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ABSTRACT

Every material has a unique electromagnetic reflectance/emission signature which
can be used to identify it. Hyperspectral imagers, by collecting high spectral resolution
data, provide the ability to identify these spectral signatures. Utilization and exploitation
of hyperspectral data is challenging because of the enormous data volume produced by
these imagers. Most current processing and analyzation techniques involve dimensionality
reduction, during which some information is lost. This thesis demonstrates the ability of
neural networks and the Kohonen Self-Organizing Map to classify hyperspectral data.

The possibility of real time processing is addressed.
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I. INTRODUCTION

Remote sensing with optical sensors has evolved from panchromatic to multispectral
systems, such as LANDSAT, over the last two decades. These systems collect
electromagnetic data over a spectral range of interest, typically in the visible and near
infrared. Such data have been used for earth resource studies, land use, and agriculture
since the 1970's. Such data allow for broad categorization of remotely sensed regions.
Higher resolution data offers a promise of more detailed information. Hyperspectral
imaging utilizes a set of images each of which covers a spectral band of 10 nanometers or
less. This narrow band collection process makes it possible to resolve minerals, types of
plants, and the spectra of various "cultural" artifacts.

Inherent with the multiple spectral band data collection process is an increase in the
data volume associated with each pixel and, hence, each image. An image produced by
AVIRIS (a 224 band instrument), contains over thirty times the data contained in a
similar image produced by LANDSAT (a 7 band instrument). This creates a problem for
storing and processing. Most current hyperspectral data processing methods begin with
some form of dimensionality reduction, such as principle components, and none, as far as
the author knows, are done real time. Any time data reduction is done some of the
information is lost and non real time processing implies that all data must be stored. A
process which utilizes all of the data for material identification and then performs a
massive data reduction would be ideal.

Concurrent with the progress in hyperspectral imaging, computer technology and
our understanding of the biological processes involved in learning and intelligence have
made significant advances. These advancements have allowed neural networks to
progress into a mature technology. They are useful in the following situations:

I. Capturing associations or discovering regularities within a set of patterns




2. Where the volume, number of variables or diversity of the data is very great

3. The relationships between variables are vaguely understood

4. The relationships are difficult to describe adequately with conventional
approaches. (Westervelt, Krzysik, and Seel, 1994)

Hyperspectral data fit all four of these criterion.

This thesis tries to attack the problem of analyzing hyperspectral images by
employing neural networks with the Kohonen Self-Organizing Map, which has been
described by Stan Openshaw as being simple, flexible, and capable of handling immense
quantities of data (Openshaw, 1994). It is broken down into five chapters and two
appendixes. Chapter I, the INTRODUCTION, is followed by Chapter II, NEURAL
NETWORKS, which addresses the history of neural networks, presents an introduction
to their workings and concludes with a discussion of Teuvo Kohonen's neural network.
Chapter III, HYPERSPECTRAL IMAGERY, defines the term and presents a description
of the two instruments used to collect the data analyzed in Chapter IV, ANALYSIS AND
RESULTS. Chapter V contains the CONCLUSIONS drawn from Chapter I'V.

Appendix A contains all figures and Appendix B contains an IDL version of Kohonen's

network.
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Il. NEURAL NETWORKS

A. HISTORY OF NEURAL NETWORKS

Since the late 1980's, the field of neural networks has garnered significant attention
from both the commercial and research communities. This method of analyzing
problems has gained renewed interest as computer processing speed has exploded. This
work will outline the history of Neural Networks, describe the basic concepts upon which
all Neural Networks are constructed and give a step by step description of the Kohonen
Self Organizing Map. In this report the terms 'neural networks' and 'neural computing'
are synonymous and are defined as:

The study of networks of adaptable nodes which, through a process of learning

from task examples, store experiential knowledge and make it available for use.

(Aleksander and Morton, 1990)
The concept is not new. It owes its origins to the study of the fundamental cell of the
living brain: the neuron (Harvey, 1994). An elementary model of a neuron consists of
the body of the cell, called the soma, and the axon, which links the neurons together.
The point at which the soma and the axon connect is known as the synapse or synaptic
connection. When properly stimulated by the synaptic connections, the soma fires,
sending out a small electrical pulse, which travels down the axon to other neurons
(McCulloch and Pitts, 1943). In a rudimentary sense, the brain learns by setting a
criterion for the soma to fire and adjusting the "weights" of the synaptic connections
through experience. Both the criterion and the weights are adjusted continuously. In
1943 neurophysiologist Warren McCulloch and logician Walter Pitts published 4 Logical
Calculus of the Ideas Immanent in Nervous Activity which described the neural process
and developed a simple model of the neuron using variable resistors, which represented
the variable synaptic connections, and summing amplifiers, which represented the

operation of the neuron body. This model was the product of over five years of research




conducted by a neural modeling community centered at the University of Chicago
(Haykin, 1994). The model was adopted by the pioneers of neural computing and
provides the basis of most nets being discussed today (Aleksander and Morton, 1990).

In 1949 neurophysiologist Donald Hebb published The Organization of Behavior in
that an explicit statement of a physiological learning rule for synaptic modification was
presented for the first time (Haykin, 1994). He put forward the idea that a group of
neurons could reverberate in different patterns, each being related to a different
experience (Hebb, 1949). Specifically, Hebb proposed that the connectivity of the brain
is continually changing as an organism learns differing functional tasks, and that neural
assemblies are created by such changes (Haykin, 1994). He introduced his "postulate of
learning", which states that the strength or weight of the synaptic connection between
two neurons is increased by the repeated activation of one neuron by the other across that
synapse. This laid the seeds for a model of dynamic memory and increased the possible
applications of neural computing.

A major milestone was reached by Frank Rosenblatt in 1958 with the creation of the
perceptron, a word he coined to refer to a class of simple neuron-like learning networks
that were capable of recognizing images. His creation was based on the McCulloch and
Pitts model discussed above. Rosenblatt pioneered two techniques of fundamental
importance to the study of learning in neural computing: digital computer simulation and
formal mathematical analysis (Rumelhart and McClelland, 1986). In his 1962 book
Principles of Neural-dynamics, Rosenblatt describes what he thought he was doing as
follows:

Perceptrons are not intended to serve as detailed copies of any actual nervous
system. They're simplified networks, designed to permit the study of lawful
relationships between the organization of a nerve net, the organization of its
environment , and the "psychological" performances of which it is capable.
Perceptrons might actually correspond to parts of more extended networks and
biological systems; in this case, the results obtained will be directly applicable.
More likely they represent extreme simplification of the central nervous system




in which some properties are exaggerated and others suppressed. In this case,
successive perturbations and refinements of the system may yield a closer
approximation.

The main strength of this approach is that it permits meaningful questions to be
asked and answered about particular types of organizations, hypothetical memory
mechanisms, and neural models. When exact analytical answers are unobtainable,
experimental methods, either with digital simulation or hardware models, are
employed. The model is not the terminal result, but a starting point for exploratory
analysis of its behavior. ( Rosenblatt, 1962)

Rosenblatt's perceptron created much excitement in the world of neural computing and is
a fundamental building block for many of today's functioning neural nets.

Progress in neural computing continued throughout the 1960's. Widrow and Hoff
introduced the "least mean-square (LMS)" algorithm in 1960 and used it to train an
adaptive pattern classification machine (called Adaline for adaptive linear element). This
machine was constructed for the purpose of illustrating adaptive behavior and artificial
learning (Widrow and Hoff, 1960) Except for the training procedure, it was identical to
the perceptron. Two years later, Widrow and his students introduced one of the earliest
attempts at a trainable, layered neural network with multiple adaptive elements. They
called their creation Madaline (multiple-Adaline) (Haykin, 1994). As the decade
progressed it became apparent that neural nets could be simulated on contemporary
computers.

Neural computing seemed to have unlimited potential until 1969 when Marvin
Minsky and Seymour Papert published their book "Perceptrons: An Introduction to
Computational Geometry'. This book questioned the ability of single layer perceptrons
to perform some simple image recognition tasks. The book described two problems,
called parity and connectedness, which perceptrons could not perform (Minsky and
Papert, 1969). Parity refers to whether an image contains an odd or even number of
distinct isolated parts. Connectedness is best defined by an example. The letter w is

connected where as the letter i is not connected. Both of these tasks can be easily solved
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by conventional computing methods but Minsky and Papert rigorously showed that in
order for a single layer perceptron network to solve these problems the size of the
network had to grow as the size of the image grew. This is unacceptable as it would lead
to a different architecture for images of different sizes. These and related problems
became known as hard learning problems.

Several factors combined to cause advancements in neural computing to slow to a
trickle throughout the seventies. First and foremost was the elegance with which Minsky
and Papert defined the problems. This made gathering interest and financial support very
difficult. Another problem was that technology had yet to produce personal computers
and workstations for experimentation. During this time many of the researchers deserted
the field in search of more promising areas. This left only a handful of early pioneers
continuing to do research in neural computing, most of which were from the psychology
and neuroscience communities. From a physics and engineering perspective, we may
look back on the 1970s as a "decade of dormancy" for neural networks (Haykin, 1994).

In spite of this lack of interest, one important concept did emerge during the 1970s.
This being competitive learning and "self-organizing maps". The idea is to feed several
processing nodes with the same inputs. Each time an input is presented, the node which
most closely represents that input is declared the winner. It and its neighbors are updated
to more closely resemble that input. Eventually, only the winner is updated. The result
is a network which classifies the inputs into groups (this discussion is expanded in
Section C of this chapter). The first computer demonstration of this process was
probably done by von der Malsburg in 1973 (Haykin, 1994). In 1976, Willshaw and
von der Malsburg published the first paper on self-organizing maps.

John Hopfield of the California Institute of Technology was responsible for the
resurgence of interest, especially in the physics and engineering communities, in the
analysis of neural computing. His 1982 paper entitled 'Neural Networks and Physical

Systems with Emergent Collective Properties’ drew attention to two properties of




interconnected cells of simple non-linear devices: first, that such a system has stable
states which will always be entered if the net is started in similar states and, second, the
fact that such states can be created by changing the strength of the interconnections
between the cells (Haykin, 1994). Much of the fascination of this paper came from the
realization that the properties he identified are inherent to fully interconnected neural
networks. These properties are known as associative memory to computer engineers
(Aleksander and Morton, 1990). His analysis is derived from the physical concept of
energy. This energy is represented by successive firings of the net and is determined by
the strength of the connections and the thresholds of the neurons. He offers a proof that
the network will operate by minimizing this energy when settling into stable patterns of
operation, or 'energy wells' (Aleksander and Morton, 1990). Each successive firing of
the net will decrease its overall energy and eventually the net would arrive at a stable
minimum at which time the firing pattern would remain constant. He also demonstrated
that the connection strengths and thresholds can be calculated so as to create these stable
energy states. This class of fully interconnected neural networks with feedback attracted
a great deal of attention in the 1980s and in the course of time became known as Hopfield
networks (Haykin, 1994).

Another significant development occurred during 1982. Teuvo Kohonen published a
paper furthering the concept and usefulness of self-organizing maps. His paper has
received much greater attention than the earlier work of Willshaw and von der Malsburg
(Haykin, 1994). A detailed explanation of self-organization and the Kohonen Network is
presented in Section C.

Subsequent investigation of the Hopfield Model revealed that it was possible to train
a network. Rules such as the Widrow-Hoff (LMS) procedure could be used to make
gradual adjustments to the net parameters until the wells were created. This eliminated
the need to solve massive sets of simultaneous equations by conventional methods and

implied that neural networks could be used as a tool to solve such sets of equations




(Aleksander and Morton, 1990).

The Hopfield Model did not solve all problems associated with neural computing. It
quickly became apparent that false, or local, minima occurred. It also did not solve the
problem of hard learning.

In 1986 Geoffrey Hinton and Terry Sejnowski introduced methods of solving both of
these problems using a fully interconnected network. In order to solve the local minima
problem they introduced 'noise' to the Hopfield model and called their net the Boltzman
machine (Aleksander and Morton, 1990). This can be viewed as in Figure 2.1. If enough
noise is added to the ball, it will move freely between the two minima. If the level of
noise is decreased slowly enough the ball eventually come to rest in the deeper of the two
minima. This process is known as simulated annealing. It is based on the proof by
Hopfield that the global energy function representing the network can be minimized
through a process of asynchronously updating the nodes (Rumelhart, Hinton, and
McClelland, 1986). As for the problem of hard learning, Hinton and Sejnowski
developed learning rules which allowed hidden nodes in a Boltzman machine to be
trained. Boltzman machines of any complexity require enormous processing time and/or
speed to be practical.

Minsky and Papert had stated that if a method of training a multiple layer, feed
forward, perceptron based network could be found, hard learning could be accomplished.
In Parallel Distributed Processing, published in 1986, Rummelhart, Hinton and Williams
derived a learning algorithm which accomplished this task. A similar generalization of
the algorithm was derived independently by Parker in 1985, and a roughly similar
learning algorithm was studied by LeCun, also in 1985. This process became known as
'back-propagation’' and is now the most popular learning algorithm for the training of
multi layer perceptrons (Haykin, 1994).

In 1988, Linsker described a new principle for self-organization in a perceptual

network. The principle is designed to preserve maximum information about input




activity patterns, subject to such constraints as synaptic connections and synapse dynamic
range. A similar suggestion had been made independently by several vision researchers.
However it was Linsker who used abstract concepts rooted in information theory to
formulate the principle of maximum information preservation. (Haykin, 1994)

In the 1990s, much of the research involving neural networks has centered around
applications. This paper will attempt to contribute in this area by applying neural
networks to hyperspectral imagery for the purpose of classification. At least two
previous attempts have been made. Brown and DeRouin have published several papers
including Comparing Neural Network Classifiers and Feature Selection for Target
Detection in Hyperspectral Imagery (1992), which investigated neural network
applicability to target detection and feature selection in an automatic target detection
scenario. Also in 1992 Shen and Horblit published Application of Neural Networks to
Hyper-Spectral Image Analysis and Interpretation, which examined the possibility of
classifying AVIRIS data. These attempts are similar in that both use some method of
data reduction to decrease the dimensionality (each used the method of principle
components at some point), and then apply an error back propagation, feed forward
network to the reduced data set. Brown and DeRouin used their network to produce a
yes or no determination for each pixel in the image. A "yes" indicating that the pixel of
interest belonged to the category of interest, in this case camouflaged targets. Shen and
Horblit attempted to design a network which classified the scene according to spectral
similarity. Both of these papers demonstrate, to varying degrees, the applicability of
neural networks to hyperspectral imagery.

The resurgence of research in neural net technology throughout the 1980s can be
directly traced to Hopfield's 1982 paper and was given a boost by the publication of
Rummelhart and McLelland's book Parallel Distributed Processing. As computer
processing speed continues to increase, possible applications of neural computing in the

science and engineering communities appear to be limited only by one's imagination.




B. PRINCIPLES OF NEURAL NETS

Typically neural nets are organized in layers, with each layer consisting of n
processing nodes. Figure 2.2 illustrates properties which are common to most neural
nodes. Each node has an input (x -x,) which is modulated by an adjustable weight
(w,-w,). The bias input a is fixed at a value of 1 and, when combined with its
adjustable weight w_, acts as a threshold for the firing rule. The significance of this will
be explained in Section 3.a of this chapter. The node performs a summation v(k), where
k stands for the node number, on the weight modulated inputs according to:

V(k) - xowo * xlwl * x2w2 o xnwn (21)

The node operates in either the Teach or Use mode. This is determined by the position
of a switch. While in the Teach, or training mode, the node will use some type of
'learning rule' which modifies the weights of the connections according to a comparison
of the Teaching Input and the Output. This process is illustrated in Figure 2.3.

Training continues for either a defined period of time or until the output is within a
specified delta of the Teaching Input. Once training is complete the node is ready to
enter the Use mode. In the Use mode the neuron is presented with input patterns. For
any input resembling the Teach Input to a specified degree, the node will respond with
the 'learned' output.

1. Firing Rules

The word 'firing' is borrowed from the world of biology, where it describes the act of
a neuron emitting a series of electrical pulses ( Aleksander and Morton, 1990). A 'firing
rule', also known as an activation function and represented by ¢(k), determines how a
node responds to a given input pattern. In the following example, which is slightly
modified from Aleksander and Morton, 1990, let a 1 represent a node which is firing and

a 0 one which is not firing. Allow the rule to be as follows:
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Take a collection of training patterns for a node, some of which cause it to fire (the
1-taught set of patterns) and others which prevent it from doing so (the O-taught
set). Then the patterns not in the collection cause the node to fire if, on comparison,
they have more input elements in common with the 'nearest' pattern in the 1-taught
set than with the O-taught set. If there is a tie do not fire.

Given a three input node with a 1-taught set (x,, x,, x;) of 111 and 101, and O-taught set
of 000 and 001, the following truth table is produced prior to the application of the firing

rule;

x, 0 0 0 0 1 I I 1
x, 0 0 1 1 0 0 1 1
x, 0 1 1 0 0 1 0 1
F 0 0 o1 | o1 | on 1| oo !

Table 2.1 Truth table prior to firing rule application.

Ambiguities exist in all input patterns which were not part of the training set. As an
example of the way the firing rule is applied, take pattern 010. It differs from 000 only
in the second element, from 001 in the second and third elements, from 101 in all three
elements, and from 111 in the first and third element. Pattern 010 is closest to pattern
000 which is part of the O-taught set. Therefore the node will not fire when presented

with the 010 pattern. After the application of the firing rule the truth table becomes:

x, 0 0 0 0 1 1 I 1
x, 0 0 I 1 0 0 I 1
x, 0 1 1 0 0 1 0 1
F 0 0 0 0 0 1 1 1

Table 2.2 Truth table after firing rule application.

11




The firing rule allows the node to classify input sets, which have not been seen during
training and are not identical to the training inputs, by comparing the degree of similarity
or distance between sets. This gives the neural net one of its most powerful and
intriguing abilities.

Listed below are three commonly used firing rules (Haykin, 1994):

1. Threshold Function.

_J1 if v=0
pv) = {0 if v<0 (2.2)
2. Piecewise-Linear Function.
1 v=1/2 . (2.3)
Pv) =93v  -1/22v<1/2
0 v<—1/2
3. Sigmoid Function.
_ 1
oy) = —— (2.4)
1 + e -av

The sigmoid and related functions are by far the most common form of activation
function used in the construction of neural networks (Haykin, 1994). It is non-linear,
which is required to solve non-linearly separable problems. It offers a continuous range
of values from 0 to 1, is smooth, and is differentiable (the importance of this will become
apparent during the discussion of error correction learning). A plot of this function is
given in Figure 2.4.

2. Learning Process

Fundamental to the performance and effectiveness of a neural net is its ability to

12




learn. Learning in the context of neural networks has been defined as:

Learning is the process by which the free parameters of a neural network are
adapted through a continuing process of stimulation by the environment in which
the network is embedded. The type of learning is determined by the manner in
which the parameter changes take place. (Haykin, 1994)

This definition of the learning process implies the following sequence of events:

1. The neural network is stimulated by an environment.

2. The neural network undergoes changes as a result of this stimulation.

3. The neural network responds in a new way to the environment, because of the

changes that have occurred in its structure. (Haykin, 1994)
In the above example, the learning process had already taken place. It was used to teach
the network to fire appropriately for the training patterns. If, during training, the output
of the network had been 1 for the input 000, then the weights associated with each input
would have been adjusted such that the output would become 1. This process is
demonstrated in Section B.3.a of this chapter.

Many algorithms, or 'learning rules', have been developed to train neural nets. These
include Error-Correction, Hebbian, Competitive, and Boltzman learning (Haykin, 1994).
All learning rules can be classified as either supervised or unsupervised. These are
defined as follows:

Supervised training requires the pairing of each input vector with a target vector
representing the desired output. An input vector is applied and the output of the
network is calculated which is compared with the corresponding target vector. The
difference (error) is fed back through the network and its weights are changed,
according to an algorithm that tends to minimize the error.

Unsupervised learning requires no target vector for the outputs. The training set
consists solely of input vectors. The training algorithm modifies network weights to
produce output vectors that are consistent. The training process extracts the statistical
properties of the training set and groups similar input vectors into classes.
Unsupervised training is a for more plausible model of learning in the biological
system. (Nasrabadi, 1994)

13




Supervised learning will be presented through a discussion of the Delta Rule, which is a
form of Error-Correction. Unsupervised learning will be examined in Chapter 2 Sec C as
part of the discussion on Kohonen Self Organizing Maps.

3. Error-Correction Learning: The Delta Rule

The ability of a neural net to learn lies in its variable connection weights. The initial
weights are generated in a random fashion and contain no useful information. An
effective method of updating these weights must be incorporated. This was a large
stumbling block in the development of neural nets, especially nets containing hidden
layers as depicted in Figure 5. Error-correction is one means of accomplishing this.

The Delta Rule, also known as the Widrow-Hoff Rule, was first suggested by

Bernard Widrow in 1962 (Widrow, 1962). It has been widely used and is well
understood. The concept of the Delta Rule is to take the difference (€) between the
threshold of the target output (t) plus a desired overshoot (6) and the node summation
v(k), multiply by a constant (1) known as the 'learning rate', and adjust (Aw) the active

weights accordingly. In equation form this looks like:

g=(1+8)-v(k) (2.5)

Aw, (n) = ng,(n) (2.6)

Where & represents the node of interest, / indicates the weight associated with node £, and
n denotes the epoch or learning iteration. The rule should be applied to the desired truth
table using the following steps:
1. Select a truth table column.
2. If an error is detected, determine the distance between v(k) and the desired firing
value.

3. Adjust the weights that have firing inputs and the threshold to remove a portion of

14




the error.
4. Go back to step 1, until none of the columns cause errors. (Aleksander and
Morton, 1990)

The best way to describe the Delta Rule is through an example. A simple system
consisting of a discrete node with two inputs and a bias (ao which is held constant at 1)
is chosen to solve a linearly separable problem. Figure 2.6 depicts this system. The
problem is defined as follows: Classify the four points A, B, C, and D into two groups

as depicted in Figure 2.7 Table 2.3 depicts the truth table solution illustrated in

Figure 2.7.
A B C D
X 0 0 1 1
X, 0 1 0 1
F 0 1 0 1

Table 2.3 Example problem truth table.

Initial conditions are set as follows:
w, =+ 0.2 w, =- 0.25 w, = 0.2
8= +0.1 n=+04

The threshold function is used as the firing rule.

i vi0
@(v)z{(l) g::«) 2.2)

Training is started by presenting point A to the node with the desired output of 0. The
summation v is calculated according to Eq. 2.4 to be 0.2 which would result in an
incorrect output of 1. The error ¢ is calculated using Eq. 2.5 to be -0.3 and Aw (by Eq.
2.6) to be -0.12. Aw is applied only to w_ because it is the sole active weight. Once Aw

is applied, w_ becomes 0.08. The complete process is depicted in Table 2.4.
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The final solution yields the following equation:

v = -0.176x, + 0.274x, - 0.017 (2.7)

Setting v equal to the threshold ( 0 ) and rearranging produces Eq. 2.8.

x, = 1.56x, - 0.10 (2.8)

This line 1s superimposed on the original problem (Figure 2.7) to illustrate that it does in
fact separate the two groups appropriately (see Figure 2.8). While this figure makes it
obvious that Eq. 2.8 is a solution, it also makes it obvious that it is not a unique solution.
Because neural nets present non unique solutions, proper training for each environment is

imperative to their success.

EPOCH INPUT w, w, w, v COMMENT
1 A 0.200 -0.250 0.200 0.200 Aw =-0.120
2 A 0.080 -0.250 0.200 0.080 Aw =-0.072
3 A 0.008 -0.250 0.200 0.008 Aw =-0.043
4 A -0.035 -0.250 0.200 -0.035 Column 1 Satistied
5 B -0.035 -0.250 0.200 -0.285 Column 2 Satisfied
6 C -0.035 -0.250 0.200 0.165 Column 3 Satistied
7 D -0.035 -0.250 0.200 -0.085 Aw =0.074
8 D 0.039 -0.176 0.274 0.137 Column 1 Satistied
9 A 0.039 -0.176 0.274 0.039 Aw =-0.056
10 A -0.017 -0.176 0.274 -0.017 Column 1 Satisfied
11 B -0.017 -0.176 0.274 -0.193 Column 2 Satisfied
12 C -0.017 -0.176 0.274 0.257 Column 3 Satistied
13 D -0.017 -0.176 0.274 0.082 Column 4 Satisfied

Table 2.4 Iterations of network.
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C. KOHONEN'S SELF-ORGANIZING MAP
1. Motivation

Economic representation of data with all their interrelationships is one of the most

central problems in information sciences, and such an ability is obviously

characteristic of the operation of the brain, too. In thinking, and in the subconscious

information processing, there is a general tendency to compress information by

forming reduced representations of the most relevant facts, without loss of

knowledge about their interrelationships. The purpose of intelligent information

processing seems in general to be creation of simplified images of the observable

world at various levels of abstraction, in relation to a particular subset of received

data. (Kohonen, 1987)

From this perspective Teuvo Kohonen has investigated and tried to duplicate the
processes that the brain uses to recognize, categorize and identify.

2. Biological Foundation

Evidence generated in the late 1970's indicates that the brain forms neural
representations of the various sensory inputs, adjusting these representations over time to
form an image of that input. This was followed by the discovery that certain areas of the
cortex, when stimulated by a sensory input, produce a response which preserves the
topographical order of the input. The sensory responses of the auditory cortex exhibit
this behavior. In the auditory cortex there exists a "tonotopic map" in which the spatial
order of cell responses correspond to the pitch or acoustic frequencies of tones perceived
(Kohonen, 1987). Sounds received by the ear produce a response from a defined area on
the cortex. The lowest perceptible acoustic frequencies induce a response at one edge of
this area while the highest frequencies induce a response at the opposite edge. The map
of acoustic frequency response across this area is perfectly ordered and almost
logarithmic with respect to frequency.

The possibility that the representation of knowledge in a particular category of things

in general might assume the form of a feature map that is geometrically organized over

the corresponding piece of the brain motivated Kohonen to do a series of theoretical
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investigations into this process. The results of these investigations (presented in Chapter
5 of Self-Organization and Associative Memory) led him to believe that one and the same
functional principle might be responsible for self-organization of widely different
representations of information. Further investigation led to the realization that many
functional properties inherent to self-organizing systems are exhibited by neural
networks. His networks attempt to preserve the topological relations of the data while
performing a dimensionality reduction of the representation space (Kohonen, 1987).
Hyperspectral data, being of many dimensions, appears to be a prime candidate for
analysis by such networks.

3. Network Description

Stan Openshaw describes Kohonen's self-organizing map as one of the most
interesting of all the competitive neural nets. Its fascination results from the realization
that self-organization is a very powerful neural process and that parts of the brain
certainly seem to operate in a similar fashion (Openshaw, 1994). It is designed to
classify data consisting of many variables. As to its ability to perform this task,
Openshaw attributes the following characteristics: (1) simplicity in algorithmic design;
(2) ability to handle immense complexity; (3) nice mathematical properties; (4) user
induced flexibility; and (5) a plausible degree of biological inspiration. Simplicity and
flexibility make this approach very attractive.

Many variations of Kohonen's original design are in existence. Openshaw offers an
excellent description of the basic algorithm which, with appropriate modifications, is
reproduced here.

A basic Kohonen network algorithm can be outlined in the following steps:

Step 1. Initialization. Define geometry, dimensionality, and size of neuron

array.
Step 2. Each neuron has a vector of M weights. Set these weights to some

initial value, usually random values.
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Step 3. Select a data case that also has variable values and apply any relevant
measurement noise to the data.
Step 4. Find whichever neuron is 'nearest' to the data case under consideration.
Step 5. 'Update' the vectors of M weights for all the neurons in the topological
neighborhood of the winning neuron, otherwise leave alone.
Step 6. Reduce learning parameter and neighborhood weights by a very, very small
amount.
Step 7. Repeat steps 3 to step 6 until convergence, typically a large number of times.
Step 8. Once training is complete, classify data.
This algorithm is computational simple, produces reliable maps, can be modified to
accept vectors of any dimensionality and is suitable for parallel processing. The
particulars of the above steps are as follows:
a. Step 1
The process is started by defining the geometry of the map. This geometry
consists of the number of variables contained in the input data and the size of the array of
processing nodes. The processing nodes are similar to that depicted in Figure 2.1. The
number of adjustable weights associated with each node is set equal to the number of
input variables. Generally the array is sized into either one or two dimensions.
Choosing the number of nodes present in the array is based on the expected number of
categories the data is to be divided into and experience using the network. Each
processing node has the potential to define a category, but need not. As an example take
a 5 x 5 array of nodes. When presented with a data set, this array can separate the data
into between | and 25 categories. The number of categories into which any data set is
divided depends on the number of processing nodes and the degree of similarity
throughout that data set. Allowing arrays of different sizes to process the same data set
will provide the user with valuable information about the workings of the network and

the data set. Figure2.9 deplicts the simplest of Kohonen networks, a 2 x 1 array, where
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I represents an input vector of x components. The output of each node equates to

whether or not that input vector is a member of its category.

b. Step 2

In order to prevent a bias, the weights are initialized randomly. Most high level
programming languages contain some type of random number generator which can be
modified to initialize the weights to numbers comparable to the input values. While
initialization of the weights to values which are comparable to the inputs is not critical, it
will decrease the number of iterations required for training.

c. Step 3

This step begins to separate the neural network from traditional classification
schemes. Normally data would be presented in sequential order, each having the same
weighting. Some data sets lend themselves to sequential, even weighting analysis (the
data sets analyzed in this thesis fall into this category), others are analyzed more
accurately by equalizing noise levels and sampling some data cases more often, to reflect
the reliability of the data (for applicable examples see Openshaw, 1994). Analysis done
in this thesis was based on random selection of the data cases.

d. Step 4

Determining the best matched neuron to represent the input case is fairly simple
and extremely important. Various mathematical methods exist for determining 'nearness'
or 'similarity’, and depending on the form of data measurement and desired results,
different measures will be appropriate. Trying different methods offers insight into the
network and the data set. The two measures used in this analysis are known as the sum
of absolute differences (Eq. 2.9) and the correlation function (Eq. 2.10). In Eq. 2.9D
stands for difference and the smallest D will be declared the winner. In Eq. 2.10 C
stands for correlation and the C which is closest to 1 (1 being an exact correlation, 0
being uncorrelated, and -1 being anti-correlated) will be declared the winner. In both

Equations x, is the input vector and w, is the weight vector. In Eq. 2.10 xew is the dot,
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or inner, product of the two vectors.

D=Y |x,-w|] (2.9)
i=1

xew

(2.10)

x| w]

e. Step S

The adaptive behavior of the self-organizing map results from this part of the
algorithm. Once the winner has been declared, the weights associated with that neuron
and its neighbors are adjusted such that the similarity between the input and the nodes is
increased. The size of the 'neighborhood' of the winning neuron is initially set to some
'distance' and all neurons inside this distance are updated. The neighborhood gradually
becomes more and more exclusive over time, such that, at the end of the training cycle,
only one neuron is being updated for each input. This process causes the network to
gradually become tuned to different inputs in an orderly fashion, almost as if a
continuous mapping of the input space was formed over the network (Openshaw, 1994).
This results in parts of the network closely resembling the different input patterns. This
ordering and smoothing process is extremely subtle.

Two updating algorithms were used in the data analysis portion of this thesis. The

first and simplest is known as a block party, and is defined by Kohonen as follows:

wtrD)=w () +e(Dlx,~w D] for i € N (O @.11)
else
w (t+1)=w () (2.12)

where w (t) is the weight vector for any neuron / which lies within the neighborhood set
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N () of the winning neuron, w, (7 +1) is the updated weights for this neuron /, x, is the
vector of values for the input data case, and a(?) is a training constant (also known as the
'learning rate') which establishes the size of the update. The training constant is typically
started at some value between 0 and I, and decreases with time. This training process is
illustrated in figures 2.10 and 2.11. This portion of the analysis (which will be discussed
in more detail in Chapter 4) was set up to demonstrate the network's ability to correctly
classify four 'made up' spectra having dramatically differing characteristics. Figure 2.10
depicts the four input spectra. Figure 2.11 is a time lapsed plot of the four sets of
weights. Immediately noticeable is that the final, trained weights very closely resemble
the inputs. Closer investigation of this plot reveals the approximate time at which the
updating process transitioned to single node updating per input. This is evident by the
constancy of the weights after the transition.

The second, and slightly more sophisticated, updating algorithm is one which makes
the learning rate dependent on the distance (d) from the winning neuron. In effect o.()
becomes o(d,1). A useful, simple method of accomplishing this is a Gaussian function of
distance from the winning neuron. Muller and Reinhardt use the following function

(Openshaw, 1994):

o(d,fy=exp[-d /(2P(1))] (2.13)

Where B(t) is the size of neighborhood at time 7.

f. Step 6

In order to achieve stability, the training parameters (ie. learning rate and
neighborhood size) must be decreased slowly with time. This process, known as
simulated annealing, and its importance, has already been described in section A of this
chapter. The algorithm used in this thesis to accomplish this process employed a linear

decrease according to iteration number. These Equations are as follows:
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a)y=a *(1-I /_ ) (2.14)

diy=d *(1-I /I ) (2.15)

where a_ is the initial training constant, I is the iteration number, I___is the total
number of iterations, and 4 is the initial neighborhood defining distance. Selecting
initial values for & and 4 is best gained through experience. The training constant is
normally constrained to 0 < o <I.

g. Step 7

The optimum number of iterations, which defines the number of training cycles,
depends on the number of neurons, the size of the data set, and the noise level of the data.
No empirical relationships exist to define this number. Again experience with the
network offers the best insight. For small data sets and few neurons (ie. 16 inputs, 50
variables per input, little noise, 4 neurons) 1000 iterations may be enough, while for
large data sets and many neurons (ie. 50,000 inputs, 70 variables, some noise, 50
neurons) 2,000,000 iterations may not be enough.

h. Step 8

Finally, once all training is complete, the inputs are classified. Each input is
compared to each neuron according to some measure of similarity, normally the same
measure used in training. The input is declared a member of the winning neuron's

category.

Appendix A of this paper contains a Kohonen network written in IDL (Interactive
Data Language). It is based on the FORTRAN program given in appendix II of
Openshaw, 1994, Chapter 4 will analyze the applicability of this network to classifying

hyperspectral imagery.
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Ill. HYPERSPECTRAL IMAGERY

This Chapter will begin with a look at hyperspectral imagery, its attributes and
impediments, and will conclude with a discussion of the two instruments used to collect
the data analyzed in Chapter I'V.

A. OVERVIEW

Remote sensing is defined as the acquisition of information about an object without
being in physical contact (Elachi, 1987). Information is acquired by detecting and
measuring changes that the object imposed on the surrounding environment. Areas of
study in which measurable changes occur include acoustics, the electromagnetic
spectrum and perturbations of the gravity field. The term 'remote sensing' is most
commonly used in connection with electromagnetic techniques of information acquisition
(Elachi, 1987). These techniques cover the entire electromagnetic spectrum.

Because all materials reflect, absorb, or emit photons in ways characteristic of their
molecular makeup, a high resolution trace of the intensity of the transmitted, reflected or
emitted radiation versus wavelength forms a graphical record unique to a given material
(Rinker, 1990). Hyperspectral imagery, also known as imaging spectrometry, is a form
of remote sensing that attempts to reproduce this unique graphical record. It refers to the
imaging of an area or "scene" over a large number of discrete, contiguous spectral bands
such that the image contains a complete reflectance spectrum.

Hyperspectral imaging is a follow on to multispectral imaging, the difference being
the spectral resolution of the collected data. The primary limitation associated with
multispectral sensors is an inability to distinguish between certain materials because of
poor spectral resolution. The spectral reflectance and emittance characteristics for
surface materials, which are determined by electronic and vibrational energy states
within the materials, are usually too highly structured to be resolved at coarse spectral

resolutions (Vane, 1985). Many of these identifying features occur over bandwidths on
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the order of 20-40 nm. Hyperspectral sensors nominally collect data in wavelength
bands of 10 nm or less, thus allowing for the identification of such features and in turn
identification of the material. Over the last two decades parallel advancements in optics,
microelectronics and computer technology have allowed hyperspectral collection of
imagery data to mature to the point where it can provide detailed information in many
remote sensing environments.

Figure 3.1 illustrates the potential of hyperspectral imagery to distinguish materials.
It is a plot of the percent reflectance vs. wavelength of two fabrics (A and C) and a green
leaf (B). It is probable that a broadband instrument would be able to identify fabric C
from the green leaf but would have great difficulty with fabric A. The spectral
reflectance of Fabric A and the green leaf are very similar, but, when the two spectra are
over-laid a noticeable difference is present. This difference could only be distinguished
by a narrow band instrument. The value of hyperspectral imaging systems lies in their
ability to collect complete reflectance spectrum for each picture element (pixel) in the
image. This should allow for accurate identification of each pixel and comparison
between pixels, thus producing a more accurate depiction of whatever is being imaged.

Increased resolution does not come without a price. When compared to current
broadband multispectral sensor systems, hyperspectral sensors produce on the order of 10
to 30 times the amount of data per pixel. Storing and processing this massive amount of
data is difficult. Most of today's attempts at analyzing hyperspectral imagery involve
reducing the dimensionality of the data. Such reduction methods inevitably lose some of
the information. This paper attempts to develop a method of hyperspectral data analysis

that is performed without reduction of the dimensionality of the data.

B. SENSORS
This paper analyzes two data sets, collected using different sensors. A brief

examination of these instruments follows.
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1. Advanced Airborne Hyperspectral Imaging System (AAHIS)

The AAHIS sensor was originally developed by Science Applications International
Corporation (SAIC), San Diego, California. The sensor was upgraded in a cooperative
effort with SETS Technology Inc., Honolulu, Hawaii. The basic block diagram
depicting the AAHIS major components is shown in Figure 3.2. The AAHIS sensor was
designed for high signal-to-noise ratio performance based on it's intended use in maritime
applications which involve low reflectance environments (e.g. 5% reflectance). Table
3.1 lists the AAHIS performance characteristics. The table also lists the sensor's

signal-to-noise ratio performance over a land-based (20% reflectance) environment.

Sensor Parameters Nominal Value

Useful Spectral Range (nm) 440-870
Number of Spectral Channels 72
Nominal Bandwidth (nm) 12.4

* 4 channels summed on chip, 2 in sottware
Cross Track IFOV (mradians) 1.1

* 2 channels summed in software
Along Track IFOV (mradians) 1.0
Spacial pixel number 190
Swath Width (degrees) 11.4
Signal-to-Noise (5 % reflectance target) 200-400

* 50 Hz frame rate

Signal-to-Noise (20 % reflectance target) 500-850
* 50 Hz trame rate

Table 3.1 AAHIS Sensor Characteristics
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2. Spatially Modulated Imaging Fourier Transform Spectrometer (SMIFTS)

The second instrument used to collect data is a second generation SMIFTS type
spectrometer known as FTVHSI (Fourier Transform Visible Hyperspectral Imager).
SMIFTS is a cryogenically cooled, imaging , spatiaily modulated Fourier transform
interferometer spectrometer for spatially resolved spectral imaging (Lucey, et al., 1993).
It offers several positive characteristics which include a wide field of view, simultaneous
measurement of all spectral channels, broad wavelength range and moderate spectral
resolution. The FTVHSI was built by the Florida Institute of Technology and offers
better spatial resolution, spectral resolution and contrast (Otten, et al., 1995). This
section will begin with a discussion of the theory behind Fourier transform spectroscopy
and the Michelson interferometer and will conclude with a description of the FTVHSI
instrument and it attributes.

a. Fourier Transform Spectroscopy

Fourier transformation of a sampled interference pattern to obtain the spectrum of
the input source is the basis for Fourier transform spectroscopy, a decades old discipline
which principally utilizes Michelson interferometers to make spectral measurements. All
of the principles which apply to Michelson interferometers also apply to SMIFTS.
(Lucey, et al., 1993)

The Michelson interferometer operates by splitting an electromagnetic wave into
two optical paths, one of which can be adjusted in length. Constructive and destructive
interference occurs when the electric fields recombine at the detector. The sequence of
intensity measurements for different path distances includes the autocorrelation function
of the electric field. The Fourier transform of this autocorrelation function is the
spectrum of the source, interferometer and detector system. Figure 3.2 depicts the
standard model of a Michelson interferometer, with § representing the input source. A
given ray is split in two by the half-silvered mirror; the two halves are reflected at

mirrors M . and M, and then recombined at the half-silvered mirror. Mirrors M . and
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M, are positioned at distances which differ by d. This creates the phase variation. The
compensator plate is often inserted to make the optical paths symmetrical, so that each
ray passes through the same thickness of glass (Klein, 1970).

The ensuing derivation of formulas for interference spectroscopy closely follows
that which is presented in Klein, 1970.

An interference spectrometer is a Michelson interferometer modified to use
collimated light as shown in Figure 3.3. An image of the aperture in front of the source
S is formed in the focal plane of Lens L, at the detector D. The lenses ensure that the
light is approximately collimated and, therefore the equation for the phase shift for light

of wavelength A or frequency v reflected from the two mirrors is given by:

=" (3.1)

where d is the effective separation of M, and M, .
For a single frequency input v,, the time-averaged intensity at the detector can be

written as (Klein, 1970):

47“’1d

1,=1+1,+2,/I|I, cos . (3.2)
letting x = 21,1, / (I,+1,)
4nv.d
=( I+, )( 1+ xcos ) (3.3)
c
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4nv1d

=1, (1 + xcos

) (3.4)

c

where I, and I, are the intensities in each beam at the detector and 7 =1, +I,. An ideal
beam splitter will give 7, =I,and x=1.

If this concept is extended to the general case, where the spectral intensity is
described by a continuous function 7(v) and I(v) dv represents the intensity in the beam

in the frequency range v to v+ dv, then Eq. 3.4 becomes:

00

I(t) = fI(v) (1 + cos2mvT) dv (3.5)
0

where the time constant T is given by

= 24 (3.6)
c
This result consists of an average term
I = f I(v) dv (3.7)
0
plus an oscillatory term
I = fI(v) cos 2TVT dV (3.8)
0
and can be written in the form
I( =111+ y()] (3.9)

30




where

Y(T) = f:P(v) cos 2TVT dV (3.10)

is the normalized oscillatory term and where

P(v) = V) (3.11)
ID
is the normalized spectral distribution function. y(t) is the output of the interferometer
and is known as an interferogram. Eq. 3.10 expresses y(t)as the Fourier transform of
P (v); we can then recover P as a function of frequency if we can determine y as a
function of T for all T, by Fourier inversion (Klein, 1970).

Much of the literature on Fourier Transform Spectroscopy talks of the
relationship between the interferogram and the autocorrelation function. What follows is
a derivation given by Klein, 1970, which illustrates this relationship.

Suppose that the beam splitter in the interferometer performs ideally. Then, the
detector responds to the square of the electric field £(7) from M|, and the delayed return
from M,, E(t-t). The detector signal is then proportional to the time average of the total

field squared and, neglecting constants, is

I, = [ E(t) + E¢-T)) = E(O® + E¢t-T)° + 2[E(H) E(t-T)] (3.12)

The time averages are defined as follows:

T2

(E@? =% [ Ewar (3.13)

t,-T/2
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b. FTVHSI Attributes.

A SMIFTS type instrument employs three major optical subsystems: a Sagnac
interferometer that produces the spatially modulated interferogram; a Fourier transform
lens that frees the spectral properties of dependence on aperture geometry and allows the
wide field of view; and a cylindrical lens that reimages one axis of the input aperture
onto the detector array providing the one dimension of imaging. Figure 3.5 is schematic
depiction of a SMIFTS type instrument. (Lucey, et al. 1993)

The SAGNAC interferometer is known as a triangle path or common path
interferometer. The similarities between it and the Michelson interferometer are obvious.
Again, the phase change is induced by displacement of one of the mirrors.

The spectral range of any interferometer is based on the spectral response of the
detector array and the transmission/reflection characteristics of the optics. In this case, a
detector made of silicon is used to sample the resultant interference pattern. The spectral
response range of this detector is between 270 nm and 1140 nm. The instrument’s
response range is limited to between 450 nm and 1040 nm due to instrument
configuration (Otten, et al., 1995).

The following table compares SMIFTS to other hyperspectral instruments.
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Resolution { Wavelength | Moving Parts | Simultaneous | Throughput
MAL Range Acquisition
SMIFTS | 10% - 10° Broad NO YES very high
GRATING | 10% - 10° [ Narrow NO YES low
PRISM [ 10% - 10° | Narrow NO YES low
Michelson | 10 - 10° Broad YES NO very high
Electronic 102 Narrow NO NO very high
Filter
Mechanical | 10 - 103 Broad YES NO very high
Filter
Mask Filter 102 Narrow NO YES very high

Table 3.2 Hyperspectral Sensor Technology Characteristics
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IV. ANALYSIS AND RESULTS

In analyzing the applicability of the Kohonen Self-Organizing Map to hyperspectral
imagery, a systematic increase in data complexity was followed. Several times during
the analysis the map's ability to classify hyperspectral data seemed questionable.
Understanding, gained at lower levels of data complexity, provided knowledge of what
the network was doing, why it was doing it and what changes could be made to correct
the problem. What follows is an outline of this process and the results and conclusions
drawn from it.

A version of the program used in this analysis is presented in Appendix B. Itis
written in IDL and based on Openshaw's FORTRAN code (Openshaw, 1994). The code
is easily adaptable to almost any computer language. All analysis was done on a Silicon

Graphics work station.

A. SIMPLE, TEST SPECTRA

To begin the process, four line spectra were created to represent the spectral
reflectivity of four fictitious materials. These spectra, depicted in Figure 2.10, contain
fifty data points. Each spectra was purposely created with a large degree of dissimilarity.
The idea was that if the network could not discern between these spectra there would be
no reason to continue the analysis. Each spectra, which represent a category of material,
was then replicated four times so that each of these four categories contained four
members for a total of sixteen inputs. The inputs were then fed into networks of varying
sizes and dimensions, beginning with small number of nodes and then increasing, in an
attempt to correctly categorize the spectra. Noise levels imposed on the spectra, learning
rate, neighborhood size and number of iterations were varied to observe their effects on
the outcome. Noise was generated by the addition, and in some cases subtraction, of

uniform random numbers ranging between 0 and 1 multiplied by a constant to produce
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the desired noise level.

1. Two Node Network

The two node network is the smallest non trivial network. The parameters used in
each run are presented in tabular form in Table 4.1, where d is the neighborhood size
parameter, ¢ is the learning constant, N.C. is the number of categories into which the
network divided the inputs, noise level is given in percentage and number correct is
subjectively determined by the author. The network consistently divided the inputs into
two categories each containing eight members. Figure 2.10 also depicts how this
network grouped the inputs. The spectra represented by continuous lines were grouped
together as were the spectra pictured as diamonds. Initially, the basis for this grouping

scheme was not known (it was latter determined to be based on average spectral

intensity).
MATRIX | ITERATIONS d N.C. MEM NOISE NUMBER
SIZE APPLIED CORRECT
2x1 1000 A4 2 8 0 16
2 x1 1000 4 2 8 10 16
2 x1 10000 4 2 8 10 16
2 %1 10000 4 2 8 10 to 20 16

Table 4.1 Results of the Two Node Network

During the training process the network attempts to replicate the inputs which are

assigned to each node, hence it is interesting and insightful to look at a plot of the final

weights associated with each node. Figure 4.1 is such a plot. In this network there are

two nodes and fifty weights per node. The x-axis in divided into 100 increments, the

first fifty of which belong to node # 1, and so forth (all subsequent plots of this type
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follow this format). Since there are four categories and only two nodes, an accurate
replication of each category is not possible. The network combines the shape of two of
the spectra into a single, 'average' spectra. Anytime too few nodes are used, some type of
averaging must take place. The results of the two node network were encouraging
enough to proceed to the next logical network size, four nodes.

2. Four Node Network

Knowing that the data set consisted of four categories, high expectations were held
for the four node network. If this network could not produce a four group, four member
result, then the applicability of the Kohonen network would appear doubtful. Because of
the anticipated importance of this network size, hundreds of runs were executed. Table

4.2 is a summary of the most interesting.

RUN MATRIX ITERATIONS | 4 o N.C. | MEM NOISE NUMBER
# SIZE CORRECT
1 4 x1 10000 | 4| 4 3 448 0 12
2 4 x1 10000 | 6 5 4 4444 0 16
3 4 x1 10000 | 4 S 3 448 10 8
4 4 x1 30000 [ .6 3 4 4444 10 16
5 2x%2 10000 | 4 4 3 448 10 8
6 2x2 30000 | .5 2 4 4444 10 16
7 4 x1 10000 | 4 4 4 4444 10 to 20 16
8 1x4 10000 | 4 3 4 4444 up to 50 16
9 1x4 10000 | 4 4 4 5344 up to 70 15

Table 4.2 Results of the Four Node Network

The first configuration selected was a linear 4 x 1 matrix of nodes. Its first run, run
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#1 in Table 4.2, did not produce the expected four groups of four result. This run
resulted in three categories with eight members in the third category. Four inputs were
miss-classified (miss-classification being defined as placing an input in the wrong
category). Figure 4.2 is a plot of the final weights. Inspection of this piot reveals that
only two of the input spectra had been replicated accurately. At this point, the
assumption was made that the network was stuck in a local minima. Several additional
runs were made, each with some modification to the original parameters. The problem
was corrected by a simultaneous change to a larger neighborhood size (an increase in the
learning parameter from 0.4 to 0.6 was sufficient) and an increase in the learning
constant (from 0.4 to 0.5). In terms of the simulated annealing process, this amounted to
shaking the network harder and allowing it to get out of the local minima. As can be
seen in Figure 4.3, run #2 identified the four spectra correctly.

As has been mentioned previously, the training process is an attempt by each node to
take on the characteristics of one category of inputs. Figure 2.11 illustrates this process.
It is a time stacked plot of the weights associated with run #2. Two characteristics of the
network are readily apparent in this plot:

1) As the energy of the network decreases, it will stabilize in some constant
configuration.

2) Each node is capable of accurate replication of an input group.

Once positive results were obtained, the effects of higher levels of noise were
examined. Figure 4.4 is a plot of the four spectra with 20% noise added. The network
continued to produce an accurate classification up to 50% noise (see runs 7 - 10). Figure
4.5 is a plot of the final weight values of run # 7. Notice that some of the noise remains.
Noise levels above 50% consistently caused miss-classification of one or more of the
inputs.

The next step was to examine the other two possible four node configurations, 1% 4

and 2 x 2. The 1x 4 node array produced results which were not noticeably different
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from the 4 x 1. The 2 x 2 array, while again producing similar results, required repeated
adjusting of the algorithm. On several runs, for reasons which are yet to be understood,
one of the nodes was quickly eliminated from the updating process (see Figure 4.6
weights 150-200). Node number 4 was dropped from the training process and eight
inputs were placed into category 3. The network often appeared to be stuck in what has
been previously described as a local minima. In all cases, once the appropriate
parameters had been manipulated, the network performed a correct classification. Figure
4.7 is the plot of final weights for the same 2 x 2 array. In this case the problem was
solved by increasing the number of training iterations from 10000 to 30000 and
decreasing the learning constant from 0.4 to 0.2. Often several, and sometimes many,
adjustments had to be performed prior to network convergence on the correct
classification.

By the end of the four node network examination, a better feel for what is meant by
the terms 'local minima' and 'simulated annealing' had been gained and what effects
adjusting key parameters, such as learning rate and iterations, had on these terms.

Experience with the four node network produced two contradictory opinions.

1. Proper 'tweaking' of the network could lead to correct classification of spectral

data.

2. Any tool which has to be continuously adjusted in order to obtain useful results

will have limited practical applications.
With this in mind, testing of higher dimension arrays commenced.

3. Arrays of Larger Size

Arrays of larger size were considered and, as with the previous size arrays, many runs
were conducted. An illustrative batch is presented in Table 4.3. As a group these
networks performed admirably. With no noise added to the inputs, all configurations
correctly classified the data. As noise levels increased, the networks over-classified the

data (as opposed to a miss-classification, over-classification is defined as creating a
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separate category where one is not desired). Over-classification increases as the number
of nodes and noise levels increase, such that a 5 x 5 matrix classified the sixteen inputs,
containing 10% to 20% noise, into sixteen separate categories. A positive note was that
miss-classifications did not occur. Figure 4.8 depicts the final weights of run #7. The
replication process is quite evident.

For these networks increasing the number of iterations above 10,000 had almost no
effect on the outcome. Small variations in the other parameters seemed to have little

effect either.

RUN | MATRIX ITERATIONS | 7 | ¢ | N.C. | MEM NOISE NUMBER
# SIZE CORRECT
1 4x2 10000 | 4 | 4 4 4444 10 16
2 4 x2 20000 1 4 | 4 5 43144 up to 40 15
3 8x1 10000 | 4 | 4 5 44431 10 15
4 8x1 10000 | 4 | 4 4 4444 0 16
5 2x4 10000 | 4 | 4 4 4444 10 16
6 4x4 10000 | 4 | 4 4 4444 0 16
7 4 x4 10000 | 4 | 4 10 ---- 10 ?
8 5x5 10000 | 4 | .2 16 1 10 to 20 ?

Table 4.3 Results of Larger Size Arrays

B. SIMPLE IMAGES
Having obtained some confidence in the network's ability to classify spectra, the next
step was to determine its ability to work with an image. For this purpose two simple

variable images were created.
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1. Black and White Image

The first test image, Image 1, is depicted in Figure 4.9. It consists of four small light
grey squares imposed on a large black square background. The image was created by
setting the background equal to a small number when compared to the inner square fields
(in this case 6 and 200 respectively). The image is displayed in a grey scale ranging
from O for black to 255 for white. This image was then read into networks consisting of
between two and sixteen nodes. Each run produced the same result, an accurate
classification of the image into two groups (see Figure 4.10). Changes in iterations,
learning rate and neighborhood size had no effect on the output.

Noise was then added to the data which changed the image to look like Figure 4.11.
The two node array correctly classified the image, for noise levels up to 50%, into two
categories (see Figure 4.12). This result was expected, given that the network was
forcing the image into two categories. At noise levels above 50% members of the inner
squares could end up being closer in magnitude to the black exterior. Figure 4.13
exhibits the result of 55% noise added to the upper right square. As before, when more
nodes were used to classify a noisy image, an over classification occurred.

2. Variable Grey Image

Image 2, depicted in Figure 4.14, closely resembles Image 1. It was created by
changing the values in three of the black squares to 50, 100, and 150, respectively.
Classification of Image 2 by networks consisting of five or more nodes correctly
categorized the image into five separate groups. A five node network output appears in
Figure 4.15. Close analysis of these two figures reveals that the inner squares have not
kept their same relative brightness. This reveals that the network is assigning values to
groups according to their relative placement in the nodal array and not according to any
specific characteristic of the inputs associated with that group.

A two node array produced the image depicted in Figure 4.16. Adding noise to

Image 2 produced results consistent with those described in the analysis of Image 1.
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C. VARIABLE INTENSITIES OF SIMPLE TEST SPECTRA

Spectral reflectivity curves, while maintaining a given shape, vary as the intensity of
the illuminating source changes. It is important that a classification scheme be able to
group two identical objects, one in shade and one in sunlight, as a member of the same
category. In order to test the Kohonen network's ability to classify spectra according to
curve shape and not intensity, the spectra described in part A of this chapter have been
modified such that two members of each group exist, with each being offset by some
constant from the other. Figure 4.17 plots the resulting spectra. Ideal classification
would result in four categories of two members, each being of the same shape.

Many network configurations were put forward in an attempt to classify this data set
correctly, with none yielding the desired results. Furthermore, manipulation of
iterations, learning rate, and neighborhood size proved to be futile. Unless the offset was
comparatively small, the network grouped the spectra according to an average intensity.
A change in how the winning neuron was selected was in order.

All runs up to this point in the analysis had been conducted using the sum of absolute
differences (Eq. 2.9) as the method of determining the most similar neuron. It seems to
reason that adding up the absolute distances between each corresponding point would
equate to a comparison of average intensity. A method of determining curve shape
similarity was needed.

The degree of similarity of any two vectors in space is determined by taking the dot
product between such vectors. With this in mind, Eq. 2.10 was selected for the described
purpose. The results of this change were impressive. Not only were the spectra properly
classified according to curve shape, but the time to complete a training iteration and
classify inputs was decreased dramatically. With these results in hand, real data were

selected for analysis.
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D. REAL DATA

1. Camouflage Image

The first set of data set was taken by Bruce Raffert and Glen Sellars as part of work
being done by Kestrel Corp. in conjunction with Phillips Laboratory. A SMIFTS type
hyperspectral instrument, built by Raffert, was used to collect the spectral reflectivity of
a piece of cloth camouflage. The cloth was placed fifty feet from the instrument, draped
over a piece of wooden board and leaned against a metal pole. The background consisted
of short grass. The image was collected sequentially in 99 vertical swaths, starting at the
left edge and ending at the right edge. The data were collected into 100 bandwidths
which progress linearly in wavenumber, such that bandwidth number 34 corresponds to
6328 A (angstroms). The data form what is known as a hypercube with the x and y
dimensions corresponding to the spatial, and z being frequency. Figure 4.18 depicts the
data in its hypercube form, Figure 4.19 is a plot of band 37.

The objective of this analysis was to determine the network's ability to distinguish
between the camouflage and the background. To show that significant differences do
exist in the spectral response of the camouflage and the background grass, spectra taken
from each are plotted in Figure 4.20. The line with the highest intensity value is the
background grass, the middle line is from the light portion of the camouflage and the
dashed line is from the dark.

Both of the previously described methods of determining the winning neuron were
used (ie. the sum of absolute differences and the dot product). The process and results of
each are given below.

a. Sum of Absolute Differences

An ideal classifying scheme would separate the image into three categories, the
background, the camouflage, and the pole, and, most importantly, all background pixels
would be classified as different from the camouflage. Because the camouflage is made

of two different colors, it is unlikely that all pixels in the camouflage would all be
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classified the same. A more realistic hope would be to distinguish the camouflage as two
different groups, each being separate from the background.

In the pursuit of this goal, the image was read into networks of varying sizes (two
to eight nodes). Regardless of the network size, the algorithm classified the image
according to what the author believes is intensity. This conclusion is based on the
similarity in shape of each set of the final weights. To illustrate this effect, Figure 4.21 is
presented. It is a plot of the final weights associated with a 3 x | array. The network
appears to be replicating the average spectra of pixels of like intensity. Figure 4.22
shows the categories produced by the same network. Notice that, while the camouflage is
distinguishable from the background, many pixels in both the camouflage and the
background are classified as members of the same group.

Several attempts were made to preprocess the data in an attempt to get the
network to classify by spectral curve shape. These are listed below:

1. Normalization of the maximum intensity value in each pixel's spectra to the

overall maximum intensity value of the image.

2. Normalization of the average intensity value in each pixel's spectra to the

average intensity value of the entire image.

3. Retransformation of the first three principle components back into frequency

space. This acts as a low pass filter.
These attempts produced results that were no better than the initial runs.

b. Correlation Coefficient

Using the correlation coefficient to obtain the 'distance' to the winning neuron
worked much better. Again, the image was read into networks of varying sizes, this time
with dramatically different results. Figure 4.23 is a plot of the final weights associated
with a 3 x 1 array. By comparing Figures 4.20, 4.21, and 4.23 it is obvious that the
network is no longer distinguishing between groups according to intensity, and is now

looking at spectral curve shape. Figure 4.24 is the classification produced by this same
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