEM output preserves  the target pixel  vector as the highest  magnitude  in this  
case. The image associated with Figure 6.15 is presented in Figure 6.16.  As with  
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Figure 6.15: Histogram of Davis Monthan Sub-scene CEM Output.

  
Figure 6.16: Davis Monthan Sub-scene CEM Output.   

 
the OSP and LPD output images, the scene has been thresholded to accentuate the 
target pixels.  The large number of standard deviations away from the center of the 
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background distribution is due to the small standard deviation of the background 
distribution. The color version of Figure 6.16 may be found in Appendix A. 
 The entire Davis Monthan scene is used to demonstrate the ability of the 
CEM technique to distinguish various types of targets within the scene.  The 
covariance matrix of the data is used in this case, and the results show that the CEM 
output behaves similarly to the case in which the correlation matrix was used.  
Figure 6.17 shows the histogram of the output image in which a P-3 aircraft pixel 
was chosen as the desired pixel vector.  The CEM technique displays the  
 

 
 

Figure 6.17: Histogram of CEM Scalar Image Using P-3 Pixel Vector as the Target. 
 

quality of ordering the magnitudes of the output image pixels in such a fashion as to 
maximize the target.  The image associated with this histogram is shown in figure 
6.18.  The color version may be found in Appendix A.  The most notable 
feature of this image is that the P-3 aircraft have been successfully extracted from  
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Figure 6.18: Davis Monthan CEM Output Image Using P-3 Pixel Vector as the 

Target. 
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the background.  In most instances, the fuselages of the aircraft have higher 
magnitudes than the other parts of their bodies.  Several buildings are also present 
with high enough magnitudes to be included in the thresholded image.   
 The CEM technique was also applied to the B-52 aircraft in the scene.  
Figure 6.19 shows the histogram of the resulting output image.  The differentiation 
of the target from the background is not as evident in this case as in the P-3 target 
case.  The target pixel is not the highest in magnitude, but its value is unity.  The 
SCR has decreased in this case. The lack of clear distinction between targets is 
readily apparent in Figure 6.19.  It reveals that though the B-52 pixels are all 
uniformly high, there are also several other areas which have high values in the 
scene, such as other aircraft types. 
   

 
Figure 6.19: Histogram of CEM Scalar Image Using B-52 Pixel Vector as the 

Target. 
 

The preceding results demonstrate that the CEM technique behaves similarly 
using the covariance or correlation matrices.  It also has the desirable quality of 
assigning the target pixel vector values at or near unity in the output image.  
Harsanyi, Farrand, and Chang (1994) suggest that the CEM technique is well suited 
for the detection of distributed subpixel targets.  Their examples include the 
detection of vegetation and rocks, and soils partially covered by vegetation.  The 
target spectrum in this case occurs over numerous pixels.  Their experimental 
evaluation of the CEM technique involves the detection of various image 
endmembers known to occur within an AVIRIS image of the Lunar Crater Volcanic 
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Field, Nevada.   The CEM output detection of pixels containing red oxidized basaltic 
cinders, rhyolite, playa, and vegetation corresponds to ground truth maps of the  
same area. 

As a final comment on the CEM technique, it is useful to examine the wCEM 
operator developed for cases where the target pixel vectors are different.  Figure 6.20 
presents the plot of the wCEM operator associated with the B-52, P-3,  

 

 
Figure 6.20:  Comparison of the CEM operator for Three Different Target Pixel 

Vectors. 
and C-130 aircraft  target pixel vectors.  The CEM operator associated with the  P-3 
shows less variability those that associated with the C-130 and the B-52.  This 
behavior unexpectedly results in better target differentiation in the output images.  
The CEM operator in this case only depends on the behavior of the target pixel 
vectors, since the inverse of the covariance matrix is the same for all three.  Thus, the 
results of Figure 6.20 are in essence a statement about the subtle differences in 
various aircraft spectra.  
 
 
 
 
 



3.    Adaptive Multidimensional Matched Filter 

The matched filter can also be derived from a hypothesis test approach, 
which is more commonly associated with statistically-based classification.  
Stocker, Reed, and Yu (1990) use techniques from adaptive signal processing 
which exploit spatial and spectral differences between a target and the background.  
They apply the techniques to the problem of multispectral infrared imagery target 
enhancement.  The goal is to test the data for the presence of a signal of known 
spatial shape and spectral signature.  The image is partitioned into N-pixel 
subframes.  It is assumed that there are l bands and that the pixel vector xi 
represents the l spectral observations from the ith pixel of the subframe.  It is further 
assumed that the target shape in each band can be described as:  

s =
L

N
MMM

O

Q
PPP

s

sN

1

       (6.31) 

and that the shape vector satisfies the normalization sTs = 1.  The spectral signature 
of the target is described as: 

d =
L

N
MMM

O

Q
PPP

d

dl

1

       (6.32) 

(Stocker, Reed, and Yu, 1990, p. 219).  Both s and d are known a priori.  The 
optimal detector for the target is derived from the joint probability distibution of 
the spectral observations using signal present and signal absent hypotheses 
(Stocker, Reed, and Yu, 1990, p. 219).  The target may be viewed as an additive 
signal intensity pattern to the observations, given by sid for the pixel vector xi. 
Since zero mean data is assumed in each subframe, the presence of the additive 
signal will only affect the mean of the data, as E{xi}= sid, and the parametric form 
of the distribution will depend only on the background scene statistics.  Thus, 
spectral images can be modeled as nonstationary Gaussian random processes with 
rapidly varying spectral mean and more slowly varying covariance functions 
(Stocker, Reed, and Yu, 1990, p. 219).   

Each band of the image is prefiltered so that the local mean of each 
subframe is removed.  This allows the background random process in each 
subframe to be approximated by zero mean locally stationary Gaussian statistics.  
The spectral observations in each subframe, {x1,...,xN} can be modeled as 
independent Gaussian random vectors with zero mean and a common spectral 
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covariance matrix, Σx (Stocker, Reed, and Yu, 1990, p. 220).  The pdf for the signal 
absent hypothesis is: 

p x x eN
Nl N i i
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    (6.33) 

and the pdf for the signal present hypothesis is: 
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(Stocker, Reed, and Yu, 1990, p. 220)  A likelihood ratio test formed from these 
two hypotheses leads to the optimal detector which is a linear filter that can be 
expressed in terms of the data as: 
     y(X) = dT Σx -1Xs      (6.35) 
where X is a l x N matrix formed by packing all of the pixel vectors {x1,...,xN}into 
the columns of X.  The linear filter can be expressed in terms of its components as: 

 yi = (dT Σx -1xi)(s)      (6.36) 
The parentheses emphasize that yi may be interpreted as an optimum weighted 
combination of spectral samples in each subframe followed by a spatial matched 
filter which is matched to the target shape, s (Stocker, Reed, and Yu, 1990, p. 221).  
The optimum weighted combination arises from the fact that the covariance matrix 
may be decomposed using a unitary transformation, so that the linear filter may be 
rewritten as:  

yi = (dTEΛ-1)(ETxi)s       (6.37) 
with Q being the matrix of eigenvectors, and Λ representing the matrix of 
eigenvalues.  The term in the first parentheses serves as a weight vector which 
gives the optimum weighted combination of principal components for the term in 
the second parentheses, which is the projection of the original data onto the 
eigenvectors of Σx.   The end result of this matched filtering is to maximize the 
signal-to-clutter ratio (SCR) and allow easier detection of the target. 

The application of the multidimensional matched filter to an unknown 
background is accomplished by estimating the covariance matrix for each subframe 
using the zero mean data matrix outer product as:  

Sx
TXX = 1

N
       (6.38) 

(Yu, Reed, and Stocker, 1993, p. 2463).  The clutter adaptive detector is formed 
using   a  generalized   likelihood   ratio  test.     The  estimate  of  the  background 
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covariance replaces the known covariance matrix, and the clutter adaptive test may 
be written as: 
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If the ratio is larger than a specified threshold, then the target is present (Yu, Reed, 
and Stocker, 1993, p. 2463).  This approach is adaptive in that the above likelihood 
test changes according to the background statistics estimated for each subframe.   

Yu, Reed, and Stocker (1993) demonstrate the effectiveness of the adaptive 
multiband matched filter using data collected by the six-band Thermal Infrared 
Multispectral Scanner (TIMS) instrument of Adelaide, Australia.  This instrument 
has ten meter ground resolution.  The adaptive matched filter is applied to the scene 
and extracts certain man-made features such as homes and roads.   
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VII.   THE LIMITED IMAGE ENDMEMBERS FAMILY OF TECHNIQUES   

A.  DESCRIPTION 

Though a priori knowledge of the image endmembers may be unavailable, a 
library of reference spectra is readily available in many cases.  The reference spectra have 
been collected by laboratory spectral analysis of materials or previous remotely sensed 
observations of ground truth.  Three techniques exploit this knowledge of spectral 
libraries.  They are based upon comparing observed pixel vectors with spectra in the 
library and using an objective criterion to decide on the constituent endmembers of the 
observed pixel vectors.  Two techniques assume the mixed pixel problem and attempt to 
unmix the observations into constituent endmembers.  These are the endmember 
identification and the partial unmixing techniques.  The third technique, the spectral angle 
mapper (SAM), does not assume mixed pixels (Harsanyi, 1993, p. 11).  This distinction is 
important to keep in mind when deciding when and how a specific technique should be 
applied.  All of these techniques seek to classify observed pixel vectors by using a 
reference library.  In other cases, a limited amount of information regarding the 
abundance of a particular endmember is available via ground truth.  A fourth technique 
based on the singular value decomposition capitalizes upon this information to form an 
operator that can be applied  to future images in which no ground truth is available. 

 

B.   BACKGROUND DEVELOPMENT 

The techniques discussed in this section have their origins in diverse areas.  The 
multiple signal classification (MUSIC) approach has its roots in the field of array 
processing and high resolution spectral estimation. The partial unmixing technique of 
endmember identification has the concepts of convex geometry as its  foundation. The 
SAM technique is very much like the signal processing concept of the correlation detector 
for signal detection.  The singular value decomposition (SVD) is a powerful tool from 
linear algebra that can decompose a matrix in a manner similar to eigendecomposition.  
The SVD technique is computationally efficient and reveals information about the 
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structure of the data.  Though they have different roots, the techniques all strive to use 
available information to the fullest extent. 

1.   Multiple Signal Classification (MUSIC) Technique 

 Schmidt originally developed the MUSIC technique to determine the parameters 
of multiple wavefronts arriving at an antenna array (Schmidt, 1986, p. 276).  His 
development is followed here with the notation altered to correspond with that used 
throughout this study in describing the hyperspectral problem.  The model for the 
observations of the signals received at the antenna elements is given by: 

x M n= +a          (7.1) 
where x is the l x 1 observation vector, M is a l x p matrix of known functions of the 
signal arrival angles and array element locations which may be written as: 
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The columns of M are called the mode vectors, and represent the array responses to a 
particular direction of arrival of a signal.   There are p incident signals and l array 
elements, and it is assumed that l > p.  The p x 1 vector α represents the amplitude and  
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e

 
Figure 7.1:  Geometric Representation of the Observed Signal Model with Three Antenna 

Elements. After Schmidt, 1986, p. 277.  
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phase of the incident signal at an arbitrary reference point, and n is the l x 1  noise vector 
(Schmidt, 1986, p. 276).  The model of Equation 7.1 is expressing x as a linear 
combination of mode vectors, with the elements of α representing the coefficients of 
combination.  A geometric view of the situation puts the problem into perspective.  Figure 
7.1 shows that the linearly independent columns of M determine the subspace within 
which the observations must exist.  The vectors m(θi) represent all possible choices of 
incident mode vectors, and are depicted by the continuum in l-dimensional space in 
Figure 7.1.  The signal subspace is spanned or defined by the first two eigenvectors of the 
covariance matrix of the observations, and is denoted by the shaded lines.  The 
eigenvector associated with the smallest eigenvalue defines the noise subspace in three-
dimensional case of Figure 7.1  The direction of arrival estimation problem for several 
incident wavefronts consists of locating the intersections of m(θi)  with the signal 
subspace (Schmidt, 1986, p. 277).   

The MUSIC algorithm begins with the covariance matrix model of the data, which 
is obtained by applying the definition of covariance as a statistical  expectation to the data 
vector:   

S Sx
* * *T

s
*xx M M nn M M I= = + = +E E E*T T T T{ } { } { }aa s 2      (7.3) 

Σx is a l x l covariance matrix, where the results assume that the signal and noise random 
vectors are uncorrelated.  The complex conjugate transpose operation is denoted by the *T 
and is required since the MUSIC problem is formulated to deal with complex signals.  The 
p x p matrix Σs is diagonal if all of the elements of α are uncorrelated.  The σ2I matrix 
assumes that the additive noise in the problem is white with variance σ2 (Schmidt, 1986, 
p. 277).  The eigenstructure of Σx contains complete information on the frequencies 
{ω1

l

,...,ωk,...,ωl}, which is the parameter of interest in determining the  direction of arrival 
of a particular signal.  The eigendecomposition of Σx yields eigenvalues which can be 
divided into two groups based on their magnitudes.  Since the number of linearly 
independent columns or rank of the matrix  is p, the implication is that this 

matrix has p strictly positive eigenvalues with the remaining l-p eigenvalues equal to zero.  
Accounting for the constant variance of the noise, which adds σ

M Ms
*S T

2 to all eigenvalue 
magnitudes, the magnitude of eigenvalues can be summarized as: 
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Consequently, the  eigenvectors associated with the p eigenvalues greater than σ2 are 
packed into a matrix S which defines the signal subspace, and the eigenvectors associated 
with the l-p eigenvalues equal to σ2 are packed into a matrix G which defines the noise 
subspace as shown below: 
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(Stoica and Moses, 1996, p. 206).  The MUSIC algorithm involves the projection of the 
signal onto the noise subspace, and is developed using the En matrix.  The application of 
the noise subspace eigenvectors to the covariance matrix results in the following 
equalities: 

S Sx n s
*

n nE M M E E E= + =T s s2 2        (7.6)  
This equation implies that = 0, and since M  has full column rank (p 

linearly independent columns), it follows that M

M M Es
*

nS T
sS

*TEn = 0 (Stoica and Moses, 1996, p. 
207).  The orthogonal columns En of  belong to the null space of M*T, and can be used to 
form a projector onto the noise subspace.  Using linear algebra concepts from the theory 
of least squares, the projection matrix onto the noise subspace is formed as:   

 Pnoise = En(En *T En)-1 En *T = En En *T       (7.7) 
where the second equality is true because En is an orthonormal unitary matrix (Therrien, 
1992, p. 623).  The important result of this derivation is that the true frequencies 
associated with the direction of arrival of signals are the true solutions to the equation: 

  m*T(θι)Pnoisem(θι) = 0         (7.8)  
(Stoica and Moses, 1996,  p. 208). The noise subspace is orthogonal to the signal 
subspace, implying that the noise subspace projector, Pnoise,  nulls incoming signals while 
allowing incoming noise to pass.  By noting at which frequency the nulls occurred, the 
frequency or direction of arrival for a signal is estimated.  The MUSIC algorithm uses the 
eigenvectors of the data covariance matrix to construct an orthogonal projector.  It is 
worth noting that this algorithm is designed to detect the direction of arrival and spectral 
content of orthogonal signals such as complex sinusoids.  

2.   Convex Sets 

Convex sets are based on concepts from linear algebra and geometry, and have a 
history of application to mathematical optimization problems (Lay, 1982, p. vii).  A 
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definition of points in a convex set is that they are positive, unit-sum linear combinations 
of a fixed set of points (Boardman, 1995, p. 15).  The fixed set of points define the 
vertices of a convex hull, which is the intersection of all the convex sets containing the 
particular convex set of interest (Lay, 1982, p. 11).  A flat is defined as a translate or 
mapping of a linear subspace (Lay, 1982, p. 12).  This is basically a projection of an l-
dimensional cloud onto a subspace.  An l-simplex is the simplest geometric figure that has 
no redundancy in representing a set of data points (Boardman, 1995, p. 17).  A fledge is a 
flat that is on the edge of a data cloud (Boardman, 1995, p. 17).  While these concepts 
may seem vague, their application to high dimensional hyperspectral data in the partial 
unmixing technique clarifies their utility. The reader is referred to Lay (1982) for a 
complete discussion of these concepts. 

3.   The Correlation Detector 

The detection of deterministic signals in noise is a classic problem in signal 
processing.  The problem is formulated as an observed sequence of the form:  

x[n] = s[n] + n[n]   0 1£ £ -n N       (7.9) 
where s[n] is a deterministic sequence and n[n] is added noise (Therrien, 1992, p. 4).  If 
the noise is white, where the samples are uncorrelated random variables, then the 
optimum way to detect the signal is a correlation detector.  Figure 7.2 illustrates the  

 
Figure 7.2:  Correlation Detector.  From Therrien, 1992, p. 5. 

 
detection process, where the replica sequence sr[n] is the same as s[n].  The replica 
sequence is multiplied by the input sequence, x[n], summed, and compared to a threshold 
to determine whether or not the deterministic signal is present in the input sequence.  The 
process of multiplication and summation of the two sequences is known as cross-
correlation (Therrien, 1992, p. 5).   This simple detector assumes a priori knowledge of a 
particular signal that one wishes to detect.  One shortfall in the concept is that the input 
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sequence is assumed to be one signal buried in noise.  If several interfering signatures 
were present that were correlated with the signal of interest, the correlation detector would 
be unable to successfully announce its presence (Harsanyi, 1993, p. 11). 

4.   Singular Value Decomposition (SVD) 

 The SVD is a powerful tool that enables eigenvalues and eigenvectors to be found 
with better numerical precision and allows decomposition of all types of matrices, not just 
symmetric ones (Therrien, 1992, p. 54).  The best way to understand the operation of the 
SVD is to view it in terms of vector subspaces.  Van Der Veen, Deprettere, and 
Swindlehurst (1993) review the subject of the SVD in subspace based spectral estimation, 
and their background description of the SVD is given here in notation that is consistent 
the notation of spectral imagery analysis developed in this study.  Assuming that one 
begins with real-valued data in the form of a l-band x N-sample matrix X, it is desirable to 
know the number of linearly independent columns of X.  If the number of linearly 
independent columns of X is p, then p is referred to as the dimension of the column space 
of X.  If p = l, then X is said to have full rank, and is rank-deficient if p < l.  Euclidean l-
dimensional space can be completely described or spanned by the columns of any unitary 
l x l square matrix, which form an orthonormal basis.  A l x l unitary matrix U can be 
chosen so that the p-dimensional column space of X is spanned by a subset represented by 
the first p columns of U.  This l x p subspace is called U  and its l x l-p orthogonal 
compliment is called U , both of which are shown below as parts of the matrix U: ^

U U U= ^|        (7.10) 

where the dimensions of the partitioned matrix U are l x l.  The ^ in this context does not 
refer to an estimate, but rather a smaller-sized component matrix.  The fact that U is a 
unitary matrix leads to several properties of its component matrices: 
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where the subscripts to the identity matrices denote their dimension, and the PC and  

denote the orthogonal projector matrices onto the column space of X and its orthogonal 
compliment, respectively (Van Der Veen, Deprettere, and Swindlehurst, 1993, p. 1289).  

PC
^
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These results were seen in the Chapter V discussion of the theory of least squares, but 
were not stated explicitly.  The important observation is that any vector x in  l-space can 
be decomposed into two mutually orthogonal vectors that belong to the spaces spanned by 
the columns of U and U .  The N x N unitary matrix, V, may be decomposed similarly to 
yield: 

^

SVT

V V V= ^|        (7.12) 

The dimension of the matrix component are N x p and the dimensions of  are N x N-
p. 

V V^

The SVD of the l x N data matrix X is defined in terms of the above unitary 
matrices as: 
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where S is a l x N matrix containing the singular values of X.  The singular values are 
positive number ordered so that  and correspond to 

the square roots of the eigenvalues.  Only p singular values are nonzero, and the 
corresponding p columns of U  are called the left singular vectors of X.  The p columns of 

are  called the right singular vectors of X.  The SVD can be written in terms of these 
smaller matrices in what is termed the economy size or reduced rank SVD as:  
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(Van Der Veen, Deprettere, and Swindlehurst, 1993, p. 1289). This decomposition clearly 
shows that X is a rank p matrix since it is composed of rank p matrices.  It is also useful 
because it represents the original data matrix with fewer dimensions.  The SVD of X can 
be best explained by explicitly stating the steps involved in the mapping of a vector a in 
N-space to a vectors b in l-space as:  

b = Xa = USVTa             (7.15) 
Vector a is rotated in N-space by VT, then scaled by the entries of S, with l-p components 
projected to zero by the zero singular values, and finally rotated in l-space by U to give b 
(Van Der Veen, Deprettere, and Swindlehurst, 1993, p. 1289). 
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C.   OPERATION 

The techniques considered in this section seek to determine the endmembers 
resident in an image by comparison with known spectra.  The mechanics of how they 
work is outlined below. 

1.   MUSIC-Based Endmember Identification 

Harsanyi, Farrand, Hejil, and Chang (1994) introduce a modification of the 
MUSIC method of  spectral estimation to remote sensing applications.  The advantage of 
using this method is that the number and identity of spectral signatures in an image can be 
determined without finding spectrally “pure” pixels in the scene.  In assuming the mixed 
pixel problem and assuming no a priori knowledge of specific scene endmembers, one is 
obligated to use a library of known pure spectra that can be compared to candidates drawn 
directly from the scene.  The basis of the MUSIC approach is the eigendecomposition of 
the covariance matrix into orthogonal matrices, one of which is used to construct a noise 
subspace projector.  As in the MUSIC algorithm of spectral estimation,  the noise 
subspace projector nulls those reference spectra which correspond to signatures found in 
the signal subspace of the scene.   

 The first step of the MUSIC approach is to use the noise-whitened  covariance 
matrix to determine the number of distinct spectral signatures based on the MDL 
information theoretic criterion (Harsanyi, Farrand, Hejil, and Chang, 1994, p. 269).  These 
concepts are fully developed in Chapter VI, and are viewed here in terms of their results.  

The second step is to use the principal eigenvectors of the noise-whitened 
covariance matrix to form a subspace that is orthogonal to all possible linear combinations 
of spectral signatures in the scene, and then to use this noise subspace to form an 
orthogonal subspace projector (Harsanyi, Farrand, Hejil, and Chang, 1994, p. 271).   The 
noise-whitened covariance matrix can be decomposed by unitary transform into:  
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where the number of spectral bands is l, and λi and ei are the ith eigenvalue and 
eigenvector, respectively, of the noise-whitened covariance matrix.  Note that all data is 
real. Assuming that the intrinsic dimensionality of the data is determined to be p-1 by the 
MDL criterion, the eigenvector matrix E can be partitioned into a signal subspace 
consisting of the eigenvectors associated with the p-1 significant eigenvalues and a noise 
subspace consisting of the remaining l-p+1 eigenvectors.  The matrix of principal 
eigenvectors is called the signal subspace and is denoted as: 
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         (7.17) 

The principal eigenvectors represent the majority of the information regarding the 
endmembers of the scene, as demonstrated by the optimal representation property of the 
DKLT.  This implies that any linear combination of the endmembers is represented by 
some linear combination of the principal eigenvectors (Harsanyi, Farrand, Hejil, and 
Chang, 1994, p. 271).   The principal eigenvector matrix is used to form an operator which 
will project onto the subspace orthogonal to the signal subspace.  The projection operator 
is the optimal least squares operator  of the LPD technique expressed here as: 

P I E Es s= -( ~ ~ )#        (7.18) 

where the # denotes the pseudo-inverse operation.   
The final step of the MUSIC approach is to apply the noise subspace projection 

operator to a spectral library in order to identify those endmembers in the image which are 
closest to the library endmember spectra.  Assuming that the ith spectral library signature 
is given by the zero-mean vector ri, the endmember identification operator can be 
formulated as: 

S( )r r WPWi i
T

i= rT        (7.19) 

(Harsanyi, Farrand, Hejil, and Chang, 1994). The whitening operator W is derived from 
the eigenvectors and eigenvalues of the noise covariance matrix, as shown in Equation 
6.21.  It is applied to the estimated data covariance matrix in order to provide a noise-
whitened estimate.  The endmember identification operator S(ri) is applied to every 
reference spectrum, producing a scalar.  The elements of the spectral library for which 
S(ri) is minimized are the spectral signatures closest to the endmembers in the scene.  The 
significance of this technique is that the second order statistics of the observed data allow 
an objective means of determining image endmember identity.  
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The MUSIC technique approaches the problem of finding pixels containing target 
spectra by exploiting the statistics of the covariance matrix to derive an operator which is 
orthogonal to the subspace of the signals in the image.  The rationale is that when this 
operator is applied to a library of reference spectra, the orthogonal subspace projection 
operator will minimize those spectra actually contained in the scene.  This implies that the 
MUSIC approach could identify all of scene endmembers given an exhaustive spectral 
library.  In the context of target detection,  the problem is simplified in that the reference 
library need only contain targets of interest instead of all materials. Harsanyi, Farrand, 
Hejil, and Chang (1994) validate the technique by running it on five hundred simulated 
AVIRIS data pixels containing three endmembers.  Their results show that the correct 
endmembers were identified by the MUSIC algorithm. The factors in this method which 
determine the accuracy of the detection center around the estimation of the covariance 
matrix, the determination of the intrinsic dimensionality of the data, and in the 
completeness of the spectral library in accounting for natural variability found in different 
spectra of the same type of target. 

2.   Partial Unmixing 

The traditional application of PCA to multispectral imagery does not account for 
the fact that the radiance observed from each pixel might be a mixture of spectra from 
different materials. The classification schemes that generally follow traditional PCA 
attempt to produce a crisp absence/presence decision for each pixel, ignoring the fact that 
the pixel may contain a mixture of spectra (Settle, 1996, p. 1045). A  technique introduced 
by Smith, Johnson, and Adams (1985) deals with the mixed pixel issue in the context of 
determining the mineral types and relative abundances in planetary multispectral 
observations.  The goal of their approach is to reduce the dimensionality of the 
observations to the total number of parameters that influence the measurements and to 
identify the parameters on which the spectral reflectance is functionally dependent (Smith, 
Johnson, and Adams, 1985, p. C797).  The assumption is that reference laboratory spectra 
of the endmembers are available.   

Briefly, the technique described by Smith, Johnson, and Adams (1985) is 
described as first forming a model of endmember mixing, and then applying PCA to 
determine if the observed spectral variance corresponds to the model.  The intrinsic 
dimensionality of data corresponds to  the number of parameters that influence the model.  
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The observed spectra are then projected onto the principal axes of variation corresponding 
to the most significant eigenvectors.  The vertices of the shape described by this 
projection are the endmembers, and the abundances of mixed materials are estimated by 
forming ratios of the mixture to the total volume of the projection (Smith, Johnson, and 
Adams 1985, p. C798).  This provides a systematic method with which to infer how the 
spectra contributing to the scene are related.  

Boardman, Kruse, and Green (1995) generalize the above approach to 
accommodate the high dimensionality of hyperspectral imagery with the technique of 
partial unmixing.  The partial unmixing technique assumes the mixed pixel problem.  It 
compares the purest pixels in a scene to reference target spectra.  The high purity pixels 
that do not closely match a target spectrum are used to determine a subspace that 
describes the scene background (Boardman, Kruse, Green, 1995, p. 24).  The background 
subspace can then be used to determine projection vectors for the target subspace that 
serve to isolate target spectra in the image.  The key to this approach is the selection of 
spectrally pure pixels.  This process is facilitated by the MNF or NAPC transform, which 
reveals the intrinsic dimensionality of the data.  The intrinsic dimensionality of the data 
can be represented by convex sets as the  vertices of a convex hull in l-space (Boardman, 
Kruse, Green, 1995, p. 23).   

Convex sets represent hyperspectral images as a collection of points in l-
dimensional space, where each spectral channel corresponds to an axis of the space 
(Boardman, 1995, p. 14). The shape of the data represented in l-space and the patterns 
inherent within it help one to better understand the spectral information in the data.  
Boardman (1995) equates the linear mixed pixel problem to a convex set of points in l-
space. The goal is to extract information regarding the presence of target spectra.  In the 
convex set model, the mixed pixel spectra are represented as unit-sum linear combinations 
of the pure endmember spectra.   The pure endmembers determine the vertices of the 
convex hull, whereas the mixed pixels are located at points inside the hull.   The inherent 
dimensionality of the data is determined by finding the lowest dimensional subspace, or 
flat, that spans or represents all of the signals in the data, excluding the noise.  The MNF 
or NAPC transform is used to obtain the intrinsic dimensionality through an 
eigenanalysis.  The simplest geometric figure that can conform to the number of 
dimensions thus determined is termed an l-simplex.  Some of the shapes that simplices 
can assume are depicted in Figure 7.3. The l+1 pure endmember spectra form the vertices 
of the l-simplex.  The purest pixels are then located in the data by an iterative projection 
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Figure 7.3:  Mixing Simplices from Zero to l Dimensions. After Boardman,1995, p. 17.   
 

 
Figure 7.4:  Purest Pixels in the Davis Monthan Sub-scene. 
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to determine which pixel are within a threshold of being on the convex hull of the data 
cloud.   
 The purest pixels of the Davis Monthan sub-scene are shown in Figure 7.4.  These 
were located using the MNF output image and the iterative projection scheme described 
above.  The white boxes indicate the four purest pixels in the image that exceeded a 
threshold of ten after 100 projection iterations.  It is interesting to note that these pixels 
correspond to spectra that appear to be mixed pixels since three of them occur on the 
aircraft edges.  The fourth purest pixel corresponds to the background.  The color version 
of Figure 7.4 may be found in Appendix A.  Figure 7.5 shows the spectra of these pixels.  
The spectra are presented in a manner similar to that of Figure 5.5, using the logarithm to 
accentuate detail and an offset for clarity.  In contrast to Figure 5.5, where the spectra  
 

 
 

Figure 7.5:  Pure Pixel Spectra from Davis Monthan Sub-scene. 
 

were picked randomly, Figure 7.5 shows spectra that represent the image endmembers.  
The spectra in these figures look remarkably similar, the most pronounced difference 
being between the appearance of the fuselage and nose spectra.  The important 
observation is that the mixed pixels of the scene are actually identified as endmembers by 
virtue of their unique spectral character. 

With the purest pixels of the image located, the purest pixels are matched to 
reference target spectra.  Those that match are set aside, and those that do not are used to 
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form a subspace called a fledge, which can be visualized as a subspace of the l-simplex 
which is missing the target endmember.  Using the subspace complementary to the target 
as a projector has the effect of minimizing the effects of background while emphasizing 
those pixels which contain the target spectrum.        
 The partial unmixing technique of Boardman, Kruse, and Green (1995) is a viable 
means of mapping target spectra.  The technique is based on determining the intrinsic 
dimensionality of the data using the MNF or NAPC, determining the spectrally pure 
endmembers of the scene, identifying target endmembers using a reference library, and 
projecting the data onto a subspace orthogonal to the background endmembers.  As with 
all of the techniques which use the covariance matrix, the effectiveness of the subsequent 
projections and transformations is predicated on the goodness of the estimate of the 
covariance matrix.  The ability of the convex set methods to determine the spectrally pure 
pixels is an issue, though this study has not addressed the mechanics of the convex set 
methods in detail.  The completeness of the reference library is a further factor that affects 
the accuracy of the target material mapping. Boardman, Kruse, and Green (1995) apply 
the partial unmixing technique  to AVIRIS data with the intent of mapping carbonate 
minerals in the North Grapevine Mountains of California and Nevada.  Figure 7.6  shows 
their results.  The scatter plots represent the optimal projection of the data which includes  
 

 
 

Figure 7.6:  Results of Partial Unmixing.  
From Boardman, Kruse, and Green, 1995, p.  26. 
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the target in the left plot, and the target-free scene in the right plot.  The corresponding 
shape in the center of the two figures shows that the background is being consistently 
projected by the operator determined using partial unmixing.  This implies that the target 
spectra can be consistently detected in the images. 

3.   Spectral Angle Mapper (SAM) 

The SAM technique is a means of determining spectral similarity between a 
reference spectrum, u, and the spectra found at a pixel of the image, x.    The operation is 
very similar in concept to the idea of a correlation detector in that an inner product of two 
l-dimensional vectors is formed to note the similarity of the vectors to each other in l-
space.  The angular difference in radians between two spectra is illustrated by Yuhas, 
Goetz, and Boardman (1992) as: 
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where the Euclidean norms, , provide a normalization of the vectors so that the relative 

amplitude difference in the two vectors is not a factor (Price, 1994, p. 183).  Lower 
angular values indicate a better match between the reference and test spectra.  The 
application of the SAM method further requires that the vectors to be compared have the 
same origin in l-space.  This implies that any additive bias induced by instrumental or 
atmospheric effects must be removed (Yuhas, Goetz, and Boardman, 1992, p. 148). Note 
that no assumption is made about the compositional nature of the observed spectra.  The 
angular comparison in SAM deals with the gross characteristics of the spectral vectors, 
and is not concerned with the problem of unmixing the spectrum into constituent 
endmembers. 

Typically, the SAM technique is applied using reference endmember spectra.  In 
this study, the B-52 wing used in the previous chapters is used as a reference endmember.  
The SAM technique is then applied to the entire Davis Monthan scene.  The results of this 
application are seen in Figure 7.7 and the color version in Appendix A.  The pixel values 
of the  image are a measure of the closeness between the observed pixel vector and the 
reference endmember spectrum.  Note how small these values appear.  This is an inherent 
property of hyperspectral imagery and is illustrated in the two-dimensional pixel 
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Figure 7.7:  SAM Output for Davis Monthan Scene.   
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vectors of Figure 5.8.  The spectral angle in Figure 7.7 is in degrees.  Smaller angles 
indicate a closer degree of fit to the reference spectrum.  The SAM output of Figure 7.7 
shows that the B-52 aircraft have been accentuated, but that the C-130 aircraft and several 
buildings have also been assigned high values.  The similarity of hyperspectral pixel 
vectors is the major contributing factor in this figure.  The histogram of this image is 
shown in Figure 7.8.  The annotation of the pixel types is the same as that found in the 
analysis of the LPD and OSP techniques.  The x-axis of the plot is in units of degrees, to 
accentuate the significance of the spectral angle.  Note how the target pixel has assumed  

 

 
 

Figure 7.8:  Histogram of the Davis Monthan SAM Image. 
 
a value of zero degrees, indicating a perfect match to the reference spectrum.  Note also 
how all of the man-made objects in the scene have been assigned relatively low spectral 
angles, while the natural background is significantly higher. 

The SAM technique is a straightforward way of finding pixels with spectra that are 
predominately similar on an element-by-element basis to a reference spectrum.  It is an 
innately deterministic approach.  The assumptions that it makes are that the spectrum of 
interest dominates the pixel to such an extent that it will provide a good match with a pure 
spectrum from a reference library.  The deterministic outlook of this approach overlooks 
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any natural variability that may occur from species to species.  The threshold of angular 
separation which will determine a successful match is the only parameter that can be 
controlled to alleviate this problem.  If the angular separation parameter is made too wide, 
then the method could be erroneously detect spectra that have been distorted by noise to 
such an extent that they appear to be targets.  Yuhas, Goetz, and Boardman (1992) 
illustrate the effectiveness of the technique by showing that SAM provides excellent 
discrimination of endmembers in an AVIRIS scene acquired over the high plains east of 
Greeley, Colorado.  The mixed pixel issue did not seem to confuse the SAM technique in 
this scene.  Perhaps this is because the scene was a relatively simple scene and the 
objective was not the discrimination of subpixel target spectra.  The above observations 
would imply that the SAM technique is well suited to large scale land use classification. 

There is an interesting insight which is gained from the application of SAM to the 
Davis Monthan scene and sub-scene.  We have examined a two-dimensional scatter plot 
of the Davis Monthan sub-scene in Figure 5.8.  In that figure the two-dimensional spectral 
angle of the target pixels was seen to be different than that of the background.  The effect 
of SAM is to characterize this angle using all 210 spectral dimensions.  The result is that 
SAM gives more accurate assessment of similarity of spectra than can two dimensions.  It 
also provides a means of determining how well the two dimensions represent the inherent 
nature of 210-band data.  Figure B.4 presents the scatter plot of Figure 5.8 with minor 
changes to the scales of the axes.  The color code corresponds to spectral angle produced 
by the SAM technique.  The B-52 wing is used as the reference spectrum.  The grouping 
of colors confirms that the shapes of the scatter plot of bands 50 and 120 accurately 
represents the actual spectral classes as identified by SAM.  The red corresponds to a low 
spectral angle or a high degree of similarity between that group of  pixels and the 
reference spectrum.  Figure B.5 presents the same two bands plotted against each other for 
the entire scene.  The colors and the shape of the scatter plot are not as easily explained in 
this case.  As with Figure B.4, the group of target pixels (red) still appears at the bottom of 
the distribution, and a strong concentration of background pixels (black) appears at the top 
of the distribution.  The linear shape of the coloration and the blending of colors 
complicates the interpretation of this figure.  The conclusion that may be drawn from this 
figure is that two bands are not adequate to discriminate the different classes that exist in 
the entire Davis Monthan scene, whereas they could do so for the sub-scene because of its 
simplicity. 
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4.   Unmixing Via SVD 

The use of the SVD as a tool in the analysis of hyperspectral imagery is introduced 
by Danaher and O’Mongain (1992) and further elaborated upon by Herries, Seliege, and 
Danaher (1996).  In their problem development, the goal is to develop an algorithm that 
maps the N-sample x l-band data matrix XT to a vector a representing the abundance of an 
environmental parameter of interest over the image.  The data matrix XT consists of N 
pixel vectors each of l bands arranged in the  N x matrix: l 
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The goal is to estimate the relative abundance of the target material in the data.  This goal 
is embodied by the environmental parameter vector a.   The vector a is an N x 1 vector, 
with each scalar component  corresponding the strength of the target material in each row 
of XT.  A model of the data is developed which incorporates the N x l matrices 
corresponding to target component, T, background, B, and additive noise, N.  The model 
appears as: 

XT = T + B + N       (7.22) 
Danaher and O’Mongain (1992) note that the rank of XT is greater than that of T or B, and 
that T belongs in a subspace of dimension e, while B belongs in a subspace of dimension f 
(Danaher and O’Mongain,1992, p. 1771)    For detection of a target, the requirement is 
that some component of T, called the key vector, w, be orthogonal to the background 
subspace.  The signal strength is then estimated by finding the component of each row of 
XT in the direction of w.  This is formulated mathematically by applying the key vector to 
the data model and noting that the key vector nulls the background matrix since it is 
designed to be orthogonal to the background subspace: 

a X w Tw Bw Nw Tw Nw= = + + = +T     (7.23) 
It is very unlikely that one will be able to isolate pure pixels representative of the 

T and B matrices.  As an alternative approach,  ground truth available in one instance is 
used to develop a key vector using the SVD.  This key vector can then be applied to 
subsequent scenes in which no ground truth is available (Danaher and O’Mongain,1992, 
p. 1772).   The derivation of the key vector, w, begins with the SVD of the data matrix: 

    XT = USV        (7.24) 
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The unique nature of the SVD is revealed in the decomposition.  U is an N x N matrix 
composed of the column eigenvectors of XTX, V is an l x l matrix whose rows are the 
eigenvectors of XXT, and S  is an N x l matrix that contains the l x l diagonal matrix D 
with elements corresponding to the square roots of the eigenvalues of XXT. These 
matrices are represented in their matrix form for clarity: 
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The computational burden of working with N-sized matrices can be overcome by 
using the economy size SVD in which the rank of the S and B matrices are used in place 
of the original number of bands.  This smaller number, p, represents the intrinsic 
dimensionality of the data.  Danaher and O’Mongain (1992) point out that the choice of p 
is a compromise between too small a value, which provides insufficient enhancement over 
the background and too large a value, which makes the process susceptible to noise 
effects.   In the reduced-rank SVD version, the dimensions of the matrix  are N x p, of 
matrix  are p x p, and of matrix  are p x l.   The key spectrum is determined by using 
the SVD and solving for w using the initially known ground truth environmental 
parameter, a: 

U
S VT

a X w USV w w V S U aT 1= = fi = - - -T     (7.26) 

This operation is not computationally intensive since the rank has been reduced, 
the inverses of  unitary matrices U  and V are simply their transposes, and the inverse of 
the diagonal matrix S  is the reciprocal of the diagonal elements.  The key vector thus 
formed is used to estimate the environmental parameter vector in other scenes. 

T

The SVD key vector analysis approach is different from the previous three 
methods in that it does not rely on reference spectra, but it does require a one-time ground 
truth image containing target  spectra of known abundances from which to develop the 
key vector.  The technique employs the SVD as a computationally efficient means of 
inverting the unmixing problem to solve for the abundance vector of a target material over 
the image.  Danaher and O’Mongain (1992) test the technique on a 50-band simulation of 
100 spectra containing the target material in varying abundances and at various SNRs.  
Their results  show that the target spectra were detected to within 97% agreement with the 
true abundances.  Herries, Selige, and Danaher (1996) apply the SVD key vector analysis 
technique to spectral imagery of a farm 40 km north of Munich, Germany.  Their focus is 
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on land cover classification.  Their results in classifying seven various classes of land 
cover are in good agreement with ground truth values.  The limitations of this approach 
are the dependence on specific scene ground truth to develop a key vector which is 
purported to be applicable to different scenes. 
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VIII.  SUMMARY

The purpose of this study was to organize and present the many existing spectral
imagery analysis techniques.  This larger context was created by viewing analysis
techniques as members of broad strategies.  The common themes in the theory and
application of the techniques led to the development of a hierarchy of five analysis
strategies: 1) linear transformation and projection, 2) classification, 3) linear prediction,
4) optimal band selection, and 5) multiresolution analysis.  The elements used to
categorize the techniques into strategies were the assumptions made about: 1) the pixel
mixing model, 2) the statistical nature of the data, 3) the homogeneity of the scene, and 4)
the a priori information.  Having established a conceptual framework, a number of
techniques in each of the five strategies were briefly presented along the with pertinent
references to more detailed descriptions.  A review of historical perspectives and imagery
analysis paradigms was given to highlight the unique nature and analysis requirements of
hyperspectral imagery.

The focus of this study was on the techniques found within the linear
transformation and projection strategy.  It was observed that this strategy had many
parallels with related ideas from the signal processing community. The modus operande
in creating a taxonomy for  the techniques within this strategy was the amount of a priori
information available at the start of the analysis.  Four major classes of a priori
information emerged: 1) none available, 2) complete knowledge of all image
endmembers available, 3) knowledge of only the target endmember, and 3) only a
reference endmember library or one instance of ground truth available.  These categories
of available information were used to classify the techniques into four families within the
linear transformation and projection strategy.

Before describing the four families of techniques within the linear transformation
and projection strategy, some key definitions were addressed in Chapter III.  First, the
concept of spectral imagery was presented using illustrative multispectral and
hyperspectral data sets.  The important concept the pixel vector was defined.  Second,
statistical characteristics of the data were defined and illustrated.  Three specific statistical
measures of data were discussed: 1) the mean, 2) the covariance matrix, and 3) the
correlation matrix.  These concepts were graphically depicted using Landsat scatter plots
and histograms along with images of the HYDICE covariance and correlation matrices
for two different scenes.  Third, important concepts from linear algebra and signal
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processing were depicted with two-dimensional analogs that could be easily extended to
the hundreds of bands found in hyperspectral imagery.  These concepts included linear
transformations of random vectors, eigenvectors and eigenvalues, unitary transforms, and
simultaneous diagonalization of covariance matrices.

Chapter IV discussed the first family of techniques in the linear transformation
and projection strategy.  These techniques addressed the problem of no a priori
information about the scene.  This family was called the principal components analysis
(PCA) family because all of the techniques found in it were based on the important
multivariate data analysis method of PCA.  Background development for these techniques
consisted of exploring different scientific discipline viewpoints of PCA.  The multivariate
data analysis view derived PCA, the signal processing view saw it in terms of the discrete
Karhunen-Loeve transform (DKLT), and the pattern recognition view addressed the
criterion of entropy.  Three techniques were examined in the context of application to
spectral imagery analysis in this chapter. They differ primarily in the weighting given to
the variances found in the “raw” data.  The basic PCA technique was  applied to three
different types of  hyperspectral scenes.  The various facets of the technique were studied
using component image appearance; signal-to-noise ratio (SNR) improvement; variance,
eigenvalue, and entropy behavior; and eigenvector patterns. The second technique
discussed was the maximum noise fraction (MNF), also known as the noise adjusted
principle components transform (NAPC).  The illustration of the technique was
conducted on the HYDICE scene of the Davis Monthan Aerospace Maintenance and
Regeneration Center in Tucson, Arizona.  The eigenvalues and component images
associated with the reversed order MNF, termed the minimum noise fraction transform,
were depicted and discussed.  The results did not correspond to the expected
improvement in image quality over the PCA component images, perhaps due to residual
highly structured instrumental noise artifacts. The third technique was the standardized
principal components analysis (SPCA) technique.  This technique sought to improve on
the SNR of the PCA by using the standardized data covariance matrix correlation
coefficients.  The Davis Monthan scene was analyzed using this technique, and
component images were displayed along with eigenvalues, variance, entropy, and
eigenvectors.  This technique produced an apparent improvement in component image
quality over the PCA images.  The next step would have been to compare the results of
classification schemes based on these transformed data sets, for example, a maximum
likelihood classifier.
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Chapter V addressed the matched filter family of techniques, which borrowed its
name from the similar problem in communications theory.  In this family, the assumption
was that complete knowledge of image endmembers existed at the start of processing.
The background development for this family of techniques began by presenting the
concept of linearly additive spatially invariant image sequences, which established the
basic model used to pose the linear unmixing problem.  Two different models from the
theory of least squares were then presented.  These were the a priori and the a posteriori
models. Finally, the matched filter was derived using a SNR maximization criterion.
Four analysis techniques were described in this chapter.  The first was the simultaneous
diagonalization (SD) filter.  This technique used an optimal filter vector to enhance a
desired feature of the image while suppressing undesirable features.  It was derived using
an output energy ratio and a generalized eigenvalue problem.  The results of the original
developers of the technique were briefly discussed. The second technique was the
orthogonal subspace projection (OSP) technique, which was seen as a  special case of the
SD filter technique.  This technique was derived using the theory of least squares and the
optimal matched filter.  The OSP technique was applied to the a two-dimensional spectral
subset of a small region of the Davis Monthan image.  This simplified example was used
to show the steps involved in the OSP technique.  The original data scatter plot along
with the pixel vectors of interest were shown.  The effect of the OSP operator on the data
was depicted as a two-step operation which first projected the data into a subspace
orthogonal to the known background, and then used the known target signal as a matched
filter to maximize the signal-to-clutter ratio (SCR).  These steps were shown using scatter
plots, superimposed one-dimensional subspaces, histograms, and output scalar images.
The OSP technique was then applied to the entire scene in an attempt to extract the B-52
aircraft target of interest.  The third technique was the least squares orthogonal subspace
projection (LSOSP).  This technique employed the a posteriori least squares model and
improved the ability of the OSP technique to distinguish minority spectra from the
background.  This improvement in SNR was derived. The results of applying this
technique to simulated FSS data were briefly discussed.  The fourth technique was the
filter vector algorithm (FVA).  This technique was presented as  set of matched filters
intended to demix the scene into abundances of the constituent endmembers.  The results
of applying FVA to data from the PHILLS instrument were briefly discussed.

Chapter VI dealt with the unknown background family of techniques in which the
only the target endmember was known.  This family relied on an eigendecomposition of
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the data covariance matrix to estimate the background endmembers.  The statistics of the
scene were the important factor in this family of techniques as in the PCA family.  The
background development of this family addressed two topics which motivated the
specific techniques.  One was the determination of the intrinsic dimensionality of the data
using the minimum description length (MDL) information theoretic criterion.  The other
was the array processing idea of beamforming, along with a derivation of the minimum
variance distortionless response (MVDR) beamformer.  There were three techniques in
this family.  The first was the low probability detection (LPD) technique.  The major
assumption in this technique involved the minority presence of the target endmember in
the scene.  The technique was shown to be identical to the OSP technique, with the
exception being that the background endmembers were estimated vice known quantities.
The determination of the intrinsic dimensionality of the data was attempted using the
MDL criterion on the Davis Monthan sub-scene containing four B-52 aircraft.  The first
step in this process was the noise-whitening of the data for a better MDL estimate.  This
process was demonstrated with intermediate steps shown in the covariance matrices.  The
MDL criterion was then applied to the noise-whitened data. The results of this application
did not reveal the expected minimum value in the MDL criterion.  The observed behavior
was monotonically decreasing MDL values.  The intrinsic dimensionality was assumed to
be less than ten for the remainder of the Chapter.  The LPD technique was applied to the
sub-scene, and the resulting image and histogram showed a good SCR and clearly
distinguishable targets.  The LPD technique was then applied to the entire Davis Monthan
scene using the first eigenvector to form the LPD classification operator in one case and
the first five eigenvectors in another case.  The results showed that the operator using the
first eigenvector produced a higher SCR than that constructed using the first five.  Further
examination of the LPD projector matrices and LPD classification operators revealed the
differences caused by varying the number of eigenvectors used to estimate the
background effects.  These results did not correspond to the expected result of an
optimum SCR when the number of eigenvectors equaled the intrinsic dimensionality.
Comparison with LPD applied to the Aberdeen scene revealed that the discrepancy may
have been caused by the failure of the targets used in the Davis Monthan scene to meet
the minority pixel requirement of LPD.  The second technique in this family was the
constrained energy minimization (CEM) technique.  The CEM operator was derived
using the signal processing version of the correlation matrix, and the subsequent
application to data sets showed that the same results occurred for the correlation and
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covariance matrices.  The CEM operator was applied to the Davis-Monthan B-52 sub-
scene, producing a higher SCR than OSP or LPD.  The CEM operator was then applied to
the entire scene using two different target spectra.  The case of the  P-3 aircraft target
spectrum produced a good SCR and clearly differentiated the P-3 aircraft in the image
with a minor number of false alarms.  The case of the B-52 aircraft target spectrum did
not produce the same clean image results as the P-3 case, and the SCR was smaller by an
order of magnitude.  The CEM operators formed by using three different types of target
aircraft provided insight into the behavior of the above two cases.  The third technique in
this family was that of the adaptive multidimensional matched filter.  This technique was
derived from a hypothesis test approach, and assumed that the target spectrum and spatial
shape were known.  Results of application of this technique to TIMS data were briefly
discussed.

Chapter VII detailed the techniques in the family which assumed only knowledge
of a reference spectral library or one instance of ground truth.  The background
development for this family consisted of four different areas.  The first area described the
multiple signal classification (MUSIC) method of direction-of-arrival estimation in array
processing.  The second area  discussed convex set theory.  The third area related the
signal processing concept of the correlation detector.  The fourth area described the linear
algebra tool of the singular value decomposition (SVD) in terms of vector subspaces.
The four techniques found in this family were presented and related with the four
background areas.  The first technique was the MUSIC-based endmember identification.
An endmember identification operator was derived using the noise-whitened covariance
matrix and a projection operator similar to that used in the LPD technique.  The result of
applying this technique to simulated AVIRIS data were briefly discussed.  The second
technique was that of partial unmixing.  This technique was shown to be connected with
eigenanalysis.  It consisted of locating the pixels in the image that most nearly represented
the pure endmembers of the scene.  This portion of the partial unmixing technique was
applied to the Davis Monthan B-52 aircraft sub-scene in an effort to identify the pixels
most resembling endmembers.  The four purest pixel vectors were located and depicted as
spectra.  The  remainder of the partial unmixing technique consisted of matching the pure
pixel vectors with reference library spectra constructing a projector that minimized the
effects of the background.  Results of this technique were briefly shown using AVIRIS
data.  The third technique in this family was the spectral angle mapper (SAM).   The
SAM technique was defined and then applied to the entire Davis Monthan scene.  The
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endmember for the B-52 aircraft wing was used as the reference pixel vector with which
to compare all other scene pixel vectors.  The result was shown as an image and a
histogram, and had a good SCR, though several objects such as buildings were more
prominent than the target.  The fourth technique was unmixing via SVD.  A key vector
based on one instance of known ground truth target abundance was derived.  The
economy sized SVD corresponding to the intrinsic dimensionality of the data was
constructed  and allowed for the solution of the linear equation representing the model of
the observations.
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IX.  CONCLUSIONS

A broad range of techniques were reviewed and characterized from a signal
processing perspective.  Ideas from the signal processing community are well suited to
hyperspectral imagery analysis because of the data dimensionality and the challenge
posed by mixed pixels.

Aside from the wide perspective offered by creating a hierarchy of strategies, the
intent of this study has been to closely examine the theory, operation, and results of the
linear transformation and projection strategy.  This enables the user to clearly understand
the available tools in spectral imagery analysis. The linear transform and projection
strategy parallels the signal processing problem of multiple signal identification.  It relies
heavily upon the unitary transform and the diagonalization of  the data covariance matrix.
The linear transform and projection strategy was divided according to a priori
knowledge, since this is the how the image analyst would approach the problem of target
detection.

The PCA family of techniques is exploratory in its nature in that nothing is known
about the scene.  Insight is gained from the theory and results of PCA because this
technique serves as the cornerstone for the majority of other spectral analysis techniques.
The application of PCA to spectral images began in the early 1970’s with the advent of
airborne and satellite multispectral sensors. Since the introduction of multispectral remote
sensors, the trend has been towards higher spectral resolution and more bands.  The
commensurate increase in the amount of data motivated the PCA from a data
compression viewpoint.  The optimal representation properties of the DKLT make the
PCA an attractive compression scheme for data transmission and storage.  The other
major incentive for use of PCA in multispectral imagery analysis was in environmental,
agricultural, and geologic quantitative studies.  By its very nature, multispectral data has
relatively low spatial and spectral resolution, and lends itself well to large ground area
analysis.  Since there are only a small number of bands (less than ten) to work with, PCA
is a good technique to simplify the process of classifying pixels into groups with similar
spectral characteristics.  In this context, PCA is very similar to the feature extraction
application in pattern recognition, the difference being that pattern recognition is a spatial
two-dimensional problem, while multispectral images include the third spectral
dimension. The application of PCA to hyperspectral imagery has traditionally been
viewed from the same classification problem perspective as multispectral imagery.
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PCA is a straightforward means of describing the variance in spectral imagery.
The traditional application to multispectral imagery has the objective of separating the
spectral classes within the data set to make classification more accurate.  This separation
is entirely based on the second order statistics of the data.  Applied in the traditional sense
to hyperspectral imagery, it is computationally expensive and  has no clearly interpretable
results since the orthogonal axes of statistical variance do not have a well defined
equivalence in physical terms of observed spectra.  The principal components transform
does not emphasize a particular class of spectra or individual spectral signatures. The
inherent strength of PCA as a multivariate data analysis technique should not be
diminished by the shortcomings of attempting to use PCA in a traditional sense for
hyperspectral imagery.  Rather, it would seem logical to search for modifications to the
traditional PCA application that would be better suited to hyperspectral imagery.  Specific
examples of such modifications are the noise adjusted principal components transform
and the use of standardized principal components.  These seek to improve SNR in the
component images by using second order statistics matrices which have been modified to
mitigate the effects of additive noise.  The MNF has used a whitening transform to
account for the additive noise.  The SPCA has standardized the second order statistics so
that variance magnitude is no longer the important factor.

An appreciation for the behavior of PCA in generic types of scenes such as urban
or rural is required.  This appreciation is gained by following the eigenvector, eigenvalue,
and entropy behavior of the data covariance matrix.  Otherwise, the effects of PCA cannot
be totally understood.  The PCA family of techniques makes no assumptions regarding
the mixed pixel problem.  If a target is subpixel in size, the PCA techniques will enhance
it only if it is statistically significant throughout the scene.  The global nature of the PCA
family of techniques makes them more attractive as a preprocessing step than as a means
of target detection in and of themselves.

All of the other families of techniques in the linear transform and projection
strategy are built around the assumption of a linear model of some sort. The matched
filter family assumes complete image endmember knowledge.   Orthogonal complement
projectors are constructed using the theory of least squares to fill the void that exists in
the analogy between signal processing models and spectral imagery.  Signal processing
models assume orthogonal signals.  The step of orthogonalizing the observed pixel
vectors is an important one in that it allows a more direct application of matched filtering
ideas.
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The primary utility of the OSP and  LSOSP techniques as enumerated by their
authors is in earth remote sensing.  The ability to determine the abundance of surface
materials is an important facet of geological exploration.  In constructing the model of the
image, all of the techniques assume that a relatively small number of endmembers
comprise the scene.  The applicability to the problem of detecting a small target such as a
vehicle on a subpixel scale appears to be within the capabilities of these techniques.
While this may be true in relatively simple settings, such as a desert environment, the
complexity of an urban scene would definitely require a greater number of endmembers
to be identified, making the target detection problem more challenging.  This is a problem
which has not been thoroughly researched, but it would appear that these matched filter
family of techniques are a good choice for the application since they assume so much a
priori knowledge.

The unknown background family of techniques relied on an eigendecomposition
to infer the nature of the background.  The LPD technique makes the important
assumption that the target is a minority element of the scene. The assumption of minority
target was tested in the HYDICE Aberdeen and Davis Monthan scenes.  The results
validate the fact that LPD works optimally in a relatively uniform background when the
target is a minority element.  The CEM technique provides a more flexible tool than the
LPD since the target need not be a minority element of the scene.

The limited endmember family of techniques returns to the ideas found in the
PCA family.  The key difference between partial unmixing and the traditional
multispectral application of PCA  is that a model is being evaluated using statistical
analysis instead of statistical analysis being used independently on data.  In this sense,
this technique is closer to Hotelling’s (1933) motivation for determining the independent
sources of variation within an experiment.  This technique’s applicability to target
detection in hyperspectral imagery analysis is that the mixed pixel problem is considered
on a simple level.  The mixed pixel problem is a concern when one is searching for a
target with a spectrum that is on a subpixel scale.  Although reference spectra must be
known, the fact that the endmembers can be located by projection onto specified axes of
principal variation is an important observation.  In one sense, this technique ties
physically observable parameters together with the principal components.  The innovative
approach of the unmixing using the SVD is a means of using all available knowledge of
the scene in an efficient manner.  The opportunity exists for exploration of the full power
of this technique.  The SAM technique is a simple and highly effective means of
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characterizing pixel vectors using a deterministic view.  It performs better than any of the
other techniques examined in the task of extracting man-made objects from the scene.
The accuracy and applicability of the reference library is the most important
consideration.

The interaction of several factors alters the performance of the techniques.  These
factors must be addressed before application of the technique to a specific problem.  One
factor is the validity of the model used to construct an optimal detection operator.  A
model is not appropriate if there is no a priori information.  A second factor is to consider
the type of statistics to be employed.  The use of the covariance matrix, its standardized
version, or the correlation matrix will yield different eigenvectors and hence a different
transform.  The implications of these second order statistics should be considered.  The
type, abundance, and relative proportions of background and target is also a deciding
factor in choosing the appropriate technique.  The use of radiance or reflectance data is a
factor, depending on whether or not the solar effect is desired in the end product.  The
decision of how to view the data determines the technique and is in large part determined
by prior knowledge of the scene.  A deterministic view chooses to ignore the natural
variability of the data, but is a good decision if extensive reference spectra are available.

Finally, in the test applications conducted in this study, the performance levels of
the techniques in the task of target detection were characterized. The OSP technique
achieved a good SCR (~2.5), but required extensive a priori endmember knowledge.
Although the OSP technique would have performed better had the identification of
endmembers been more detailed, such an extensive knowledge of image endmembers is
rarely available in real applications.  The LPD technique demonstrated a powerful
solution to the lack of a priori knowledge by applying the power of the unitary transform
to estimate the contribution of the image background.  Results indicate that a high SCR
(~11) with LPD is achieved when the target is a minority element of the scene. The SAM
technique provided the best differentiation of target from background and the highest
SCR (~14) of all techniques evaluated.  Its simplicity and small requirement for a priori
information make it an attractive option as a real-time analysis tool.
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APPENDIX A.  COLOR    FIGURES

Figure 3.1:  A Typical Multispectral Image Produced by  Landsat TM.
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Figure 3.2:  A Typical Hyperspectral Image Cube.
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Figure 3.10:  Second Order Statistics of the HYDICE Aberdeen  Scene.
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Figure 3.11:  HYDICE Scene of Davis Monthan Air Force Base.
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Figure 3.12:  Davis- Monthan Radiance Covariance and Correlation Matrices.
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Figure 4.4: First 25 PC Images of Davis Monthan Radiance Scene.
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Figure 4.5:  First Ten PC Images of Aberdeen Radiance and Reflectance Scenes.

10 Aberdeen Principal Component Images using Radiance Covariance 

J 
' 

' 
I ' 

. . ~ 

2 

7 8 



184

Figure 4.11(a):  Eigenvectors and Trace of the Covariance Matrix of Davis Monthan
Scene.
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Figure 4.11(b): Eigenvectors and Trace of the Covariance Matrix of Aberdeen Radiance
Scene.
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Figure 4.11(c): Eigenvectors and Trace of the Covariance Matrix of Aberdeen
Reflectance Scene.
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Figure 4.15:  First Eight Eigenvectors of Davis Monthan Scene Superimposed on a
Random Slice Across the Hypercube.
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Figure 4.16:  First Eight Eigenvectors of Aberdeen Radiance Scene  Superimposed on a
Random Slice Across the Hypercube.
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Figure 4.17:  First Eight Eigenvectors of Aberdeen Reflectance Scene Superimposed on a
Random Slice Across the Hypercube.
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Figure 4.20:  First 25 MNF Component Images of the Davis Monthan Scene.

25 MNF Images using Radiance Covariance - Davis Monthan 
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Figure 4.23:  First 25 Standardized PC images of the Davis Monthan Scene.

25 standardized PC Images using Radiance Correlation - Davis Monthon 

; . 

21 



192

Figure 4.25: Eigenvectors and Trace of the Correlation Matrix of Davis Monthan Scene.

I troce qf diagonal I I 

-

1.2- -

g 
.g Lo--1-----------------------------jf-
~ 

0.8-

0.6-

0 

0 

' I 
50 

50 

I ' ' ' ' I ' ' ' ' I 
100 150 200 

Bond 

100 
Orlglnal Bond 

150 200 

-

-

0.8 

0.6 

0.4 

0.2 

0.0 

-0.2 

-0.+ 

-0.6 



193

Figure 4.27:  First Eight Eigenvectors of Davis Monthan Normalized Scene
Superimposed on a Random Slice Across the Hypercube.
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Figure 5.4:  Sub-scene of Davis Monthan Image with Boxes Showing Chosen Pixels.

Davis Mont hon Subscene 
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Figure 5.7:  The Orthogonal Complement Projector.

Figure 5.12:  Davis Monthan Sub-scene OSP Output Image.
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Figure 5.14:  Davis Monthan OSP Output Image.
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Figure 6.2:  Whitening of the Davis Monthan Sub-scene Noise Covariance Matrix.

Figure 6.3:  Whitening of the Davis Monthan Sub-scene Data Covariance Matrix.
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 Figure 6.6: Davis Monthan Sub-scene LPD Output
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Figure 6.8:  Davis Monthan LPD Output Image Using the First Eigenvector.
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Figure 6.10:  LPD Projector Matrices Created with the First Eigenvector and the First
Five Eigenvectors for the Davis Monthan Sub-scene.

Figure 6.16: Davis Monthan Sub-scene CEM Output.
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Figure 6.17: Davis Monthan CEM Output Image Using P-3 Pixel Vector as the Target.
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Figure 7.4:  Purest Pixels in the Davis Monthan Sub-scene.
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Figure 7.7:  SAM Output for Davis Monthan Scene.
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APPENDIX B.  SPECIAL COLOR FIGURES

Figure B.1:  False Color PC Image of Davis Monthan Scene.
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Figure B.2:  False Color PC Image of Aberdeen Radiance Scene.
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Figure B.3:  False Color PC Image of Aberdeen Reflectance Scene.
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Figure B.4:  SAM Output Superimposed on Scatter Plot of Davis Monthan Sub-scene.
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Figure B.5:  SAM Output Superimposed on Scatter Plot of Davis Monthan Scene.
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