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ABSTRACT 

Effective monitoring of coral reefs is important for ecological and economic 

reasons, and satellite remote sensing has been shown to be useful for mapping and 

monitoring these ecosystems.  This thesis will compare 2 multispectral systems and 

investigate the effects of increased spatial resolution on benthic classifications in the 

highly heterogeneous coral reef environment of Midway Atoll.  It will evaluate the utility 

of QuickBird’s increased spatial resolution compared to IKONOS imagery in the same 

study area at multiple scales.  Previous studies (e.g., Mumby and Edwards, 2002; 

Capolsini et al., 2003; Wang et al., 2004; Benefeild et al., 2007) comparing various 

satellite sensors suggest that greater spatial resolution should lead to more accurate 

classifications, but a direct comparison of QuickBird and IKONOS sensors has not been 

carried out in marine environments.  Light interactions in marine environments are 

complex and add difficulty to spectral discrimination, producing more variable results in 

classification accuracy than in terrestrial environments.  This research does not find any 

significant improvements in thematic mapping accuracy of benthic environment from 

QuickBird’s higher spatial resolution satellite imagery.  Additionally, a cost benefit 

analysis did not show a decisive advantage in choosing either imagery type for the 

application of monitoring the extent, biodiversity, and health of coral reef habitats.     
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I. INTRODUCTION  

Reef habitats face numerous, increasing threats from local interests, such as 

coastal development, over-fishing, and global warming (Pandolfi et al., 2003; Bellwood 

et al., 2004; Carpenter et al., 2008).  Effective monitoring of coral reefs is important for 

ecological and economic reasons, because of the critical role reefs play in biodiversity, 

tourism, and fisheries (Berg et al., 1998; Harborne et al., 2006; Brander et al., 2007).  

Coral reef ecosystems lend themselves to being mapped by passive satellite sensors 

because of their location in shallow, clear waters, and satellite sensing has been shown to 

be useful for mapping and monitoring their global distribution and health (Lubin et al., 

2001).  Many of the world’s coral reefs are under the governance of developing countries, 

which may not have the resources to employ traditional mapping or monitoring 

techniques and, therefore, rely heavily on satellite technology for natural resource 

monitoring (Benefield et al., 2007).  Also, the use of satellite remote sensing has been 

shown to be more cost effective than traditional fieldwork (Mumby et al., 1999).  

Additionally, satellite sensors provide a means for access to denied territories and can 

allow for routine monitoring of selected areas, including target detection applications.   

High resolution, multispectral or hyperspectral, satellite sensors currently 

available give users the ability to detect and spectrally analyze light reflected from the 

bottom of shallow water bodies, and to discriminate bottom types based on their 

reflectance signatures (Louchard et al., 2003).  IKONOS, launched in 1999 (GeoEye), 

and QuickBird, launched in 2001 (DigitalGlobe), are commercially available 

multispectral satellites that provide the highest spatial resolution currently available (4 m 

and 2.8 m respectively) and have comparable spectral resolution.  In the near term, 2 new 

satellite sensors will begin providing even higher resolution data.  Worldview, scheduled 

for launch in mid-2009, will provide multispectral imagery with 1.84 m resolution (at 

nadir), imaging in 4 additional bands allowing numerous new applications (DigitalGlobe, 

2008).  TacSat-3, scheduled for launch in October 2008, will carry ARTEMIS, a 

hyperspectral sensor capable of 3.84 m resolution in 5 nm bands ranging from 0.38-2.5 

µm (AFRL, 2008; Cooley, 2008).  
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In an effort to develop coral reef maps for monitoring purposes, Holden and 

Ledrew (1999) found that there are robust differences between the spectra of corals and 

related noncoral objects independently of geographic sampling, and that these spectral 

contrasts could be used to construct a scene identification algorithm.  The output of such 

an algorithm is the grouping of related spectral patterns into classes or themes, called a 

thematic map, which provides a representation of land cover types in a scene (Lillesand 

et al., 2004).  When this technique is applied to describing the features of the sea bottom, 

it is called a benthic classification. 

Unfortunately, some of the spectral features identified by Holden and Ledrew 

(1999) and others after them (e.g., Lubin et al., 2001; Hochberg et al., 2003; Louchard et 

al., 2003) used to distinguish coral species are obscured in data collected from space, 

because of the complex interactions with the atmosphere and water column (Lubin et al., 

2001).  This phenomenon can lead to low classification accuracy in marine environments.  

A number of coral reef scientists (e.g., Mumby and Edwards, 2002; Capolsini et al., 

2003; Wang et al., 2004; Benefield et al., 2007) have proposed that increased spatial 

resolution could aid in spectrally separating classes.  Mumby and Edwards (2002) 

demonstrated that the use of the IKONOS satellite sensor improved benthic classification 

accuracy over conventional airborne and previously available satellite sensors due to its 

enhanced spatial resolution.   

The question of how much, if any, improvement in thematic accuracy gained from 

increased spatial resolution has been explored in previous studies (e.g., Mumby and 

Edwards, 2002; Capolsini et al., 2003; Wang et al., 2004; Benefeild et al., 2007) but 

without consistent results.  Additionally, no assessments have been made in coral reef 

environments, which are highly spatially heterogenous and would be expected to benefit 

from increased spatial resolution.  This thesis will investigate the effects of increased 

spatial resolution on benthic classifications in a coral reef environment, specifically at 

Midway Atoll in the Northwest Hawaiian Islands.  In particular, it will evaluate the utility 

of QuickBird’s increased spatial resolution on benthic classifications, directly comparing 

IKONOS and QuickBird data in the same study area.  
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Both satellites will be used to generate thematic maps of the central portion of 

Midway Atoll to evaluate performance at a landscape scale of the entire area.  A smaller 

patch reef selection will be classified and surveyed in fine detail to evaluate performance 

at benthic classification boundaries on this smaller spatial scale.  The benthic 

classifications produced by each sensor will be evaluated using standard accuracy 

assessment techniques for the central atoll and a more qualitative analysis for the 

classification boundaries of the patch reef selection.  Their accuracies will be compared 

to determine what advantage, if any, is gained by using the higher spatial resolution 

QuickBird data.  Finally, this thesis will consider a cost benefit analysis related to the use 

of higher spatial resolution imagery for this application. 
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II. RADIATIVE TRANSFER THEORY FOR MARINE REMOTE 
SENSING 

Optical remote sensing using satellite imagery has become an effective tool to use 

in observing and monitoring the characteristics of the world’s land and oceans (Lillesand 

et al., 2004).  Today most satellite monitoring systems employ passive remote sensing 

techniques, collecting the radiation received from the reflection of solar energy off the 

surface of the Earth (Jensen, 2000).  This energy is referred to as radiance.  Passive 

sensing methods are used for marine classification studies because they can penetrate the 

surface of the ocean up to several meters and observe the ocean bottom (Robinson, 2004).  

It is important to understand the effects of both atmospheric interactions as well as the 

water column on energy that is detected by satellite sensors.  This section will discuss the 

basic principles of multispectral satellite imagery and radiative transfer theory that affect 

data collection and analysis. 

A. MULTISP ECTRAL SATELLITE IMAGERY 

1.   Fundamentals of Remote Sensing Satellites 

Satellites are useful platforms for remotely monitoring the Earth and its oceans.  

Various wavelength ranges of the electromagnetic spectrum are detected using a variety 

of collection techniques in these satellites.  It is important to note that operating in space 

brings many additional considerations such as the unique operating environment, orbital 

limitations, revisit times, and communications challenges (Lillesand et al., 2004).  

Multispectral imagery has a variety of applications in marine remote sensing (Robinson, 

2004).  This section will discuss the sensors and the applications of multispectral 

imagery, as well as, the analysis, resolution parameters, and challenges inherent to using 

such imagery in marine environments. 

a. Sensor Types 

Satellite sensors can be broadly classified into 2 basic categories: passive 

and active.  Passive sensors operate across the visible, infrared, and microwave portions 

of the electromagnetic spectrum, while active sensors operate, primarily, in the visible 



and microwave bands (Green et al., 2000).  Sensors can further be categorized into 

classes defined by the region of the electromagnetic spectrum exploited.  Active sensors 

typically use radar instruments to generate their own radiation.  Each sensor class is 

characterized by a specific sensor type, such as radiometers, spectrometers, or radar 

(Robinson, 2004).  Each of these sensor types provide data that can be used directly or, 

with analysis, generate derived parameters for specific applications.  Figure 1 illustrates 

the relationships among these sensor classes and application types.  Note that 

multispectral scanners are linked to ocean color observation which can be used, among 

other things, to derive bathymetric information (Robinson, 2004).  Multispectral imagery 

is used to create benthic classification maps, and it will be used in this thesis. 

 

 

Figure 1.     Applications for remote sensing methods and classes (From Robinson, 2004) 
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b. Multispectral Imagery 

Multispectral remote sensing is the collection, from an area of interest, of 

reflected, emitted, or scattered energy in multiple bands of the electromagnetic spectrum 

(Jensen, 2000).  For many applications, such as marine remote sensing, acquiring 

information in multiple spectral bands is necessary to obtain information on different 

seafloor bottom types (Louchard et al., 2003).  Ocean color, a “primary observable 

quantity” in multispectral imagery, is a characteristic seawater property that refers to the 

magnitude and spectral composition of the light leaving the water’s surface.  This color 

may not be the same as what is seen by the human eye but is a discrete measure of the 

radiation received by the sensor that describes a unique spectral composition (Robinson, 

2004).  Information about the factors influencing the spectral composition recorded can 

be derived from these spectra.  These include: chlorophyll concentration; dissolved 

material; and, under the right conditions in clear shallow water, bottom type or depth. 

The collection of this information can be accomplished in several ways.  

Various collector configurations are presented in Figure 2.  Each of the arrangements 

depicted in Figure 2 captures the desired information in a different way.   

 

Figure 2.   Detector configurations used in remote sensing (From Jensen, 2000) 
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The linear array, “pushbroom” sensors are chosen for use in most of 

today’s higher resolution satellite sensors, including IKONOS, QuickBird, and SPOT 

(Olsen, 2007).  Pushbroom sensors use a line of detectors, positioned end to end, that 

record energy from a single column.  This motion is depicted in Figure 3. 

 

 

Figure 3.   Pushbroom scanner operation (From Lillesand et al., 2004) 

 

This type of array has several advantages.  First, it gives each detector a 

longer dwell time over the area of interest, allowing stronger signal levels to be detected 

and recorded (Jensen, 2000).  Second, because the sensor depends mainly on vehicle 

motion, there is a fixed relationship among the detector elements, leading to less 

geometric error from the scanning process.  Finally, because this technology uses solid 

state microelectronics, it is smaller, requires less power, is more reliable, and has longer 

life expectancy (Lillesand et al., 2004).  

2. Resolution  

Resolution is defined as the ability a system has to distinguish between signals 

that are spectrally similar or spatially close together (Jensen, 2000).  Four major 

categories of satellite resolution are commonly used to describe image data obtained from 
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digital sensors: spatial, spectral, temporal, and radiometric.  Each of these will have a 

different impact on the data received by the end user and should be understood.  

Temporal resolution describes the revisit time for imaging a specific point.  Radiometric 

resolution describes the light sensitivity of a sensor (Green et al., 2000).  This thesis 

focuses on spatial resolution.  Both spectral and spatial resolution will be discussed in 

more detail in the following sections.   

a.  Spectral Resolution 

Sensors are designed to detect certain regions of the electromagnetic 

spectrum.  Spectral resolution refers to the range of the electromagnetic spectrum and the 

number of intervals to which an instrument is sensitive (Jensen, 2000).  Sensors can be 

classified as panchromatic, multispectral, or hyperspectral based on the number of bands 

that can be detected.  Panchromatic sensors record data in one continuous band that 

covers the visible and infrared portions of the electromagnetic spectrum; multispectral 

uses several bands; and hyperspectral, hundreds of bands (Green et al., 2000).  Both 

IKONOS and QuickBird satellite sensors collect multispectral data and have comparable 

spectral resolutions.  The multispectral bands are presented in Table 1 and their spectral 

response curves are presented in Figure 4. 

 

 
Spectral Band  IKONOS QuickBird 

     
Blue  445–516 nm  450 – 520 nm 

Green  506–595 nm  520 – 600 nm 

Red  632–698 nm  630 – 690 nm 

NIR  757–853 nm  760 – 900 nm 

     

Table 1. Spectral bands of IKONOS and QuickBird (GeoEye, 2006; DigitalGlobe, 
2004) 
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Figure 4.   Spectral response curves for (a) IKONOS and (b) QuickBird 
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b.  Spatial Resolution 

Spatial resolution is defined as a measure of the smallest separation, 

angular or linear, between two objects that can be determined by a sensor (Jensen, 2000).  

This quantity is dependent on altitude and sensor design.  Spatial resolution can be 

thought of as pixel size and is commonly measured in meters or kilometers (Green et al., 

2000).  This term is also known as Instantaneous Field Of View (IFOV).  In general, a 

sensor’s spatial resolution should be one-half the size of the smallest dimension of a 

feature that needs to be detected (Jensen, 2000).  IKONOS and QuickBird both belong to 

a class of satellites referred to as very high resolution, or VHR (Wang et al., 2004).  

Satellites have different levels of spatial resolution in different operating modes based on 

the detectors used.  IKONOS can achieve resolutions of 1 m or better for panchromatic 

and 4 m or better for multispectral imagery (GeoEye, 2006).  QuickBird can achieve 

spatial resolutions of 0.7 m or better for panchromatic and 2.8 m or better for 

multispectral imagery (Digital Globe, 2007).  Mumby and Edwards (2002) found that 

enhanced spatial resolution can improve benthic classification accuracy, and this study 

will investigate the utility of the increased spatial resolution available from QuickBird on 

benthic classifications.  

B. RADI ATIVE TRANSFER 

Radiative transfer is the theoretical basis for modeling the interactions of solar 

energy with various mediums, such as the Earth’s surface, atmosphere, and the ocean, 

prior to collection by a sensor (Thomas and Stamnes, 1999).  The effects of atmospheric 

attenuation and scattering, the air-sea interface, and elements in the water column must 

all be considered when using remotely sensed optical data (Morel and Prieur, 1977).  The 

exploited electromagnetic bands and the attenuation effects are discussed below. 

1. Electromagnetic Spectrum        

The electromagnetic spectrum is a representation of the wavelengths of radiant 

energy and defines the data used in remote sensing.  Figure 5 illustrates the most common 

range of energy exploited by satellite sensors for characterization, surveillance, and 

monitoring of the Earth’s surface.   



Visible Light

Shorter Wavelength                                          Longer Wavelength
Higher Energy                                          Lower Energy

700nm 600nm 500nm 400nm

10-5nm 10-3nm 1nm 103nm 106nm 1m 103m

Gamma
Rays X‐Rays UV Infrared

Micro‐
waves

Radio
Waves

 

Figure 5.   The visible portion of the electromagnetic spectrum 

 

The visible portion of the spectrum, which consists of blue, green, and red 

wavelengths, extends from 400 nm to 700 nm.  This range of solar radiation is best suited 

for marine remote sensing, particularly benthic classifications, because it can penetrate 

the water column to about 20-30 meters (Robinson, 2004; Green et al., 2000).  The near 

infrared portion of the spectrum (i.e., wavelengths from 700 nm to 1000 nm; Jensen, 

2000), provides few returns in marine applications due to absorption by the water; 

however, it can still be used in image processing (e.g., sun glint removal; Hochberg et al., 

2003).  Passive, multispectral satellite systems commonly detect electromagnetic 

radiation in the 400 – 1000 nm wavelength range. 

2. Interaction with Matter 

 Electromagnetic energy that is incident on a surface will undergo one or all of the 

following fundamental interactions: reflection, absorption, transmittance, and scattering 

(Jensen, 2000).  Figure 6 demonstrates these interactions.   
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Figure 6.   Light interactions with matter  (From Olsen, 2007) 

 

Equation (1) mathematically represents the energy balance among the 3 main 

interactions of electromagnetic radiation and matter. 

 1( ) ( ) ( ) ( )R A TE E E Eλ λ λ λ= + +  (1) 

Where EI is the incident energy, ER is the reflected energy, EA is the absorbed energy, and 

ET is the transmitted energy.  All of these are a function of wavelength (λ).  The incident 

energy is a function of all 3 interactions and is dependent on the wavelength, material 

type, and material condition (Lillesand et al., 2004).  Scattering occurs after energy is 

absorbed and reemitted in an unpredictable direction and will be discussed in further 

detail in Section C of this chapter.   
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It is also necessary to consider the way a surface reflects energy.  There are 2 

major types of reflectors:  specular reflectors have mirrorlike interactions where the angle 



of reflection is equal to the angle of incidence; and diffuse, or Lambertian, reflectors 

reflect uniformly in all directions.  Most surfaces on earth are some combination of the 2 

types (Lillesand et al., 2004).  Figure 7 illustrates the various types and combinations of 

reflectors. 

 

Figure 7.   Specular versus diffuse reflectance (From Lillesand et al., 2004) 

 

 The radiation field will also be affected by gaseous matter, aqueous matter, 

particles, solids, and ocean surfaces (Thomas and Stamnes, 1999).  Analysis of satellite 

imagery must account for these interactions.  The energy collected by the sensor on a 

satellite has traversed the atmosphere twice and has interacted with the water column 

before reaching the sensor in space.  These interactions must be considered when using 

remotely sensed data for marine applications, such as benthic classification studies.  

These mechanisms will be accounted for in image processing which is discussed in 

Chapter IV. 

C. ATMOSPHERIC INTERACTIONS 

As electromagnetic radiation passes through the atmosphere, all the interactions 

discussed above take place.  Absorption and scattering are a primary concern for marine 

remote sensing (Green et al., 2000).  These optical processes will change the signal 

received at the satellite sensor and must be understood and accounted for when using this 

type of data for studies of the Earth’s surface.   
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1. Atmospheric Optical Processes 

The optical pathways between the sea surface and a satellite sensor are complex.  

Robinson (2004) provides an illustration of the many pathways and interactions that 

occur before the energy reaches a satellite sensor.  This is reproduced in Figure 8 below.  

 

Figure 8.   Optical pathways to the sensor  (From Robinson, 2004)  

 

The terms used in Figure 8 are defined as follows: a depicts the light rays after 

refraction that are pointed in the direction of the sensor and contribute to Lw, the water 

leaving radiance.  Term a is split into 2 parts: b is the portion of Lw which reaches the 

sensor, and c are the rays that are absorbed or scattered and lost before reaching the 

sensor.  Term d represents sun glitter.  This is the solar radiation that is reflected directly 

from the sea surface.  Term e illustrates sky glitter.  This is the portion of the sun’s rays 

 15



that are scattered in the atmosphere and directed at the sensor.  Terms d and e contribute 

to the radiance due to all surface reflection, Lr.  Term f shows the radiation from Lr that is 

scattered out of the sensors field of view, and g shows the portion of Lr that is received 

by the sensor.  The final radiance depicted is Lp, atmospheric path radiance, made up of 

h, i, j, and k.  The portion of rays scattered towards the sensor by the atmosphere that 

comes directly from the sun is shown by h.  The solar radiation that is directed to the 

sensor after some other atmospheric scattering is illustrated by i.  Term j shows the 

contribution from the rays that upwell from the sea outside the sensor’s field of view and 

get scattered toward the sensor by the atmosphere.  Finally, term k represents the portion 

of rays reflected off the surface of the ocean, initially outside the sensor’s field of view, 

which are scattered into the sensor by the atmosphere (Robinson, 2004). 

Ls, radiance received by the sensor, is made up of contributions from Lp, Lw, and 

Lr.  The relationship is shown in Equation (2). 

 s p wL L TL TLr= + +  (2) 

Where T is the beam transmittance of the atmosphere (Robinson, 2004).  This 

demonstrates that the two largest effects of the atmosphere can be attributed to scattering 

and absorption. 

2. Absorption 

The atmosphere will have a varying effect on the electromagnetic energy based on 

wavelength.  At wavelengths less than 0.3 µm or greater than 10 µm, atmospheric 

constituents absorb most of the incident energy making those parts of the spectrum 

opaque to solar radiation.  The primary contributors to this phenomenon are ozone, 

carbon dioxide, and water vapor (Lillesand et al., 2004).  Remote sensing technology 

exploits atmospheric areas of transparency called spectral windows (Thomas and 

Stamnes, 1999).  Spectral windows occur throughout the electromagnetic spectrum as 

shown in Figure 9.   
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Figure 9.   Atmospheric spectral windows (shown in blue) (From Olsen, 2007) 

 

3. Scattering 

Scattering is the effect of atmospheric particles on electromagnetic radiation 

which causes the unpredictable redirection of energy (Jensen, 2000).  The major 

consequences of atmospheric scattering on remote sensing are the reduction of radiant 

energy and the presence of unwanted gain at the sensor (Martin, 2004).  Only 8 – 10% of 

the signal received at the satellite is due to ocean reflectance, while atmospheric 

scattering dominates the rest of the signal (Mishra et al., 2005).  Three types of scattering 

occur in the atmosphere:  Rayleigh, Mie, and Non-selective scattering.   
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Figure 10.   Types of atmospheric scattering (From Jensen, 2000) 

 

Figure 10 illustrates how the type of scattering that occurs is related to the 

wavelength of the incident energy and the size of the water droplet, gas molecule, or dust 

particle encountered (Jensen, 2000).  

 Rayleigh scattering occurs with particles that are many times smaller than the 

wavelength of incident energy.  The effects of this type of scattering have an inversely 

proportional relationship to the fourth power of wavelength (Jerlov, 1976).  This 

relationship creates a tendency for short wavelengths to be scattered more than longer 

ones.  These effects are apparent in the visible range of the electromagnetic spectrum and 

are responsible for the blue color of water and the sky (Lillesand et al., 2004). 
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 Mie scattering, or nonmolecular scattering, occurs when the wavelength of the 

energy and the size of the particles is comparable.  This type of scattering is caused by 

dust, smoke, and particulates and influences longer wavelengths (Jensen, 2000).  The 

third type, nonselective scattering, affects all wavelengths and occurs with large particles 

(5 - 100 µm) like water vapor.  This scatters equal portions of the visible spectrum 

causing clouds and fog to appear white (Lillesand et al., 2004).  All 3 types of scattering 

contribute to the portion of light that reaches the sensor which does not come directly 

from the Earth’s surface, called path radiance (Depicted as LP in Figure 8; Mishra et al., 

2005). 

D.   LIGHT AND WATER 

As described earlier, light interactions within the atmosphere are complicated but 

have been studied and described by atmospheric scientists for some time.  In order to use 

remotely sensed data for benthic classification purposes, the optical processes that occur 

in the water column must also be considered, and their effects removed.  These processes 

are generally more complex because of the varying optical properties of water, the 

number of interactions that take place in the water column (Robinson, 2004), and the 

non-linearity of these interactions (Green et al., 2000).  These interactions are affected by 

the highly variable presence of dissolved and particulate matter present in the water 

column which causes the optical properties of natural waters to vary over time and space 

(Mobley, 1994).    

1. Light Interactions with Water 

Electromagnetic energy undergoes a number of interactions with the water 

column before reaching the satellite sensor.  Jensen (2000) provides an illustration of 

these energy-matter interactions that affect aquatic remote sensing investigation.  These 

are reproduced in Figure 11. 



 

Figure 11.   Light interactions with water  (From Jensen, 2000) 

 

ESun represents the downwelling irradiance from the sun.  Esky Represents the sky 

irradiance.  Lp is the path radiance referred to in Section C and in Figure 8.  This is the 

portion of the downwelling radiation that is recorded by the sensor but has never reached 

the water.  Water surface radiance, Ls, is the radiation that is reflected back to the sensor 

directly from the water’s surface.  This term, also known as specular reflection 

(Robinson, 2004), is the cause of sunglint which provides little useful information and 

must be accounted for in image processing (Hedley et al., 2005).  Lv is the subsurface 

volumetric reflection and illustrates the portion of radiation that interacts with the water 

column and then emerges without reaching the bottom.  This is the water column 

equivalent of Lp.  Lb is the bottom radiance.  This is the radiation that reaches the bottom  
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of the water body and is reflected back through the water column to the satellite sensor.  

This is the portion of the signal that is of greatest interest for benthic classification and 

mapping (Jensen, 2000).   

2. Optical Properties and the Effects of Constituents 

Water can be divided into 3 broad categories:  pure water, pure seawater, and 

natural waters.  Chemically pure water and seawater are free from traces of dissolved 

organic substances and are not found in nature (Morel and Prieur, 1977), but are useful as 

a baseline for the characteristics of natural waters (Robinson, 2004).  Natural waters are 

those with varying concentrations of solutes and particulates that normally occur on Earth 

and are sensed by remote sensing systems.  Water displays 2 types of optical properties: 

inherent optical properties (IOP’s) and Apparent Optical Properties (AOP’s).  IOP’s are 

those properties that depend only on the medium and are independent of the incident light 

(Smith and Baker, 1981).  This type of property includes characteristics such as the 

absorption coefficient, index of refraction, and beam attenuation coefficient.  AOP’s are 

the properties that depend on both the medium and the ambient light field.  These include 

the average cosines, irradiance reflectance, and diffuse attenuation coefficients (Mobley, 

1994).   

In addition to these basic optical properties of natural waters, the spectral 

response is affected by the presence of dissolved and particulate matter.  These materials 

impact the absorption and scattering that occurs in the water column.  Commonly 

encountered optically significant constituents of natural water include:  suspended 

particulate matter, phytoplankton, and dissolved organic material (Robinson, 2004).  

These constituents come from biological and physical processes and vary widely in 

concentration and location over space and time.  This problem has led to a development 

of water classification systems that account for the varying presence of these particles. 

A basic system of classification was developed by Morel and Prieur (1977).  In 

their system 2 large classes were developed, Case 1 and Case 2.  Case 1 consists of water 

dominated by phytoplankton, while Case 2 water is dominated by inorganic particles.  A 

more popular and detailed system was developed by Jerlov (1976) based on the water 
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clarity.  This system divides open ocean waters into 5 classes: I, IA, IB, II, and III based 

on their transmittance curves.  Type I represents the clearest oceanic waters and type III 

waters are the most turbid, generally found in coastal areas.  Most coral reef waters are 

classified as Type I or II, allowing light to penetrate sufficiently for bottom cover 

classifications (Green et al., 2000). 

E. SPECTRAL CLASSIFICATION 

The information gathered remotely can be used to identify the habitats or other 

features present in a particular location.  Classification is the process of identifying, 

organizing into groups, and labeling pixels with similar properties, which can also be 

referred to as thematic mapping (Green et al., 2000; Lillesand et al., 2004).  Many objects 

have well known and documented energy return characteristics, called spectral 

signatures, which can be used for terrain classification.   

The information received at the sensor, and then used for classification, is affected 

by the previously discussed atmospheric and seawater interactions which must be 

accounted for to accurately map the area of interest.  Following image processing aimed 

at correcting these effects, the data will be input into a statistical algorithm that will 

organize the individual pixels into distinctive groups (Green et al., 2000).  This process 

can be supervised or unsupervised.  Once the image is classified, the accuracy of the 

classification must be assessed using a descriptive or analytical method. 

1.  Spectral Signatures 

Spectral signatures, also referred to as response patterns or reflectance curves, are 

representations of the distinctive, characteristic energy reflected and absorbed by 

materials at specific wavelengths (Jensen, 2000).  These energy patterns can be used to 

differentiate and classify substrates.  In addition to the absorbing and reflective 

characteristics of these materials, these signatures are influenced by time, space, and the 

atmosphere.  Spectral signatures are dependent on the wavelength and the effects of 

reflection, absorption, and transmission on the energy being measured (Lillesand et al., 

2004).  Terrain classification maps can be developed by exploiting the different spectral 

signatures collected from different locations in the imagery.  These classifications take 



advantage of the differences in material response patterns to separate various substrates 

into classes.  Figure 12 illustrates the varying response between several types of 

manmade and natural materials.   

 

Figure 12.   High resolution spectral response curves of several materials  (From Olsen, 
2007) 

 

Spectral signatures from marine and coastal environments can be used to guide 

coastal and benthic classifications, such as identifying mangrove populations (Wang et 

al., 2004), or mapping coral reefs and sublittoral habitats (Benfield et al., 2007).  Figure 

13 shows the distinct spectral response curves from a coral reef habitat, including non-

coral substrates (Part A) and four types of coral (Part B).  All of these substrates 

commonly occur in sublittoral environments.   
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Figure 13.   Spectral responses of coral and non-coral substrates  (From Lubin et al., 2001) 
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2. Image Processing 

The data collected at the sensor includes a significant amount of information that 

is not reflectance from the area of interest:  because of the complex pathways in the 

atmosphere and water column, only about 10% of the data received comes from the 

ocean bottom (Mishra et al., 2005).  In fact, atmospheric scattering accounts for the 

majority of the signal received by the sensor (Robinson, 2004).  Several techniques 

designed to reduce these contributions are used to process the data prior to classification.  

These techniques include geometric correction, radiometric correction, sunglint removal, 

and water column correction.   

a. Geometric Correction 

The raw data collected by a satellite sensor contains some inherent 

geometric distortions and requires some initial processing to be useful in mapping.  These 

errors come from known sources such as panoramic distortion, Earth’s rotation, 

orientation, instrument error, and variations in satellite orbits (Green et al., 2000).  The 

correction process for these errors takes place in 2 steps: removing predicted errors and 

then accounting for unpredictable elements (Lillesand et al., 2004).  These steps are 

usually performed by the image suppliers. The image received from the supplier should 

conform to a map projection and have a coordinate system so that it can be used for 

measurements, comparisons, and field studies (Green et al., 2000).  The images used in 

this study were geometrically corrected by the suppliers (GeoEye and DigitalGlobe) prior 

to receipt by Naval Postgraduate School. 

b. Radiometric Correction 

Radiometric correction is a sequence of steps that converts the data from 

relative brightness units to physical units useful for comparison with other physical 

quantities.  This process occurs in 3 steps: 1) conversion of digital numbers (DN) to 

spectral radiance values, 2) conversion of spectral radiance to apparent reflectance, and 3) 

removal of atmospheric effects from absorption and scattering (Green et al., 2000).  Steps  



1 and 2 are performed to account for the way each sensor operates and records data.  

Conversion of data to spectral radiance follows a linear relationship as illustrated in 

Figure 14. 

 

 

Figure 14.   Radiometric response function for a sensor channel (From Lillesand et al., 
2004) 

 

The spectral radiance can be found by solving the following linear equation (3): 

 DN GL B= +  (3) 

DN is the digital number recorded by the sensor.  G is the slope of the response function, 

or gain.  L is the spectral radiance.  B represents the intercept of the response function or 

channel offset (Lillesand et al., 2004).   
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 Conversion of this data to spectral radiance removes the effects of the sun 

elevation angle and the earth-sun distance at the time the image was aquired (Lillesand et 

al., 2004).  This allows images taken at different times by different sensors to be 

compared directly.  For example, Figure 15 illustrates the effects of seasonal changes on 

the solar elevation angle. 

 

Figure 15.   Seasonal changes effect on solar elevation angle (After Lillesand et al., 2004) 

 

Equation (4) represents the relationship between pixel values in radiance and 

apparent reflectance at the top of the atmosphere (Green et al., 2000). 

 
2

cos( )
Ld

ESUN SZ
πρ =  (4) 

Here ρ is the unitless planetary reflectance at the satellite; L is the spectral radiance at the 

sensor calculated in the previous step; d2 is the Earth-Sun distance in astronomical units, 

and is a function of the Julian Day of the image acquisition.  ESUN is the mean solar 
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exoatmospheric spectral irradiance and is different for each sensor and band.  SZ is the 

sun zenith angle in degrees when the data was collected, and is usually provided with the 

image (Green et al., 2000).  The conversion from radiance to reflectance can be 

performed as a direct calculation by the user or can be accomplished using atmospheric 

correction software (e.g., ATCOR, a module for ERDAS IMAGINE).   

 In step 3 of the radiometric correction, the effects of atmospheric scattering and 

absorption can be removed.  This is a crucial step because as much as 90% of the 

measured radiance can be due to the scattered light from the atmosphere (Robinson, 

2004).  Three atmospheric correction approaches are presented in Figure 16. 

 

Figure 16.   Three approaches to atmospheric correction (From Green et al., 2000) 

 

Methods that rely on the removal of path radiance, like the first approach, are 

generally simple and may require user input (Beisel and Woodhouse, 2004).  These 

methods are not usually used for image to image comparisons and can range from simple 

to mathematically intensive calculations (Green et al., 2000).  With sufficient field data, a 

direct calibration can be performed.  In this second method, the reflectance of ground 

targets is measured in situ to generate a calibration curve that is then applied to the image 

(Green et al., 2000).  The third approach relies on atmospheric modeling programs such 

as ACORN; ATCOR for ERDAS IMAGINE; and FLAASH for ENVI (Beisel and 

Woodhouse, 2004).  This is perhaps the most sophisticated method and is suitable for 

image to image comparison (Green et al., 2000).   
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c. Sunglint Removal 

Another unwanted contribution to the energy collected by the sensor is the 

light reflected from the sea surface, or sun glint (Robinson, 2004).  In satellite remote 

sensing, the occurrence of sun glint is a common, usually unavoidable problem that can 

make images unusable for bottom feature mapping (Hedley et al., 2005).  A technique 

using the characteristics of the near infrared band, developed by Hochberg et al. (2003), 

has shown increased accuracy in benthic habitat classifications.  This technique uses the 

water absorption characteristics of the near infrared band to scale the glint intensities of 

the visible bands, effectively eliminating sun glint in the image and revealing previously 

obscured bottom features.  

d. Water Column Correction 

Light entering the water will experience exponential losses in intensity due 

to absorption and scattering in the water column (Robinson, 2004).  Mapping underwater 

habitats is significantly affected by the depth of water because of the variable effects of 

attenuation on different regions of the electromagnetic spectrum (Green et al., 2000).  

Figure 17 shows variation in the spectral responses of the same substrate (i.e., seagrass) 

due to the non-uniform effects of attenuation on different electromagnetic bands at 

various depths.    



 

Figure 17.   Spectral response at varying depths (Green et al., 2000) 

 

This effect is a commonly cited difficulty in marine remote sensing literature, and 

its removal has been shown to significantly improve classification accuracy in coral reef 

habitats (Mumby et al., 1998).  In general, removal of these effects would require both 

measurement of depth for every pixel and knowledge of the characteristics of the water 

column (Green et al., 2000).  Lyzenga (1978, 1981) proposed a simple image based 

method which compensates for these effects by producing a depth-invariant bottom index 

for pairs of spectral bands.   

3. Supervised Classification 

Supervised classification techniques require the analyst to specify the types of 

ground cover in a scene through the use of training data (Lillesand et al., 2004).  The 

generation of a classification has 2 distinct steps: training and classification.  Training is 

the process of setting a spectral envelope for a class and, for supervised classification, 

requires a priori information about the image data and habitats to be mapped (Green et 
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al., 2000).  The algorithm then compares the pixel data in the image to the user defined 

parameters and produces a classification output. 

4. Unsupervised Classification 

Unsupervised classification does not use training data as the basis of 

classification.  This method uses statistical clustering techniques to determine the 

dominant spectral signatures within an image (Green et al., 2000).  Unsupervised 

classifications produce spectral classes based on natural groupings of image values and 

require no initial user knowledge of the area (Lillesand et al., 2004).  This technique only 

requires the user to define the number of desired output classes and the statistical 

parameters for the algorithm to work within (Green et al., 2000).  In the supervised 

approach useful information is defined and then spectral differentiation is examined, 

while the unsupervised method spectrally determines separable classes, and then the 

utility is defined (Lillesand et al., 2004).  The output classes should be evaluated, and 

possibly combined by the user to generate the final thematic map. 

5.   Assessing Classification Accuracy 

Accuracy assessment is a necessary step to determine the utility of remotely 

sensed data and its derived classification maps.  One of the most common ways to present 

classification data for accuracy assessment is an error matrix (Congalton, 1991; 

Congalton and Green, 1999).  Error matrices compare the results of an automated 

classification to known reference data on a category-by-category basis (Lillesand et al., 

2004).  The simplest form of assessing accuracy is the Overall accuracy.  This method 

compares the number of pixels accurately classified to the total number of pixels 

(Congalton, 1991; Congalton and Green, 1999). 

Additional information about each category identified can also be obtained 

through other measures of accuracy.  Producer’s accuracy is a measure of how well a 

certain area can be classified, and is obtained by dividing the total number of correctly 

identified pixels in a category by the total number of pixels in that category derived from 

reference data (Congalton, 1991; Congalton and Green, 1999).  User’s accuracy indicates 

the probability a pixel classified into a category actually represents that category on the 
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ground, and is calculated by dividing the number of correctly classified pixels in a 

category by the total number of pixels classified in that category (Lillesand et al., 2004).  

Each type of assessment provides a different measure and, in order to get a complete 

picture, all three should be considered.    
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III. PREVIOUS WORK 

Satellite remote sensing has become a valuable technique for benthic assessments 

and monitoring.  By exploiting the reflected energy received by a satellite sensor, marine 

environments can be classified without requiring extensive field surveys (Lubin et al., 

2001).  As higher resolution data becomes available, new studies have been undertaken to 

determine what benefits can be derived from the additional information provided by more 

advanced systems.  Recent studies have compared classifications of terrestrial and marine 

environments developed from airborne and space-based sensors, and have also 

investigated the potential advantages of increased spatial resolution.  The studies of 

Mumby and Edwards (2002), Wang, et al. (2004), and Benefield, et al. (2007) are 

examples of this type of investigation.  

Mumby and Edwards (2002) investigated the benefit of the increased spatial 

resolution available from IKONOS satellite imagery to mapping marine environments. 

This research compared the marine classification performances of LANDSAT, SPOT, 

IKONOS and CASI sensors in an area in the Turk and Caicos Islands.  Image processing 

was used to develop benthic classification maps of a study area that had previously been 

extensively surveyed.  Mumby and Edwards hypothesized that the improved spatial 

resolution would lead to more accurate benthic classifications.  This study concluded that 

classifications derived from IKONOS were 20% more accurate than previous satellite 

imagery (LANDSAT and SPOT), yet problems still existed in discriminating between 

coral, algae, and seagrass.  

Wang, et al. (2004) performed a direct comparison of the classification accuracy 

obtained from IKONOS and QuickBird imagery for coastal habitats.  This study tested 

the benefits of increased spatial resolution for mapping populations of mangroves on 

Panama’s Caribbean coast.  Images from both satellites were processed, subsets were 

chosen, and the spectral qualities of both satellites evaluated.  Two sets of classification 

maps, based on 3 different types of mangrove canopies and 4 other land cover types, 

were produced using either multispectral data alone or including both multispectral and 

panchromatic data.  The classification success of each method was evaluated using an 
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error matrix to compare statistical values.  The authors found that IKONOS was slightly, 

yet significantly more accurate than QuickBird in the multispectral classification and that 

the addition of panchromatic data had little effect on either image (Wang, et al., 2004).   

Benefield, et al. (2007) compared 2 sensors (LANDAT and QuickBird) and the 

accuracies of 3 mapping techniques for coral reef environments in Panama.  This study 

was the first to assess QuickBird’s accuracy in a coral reef habitat and surveyed an area 

containing previously unmapped substrates.  The questions investigated included: 

determining what marine habitats could be discriminated; what benefit QuickBird’s 

higher spatial resolution provides to classification accuracy; and what benefits were 

derived from contextual editing and object-oriented classification over traditional pixel 

based classification techniques.  Accuracy was determined using error matrices and 

compared using Overall Accuracy, User’s Accuracy, and Z-tests.  This study determined 

that Overall and User’s accuracies for QuickBird image classifications were significantly 

better than LANDSAT for all methods tested (Benefeild, et al., 2007).  The benefits of 

QuickBird over LANDSAT in this study were found to be similar to those of IKONOS 

over LANDSAT from previous studies (e.g., Andréfouët et al., 2003; Capolsini et al., 

2003). 

 



IV. RESEARCH LOCATION 

A. THE NORTHWEST HAWAIIAN ISLANDS  

The Northwest Hawaiian Islands (NWHI) are a chain of largely uninhabited 

islands and atolls stretching about 1800 km across the North Pacific Ocean from Nihoa to 

Kure Atoll (Friedlander et al., 2008).  Figure 18 illustrates the location of these islands, 

northwest of the main Hawaiian Islands.   

 

Figure 18.   Hawaiian Islands National Wildlife Refuge (From U.S. Fish & Wildlife 
Service) 

 

Most of these islands are entirely built of coral and coralline algae carbonates.  

This area contains diverse wildlife, various habitat types, and the full range of marine life 

originally found in the main Hawaiian Islands (Rauzon, 2001).  For these reasons, this 

area has a long history of protection by the U.S. Government, beginning in 1909 with the 
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creation of the Hawaiian Island Bird Reservation by President Roosevelt through 

Executive Order 1019 (Rooney et al., 2008).  In 2006, Presidential Proclamation 8031 

designated the NWHI as the Northwestern Hawaiian Islands Marine National Monument 

to preserve the unique ecosystems and cultural significance of the region.  The area 

covers 13,000 square kilometers and is home to one of the most extensive and healthy 

coral reef systems in the world (Grigg et al., 2008).  The combination of clear water, 

diverse substrates make this area an ideal test area for conducting this benthic terrain 

classification study. 

B. MIDWAY ATOLL 

Midway Atoll is located at 28.2 N latitude and 177.3 W longitude approximately 

1850 km northwest of Honolulu, near the end of the NWHI chain.  The site is both a 

National Wildlife Refuge and the Battle of Midway National Memorial managed by the 

U.S. Fish and Wildlife Service.  The atoll contains 3 islands surrounded by a nearly 

circular fringing reef about 10 km in diameter (Rooney et al., 2008).  See Figure 19 

below.   

 

Figure 19.   Map of Midway Atoll (From http://www.nicholas.duke.edu/blog/hawaii/skin-
photos/Midway.gif) 
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Sand Island is the largest (~1200 acres) and is the only continuously inhabited 

land in the NWHI archipelago.  The 2 smaller land masses, Eastern Island and the 

ephemeral Spit Islet, are about 340 acres combined and are primarily bird habitats 

(Rooney et al., 2008). Midway Atoll was first inhabited and used as a communications 

station by the Pacific Cable company in the early 20th century. The atoll next served as a 

stop on the Pan American Airlines Clipper route and then became an important naval 

base during World War II (Rooney et al., 2008).  The U.S. Navy maintained Midway as 

an active air facility and listening post throughout the Cold War and then, in July of 1997, 

turned over the entire atoll to the U.S. Fish and Wildlife Service (Burger and Gochfeld, 

2000).  Today, Midway Atoll is a nesting and resting place for many seabird species and 

home to critically endangered Hawaiian monk seals, endangered Laysan teals, and 

threatened green sea turtles.  

A nearly circular fringing reef encloses and protects the lagoon of Midway Atoll.  

Its depths range from approximately 25 m to exposed reef crests, allowing the whole area 

to be mapped using satellite remote sensing (Camacho, 2006).  The lagoon contains a 

wide range of wildlife and a variety of bottom types including: coral reefs, algae, sand, 

and rubble (Rauzon, 2001).  Because of previous and ongoing Naval Postgraduate School 

research conducted at Midway Atoll, a library of multispectral imagery was available for 

this location, making this an ideal location for comparison of satellite classification 

accuracies.      
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V. MATERI ALS AND METHODS 

A. MATERI ALS 

1. Quic kBird 

On 18 October 2001, Digital Globe Inc. launched the QuickBird remote sensing 

satellite.  The onboard multispectral sensor delivers panchromatic images with 0.61 to 

0.72 m resolution and multispectral images in blue, green, red, and near infrared with 

2.44 to 2.88 m resolution from a 450 km orbit.  When launched, QuickBird achieved the 

highest resolution imagery available commercially, surpassing the resolution collected by 

IKONOS.  QuickBird can image targets up to 30º off nadir and has an orbital period of 

93.5 minutes (Digital Globe, 2007).  Table 2 provides an overview of QuickBird’s 

characteristics. 

 

Launch Date 18 October 2001 
Launch Location Vandenberg Air Force Base, CA 
Orbit Altitude 450 km 
Orbit Inclination 97.2º, sun-synchronous 
Speed 7.1 km/second 
Equator Crossing Time 10:30 a.m. (descending node) 
Orbit Time 93.5 minutes 
Revisit Time 1-3.5 days depending on lat (30º off-nadir) 
Swath Width 16.5 km at nadir 
Digitization 11 bits 

Resolution 

Pan:  61 cm (nadir) 
      72 cm (25º off-nadir) 
MS:   2.44 m (nadir) 
      2.88 m (25º off-nadir) 

Image Bands 

Pan:      725 nm 
Blue:     479.5 nm 
Green:    546.5 nm 
Red:      654 nm 
Near IR:  814.5 nm 

Table 2. QuickBird characteristics (Digital Globe, 2007) 
 



A high resolution multispectral QuickBird image of Midway Atoll was acquired 

on 18 October 2007 at 23:02:34 GMT (12:02:34 local).  The image is shown in Figure 

20. 

 

Figure 20.   18 October 2007 QuickBird image of Midway Atoll 
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2. IKONOS  

The IKONOS multispectral imaging satellite was launched by Space Imagaing 

(now GeoEye) on 24 September 1999.  Orbiting the Earth at 681 km, IKONOS produces 

panchromatic imagery with resolution ranging from 0.82 to 1.0 m and multispectral 

imagery with resolution from 3.2 to 4.0 m.  The IKONOS panchromatic sensor made 

history as the world’s first 1 meter commercial remote sensing satellite.  The satellite’s 

multispectral sensor collects data in 4 spectral bands (blue, green, red, and near infrared) 

and 1 panchromatic band.  IKONOS orbits the Earth every 98 minutes and is capable of 

imaging targets up to 26º off-nadir (GeoEye, 2006).  A summary of IKONOS’s 

characteristics is provided in Table 3.   

 

Launch Date 24 September 1999 
Launch Location Vandenberg Air Force Base, CA 
Orbit Altitude 681 km 
Orbit Inclination 98.1º, sun synchronous 
Speed 7.5 km/second 
Equator Crossing Time Nominally 10:30 a.m. solar time 
Orbit Time 98 minutes 
Revisit Time Approximately 3 days at 1-meter resolution, 40º altitude 
Swath Width 11.3 km at nadir 
Digitization 11 bits 

Resolution 
Pan:  0.82 m (nadir)
      1.0 m (26º off-nadir) 
MS:   3.2 m (nadir) 
      4.0 m (26º off-nadir)

Image Bands 

Pan:      0.526 - 0.929 µm 
Blue:     0.445 - 0.516 µm 
Green:    0.506 - 0.595 µm 
Red:      0.632 - 0.698 µm 
Near IR:  0.757 - 0.853 µm 

Table 3. IKONOS characteristics (GeoEye, 2006) 

 
 
 
 



A multispectral IKONOS image of Midway Atoll was acquired on 16 May 2008 

at 22:38:39 GMT (10:38:39 local).  This image is displayed in Figure 21.   

 

Figure 21.   16 May 2008 IKONOS image of Midway Atoll 
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3. Softw are 

a. ENVI 4.4 

The Environment for Visualizing Images (ENVI), a product of the ITT 

Industries Corporation, is a software package for viewing, analyzing, and extracting 

information from numerous sources to include: panchromatic, multispectral, 

hyperspectral, radar, thermal, and lidar data (ITT, 2007).  ENVI 4.4 was used to perform 

spatial subsetting, radiance conversion, atmospheric correction, glint removal, water 

column correction, and benthic classification on both the QuickBird and IKONOS 

imagery in this research.  ENVI’s band math function was used extensively throughout 

the image processing. 

b. ACORN 5.0 

Atmospheric Correction Now (ACORN) is a software package by ImSpec 

LLC that provides atmospheric correction for multispectral and hyperspectral data in the 

range of 350 to 2500 nm.  ACORN uses look-up-tables calculated with the MODTRAN-

4 radiative transfer code to model atmospheric gas absorption and scattering effects 

(ImSpec, 2004).  MODTRAN-4 is a version of the U.S. Air Force atmospheric 

transmission, radiance, and flux model developed jointly by Spectral Sciences, INC. and 

the Air Force Research Laboratory Space Vehicles Division (Berk et al., 1999).  ACORN 

uses this model to convert calibrated sensor radiance measurements to apparent surface 

reflectance while accounting for the affects of the atmosphere (ImSpec, 2004).  ACORN 

offers a range of atmospheric correction modes.  All ACORN atmospheric corrections in 

this research were carried out using Mode 5: Radiative transfer atmospheric correction of 

calibrated multispectral data. 

c. ATCOR 

Leica Geosystems Geospatial Imaging distributes the Atmospheric 

Correction (ATCOR) algorithm which operates as a module in their ERDAS IMAGINE 

9.0 software imaging package.  ATCOR performs de-hazing (terrestrial images only), 

atmospheric, and topographic corrections on multispectral and hyperspectral imagery.  Its 
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atmospheric database contains a wide range of radiative transfer values for various 

weather conditions and sun angles calculated using the MODTRAN-4 code.  ATCOR for 

IMAGINE 9.0 is comprised of 2 modules; ATCOR2 for relatively flat “two dimensional” 

terrain and ATCOR3 for rugged “three dimensional” terrain (Leica, 2006).  All ATCOR 

atmospheric corrections in this research were performed using ATCOR2. 

B. METHODS 

1. Quic kBird 

a. Spatial Subsetting 

The 18 October 2007 QuickBird image was initially subset in order to 

remove unwanted portions of the image and to reduce processing time.  A subset was 

chosen that comprises all habitats, including the entire lagoon, fore reef environments, 

and surrounding visible seaward benthic substrate, but leaving out deep ocean waters 

seaward of the crest. A mask was then applied to this subset to remove unwanted land 

and clouds.  The mask was constructed by creating a band threshold Region Of Interest 

(ROI) using the image’s NIR band to distinguish the land and clouds (high NIR returns) 

from the water (low NIR returns).  Manual editing was used to fine tune ROI before 

converting it into an image mask.  The masked subset is displayed in Figure 22. 



 

Figure 22.   Masked QuickBird image subset 

 

b. Radiance Conversion 

QuickBird products are delivered to the user as radiometrically corrected 

image pixels.  These pixels are represented as digital numbers (DN) whose values are a 

function of how much light (spectral radiance) enters the sensor’s aperture at the time of 

acquisition.  These DNs are unique to the sensor and the environmental conditions at the 
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time of acquisition and should not be directly compared to imagery from other sensors or 

to other QuickBird imagery captured under different conditions.  Therefore the imagery 

must be converted to spectral radiance before analysis and comparison with other 

imagery can occur (Krause, 2003; 2005). 

Conversion to top-of-atmosphere spectral radiance (Lλ) is a two step 

process that involves multiplying radiometrically corrected image pixels (q) by the 

appropriate absolute radiometric calibration factor (K) and dividing the product by the 

effective bandwidth ( λΔ ).  This step is defined in Equation (5). 

 ,
,

Band Pixel Band
Pixel Band

Band

K q
Lλ λ

•
=

Δ
 (5) 

The absolute radiometric calibration factor was obtained from the 

metadata supplied with the QuickBird imagery, and the effective bandwidth was obtained 

from Krause (2005).  This step was performed using the QuickBird Radiance Calibration 

Utility in ENVI’s preprocessing software package.   

c. Atmospheric Correction 

Removing the optical effects caused by light’s interaction with the 

atmosphere before image analysis is imperative and yields significant improvements to 

subsequent results.  As mentioned in Chapter II, Section E-2-b, Green et al.  (2000) 

differentiate atmospheric correction techniques into three broad groups: removal of path 

radiance, direct calibration using field-derived reflectance, and atmospheric modeling.  

Two different atmospheric modeling techniques were applied to the QuickBird image 

along with a simple conversion to reflectance in order to assess which technique 

produced the best results, as detailed below.  Corrected vegetation spectra were compared 

in order to choose the best correction technique.   

(1) Conversion to Top-of-Atmosphere Reflectance (TOAR):  The 

first technique used was a conversion to top-of-atmosphere reflectance.  This method 

does not account for topographic or atmospheric distortions.  The calculation for top-of-

atmosphere band-averaged reflectance (ρλ) is shown in Equation (6) (Krause, 2005). 
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Lλ is spectral radiance, dES is the Earth-Sun distance at the time of acquisition (calculated 

based on the guidance in Krause, 2005), Esunλ is the mean solar exoatmospheric spectral 

irradiance (obtained from Krause, 2005) and θS is the solar zenith angle (obtained from 

metadata).  The band math utility in ENVI was used to perform this calculation.  The 

results are shown in Figure 23, which illustrates spectral profiles of vegetation from the 

unprocessed DN image and the 3 atmospheric correction techniques (TOAR shown in 

red). 
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Figure 23.   QuickBird vegetation spectral profiles: (left) unprocessed, (right) top-of-
atmosphere reflectance (shown in red) 

 
(2) ACORN 5.0:  The image was also separately processed with 

ACORN’s atmospheric correction algorithm.  The input for this correction was the DN 

image subset (.bil format of signed integers as required by ACORN) since ACORN 

performs a radiance conversion as part of its algorithm.  ACORN input files include a 

spectral response file, a gain file, and an offset file.  The data for the multispectral 

response file was obtained directly from Digital Globe.  Gain and offset files are used to 

convert the original data (varying units depending on the source) into radiance with units 

of W/m2·µm·sr (ImSpec, 2004).  The mathematics outlined in Krause (2005) were used 

to calculate the coefficients for the gain file that convert unprocessed DNs to radiance 

values.  Zero values were used for each of the 4 bands in the offset file since the 
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conversion to radiance does not require addition or subtraction.  In addition to these 3 

files Acorn required inputs for several variables in its model.  Table 4 contains the input 

data used with ACORN that was not obtained from the image metadata along with the 

data source. 

 
Variable Value Source 
Atmospheric Model “Tropical” Experimentation 
Atmospheric Visibility 100 km ACORN User’s Manual 
Atmospheric Water Vapor 25 mm ACORN User’s Manual 

Table 4. QuickBird ACORN input values 

 
The vegetation spectral profile from the ACORN atmospherically 

corrected image (shown in red) is displayed alongside a vegetation spectral profile from 

the unprocessed image (Figure 24). 
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Figure 24.   QuickBird vegetation spectral profiles: (left) unprocessed, (right) ACORN 

atmospheric correction (shown in red) 

 
(3) ATCOR:  A third atmospheric correction algorithm was used 

on the original subset (ATCOR2 for ERDAS IMAGINE 9.0).  This correction was 

applied to the subset of the unprocessed DN image file since ATCOR performs a 

radiance conversion as part of its correction algorithm.  ATCOR2 requires a calibration 

file to convert the raw image DN to spectral radiance.  Other required inputs include: 

sensor type, solar zenith angle, ground elevation, scene visibility, and a model for solar 
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region.  This solar region model requires knowledge of the satellite and sun tilt angles, 

azimuth angle, and atmospheric model (Leica, 2006). 

The ATCOR User Manual was used to derive the values in the 

calibration file.  The manual also contains equations for calculating the solar zenith angle, 

tilt angle, and azimuth angle.  The atmospheric model used was “US Standard Maritime.”  

The value for scene visibility was then adjusted, and the quality of the output was 

reviewed.  The visibility setting that produced the best result was the maximum allowed 

value of 120 km.  The resulting vegetation spectral profile (shown in red) is displayed in 

Figure 25 and compared to a vegetation spectral profile from the unprocessed image.       
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Figure 25.   QuickBird vegetation spectral profiles: (left) unprocessed, (right) ATCOR 

atmospheric  correction (shown in red) 

 

The displayed vegetation profiles were values averaged over a 

small area of grass pixels from the same location in each corrected image.  Despite a 

reasonable vegetation spectrum, as shown in Figure 25, the results from the ATCOR 

atmospheric correction were flawed:  they contained an unacceptable number of negative 

pixels, particularly in the red band of deep water pixels (i.e., the image was 

overcorrected).  This result mirrors the findings obtained by Camacho (2006) during 

ATCOR processing of a different QuickBird image of Midway Atoll.   

Following spectral comparisons for all 3 methods, ACORN was 

chosen as the best atmospheric correction algorithm and used for all subsequent 
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QuickBird image processing.  This decision was based primarily on the quality of the 

spectral profiles for terrestrial vegetation in the corrected image. 

d. Glint Removal 

A large percentage of satellite imagery of shallow coastal environments 

contains sea surface effects that compromise the reconnaissance of benthic features.  The 

imagery is often severely contaminated by reflected light (glint) on the crests and slopes 

of waves that are generated by surface winds.  Hochberg et al. (2003) first addressed this 

issue and devised a method to filter out most of the glint effects by using data from the 

near-infrared (NIR) band to characterize the spatial distribution of relative glint intensity.  

Hedley et al. (2005) updated the Hochberg et al. method providing a more robust 

technique that was also simpler to implement.  This technique establishes linear 

relationships between the NIR and the visible bands based on a sample of image pixels 

selected from multiple regions displaying a range of sun glint.  The slope of the linear 

relationship (bi) is then used to correct the image based on the expression shown in 

Equation (7). 
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) (i i i NIR NIRR R b R Min′ = − −  (7) 

Where Ri is the uncorrected pixel value for band i, bi is the slope of the regressed line 

between band i and the NIR band, RNIR is the pixel NIR value, and MinNIR is the lowest 

NIR pixel value in the image. Hochberg et al. (2003) point out that the inclusion of the 

MinNIR term constitutes a simple linear atmospheric correction in addition to the glint 

correction.  This term was omitted since an ACORN atmospheric correction had already 

been performed.   

This step was applied to the ACORN atmospherically corrected image 

subset with a mask applied to remove any land and cloud cover.  A sample of image 

pixels was selected from multiple sites of optically deep water displaying a range of sun 

glint.  Figure 26 illustrates the sample sites.   



 

Figure 26.   QuickBird deglint correction sample sites (shown in yellow) 

 

Three linear regressions were then performed on these sample pixels: Blue 

vs. NIR bands; Green vs. NIR bands; and Red vs. NIR bands.  For illustration purposes, 

the Red vs. NIR bands regression is displayed in Figure 27.  Coefficient of Determination 

(R2) values from each regression are outlined in Table 5.   
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The band math function in ENVI 4.4 was then used to apply Equation (7) (without the 

MinNIR term) to our data and produce a deglinted image.  The results of the deglint 

technique are displayed in Figures 28 and 29. 
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Figure 27.   Red vs. NIR bands linear regression of QuickBird image 

 
 

Band Regression R2 
Blue vs. NIR 0.461 
Green vs. NIR 0.634 
Red vs. NIR 0.642 

Table 5. QuickBird glint removal regression R2 values 
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Figure 28.   QuickBird ACORN corrected image (before deglinting) 
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Figure 29.   QuickBird sun glint corrected image 



e. Water Column Correction (WCC) 

As outlined in Chapter II, Section D, the interactions between light and 

water significantly affect the ability to derive information from remotely sensed 

measurements of underwater habitats (Green et al., 2000).  Variable water depth in these 

environments profoundly affects the amount of bottom reflectance that reaches an 

orbiting sensor (Mumby et al., 1998).  Lyzenga (1978; 1981) devised an image-based 

process to compensate for the effects of varying water depth on benthic features.  This 

method produces a depth-invariant bottom index from each pair of spectral bands.  

Mumby et al. (1998) built on this technique and provided an easily implemented method 

of producing depth-invariant bands (DIB).  Their method is outlined in Equations (8) 

through (12). 

 ( )ln( ) lni
ij i j

j

kDIB L L
k

⎡ ⎤⎛ ⎞
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 (8) 

Where i and j represent image bands, L is the pixel reflectance value and the ratio of 

attenuation coefficients (ki/kj) is defined by: 
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Where a is the difference in the variances of bands i and j divided by twice their 

covariance, as shown below: 
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The covariance ijσ  is the mean of the products of  and iX jX  minus the product of the 

means of  and iX jX : 

 ij i j i jX X X Xσ = − •  (11) 

Where X is the natural log of pixel reflectance (L). 

 ln( )iX Li=  (12) 
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This step was performed on the ACORN atmospherically corrected, 

masked image subset after the deglint correction had been applied.  A sample of pixels 

across the image representing a single substrate at different water depths is needed to 

implement the water column correction. Sand pixels were chosen from multiple locations 



at variable water depths because of the relative ease of recognizing this substrate in the 

image without a priori field knowledge.  The sand pixels chosen are illustrated in Figure 

30. 

 

Figure 30.   QuickBird WCC sample (shown in red, some highlighted with circles)  
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This sample was then used to generate the ki/kj terms for the 3 band 

combinations: blue vs. green; blue vs. red; and green vs. red.  Equation (8) was then 

applied to the image using the band math utility in ENVI 4.4 to create 3 depth-invariant 

bands.  These bands were combined into the image displayed in Figure 31. 

 

Figure 31.   QuickBird water column corrected image     
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f. Benthic Classification 

An unsupervised, Iterative Self-Organizing Data Technique of Analysis 

(ISODATA) classification method was used to classify the benthic substrates of the 

processed image of Midway Atoll.  This technique is the most used method for 

unsupervised classification (Tso and Mather, 2001).  Unsupervised ISODATA 

classification was used by Call et al. (2003) in their coral reef habitat discrimination  

using Landsat TM multispectral imagery and by Mishra et al. (2006) in their benthic 

habitat mapping of tropical marine environments using QuickBird multispectral imagery.   

ISODATA classification uses a minimum spectral distance to iteratively 

assign each candidate pixel to a class.  It then redefines the criteria for each class and 

classifies again so that spectral distance patterns emerge from the data.  After each 

iteration a new mean is calculated for each class.  These new means are used to define the 

classes for the next iteration.  The process continues until there is little change between 

iterations or until a user specified threshold is met (Calvo et al., 2003).   

Additional criteria can be used to refine the ISODATA procedure.  Users 

can set tolerances for maximum class standard deviation and minimal distance between 

classes.  If a class has a standard deviation greater than the set maximum in any 

dimension then the class is split into 2 classes along that dimension.  Similarly, if the 

distance between 2 cluster means is less than the set minimal distance then those 2 

classes are merged into a single class (Tso and Mather, 2001).   

Unsupervised ISODATA classifications were performed on 2 subsets of 

the water column corrected QuickBird image.  This was done in order to produce 

classifications that facilitate a cross scale comparison between the imagery of the 2 

satellites.  The first subset represents a large area with a small spatial scale and contains 

imagery present and not obstructed by clouds in both the QuickBird and IKONOS 

acquisitions.  This subset will be referred to as the “Central Atoll” subset.  The Central 

Atoll subset was also chosen to decrease the total area of the image, thus reducing the 

amount of time necessary to determine the accuracy of the classification during 

fieldwork, due to the limited amount of available time in the field (two weeks).  This 



subset contains all environments of interest present in the original subset: deep water, 

outer reef, back reef, shallow lagoon, deep lagoon, land and the South pass.   

A second subset was chosen that represents a smaller area with a larger 

spatial scale than the Central Atoll subset.  This subset will be referred to as the “Patch 

Reef” subset since it contains only one small-to-medium sized patch reef (approximately 

1.75 acres).  Both subsets are displayed in Figure 32. 

 

Figure 32.   QuickBird (left) Central Atoll and (right) Patch Reef Subsets 
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ENVI 4.4 was used to perform an unsupervised ISODATA classification 

on both subsets.  The parameters used for the Central Atoll classification are outlined in 

Table 6.  The ISODATA classification process yielded 25 classes.  Contextual editing 

was then used to merge these 25 classes down to 5 classes.  The 5 classes represented 

algae/turf/coral, coral/coralline algae, rubble/turf, sand, and sand/rubble/turf.  The final 

Central Atoll classification is shown in Figure 33. 

 

Parameter Value 
Minimum Classes 45 
Maximum Classes 60 
Maximum Iterations 25 
Minimum Pixels per Class 100 
Maximum Standard Deviation 1 
Minimum Class Distance 5 

Table 6. QuickBird Central Atoll classification parameters 



 

Figure 33.   QuickBird Central Atoll Classification 

 

The parameters used for the Patch Reef classification are outlined in Table 

7.  The ISODATA classification process yielded 9 classes.  These 9 classes were  merged  

into 4 classes using contextual editing techniques.  The final classification is shown in 

Figure 34. 
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Parameter Value 
Minimum Classes 45 
Maximum Classes 60 
Maximum Iterations 25 
Minimum Pixels per Class 100 
Maximum Standard Deviation 1 
Minimum Class Distance 5 

Table 7. QuickBird Patch Reef classification parameters 

 

 

 

Figure 34.   QuickBird Patch Reef Classification 
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2. IKONOS  

a. Spatial Subsetting 

The 16 May 2008 IKONOS image was subset for the same reasons 

outlined above in the QuickBird section (Chapter V Section B-1-a).  A rectangular subset 

was chosen that includes all habitats, including the available portion of the lagoon in the 

acquired image, fore reef environments, and surrounding visible seaward benthic 

substrate.  This masked subset is displayed in Figure 35. 

 

Figure 35.   Masked IKONOS image Subset 
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b. Radiance Conversion 

IKONOS imagery products are delivered to customers as pixels 

represented by DNs.  In order to further analyze this image a conversion to spectral 

radiance (L ) was performed by using Equation λ (13) (Fleming, 2001). 

 DN
L

CalCofλ
λ

=  (13) 

Where  is a wavelength dependent calibration coefficient.  These values were 

provided in Fleming (2001). 

CalCofλ

c. Atmospheric Correction 

As with the QuickBird imagery, the ACORN and ATCOR atmospheric 

correction algorithms were applied to the IKONOS imagery along with a simple 

conversion to reflectance.  Corrected vegetation spectra were compared in order to 

choose the best correction technique.   

 (1) Conversion to Top-of-Atmosphere Reflectance (TOAR):  The 

equation used to convert the radiance subset image into top-of-atmosphere band-averaged 

reflectance (ρλ) is shown in Equation (14) (Fleming, 2001). 
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Where L  is spectral radiance, d is the Earth Sun distance in astronomical units, ES  

the band dependent mean solar exoatmospheric irradiance, and sθ is the solar zenith 

angle.  Values for  were provided in Fleming (2001).  All other values were 

obtained or derived from the image metadata.  Vegetation spectra from the 3 corrected 

images (TOAR shown in red) are displayed in Figure 

λ UNλ  is

 

ESUNλ

36, next to the vegetation spectrum 

from the unprocessed image. 
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Figure 36.   IKONOS vegetation spectral profiles: (left) unprocessed, (right) top-of-
atmosphere reflectance (shown in red)  

 

(2) ACORN 5.0:  The image was also processed using ACORN’s 

atmospheric correction algorithm.  This step was performed on the original DN image 

subset (.bil format of signed integers as required by ACORN) because ACORN 

incorporates a radiance conversion into its algorithm.  The data for the multispectral 

response file was provided by GeoEye.  The input gain and offset files were created using 

the method described in Fleming (2001).  The correction was performed using the inputs 

outlined in Table 8, and image location and collection time were obtained from the image 

metadata.  Vegetation spectral profiles from the ACORN output (shown in red) and the 

unprocessed image are shown in Figure 37. 

 

Variable Value Source 
Atmospheric Model “Tropical” Experimentation 
Atmospheric Visibility 100 km ACORN User’s Manual 
Atmospheric Water Vapor 25 mm ACORN User’s Manual 

Table 8. IKONOS ACORN input values 
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Figure 37.   IKONOS vegetation spectral profiles: (left) unprocessed, (right) ACORN 
atmospheric correction (shown in red)  

 

(3) ATCOR:  ATCOR2 for ERDAS IMAGINE 9.0 was used to 

perform the third atmospheric correction technique for comparison.  This algorithm was 

applied to the original DN image subset.  The ATCOR User manual was used to derive 

the values for solar zenith angle, tilt angle, azimuth angle, and the values in the 

calibration file.  The atmospheric model used was “US Standard Maritime” with 120 km 

used for scene visibility.  A vegetation spectrum taken from the ATCOR output (shown 

in red) is displayed in Figure 38, along with the corresponding spectral profile from the 

unprocessed image. 

Wavelength (nm)

500 550 600 650 700 750 800

N
or

m
al

iz
ed

 D
N

0.2

0.4

0.6

0.8

1.0

1.2

 Wavelength (nm)

500 550 600 650 700 750 800

N
or

m
al

iz
ed

 R
ef

le
ct

an
ce

0.0

0.2

0.4

0.6

0.8

1.0

1.2

TOAR
ACORN
ATCOR

 

Figure 38.   IKONOS vegetation spectral profiles: (left) unprocessed, (right) ATCOR 
atmospheric correction (shown in red)  

 

 65



ACORN was again chosen as the best atmospheric correction algorithm 

after careful comparison of the vegetation spectra from each method.  The ATCOR 

method produced large numbers of negative pixels in the red band of deep water pixels, 

mimicking the results for QuickBird and the results obtained by Camacho (2006). 

d. Glint Removal 

The Hedley et al. (2005) sun glint removal technique was applied to the 

ACORN atmospherically corrected and masked subset.  A sample of image pixels was 

selected from multiple sites of optically deep water featuring uniform sun glint.  Figure 

39 illustrates the sample sites. 

 

Figure 39.   IKONOS deglint correction sample sites (shown in yellow) 
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Linear regressions were performed on the sample pixels for the blue vs. 

NIR bands; the green vs. NIR bands; and the red vs. NIR bands.  Figure 40 shows the red 

vs. NIR bands regression to illustrate this step.  Values for the coefficient of 

determination (R2) for each biplot are displayed in Table 9.  The band math function in 

ENVI 4.4 was then used to apply Equation (7) (without the MinNIR term).  The results of 

the deglint technique are displayed in Figures 41 and 42. 
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Figure 40.   Red vs. NIR bands linear regression of IKONOS image 

 
 

Band Regression R2 
Blue vs. NIR 0.811 
Green vs. NIR 0.875 
Red vs. NIR 0.921 

Table 9. IKONOS glint removal regression R2 values 
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Figure 41.   IKONOS ACORN corrected image (before deglinting) 

 
 

 
Figure 42.   IKONOS sun glint corrected image 
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e. Water Column Correction (WCC) 

The Mumby et al. (1998) water column correction technique was 

performed on the ACORN atmospherically corrected IKONOS image subset after the sun 

glint correction.  A sample of uniform sand pixels was chosen from multiple locations 

representing variable water depths, as shown in Figure 43. 

 

Figure 43.   IKONOS WCC sample (shown in red) 
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This sample was then used to calculate the ratio of attenuation coefficients 

(ki/kj), following Equations (9) through (12) outlined in Section B-1-e, for the 3 band 

combinations: blue vs. green; blue vs. red; and green vs. red.  ENVI's band math utility 

was then used to apply Equation (8) to the image and create three depth-invariant bands.  

These 3 depth-invariant bands were then combined into a single image that is displayed 

in Figure 44. 

 

Figure 44.   IKONOS water column corrected image   
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f. Benthic Classification 

The water column corrected image was subsetted before ISODATA 

classifications were performed.  Two subsets were chosen to match the Central Atoll and 

Patch Reef subsets that were taken from the QuickBird imagery, using geographic 

landmarks to define the subset boundaries.  The Central Atoll and Patch Reef subsets for 

the IKONOS image are displayed in Figure 45. 

 

Figure 45.   IKONOS Central Atoll and Patch Reef subsets 
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An unsupervised ISODATA classification was performed on each subset 

using ENVI 4.4.  The parameters used in the Central Atoll subset are summarized in 

Table 10.  The ISODATA classification process yielded 25 classes.  Contextual editing 

was then used to merge these 25 classes down to the following 5: algae/turf/coral, 

coral/coralline algae, rubble/turf, sand, and sand/rubble/turf.  The final classification is 

shown in Figure 46. 

 

Parameter Value 
Minimum Classes 45 
Maximum Classes 60 
Maximum Iterations 25 
Minimum Pixels per Class 100 
Maximum Standard Deviation 1 
Minimum Class Distance 5 

Table 10. IKONOS Central Atoll classification parameters 

 



 

Figure 46.   IKONOS Central Atoll classification   

 

The parameters used for Patch Reef subset are summarized in Table 11.  

The ISODATA classification process yielded 10 classes that were merged into 4 classes 

using contextual editing.  The final Patch Reef classification is displayed in Figure 47.   
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Parameter Value 
Minimum Classes 45 
Maximum Classes 60 
Maximum Iterations 25 
Minimum Pixels per Class 30 
Maximum Standard Deviation 1 
Minimum Class Distance 5 

Table 11. IKONOS Patch Reef classification parameters 

 

 

Figure 47.   IKONOS Patch Reef classification 

 

C. FIELDWO RK 

1. Choosing Groundtruth Locations 
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A random stratified sampling pattern was used to identify groundtruth points for 

the benthic ISODATA classifications of the Central Atoll.  This method randomly selects 

sites from each class in proportion to the size (or significance) of the class (McCoy, 

2005).  A set of stratified random points was first generated from the IKONOS 

classification.  Then a smaller set of stratified random points was chosen from the 
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QuickBird classification.  These two sets were combined to create a set of 220 

groundtruth points with the following distribution (total points [points from IKONOS, 

points from QuickBird]):  algae/turf/coral 65[50,15], coral/coralline algae 72[60,12], 

rubble/turf 30[25,5], sand 28[20,8], and sand/rubble/turf  25[20,5].   

2. Techniques Used in the Field 

Fieldwork was conducted at Midway Atoll over a 2 week period in July 2008.  A 

two person team surveyed a transect of the Patch Reef and as many sites as time 

permitted from the Central Atoll groundtruth sample points.  In the field, the team 

utilized SCUBA or snorkeling to survey each site.  The majority of sites were surveyed 

by snorkeling due to the shallow water depths at many locations.   

a. Central Atoll Groundtruth 

A total of 135 sites, from the randomly generated set of 220, were 

surveyed over a 10 day period of the fieldwork.  The two person team used an 18 foot 

Boston Whaler to reach each groundtruth point with guidance from a hand held GPS unit 

(Garmin 60CSx).  The portion of the atoll surveyed was chosen on a day by day basis.  

Each day the team would travel to a different section of the lagoon and survey as many 

points as possible based on proximity.  Predicted class totals for completed survey sites 

were calculated daily.  Near the completion of fieldwork, sites were chosen based on 

predicted class and lagoon location in order to maintain similar class and location 

distribution to the 220 point groundtruth set. 

At each site the team would use the hand held GPS unit to pilot the boat to 

the pre-programmed waypoint of the site’s coordinates.  Once the location was reached 

the boat was anchored as close as possible to the waypoint.  The GPS unit was then used 

to estimate a bearing and range to the dive site before the team entered the water.  Once 

in the water the team would swim to the site and survey its benthic characteristics.  Each 

site was defined as a circle centered on its GPS coordinates with a diameter of 10 meters.  

A hierarchical reef habitat classification scheme (Appendix C) was used to record the 

observations at each dive site.  Atoll zone, geomorphic habitat, bottom cover, depth and 
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bottom cover abundance data were collected at each dive site.  Several photographs were 

also taken at each site for future cross referencing. 

b. Patch Reef 

A transect approach was used to groundtruth the Patch Reef.  The survey 

team located the Patch Reef using its image derived GPS coordinates.  Once on site, the 

team used SCUBA to conduct the survey.  A transect was laid down the center of the reef 

using an underwater tape measure starting at the Northern tip of the reef and following a 

magnetic compass bearing of 180º.  Substrate data were recorded every 2 meters along 

the transect.  The classification area was a 1 m2 centered on the distance mark of the 

underwater tape measure.  Pictures were also taken at the 2 m intervals along the transect 

for cross reference. 
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VI. RESULTS 

A. CENTRAL  ATOLL 

The Central Atoll classification accuracy for each satellite sensor was assessed 

using the error matrix technique described by Congalton and Green (1999).  An error 

matrix is a useful way to represent classification accuracy because it represents the 

accuracy within each class and includes errors of inclusion and errors of exclusion 

(Congalton, 1991).  The columns of the error matrices in the results displayed on the 

following pages represent groundtruth data; the rows represent remotely sensed data.  

Each error matrix is accompanied by Overall accuracy, a Producer’s accuracy, and a 

User’s accuracy for each class.  The Overall accuracy is the number of correctly 

classified sites divided by the total number of sites classified.  The Producer’s accuracy is 

the number of correctly classified sites within a class divided by the number of 

groundtruth sites with that classification (column total).  This accuracy shows the 

probability of a groundtruth site being correctly classified and is a measure of exclusion 

or “omission” error.  The User’s accuracy is the number of correctly classified sites 

within a class divided by the total number of sites classified in that class (row total).  This 

accuracy shows the probability that a site classified on the image actually represents that 

class in the field and also represents inclusion or “commission” error (Congalton and 

Green, 1999; Congalton, 1991). 

The first 2 error matrices show the results from the QuickBird and IKONOS 

Central Atoll benthic classifications with the original 5 classes, and are displayed in 

Tables 12 and 13. 

 
 
 
 
 
 
 
 
 
 



 78

 
  Groundtruth Data  
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 ATC CCA RT S SRT Row 
Total 

 

 ATC 22 7 20 0 13 62  
 CCA 6 18 0 0 0 24  
 RT 2 0 2 1 8 13  
 S 0 0 1 9 13 23  
 SRT 0 0 3 1 9 13  
 Column 

Total 30 25 26 11 43 135  
 

Producer's Accuracy User's Accuracy Benthic Classes 

 ATC 73.33% ATC 35.48% ATC = Algae/Turf/Coral 
 CCA 72.00% CCA 75.00% CCA = Coral/Coralline Algae 
 RT 7.69% RT 15.38% RT = Rubble/Turf 
 S 81.82% S 39.13% S = Sand 
 SRT 20.93% SRT 69.23% SRT = Sand/Rubble/Turf 
 Overall Accuracy 

 44.44% 

Table 12. QuickBird 5 class error matrix 

 
 

 
  Groundtruth Data  
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 ATC CC
A RT S SRT Row 

Total 
 

 ATC 15 0 12 0 6 33  
 CCA 12 25 2 0 2 41  
 RT 2 0 12 1 14 29  
 S 1 0 0 6 10 17  
 SRT 0 0 0 4 11 15  
 Column 

Total 30 25 26 11 43 135  
 

Producer's Accuracy User's Accuracy 

 ATC 50.00% ATC 45.45% 
 CCA 100.00% CCA 60.98% 
 RT 46.15% RT 41.38% 
 S 54.55% S 35.29% 
 SRT 25.58% SRT 73.33% 
 Overall Accuracy 

 51.11% 

Table 13. IKONOS 5 class error matrix 

 



 

Tables 14 and 15 show the error matrices for QuickBird and IKONOS Central 

Atoll benthic classifications with 4 classes rather than 5 (2 classes were collapsed 

together).  The inclusion of these additional accuracy assessments is explained in the 

discussion section. 

 Groundtruth Data  
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Total
 

 ATC 22 7 0 33 62  
 CCA 6 18 0 0 24  
 S 0 0 9 14 23  
 SRT 2 0 2 22 26  
  Column 

Total 30 25 11 69 135 
 

Producer's Accuracy User’s Accuracy  

 ATC 73.33% ATC 35.48% 
 CCA 72.00% CCA 75.00% 
 S 81.82% S 39.13% 
 SRT 31.88% SRT 84.62% 
 Overall Accuracy 

 52.59% 

Table 14. QuickBird 4 class error matrix 

 
 

 Groundtruth Data  
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Total
 

 ATC 15 0 0 18 33  
 CCA 12 25 0 4 41  
 S 1 0 6  10 17  
 SRT 2 0 5 37 44  
  Column 

Total 30 25 11 69 135 
 

Producer's Accuracy User's Accuracy  

 ATC 50.00% ATC 45.45% 
 CCA 100.00% CCA 60.98% 
 S 54.55% S 35.29% 
 SRT 53.62% SRT 84.09% 
 Overall Accuracy 

 61.48% 

Table 15. IKONOS 4 class error matrix 
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B. PATCH REEF 

The data recorded in the field during the Patch Reef transect survey is displayed 

in Figure 48 along with the QuickBird and IKONOS classifications for the pixels along 

the same transect.  The figure consists of 3 graphs, 1 for each set of data.  The horizontal 

axis of each graph represents the distance in meters along the transect from the starting 

point at the edge of the patch reef, while the vertical axis represents different classes.  

These graphs are stacked vertically to facilitate cross referencing between the 3 sets of 

data.  Class transitions are identified by letters, and some transitions to the same class 

within a small distance are grouped together (i.e., transition A in QuickBird and transition 

C in the groundtruth data) in an effort to make discussion of these results easier. 
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Transect Distance (m)
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Figure 48.   Patch Reef Transect: (Bottom) Groundtruth classification; (Middle) 
QuickBird classification; (Top) IKONOS classification  
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VII. DISCUSS ION 

Remote sensing provides an important, complementary approach to in situ 

fieldwork for monitoring benthic habitats in shallow water environments.  This research 

builds on the work of Mumby and Edwards (2002); Capolsini et al. (2003); and Benefield 

et al. (2007), mapping coral reef environments, and Wang et al. (2004), classifying 

coastal mangrove habitats.  The overarching goal is to determine the effects of higher 

spatial resolution on classification accuracy.  These studies have shown that the increase 

in resolution from Landsat (30 m pixels) to IKONOS (4 m pixels) and (QuickBird 2.8 m 

pixels) produced improvements in classification accuracy.  The research presented here 

examines the effects on classification accuracy achieved by the smaller increase in 

resolution from QuickBird to IKONOS in a coral reef environment, where, due to its high 

spatial heterogeneity, even a small increase in spatial resolution is hypothesized to result 

in higher classification accuracy. 

A. CENTRAL  ATOLL 

Overall accuracies for the benthic classifications derived from QuickBird and 

IKONOS imagery for Midway Atoll are lower than those for similar classifications 

carried out by other researchers elsewhere using these same satellites with similar 

processing techniques (Andréfouët et al., 2003; Wang et al., 2004; Benfield et al., 2007).  

Overall accuracy for QuickBird was 44.44% and for IKONOS was 51.11% based on the 

5 class error matrix (Tables 12 and 13).  Producer’s accuracies saw mixed results 

between the two satellite sensors.  QuickBird had greater than 70% Producer’s accuracy 

in 3 of the 5 classes (algae/turf/coral, coral/coralline algae, and sand) with the remaining 

two classes’ Producer’s accuracies less than 25%.  Only 1 of IKONOS’s Producer’s 

accuracies was greater than 70%:  the coral/coralline algae class with 100%.  Producer’s 

accuracies in the other 4 classes were less than 55%.  On average the User’s accuracies 

were lower than Producer’s accuracies for both satellite sensor classifications.  Both 

QuickBird and IKONOS had only one class with User’s accuracy higher than 70% 

(coral/coralline algae and sand/rubble/turf respectively). 
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These results showed unusually low classification accuracies for the rubble/turf 

and sand/rubble/turf classes for both satellite sensors.  For QuickBird, the rubble/turf 

class had the lowest Producer’s and User’s accuracies; while the sand/rubble/turf class 

had the lowest Producer’s accuracy for IKONOS.  These 2 classes are difficult to 

differentiate in the field, even to trained eyes.  The low accuracies for rubble/turf and 

sand/rubble/turf were the first indicator of a significant source of error in this research: 

the quality of the groundtruth data collection.  The two authors of this thesis conducted 

the in situ survey and produced the Central Atoll groundtruth data without being trained 

as marine scientists.  This was also our first attempt at this type of fieldwork.  Fieldwork 

of this nature is ideally conducted by individuals with extensive knowledge of coral reef 

environments and previous experience in performing underwater surveys.  Our fieldwork 

team received familiarization training on the plants, animals, and habitats that 

characterize the benthic environment of Midway Atoll before entering the field.  Training 

utilized taxonomic field guides, satellite imagery, maps, and underwater photographs.  

We were trained on photographic examples of all 5 classes used in the classification, and 

were required to identify substrates from underwater photographs taken at Midway Atoll 

as part of this training.  However, no amount of offsite training can ever substitute for the 

knowledge and experience gained from actually conducting fieldwork in situ.   

Therefore, misclassification errors likely resulted from the quality of the 

groundtruth data.  In an effort to minimize errors caused by the difficulty in 

distinguishing the rubble/turf class from the sand/rubble/turf class in the field, these 2 

classes were merged into a single class which maintained the name sand/rubble/turf.  The 

accuracy results based on these 4 classes are displayed in Tables 14 and 15.  The Overall 

4 class error matrix accuracy achieved by QuickBird and IKONOS were 52.59% and 

61.48% respectively (Tables 14 and 15).  The consolidation of the rubble/turf and the 

sand/rubble/turf class did not affect the satellite sensors ranking based on Overall 

classification performance:   both satellites saw an increase in Overall accuracy of about 

10%.  QuickBird retained 3 classes with Producer’s accuracies greater than 70% and saw 

an increase in those classes with User’s accuracy greater than 70% (coral/coralline algae 

and sand/rubble/turf).  IKONOS saw no increase in the number of classes with 
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Producer’s or User’s accuracies higher than 70%, and retained one class above 70% in 

each type of accuracy (coral/coralline algae and sand/rubble/turf respectively).  On 

average the sand/rubble/turf class experienced an increase of 16.28% across Producer’s 

and User’s accuracies between the two satellites after the merger of the rubble/turf and 

sand/rubble/turf classes. 

The Overall accuracies suggest that IKONOS performed better than QuickBird in 

classifying benthic substrates at Midway Atoll, although the results are likely not 

statistically significant.  This finding agrees with the results reported by Wang et al. 

(2004) on mapping mangrove populations using these two satellite sensors.    

 Geoposition accuracy was another potential source of error for the Central Atoll 

groundtruth.  There were several possible sources for geoposition error in this research: 

the imagery geopositional accuracy (23 meters CE90% for QuickBird and 15 meters 

CE90% for IKONOS, based on the images used in this research); the extrapolation of 

locations from one image to the other; and the variable geopositional accuracy of the 

handheld GPS units (<10 meters, 95% typical) used during fieldwork.  The accuracy for 

handheld units varies spatially and temporally depending on the number of GPS satellites 

in view from the unit.  This also resulted in a couple of occasions where benthic 

substrates observed in the field did not agree with QuickBird or IKONOS classifications, 

but the predicted class from one or both satellite sensors was located adjacent to the 

survey site (within 25 meters).  

B. PATCH REEF 

A transect was used to record the in situ benthic substrate data of the Patch Reef 

in the lagoon of Midway Atoll.  Transects are commonly used to groundtruth data in 

benthic environments.  Joyce et al. (2004) and Hodgson et al. (2004) are 2 examples of 

the use of benthic transects in coral reef habitats.  Additionally Roelfsema et al. (2004) 

suggest that a transect is an appropriate validation method for high spatial resolution 

multispectral data such as QuickBird imagery.   

In assessing the performance of the Patch Reef classifications, error matrices were 

not used due to the elongated (directional) shape of the reef, and the uneven distribution 



 86

of classes found along the transect (disproportionately representing 1 class over the 

others).  A graphical display was chosen instead to highlight class transitions along the 

benthic transect.  When comparing the satellite classifications to the groundtruth data in 

the Patch Reef results (Figure 48), the most noticeable difference is the greater number of 

transitions in the groundtruth data:  the groundtruth contains 9 substrate transitions while 

the QuickBird and IKONOS classification each contain only 4 class transitions.  

Algae was the most abundant class along the transect and is represented in each 

graph by Class 1.  The groundtruth data indicates that the beginning of the transect is 

characterized by 12 meters of Class 2 (groundtruth transition A).  The classifications for 

QuickBird and IKONOS both contain a class transition within the first 12 meters, but 

they do not agree entirely with the groundtruth.  Near the center of the transect the 

groundtruth data contains transitions D and E to classes 4 and 3 respectively.  The 

IKONOS classification contains transitions B and C, both to class 2, and the QuickBird 

classification only identified the second transition (QuickBird transition B).  At the end of 

the transect the groundtruth data contains 3 substrate transitions:  G, H, and I.  The 

QuickBird classification only identified 2 transitions (QuickBird transitions C and D) 

while the IKONOS classification only has 1 class transition (IKONOS transition D).  

Finally, the groundtruth data contains 3 additional transitions that were omitted by both 

QuickBird and IKONOS (groundtruth transitions B, C, and F).  

 A count of omissions and misclassifications will be used to summarize the 

discussion of these data sets.  The QuickBird classification contains 5 omission errors 

when compared to the groundtruth data.  These correspond to groundtruth transitions B, 

C, D, F, and I.  The IKONOS classification also contains 5 omission errors.  The 

omissions correspond to transitions B, C, F, H, and I in the groundtruth.  IKONOS also 

misclassified groundtruth transition D.   

Based on these findings, QuickBird may seem to perform better than IKONOS at 

identifying class transitions along a transect, but these results are likely not statistically 

significant:  the small improvement is based on one less misclassification than IKONOS.  

Both satellite sensors contained 5 omission errors out of 9 class transitions so neither 

performed very well in identifying class transitions at this scale.  Perhaps the feature 
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variability within the Patch reef was not well suited to determine the effects of higher 

spatial resolution on classification accuracy at this scale.  The average feature (class) size 

along the transect was > 5 m.  A feature size of 3 - 4 m, between the resolutions of the 2 

sensors, might be better suited for this experiment.  

The Patch Reef transect was placed in the field starting at a known point (most 

northern tip of the reef) and followed a magnetic bearing of 180º in the presence of ocean 

currents.  In order to compare the groundtruth data to the QuickBird and IKONOS 

classifications the transect had to be plotted in the image analysis software ENVI.  There 

was no precise way to translate a magnetic bearing in ENVI and reproduce the field 

transect exactly.  Instead the known point was used in conjunction with the measured 

length of the transect.  The known start point was easily located on the images in ENVI 

and the Measurement Tool was used to find a bearing to the Southern edge of the patch 

reef, producing a transect with equal length to the transect length measured in the field.  

This process likely introduced geopositional error with contingent misclassifications at 

the Patch Reef scale. 

C. CROSS SCALE COMPARISON 

Ju et al. (2005) highlight the increasing need for applications involving land 

classifications at multiple spatial scales.  Some classification techniques require 

classifications to be performed at a fine scale (such as the Path Reef) so that information 

obtained from the fine scale can be applied to a coarser scale (such as the Central Atoll) 

to classify the coarse scale with higher accuracy (Laliberte, et al., 2005).  Additionally, 

Raptis et al. (2003) show that a single scale cannot accurately represent all classes in a 

complex scene.  These studies demonstrate a need to understand the accuracy of remotely 

sensed data at various spatial scales. 

On a coarse scale level (Central Atoll subset), IKONOS achieved higher overall 

classification accuracies, while QuickBird was better at identifying class transitions on a 

fine scale level (Patch Reef subset).  However these results are not statistically 

significant, and only marginal improvements in accuracy were suggested by their 
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performances in each scale.  The minor difference in accuracies for each sensor suggests 

that their performance is consistent and comparable across scales. 

D. OVERALL  FINDINGS 

This research does not show any significant improvement in classification 

accuracy of the QuickBird sensor over the IKONOS sensor for the highly heterogeneous 

coral reef environment of Midway Atoll.  Further research is necessary to demonstrate 

this finding with any level of statistical significance.  Perhaps the increase in spatial 

resolution between these 2 satellite sensors (4 m to 2.8 m) is too small to produce a 

substantial increase in classification accuracy as shown in previous comparisons.  The 

difference in accuracy between these 2 classifications could be within the range of the 

environmental variations occurring at image acquisition. 
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VIII. COST BENEFIT ANALYSIS 

A cost benefit analysis was conducted to consider the benthic classification 

accuracy results obtained from QuickBird and IKONOS in a different light.  The goal 

here was to examine the impact of various factors on the decision regarding which 

imagery products to use for benthic classification research.  The framework for this 

analysis was derived from the Department of Defense’s Enterprise Integration Toolkit 

(Version 2.0):  Business Case Development Guide (2003).  It should be noted that the 

process in that document was designed to turn a problem statement into a business 

decision and to provide financial justification for that decision.  Research applications for 

satellite imagery do not typically fall into that scenario, but the underlying principles 

behind the business case development can be directly applied to this area of research in 

order to facilitate matching imagery investments to research needs. 

This analysis will be divided into the following steps: 

• Confirm understanding of the problem / opportunity 

• Identify potential solutions 

• State key assumptions 

• Analyze each solution to detail costs and benefits 

• Assess risks 

• Present results 

• Perform sensitivity analysis 

• Determine whether further analysis is warranted 

A. PROBLEM / OPPORTUNITY 

The commercial sector is not flooded with opportunities to exploit the 

classification of benthic environments.  Unlike the commercial industry, the studies of 

oceanography and marine biology have several uses for such techniques.  Two important 
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questions posed by researchers today involve assessing the current state of the world’s 

coral reefs and determining the impact that mankind’s footprint has on coral reefs (Lubin 

et al., 2001).  In order to answer these questions researchers need to assess the extent, 

biodiversity, and health of large areas of coral reefs, many of which occur in remote areas 

of the planet.  A cost effective solution to this problem would provide tremendous benefit 

to this field of research. 

B. POTENTI AL SOLUTIONS 

There are 2 broad categories for solutions to the problem on assessing the extent, 

biodiversity, and health of coral reef habitats.  The first is to send personnel and 

equipment into the field to survey reefs habitats.  The second is to assess these properties 

of a reef using some form of remote sensing.   

Fieldwork of this nature will often involve some type of underwater surveying, 

usually SCUBA or snorkeling.  This can be accomplished by people, robotic 

submersibles, or some combination of the two.  The major drawback to fieldwork is that 

it is expensive, arduous, and time consuming (Mumby et al., 1999).   

  Remote sensing offers many potential solutions to this problem.  There are 

multiple ways to obtain remotely sensed data.  Two possibilities are airborne sensors and 

satellite sensors.  Airborne sensors are not always an option due to physical and political 

limitations imposed on the airspace in certain parts of the world.  There are no such 

limitations on satellite sensors.  This does not imply that there are no limitations on the 

acquisition of satellite data, rather it means that every spot on the planet is accessible by 

satellite, and that to date there are no legal restrictions to prevent satellite over flight.  

After a remote sensing platform is chosen, there are several options for sensor type such 

as panchromatic, multispectral, and hyperspectral.   

For the purposes of this cost benefit analysis, and to remain within the scope of 

this research, benthic classifications derived from QuickBird and IKONOS multispectral 

data will be examined.  These 2 satellite sensors are routinely used to determine the 

extent and size of coral reef habitats, and by proxy, to assess the biodiversity and health 

of coral reefs.  
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C. ASSUMP TIONS 

Three key assumptions were made in order to conduct this cost benefit analysis.  

These assumptions were chosen to duplicate the data used in the methods section of this 

research.  The effects of varying these assumptions will be examined in the sensitivity 

analysis. 

The first assumption is that the same processing techniques will be applied to both 

sets of imagery.  This is a necessary assumption since unprocessed multispectral imagery 

is of little use in assessing the extent, biodiversity, or health of coral reef habitats.  The 

imagery must be processed and classified in order to retrieve this type of information.  

The image processing does not have to be the same as outlined in the Methods section of 

this thesis, but the same process has to be applied to both the QuickBird and the IKONOS 

multispectral imagery. 

The next assumption is that the area encompassing the coral reefs of interest is 40 

km2.  This area was chosen since it is the approximate size of the Central Atoll subset 

used in this thesis.  The important factor here is that the classification areas from both 

QuickBird and IKONOS are the same size. 

The final assumption pertains to the timeliness of the satellite imagery.  It is 

assumed that imagery will be usable for up to one year before it is considered superseded 

or obsolete.  The period was chosen based on the dates of the imagery used in this 

research (October 2007 and May 2008).  One year might be considered too long of an 

interval by some coral reef researchers, but shorter time periods will be considered in the 

sensitivity analysis.     

D. COSTS  

The cost for this analysis will be divided into two categories, price and size.  The 

price of imagery is a direct cost for this type of research.  The size of that imagery also 

contributes to the overall cost for this type research.  As imagery size increases so does 

the cost associated with storing and transmitting it.  One might point out that there are 

labor costs associated with processing the imagery in order to obtain useful information.  
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This is true, but labor costs have been omitted from this analysis based on the assumption 

that the same type of processing is being applied to both types of imagery.    

Neither Digital Globe nor GeoEye publish printed commercial pricing lists for 

their imagery.  Pricing information was obtained over the phone directly from customer 

service representatives from each company.  Pricing data for QuickBird is displayed in 

Table 16 and IKONOS data is displayed in Table 17.  The information in these tables 

reflects imagery pricing as of 15 August 2008.  

 

Image Source Minimum Order 
Area (km2) 

Price 
(per km2) 

Minimum 
Order Cost 

Archive  25 $ 24 $ 600 
New Tasking 64 $ 28 $ 1792 

Table 16. QuickBird imagery pricing (DigitalGlobe, pers. comm.) 

 

Image Source (Age) Minimum Order 
Area (km2) 

Price 
(per km2) 

Minimum 
Order Cost 

Archive (older than 6 months) 49 $ 7 $ 343 
Archive (within 6 months) 49 $ 18 $ 864 
New Tasking 100 $ 18 $ 1800 

Table 17. IKONOS imagery pricing (GeoEye, pers. comm.) 

 

Based on the information in Tables 16 and 17 the cost for the imagery used for the 

Central Atoll classification for QuickBird was $960 (40 km2 x $24) and for IKONOS was  

$864 (minimum order cost for archived imagery taken within the last 6 months). 

Data size is a little bit trickier to calculate than price.  The QuickBird image was 

delivered as a single National Imagery Transmission (.NTF) file with a size of 89.849 

megabytes (MB).  The IKONOS image was delivered as 4 .NTF files with a total size of 

86.040 MB.  The QuickBird .NTF file contains “JPEG2000” compression while the 

IKONOS .NTF file is not compressed.  The sizes of the original imagery files should not 

be compared directly since they cover different amounts of area and one format utilizes 
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compression.  Instead comparisons will be made using a common file format covering the 

same size area.  The ENVI file format was chosen for this comparison since that is the 

format used for the image processing in this research.  The Central Atoll Subset was used 

as the classification area for the purpose of this comparison.  The QuickBird data for the 

Central Atoll was 42.285 MB while the IKONOS data was 20.514 MB: the QuickBird 

data is roughly twice the size of the IKONOS data for a given area. 

E. BENEFITS  

Given the problem / opportunity of assessing the extent, biodiversity, and health 

of coral reef habitats the most important benefit for this analysis is classification 

accuracy, both Overall accuracy and accuracy in classifying coral reefs.  Based on the 

results outlined in Chapter VI, QuickBird achieved an overall classification accuracy of 

52.59% with coral/coralline algae Producer’s accuracy of 72.00% and User’s accuracy of 

75.00%.  IKONOS achieved an Overall accuracy of 61.48% with a coral/coralline algae 

Producer’s accuracy of 100.00% and User’s accuracy of 60.98%.  The goal is to 

determine which set of accuracies provides greater benefit for the problem / opportunity. 

Taking the accuracies at face value and leaving statistical significance aside, 

IKONOS’s Overall accuracy is better than the Overall accuracy achieved by QuickBird, 

but Overall accuracy is not actually the best metric for the problem / opportunity of 

assessing the extent, biodiversity, and health of coral reefs.  IKONOS also has a higher 

Producer’s accuracy, and 100% would seem like a convincing statistic.  QuickBird, on 

the other hand, achieved a higher User’s accuracy in the coral/coralline algae class.  In 

order to see which of these accuracies poses more of a benefit, one must consider what 

each type of accuracy really means.  IKONOS’s Producer accuracy says that if 

coral/coralline algae exist in the classification area that IKONOS identifies it correctly 

100% of the time.  QuickBird’s User accuracy says that 75% of the area that it classifies 

as coral/coralline algae is actually coral/coralline algae.  For the purpose of assessing the 

extent, biodiversity, and health of coral reefs the User’s accuracy provides a greater 

benefit than the Producer’s accuracy since coral reef researchers need to know that the 

results of their classifications accurately represent the actual reef habitats.   
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With IKONOS having a higher Overall accuracy and QuickBird having a higher 

User’s accuracy how does one decide which is more beneficial?  The answer to that 

question depends on the specific research application.  Considering the problem / 

opportunity posed in this analysis a very slight edge would be given to QuickBird, based 

on its higher coral/coralline algae User’s accuracy. 

F. RISKS 

The risk associated with using either set of satellite imagery to assess the extent, 

biodiversity, and health of coral reefs is misclassification of the imagery.  Based on the 

User’s accuracies there is a 25% chance that bottom types classified as coral/coralline 

algae by QuickBird will actually be a different substrate.  There is a 40% chance that 

bottom types classified as coral/coralline algae by IKONOS will be misclassified.  

QuickBird clearly has a lower risk, but whether 25% is an acceptable risk depends on the 

research application, and will be determined by individual researchers. 

G. RESULTS  

Given the costs associated with these 2 solutions and the small benefit obtained 

by using QuickBird imagery, it is difficult to determine with certainty which solution 

coral reef researchers should use.  Considering that QuickBird imagery costs 10% more 

than IKONOS and takes up twice as much space with only a small increase in benefit, 

one could not fault a researcher for choosing to use IKONOS imagery instead.  Based on 

the assumptions of this analysis, it is too close to declare either solution as the preferred 

choice based on the costs and benefits uncovered in this analysis.   

H. SENSITI VITY ANALYSIS 

The first variable to be examined in this sensitivity analysis is observation area.  

We will consider the effects of both reducing and increasing the area of observation on 

the imagery price.  Table 18 shows the effects to image price based on various 

observation areas. 
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Size 
(km2) QuickBird Price IKONOS Price 

20 $ 600 $ 343 
80 $ 1920 $ 1440 
100 $ 2400 $ 1800 
200 $ 4800 $ 3600 
500 $ 12000 $ 9000 
1000 $ 24000 $ 18000 

Table 18. Affect of observation area on image price 

 

With the original area of 40 km2 the IKONOS imagery was 10% cheaper than 

QuickBird.  Table 18 shows that reducing that area to 20 km2 makes IKONOS imagery 

approximately 40% less expensive.  Increasing the area to 80 km2 makes IKONOS 

imagery 25% less expensive.  IKONOS imagery maintains this ratio to QuickBird 

imagery for all areas greater than 80 km2 due to a linear relationship between price and 

area after the minimum order size has been reached for both types of imagery.  Across 

the spectrum of observation area, IKONOS imagery is less expensive than QuickBird 

imagery with small areas seeing the greatest price differential.  This could justify a 

researcher’s decision to use IKONOS imagery to reduce research cost while accepting a 

reduction in accuracy. 

Next the timeliness of the satellite imagery will be examined.  One of the original 

assumptions was that imagery could be up to 1 year old.  Now the effect on price of 

requiring that imagery is acquired within the past six months and as recently as possible 

by placing a new tasking order will be considered.  Acquisition time’s affect on imagery 

price is displayed in Table 19. 

 

Acquisition Time QuickBird Price IKONOS Price 
Within 6 months  $ 960 $ 864 
New Tasking $ 1792 $ 1800 

Table 19. Affect of acquisition time on imagery price 
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Requiring that imagery be acquired within the last six months had no affect on the 

price based on the pricing tiers of Digital Globe and GeoEye.  IKONOS imagery is still 

approximately 10% cheaper for this timeframe.  If new tasking is required the price of 

IKONOS imagery becomes slightly more expensive, $8 more to be exact.  In research 

that requires new tasking the cost of the imagery becomes essentially equal so one could 

be justified in choosing QuickBird imagery for its slight improvement at accurately 

identifying coral/coralline algae. 

I. FURTHE R ANALYSIS 

The first consideration to be given to future analysis is a larger sample.  The 

assessment accuracy achieved from this relatively small sample (135 sites) could be 

improved by using a larger sampling of sites.  A better accuracy assessment would 

produce a more accurate benefit assessment for the two products and give researchers 

more useful guidance on when and where each type of imagery could be used for 

different research applications.  Considering the relatively simple tiered pricing system 

for each type of imagery, there is no need for further analysis of imagery cost from either 

imaging satellite.   

One area that lies well outside the scope of a cost benefit analyses but could prove 

beneficial to future benthic classifications is research on the processing techniques used 

on growing data sets.  There is roughly twice as much data in the QuickBird imagery as 

in the IKONOS imagery covering the same area, yet the same processing techniques are 

used on both images.  It is not surprising that roughly the same amount of accurate 

information can be extracted from the two different data sets based on the same 

processing techniques.  Perhaps research should be devoted into new and different ways 

to process imagery in order to extract more useful information from data sets with higher 

data densities per unit area. 
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IX. CONCLUSIONS AND RECOMMENDATIONS 

This research does not identify any improvements in thematic mapping accuracy 

at Midway Atoll based on the use of QuickBird’s higher spatial resolution satellite 

imagery.  The higher resolution imagery did not demonstrate a significant improvement 

in classification accuracy over the classification results achieved by IKONOS.  This 

finding is in agreement with the results of Wang et al. (2004), but contrasts the 

conclusions of Mumby and Edwards (2002), Capolsini et al. (2003), and Benefield et al. 

(2007).  The cross scale accuracy comparison showed that the overall classification 

accuracy of both satellite sensors was consistent across spatial scales. 

When assessing the extent, biodiversity, and health of coral reefs from a cost and 

benefit perspective, these results showed that IKONOS imagery comes with a lower 

overall cost and only a minor degradation in coral reef User’s classification accuracy.  

However, this conclusion considers only one problem / opportunity for benthic 

classification research.  Other problems / opportunities could drastically alter the cost 

benefit ratio.  The decision of which imagery to use for a given application is ultimately 

left up to individual applications and researcher’s needs. 

Several opportunities exist to improve on the research findings presented here.  

Most notably would be the collection of new groundtruth data by a more experienced 

survey team.  To further improve the results, future studies should incorporate an in situ 

collection of a training dataset which requires longer field time or multiple trips to the 

field site.  The training dataset would then be used to perform supervised classifications 

before the team returned to the field to collect the final evaluation dataset.  This process 

should produce better accuracies across the board for both satellite sensors.  Finally, as 

hypothesized in the cost benefit analysis, perhaps more research should be devoted to 

developing new techniques to process the larger amounts of data that higher spatial 

resolution imagery possesses. 
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APPENDIX A. METADATA FILE FOR QUICKBIRD IMAGE 

version = "AA"; 
generationTime = 2008-04-22T17:57:45.000000Z; 
productOrderId = "005759233010_01_P002"; 
productCatalogId = "90100100237BB400"; 
childCatalogId = "20200100237BB300"; 
imageDescriptor = "Basic1B"; 
bandId = "Multi"; 
panSharpenAlgorithm = "None"; 
numRows = 7168; 
numColumns = 7168; 
productLevel = "LV1B"; 
productType = "Basic"; 
numberOfLooks = 1; 
radiometricLevel = "Corrected"; 
bitsPerPixel = 16; 
compressionType = "JPEG2000"; 
jpegProfileName = "nga_npje_pan_nl"; 
BEGIN_GROUP = BAND_B 
 ULLon = -177.45685139; 
 ULLat =   28.34181712; 
 ULHAE =    -1.00; 
 URLon = -177.25308095; 
 URLat =   28.34091560; 
 URHAE =    -1.00; 
 LRLon = -177.25229003; 
 LRLat =   28.17550307; 
 LRHAE =    -1.00; 
 LLLon = -177.45798927; 
 LLLat =   28.17459241; 
 LLHAE =    -1.00; 
 absCalFactor = 1.604120e-02; 
 effectiveBandwidth = 6.800000e-02; 
END_GROUP = BAND_B 
BEGIN_GROUP = BAND_G 
 ULLon = -177.45685139; 
 ULLat =   28.34181712; 
 ULHAE =    -1.00; 
 URLon = -177.25308095; 
 URLat =   28.34091560; 
 URHAE =    -1.00; 
 LRLon = -177.25229003; 
 LRLat =   28.17550307; 
 LRHAE =    -1.00; 
 LLLon = -177.45798927; 
 LLLat =   28.17459241; 
 LLHAE =    -1.00; 
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 absCalFactor = 1.438470e-02; 
 effectiveBandwidth = 9.900000e-02; 
END_GROUP = BAND_G 
BEGIN_GROUP = BAND_R 
 ULLon = -177.45685139; 
 ULLat =   28.34181712; 
 ULHAE =    -1.00; 
 URLon = -177.25308095; 
 URLat =   28.34091560; 
 URHAE =    -1.00; 
 LRLon = -177.25229003; 
 LRLat =   28.17550307; 
 LRHAE =    -1.00; 
 LLLon = -177.45798927; 
 LLLat =   28.17459241; 
 LLHAE =    -1.00; 
 absCalFactor = 1.267350e-02; 
 effectiveBandwidth = 7.100000e-02; 
END_GROUP = BAND_R 
BEGIN_GROUP = BAND_N 
 ULLon = -177.45685139; 
 ULLat =   28.34181712; 
 ULHAE =    -1.00; 
 URLon = -177.25308095; 
 URLat =   28.34091560; 
 URHAE =    -1.00; 
 LRLon = -177.25229003; 
 LRLat =   28.17550307; 
 LRHAE =    -1.00; 
 LLLon = -177.45798927; 
 LLLat =   28.17459241; 
 LLHAE =    -1.00; 
 absCalFactor = 1.542420e-02; 
 effectiveBandwidth = 1.140000e-01; 
END_GROUP = BAND_N 
outputFormat = "NITF21NCDRD"; 
BEGIN_GROUP = IMAGE_1 
 satId = "QB02"; 
 mode = "FullSwath"; 
 scanDirection = "Forward"; 
 CatId = "101001000746DD00"; 
 TLCTime = 2007-10-18T23:02:34.928985Z; 
 numTLC = 2; 
 TLCList = ( 
 (0,  0.000000), 
 (6930,  4.017391) ); 
 firstLineTime = 2007-10-18T23:02:34.928986Z; 
 avgLineRate = 1725.00; 
 exposureDuration = 0.00057971; 
 minCollectedRowGSD =   2.657; 
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 maxCollectedRowGSD =   2.667; 
 meanCollectedRowGSD =   2.661; 
 minCollectedColGSD =   2.906; 
 maxCollectedColGSD =   2.938; 
 meanCollectedColGSD =   2.923; 
 meanCollectedGSD =   2.789; 
 rowUncertainty =   38.29; 
 colUncertainty =   55.93; 
 minSunAz = 167.3; 
 maxSunAz = 167.3; 
 meanSunAz = 167.3; 
 minSunEl =  51.3; 
 maxSunEl =  51.5; 
 meanSunEl =  51.4; 
 minSatAz = 265.6; 
 maxSatAz = 273.9; 
 meanSatAz = 269.5; 
 minSatEl =  64.7; 
 maxSatEl =  65.5; 
 meanSatEl =  65.1; 
 minInTrackViewAngle =  -4.2; 
 maxInTrackViewAngle =  -2.9; 
 meanInTrackViewAngle =  -3.6; 
 minCrossTrackViewAngle = -23.1; 
 maxCrossTrackViewAngle = -22.6; 
 meanCrossTrackViewAngle = -22.9; 
 minOffNadirViewAngle =  23.1; 
 maxOffNadirViewAngle =  23.1; 
 meanOffNadirViewAngle =  23.1; 
 PNIIRS = 2.8; 
 cloudCover = 0.000; 
 resamplingKernel = "CC"; 
 TDILevel = 13; 
 positionKnowledgeSrc = "R"; 
 attitudeKnowledgeSrc = "R"; 
 revNumber = 33718; 
END_GROUP = IMAGE_1 
END; 
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APPENDIX B. METADATA FILE FOR IKONOS IMAGE 

============================================================== 
Version Number: 2.0 
================================================================== 
Company Information 
     Address 
          GeoEye 
          12076 Grant Street 
          Thornton, Colorado 80241 
          U.S.A. 
     Contact Information 
          On the Web: http://www.geoeye.com 
          Customer Service Phone (U.S.A.): 1.800.232.9037 
          Customer Service Phone (World Wide): 1.703.480.5670 
          Customer Service Fax (World Wide): 1.703.450.9570 
          Customer Service Email: info@geoeye.com 
          Customer Service Center hours of operation: 
               Monday - Friday, 8:00 - 18:00 Eastern Standard Time 
================================================================== 
Product Order Metadata 
 
Creation Date: 05/19/08 
Product Work Order Number: -00148344 
Product Order Number: 283179 
Customer Project Name: 0071009201-00001 /US/ Image Date 05/08/08-05/16/08 
Ground Station ID: PGS 
License Type: Nextview 
Product Order Area (Geographic Coordinates) 
   Number of Coordinates: 4 
      Coordinate: 1 
      Latitude: 28.1666667000 degrees 
      Longitude: -177.4500000000 degrees 
      Coordinate: 2 
      Latitude: 28.2916667000 degrees 
      Longitude: -177.4500000000 degrees 
      Coordinate: 3 
      Latitude: 28.2916667000 degrees 
      Longitude: -177.2833333000 degrees 
      Coordinate: 4 
      Latitude: 28.1666667000 degrees 
      Longitude: -177.2833333000 degrees 
Product Order Area (Map Coordinates in Map Units) 
      Coordinate: 1 
      Map X (Easting): 472184.87 meters 
      Map Y (Northing): 3115697.58 meters 
      Coordinate: 2 
      Map X (Easting): 455822.87 meters 
      Map Y (Northing): 3115747.01 meters 
      Coordinate: 3 
      Map X (Easting): 455874.32 meters 
      Map Y (Northing): 3129594.60 meters 
      Coordinate: 4 
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      Map X (Easting): 472217.26 meters 
      Map Y (Northing): 3129545.03 meters 
Sensor Type: Satellite 
Sensor Name: IKONOS-2 
Processing Level: Standard Geometrically Corrected 
Image Type: PAN/MSI 
Interpolation Method: Cubic Convolution 
Multispectral Algorithm: None 
Stereo: Mono 
Mosaic: No 
Map Projection: Universal Transverse Mercator 
   UTM Specific Parameters 
      Hemisphere: N 
      Zone Number: 1 
Datum: WGS84 
Product Order Pixel Size: 1.0000000000 meters 
Product Order Map Units:  meters 
MTFC Applied: Yes 
DRA Applied: No 
Media: DVD 
Product Media Format: DVD 
File Format: NITF 
   Compressed: No 
   Bits per Pixel per Band: 11 bits per pixel 
   UTM_MGRS_Geocoding: Yes 
Multispectral Files: Four Files 
 
============================================================== 
Source Image Metadata 
 
Number of Source Images: 2 
 
Source Image ID: 2008050822480160000011621644 
Product Image ID: 000 
Sensor: IKONOS-2 
Acquired Nominal GSD 
   Pan Cross Scan: 0.92 meters 
   Pan Along Scan: 0.86 meters 
   MS Cross Scan: 3.66 meters 
   MS Along Scan: 3.46 meters 
Scan Azimuth: 180.03 degrees 
Scan Direction: Reverse 
Panchromatic TDI Mode: 13 
Nominal Collection Azimuth: 261.0797 degrees 
Nominal Collection Elevation: 70.35747 degrees 
Sun Angle Azimuth: 125.3546 degrees 
Sun Angle Elevation: 72.87940 degrees 
Acquisition Date/Time: 2008-05-08 22:48 GMT 
Percent Cloud Cover: 8 
-------------------------------------------------------------- 
Source Image ID: 2008051622383980000011629646 
Product Image ID: 001 
Sensor: IKONOS-2 
Acquired Nominal GSD 
   Pan Cross Scan: 0.93 meters 



 105

   Pan Along Scan: 1.05 meters 
   MS Cross Scan: 3.72 meters 
   MS Along Scan: 4.20 meters 
Scan Azimuth: 179.98 degrees 
Scan Direction: Reverse 
Panchromatic TDI Mode: 13 
Nominal Collection Azimuth: 14.2335 degrees 
Nominal Collection Elevation: 60.79291 degrees 
Sun Angle Azimuth: 115.4977 degrees 
Sun Angle Elevation: 72.18840 degrees 
Acquisition Date/Time: 2008-05-16 22:38 GMT 
Percent Cloud Cover: 12 
============================================================== 
Product Space Metadata 
 
Number of Image Components: 2 
   X Components: 1 
   Y Components: 1 
Product MBR Geographic Coordinates 
   Number of Coordinates: 4 
      Coordinate: 1 
      Latitude: 28.2916649704 degrees 
      Longitude: -177.4505246186 degrees 
      Coordinate: 2 
      Latitude: 28.2921141802 degrees 
      Longitude: -177.2833282465 degrees 
      Coordinate: 3 
      Latitude: 28.1666495089 degrees 
      Longitude: -177.2829970925 degrees 
      Coordinate: 4 
      Latitude: 28.1662026422 degrees 
      Longitude: -177.4499980586 degrees 
Product Map Coordinates (in Map Units) 
   UL Map X (Easting): 455822.87 meters 
   UL Map Y (Northing): 3129594.60 meters 
Pixel Size X: 1.0000000000 meters 
Pixel Size Y: 1.0000000000 meters 
Product Order Map Units:  meters 
Columns: 16396 pixels 
Rows: 13900 pixels 
Reference Height: 0.0000000000 meters 
============================================================== 
Product Component Metadata 
 
Number of Components: 2 
 
Component ID: 0000000 
Product Image ID: 000 
Component File Name: po_283179_pan_0000000.ntf po_283179_red_0000000.ntf 

po_283179_grn_0000000.ntf po_283179_blu_0000000.ntf po_283179_nir_0000000.ntf  
Thumbnail File Name: po_283179_rgb_0000000_ovr.jpg 
Country Code:  
Component Geographic Corner Coordinates 
   Number of Coordinates: 4 
      Coordinate: 1 



 106

      Latitude: 28.2916844956 degrees 
      Longitude: -177.3445871982 degrees 
      Coordinate: 2 
      Latitude: 28.2918253226 degrees 
      Longitude: -177.2833274816 degrees 
      Coordinate: 3 
      Latitude: 28.1666495089 degrees 
      Longitude: -177.2829970925 degrees 
      Coordinate: 4 
      Latitude: 28.1665094148 degrees 
      Longitude: -177.3441853771 degrees 
Component Map Coordinates (in Map Units) 
   UL Map X (Easting): 466210.87 meters 
   UL Map Y (Northing): 3129562.60 meters 
Pixel Size X: 1.0000000000 meters 
Pixel Size Y: 1.0000000000 meters 
Product Order Map Units:  meters 
Columns: 6008 pixels 
Rows: 13868 pixels 
Percent Component Cloud Cover: 36 
-------------------------------------------------------------- 
Component ID: 0010000 
Product Image ID: 001 
Component File Name: po_283179_pan_0010000.ntf po_283179_red_0010000.ntf 

po_283179_grn_0010000.ntf po_283179_blu_0010000.ntf po_283179_nir_0010000.ntf  
Thumbnail File Name: po_283179_rgb_0010000_ovr.jpg 
Country Code:  
Component Geographic Corner Coordinates 
   Number of Coordinates: 4 
      Coordinate: 1 
      Latitude: 28.2916649704 degrees 
      Longitude: -177.4505246186 degrees 
      Coordinate: 2 
      Latitude: 28.2920089003 degrees 
      Longitude: -177.3301986743 degrees 
      Coordinate: 3 
      Latitude: 28.1666531013 degrees 
      Longitude: -177.3298130725 degrees 
      Coordinate: 4 
      Latitude: 28.1663109638 degrees 
      Longitude: -177.4499985118 degrees 
Component Map Coordinates (in Map Units) 
   UL Map X (Easting): 455822.87 meters 
   UL Map Y (Northing): 3129594.60 meters 
Pixel Size X: 1.0000000000 meters 
Pixel Size Y: 1.0000000000 meters 
Product Order Map Units:  meters 
Columns: 11800 pixels 
Rows: 13888 pixels 
Percent Component Cloud Cover: 10 
 
============================================================== 
 



APPENDIX C. REEF HABITAT CLASSIFICATION SCHEME  

 

DATE: TIME: DIVE/SNORKEL #: GPS coords:

Dive dist. and bearing from boat: Photos #: Depth: 

REEF HABITAT CLASSIFICATION SCHEME FOR MIDWAY ATOLL, NWHI
ATOLL ZONES (select all that apply) REEF HABITATS (select all that apply)
A. LAND modifiers GEOMORPHIC: modifiers BOTTOM COVER: ecological modifiers

tree (type:) shrub 1. calcareous pavement- a. unconsolidated sediments- mud, sand,
grass 2. simple patch reef- rubble, cobbles, boulders, etc.)
artificial (seawall, paving, 3. complex patch reefs- b. hard bottom (other than live coral)

bldgs., docks, etc.) 4. linear reef-
B. SHORELINE -INTERTIDAL modifiers 5. pinnacle reef- c. submerged vegetation-

sand/unconsolidated, artificial 6. hole or pool- turf algae
consolidated, tidepools 7. vertical wall- macro (fleshy) algae-

C. REEF CREST 8. spurs and grooves- calcareous or coralline algae-
D. FORE REEF 9. pass or channel- d. live coral- percent cover: ______
E. SHELF- TERRACE encrusting semi-dome monospecific
F. DEEP ESCARPMENT massive branching mixed
G. LAGOON e. other invertebrates- sea urchins, sponges
H. BACK REEF f. artificial-
North South West East concrete marine debris

metal wood
Bottom cover abundance rating: D = Dominant A = Abundant C = Common O = Occasional R = Rare
NOTES:
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APPENDIX D. LYNGBYA SPECTRA 

While at Midway Atoll, several target spectra were recorded to add data to the 

Naval Postgraduate School’s Remote Sensing Lab’s cyanobacteria Lyngbya spp. spectral 

library.  This appendix includes the procedure used to record the target spectra and the 

graphs of the 9 target spectra recorded.  Each spectral graph is an average of 3 spectra for 

each target. 

The following procedure was used to record spectra of the cyanobacteria Lyngbya 

spp. at Midway Atoll in July 2008 using a GER 1500 spectrometer: 

 

1. Record a reference spectrum at the same depth as the sample.  Hold the 

reference approximately 15 cm from the lens of the housing and at a 45 degree 

angle while recording.  Be careful not to cast a shadow on the reference while 

taking the spectrum. 

2. Record the target spectrum by holding the GER approximately 15 cm from the 

sample at a 45 degree angle to the target on the opposite side of the sun.  

Record 3 spectra of the Lyngbya spp. target. 

3. Record spectra of surrounding substrates such as coral, sand, algae or turf 

covered rubble using the technique described in step 2. 

4. Remember to record a new reference spectrum for each new sample site or 

after the sunlight conditions change conspicuously. 

5. Download the spectra into the computer using the GER 1500 software. 
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Target 1 Spectra:  Corresponds to picturesP7230003 and P7230004 
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Target 2 Spectra:  Corresponds to pictures P7230011, P7230012, P7230016, P7230018, and P720019 
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Target 3 Spectra:  Corresponds to pictures P7230024 and P7230025 
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Target 4 Spectra:  Corresponds to pictures P7230323 and P7230033 
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Target 5 Spectra:  Corresponds to pictures P7240072 and P7240073 
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Target 6 Spectra:  Corresponds to pictures P7240075 and P7240076 
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Target 7 Spectra:  Corresponds to pictures P7240077 and P7240078 
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Target 8 Spectra:  Corresponds to pictures P7240082, P7240083, P7240084, and P7240085 
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Target 9 Spectra:  Corresponds to pictures P7240086 and P7240087 
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