
Computation of the Safety Fans for Multistage Aerodelivery
Systems

Melissa S. Corley,* and Oleg A. Yakimenko†
Naval Postgraduate School, Monterey, CA 93943-5107

This paper deals with the development of a mathematical foundation and practical algorithms to
compute the safety fans to be used in conjunction with aerodynamic deceleration payload delivery
systems tests. The paper provides formulas to compute a descent / gliding trajectory for a
multiple-stage system and then considers several cases of major failures. It also introduces the concept
of ballistic winds, simplifying calculation of the safety fans so that the computer is no longer needed,
and shows how to carefully calculate these ballistic winds based on the best known winds aloft. Finally,
the paper introduces the graphical user interface developed and tested by the authors that is supposed
to provide test planning officers with a unique variety of trade-off options as well as to effectively
represent all safety-related information both to the ground personal and to the crew performing a
payload delivery from a transport aircraft or helicopter. The paper ends with conclusions.

Notations
0H , 0V , 0Ψ = altitude, speed and direction of the aircraft at the release point

2H , 3H = altitude AGL, at which the 2nd and 3rd stages are deployed (if present)
HΔ = altitude loss before the 1st stage canopy deployment

x, y, h = system’s Northing, Easting and altitude
xi, yi = Northing and Easting at the altitude of the i-th stage deployment (i=1,2,3)

()w h , ()w hψ = speed and direction of the wind at altitude h

viv , iGR = descent rate and glide ratio during the i-th stage (i=1,2,3)

I. Introduction
S with any other technical system, aerodynamic delivery systems (ADS) are subject to failures. That is why
numerous tests are required to tune the system, make it more reliable and therefore minimize the risk of failure.

A variety of ADSs rely on a parachute, a cluster of parachutes, or most recently autonomous parafoils to deliver
payloads of different weight m (up to several tons) from different altitudes 0H (up to several kilometers). The
canopy opening failures result in a ballistic trajectory that transforms the initial kinetic (2

00.5mV) and potential
(0mgH) energy into kinetic energy at impact.

A failed, ballistically falling system can cause huge damage at impact. That is why it is important to foresee such
an unfortunate event and take certain precautions organizing these drops in remote and uninhabited areas. Basic
physics provides a very simple formula to calculate the ground distance the failed ADS can cover. If we neglect
aerodynamic drag (yielding the largest ground distance estimate possible) this formula is as simple as 0V T , where

the time of fall T can be estimated as 1
02T H g −= . Of course if we have strong horizontal winds, they will

definitely affect this range (horizontal projection of the trajectory will in this case not be a straight line any longer),
though the effect will be small as the ADS would fall through these winds fairly quickly.

In case of partial canopy opening failures, however, the effect of winds will be stronger. This is not only because
the system will descend slower and take longer to reach the ground, but also because we’ll have to account for

* Ph.D. Student, Department of Mechanical and Aerospace Engineering, mscorley@nps.edu, Member AIAA.
† Research Associate Professor, Department of Mechanical and Astronautical Engineering, Code MAE/Yk, oayakime@nps.edu,
Associate Fellow AIAA.

A

20th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar

4 - 7 May 2009, Seattle, Washington

AIAA 2009-3003

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

2
American Institute of Aeronautics and Astronautics

aerodynamic drag. In the case where we are dealing with a failed parafoil the situation can be even worse because of
the high glide ratio of such systems. With a fully deployed canopy but with the controls stuck in some
predetermined position or in the case of a controls failure, the parafoil-based ADS can glide far away from the
intended point of impact (IPI).

This paper develops a mathematical foundation and corresponding software for reliable computation of safety
fans for multistage systems (when the deployment of multiple canopies is staged) and is organized as follows.
Section II provides the mathematical foundation for computing safety fans for multistage systems in the different
types of failure modes described above (canopy opening failure and controls failure for controllable ADSs). Next,
Section III presents a detailed example of computing these safety fans for a two-stage system. Section IV introduces
the concept of so-called ballistic winds, the instrument allowing major simplification of safety fan computation. This
simplification provides a reliable method for a range safety officer to compute these fans even without a computer
by using a simple look-up table prepared upfront using the best known winds at the drop zone (DZ). Section V
presents a graphical user interface (GUI) developed in the MATLAB development environment that provides much
more flexibility in computing safety fans, suggesting release points and directions, and therefore allows for assessing
and mitigating risks. The paper ends with conclusions.

II. Computation of Safety Fans
This section considers two major failures. The first case is when the very first stage canopy (or a single canopy

in a one-stage system) doesn’t open at all and the ADS falls ballistically. This will be the canopy opening failure
case. The second case is when the first stage is deployed successfully but there are certain problems with steering the
system in the desired direction. This case will be referred to as the controls failure case. The effect of winds in both
cases will be accounted for as described above.

A. Canopy Opening Failure
Assuming that aerodynamic drag can be neglected, the equations driving the ADS motion are:

0 0

0 0

() cos () cos

()sin () sin

w

w

dx w h h V
dt
dy w h h V
dt
dh gt
dt

ψ

ψ

= + Ψ

= + Ψ

=

 (1)

Here the vertical motion is driven by the gravity force, while the horizontal motion is caused by the initial velocity
and variable winds. Equations (1) can be further reduced to:

0 0

0 0

() cos () cos

()sin () sin

w

w

dx dh w h h V
dh dt
dy dh w h h V
dh dt

dh gt
dt

ψ

ψ

= + Ψ

= + Ψ

=

 (2)

From the last equation it follows that

()0
2t H h
g

= − (3)

With this relationship between elapsed time and altitude the first two equations in (2) can be further rewritten as

()

()

0 0

0

0 0

0

() cos () cos
2

()sin () sin
2

w

w

w h h Vdx
dh g H h

w h h Vdy
dh g H h

ψ

ψ

+ Ψ
=

−

+ Ψ
=

−

 (4)

Now the x and y coordinates at any arbitrary altitude h can be obtained via integrating Eqs.(4):

3
American Institute of Aeronautics and Astronautics

()

()

0

0

0 0
0

0

0 0
0

0

() cos () cos
()

2

()sin () sin
()

2

H
w

h

H
w

h

w h h V
x h x dh

g H h

w h h V
y h y dh

g H h

ψ

ψ

+ Ψ
= +

−

+ Ψ
= +

−

∫

∫
 (5)

The integrals in these equations can be further split into two separate components, so that

()

()

0

0

0
0 0 0

0

0
0 0 0

0

() cos ()
() 2 cos

2

()sin ()
() 2 sin

2

H
w

h

H
w

h

w h h H h
x h x dh V

gg H h

w h h H h
y h y dh V

gg H h

ψ

ψ

−
= + + Ψ

−

−
= + + Ψ

−

∫

∫
 (6)

If the parameters ()w h and ()w hψ are given as a look-up table with the elements: kh , kw and wkψ , 1,...,k N= ,
(1k kh h −>), then the effect of the winds can be reduced to the following finite sums:

() ()

() ()

0

0

1
1 ; 1 1

0 0

1
1 ; 1 1

0 0

cos ()() cos ()
2 2

sin ()()sin ()
2 2

H M
k w k k kw

k mh k

H M
k w k k kw

k mh k

w h hw h h
dh

g H h g H h

w h hw h h
dh

g H h g H h

ψψ

ψψ

−
+ + +

=

−
+ + +

=

−
≈

− −

−
≈

− −

∑∫

∑∫
 (7)

(where 0H corresponds to Mh and h to mh).
Next, let us consider the case when the canopy opens successfully but the controls are stuck in some fixed

position, causing the ADS to glide with a constant heading (ADS dynamics can be neglected).

B. Controls Failure
A multiple-stage ADS, say with three stages, assumes the following consecutive descent phases:

• Ballistic trajectory before the first stage is fully deployed;
• Deployment of Stage 1;
• Deployment of Stage 2;
• Deployment of Stage 3.

These stages are described below.
Ballistic trajectory before the first stage is fully deployed. We may apply Eqs.(6), which for the altitude range

of 0 0[;]h H H H∈ −Δ yield

()

()

0

0

0

0

0
0 0 0

0

0
0 0 0

0

() cos ()
() 2 cos

2

()sin ()
() 2 sin

2

H
w

H H

H
w

H H

w h h H h
x h x dh V

gg H h

w h h H h
y h y dh V

gg H h

ψ

ψ

−Δ

−Δ

−
= + + Ψ

−

−
= + + Ψ

−

∫

∫
 (8)

Specifically, by the time (altitude) the first stage deploys we have

()

()

0

0

0

0

1 0 0 0

0

1 0 0 0

0

() cos ()
2 cos

2

()sin ()
2 sin

2

H
w

H H

H
w

H H

w h h Hx x dh V
gg H h

w h h Hy y dh V
gg H h

ψ

ψ

−Δ

−Δ

Δ
= + + Ψ

−

Δ
= + + Ψ

−

∫

∫
 (9)

From this point on we assume that the initial horizontal speed caused by deploying from an aircraft flying with
speed V0 is phased out completely. For simplicity we will not consider the gradual transition from a ballistic fall to
the normal gliding descent. Indeed, accounting for this transition may cause some minor changes in computation of
the safety fan but being on the conservative side, we will not care that the size of the fan might be smaller without
the transition. In any case, it is likely that wind changes may introduce lager error than neglect of the transition.

4
American Institute of Aeronautics and Astronautics

Descent of a fully deployed system. After canopy deployment the trajectory obeys the following set of ordinary
differential equations:

1 1

1 1

1

() cos () cos

()sin () sin

w v

w v

v

dx w h h v GR
dt
dy w h h v GR
dt
dh v
dt

ψ ψ

ψ ψ

= +

= +

=

 (10)

Here we assume that the descent rate does not depend on the altitude (air density), and is constant during the entire
decent. Using the third equation as demonstrated previously, the first two equations can be reduced to

1
1 1

1
1 1

() cos () cos

()sin () sin

v w

v w

dx v w h h GR
dh
dy v w h h GR
dh

ψ ψ

ψ ψ

−

−

= +

= +
 (11)

Now, we can integrate these equations with respect to an altitude, so that

()

()

0

0

1
1 1 1

1
1 1 1

() () cos () cos

() ()sin () sin

H H

v w
h

H H

v w
h

x h x v w h h GR dh

y h y v w h h GR dh

ψ ψ

ψ ψ

−Δ
−

−Δ
−

= + +

= + +

∫

∫
 (12)

Again, the integrals can be split into two parts
0

0

1
1 1 0 1

1
1 1 0 1

() () cos () () cos

() ()sin () () sin

H H

v w
h

H H

v w
h

x h x v w h h dh H H h GR

y h y v w h h dh H H h GR

ψ ψ

ψ ψ

−Δ
−

−Δ
−

= + + −Δ −

= + + −Δ −

∫

∫
 (13)

where the third terms represent the contribution from the stuck controls and the second terms provide the
contribution of the variable winds. By the altitude of deployment of the second stage we will have

0

2

0

2

1
2 1 1 0 2 1

1
2 1 1 0 2 1

() cos () () cos

()sin () () sin

H H

v w
H

H H

v w
H

x x v w h h dh H H H GR

y y v w h h dh H H H GR

ψ ψ

ψ ψ

−Δ
−

−Δ
−

= + + − Δ −

= + + − Δ −

∫

∫
 (14)

Deployment of Stage 2. If Stage 2 is present then the equations of motion will be similar to those of
Eqs.(12)-(14). Specifically, we can write

2

2

1
2 1 2 2

1
2 1 2 2

() () cos () () cos

() ()sin () () sin

H

v w
h

H

v w
h

x h x v w h h dh H h GR

y h y v w h h dh H h GR

ψ ψ

ψ ψ

−

−

= + + −

= + + −

∫

∫
 (15)

and
2

3

2

3

1
3 2 1 2 3 2

1
3 2 1 2 3 2

() cos () () cos

()sin () () sin

H

v w
H

H

v w
H

x x v w h h dh H H GR

y y v w h h dh H H GR

ψ ψ

ψ ψ

−

−

= + + −

= + + −

∫

∫
 (16)

respectively.
Deployment of Stage 3. Finally, for Stage 3 (if present) we will have

5
American Institute of Aeronautics and Astronautics

3

3

1
3 1 3 3

1
3 1 3 3

() () cos () () cos

() ()sin () () sin

H

v w
h

H

v w
h

x h x v w h h dh H h GR

y h y v w h h dh H h GR

ψ ψ

ψ ψ

−

−

= + + −

= + + −

∫

∫
 (17)

and
3

3

1
3 1 3 3

0

1
3 1 3 3

0

(0) () cos () cos

(0) ()sin () sin

H

v w

H

v w

x x v w h h dh H GR

y y v w h h dh H GR

ψ ψ

ψ ψ

−

−

= + +

= + +

∫

∫
 (18)

Now that we have developed the equations of motion for a multi-stage system, let us consider a representative
example.

III. Example of Safety Fans for a Two-Stage System
Consider a system that has two stages, which are described as follows:

 vi, m/s GRi HΔ (2H), m
Stage 1 18 2.5 666
Stage 2 6 0 333

Assume we release it from 0 1,500H m= at 0 60 /V m s= due North-West. The winds are given in a look-up
table and stored in the Winds(:,1:3) matrix (where the first column contains altitude, second – wind direction,
and third – wind magnitude). (Hereafter we will use fragments of self-explanatory actual code written in
MATLAB.)

Depending on the data collection method the wind measurements may be not distributed evenly in altitude. So,
before computing definite integrals in Eqs.(6),(8),(12),(15), or (17) numerically (using trapezoidal numerical
integration) the original look-up table kh , kw , wkψ should be approximated with, for example, piecewise cubic
Hermite interpolating polynomials ()w h and ()w hψ :

%% Setting initial conditions
V0=60; H0=1500; Psi0=45*pi/180; g=9.81; DR=[18; 6]; GR=[2.5 0];
DH=666; H2=333;
h=linspace(0,H0,98);
h(end+1)=H0-DH; h(end+1)=H2; h=sort(h);
%% Producing spline interpolations for the winds
psih = pchip(Winds(:,1),Winds(:,2),h)*pi/180;
wh = pchip(Winds(:,1),Winds(:,3),h);

Next, the ballistic trajectory due to initial velocity (the last terms in Eqs.(6)) can be computed as follows:
%% Computing a ballistic fall if no winds were present
xt1=sqrt(2*(H0-h)/g)*V0*cos(Psi0);
yt1=sqrt(2*(H0-h)/g)*V0*sin(Psi0);

If accounting for the winds (the second terms in Eqs.(6)) the trajectory becomes
%% Computing contribution of winds
 for i=1:99
 xw(i) = trapz(h(i:100),wh(i:100).*cos(psih(i:100))./sqrt(2*g*H0-h(i:100)));
 yw(i) = trapz(h(i:100),wh(i:100).*sin(psih(i:100))./sqrt(2*g*H0-h(i:100)));
 end
xt2=xt1+[xw 0];
yt2=yt1+[yw 0];

Both trajectories are shown in Fig.1 (the star represents a release point). This latter trajectory represents the ballistic
fall if the first- (and second-) stage canopy does not open. The winds are pushing the trajectory to the South-East
but because the system falls ballistically (very quickly) the winds introduce no major change.

6
American Institute of Aeronautics and Astronautics

a) b)
Fig.1 Ballistic trajectories with no wind (a) and winds (b).

Now, deploying the first stage canopy means that we are slowing down the descent and the winds will produce a

much greater effect. Fig.2a shows the addition of the second terms in Eq.(14) computed as follows:
%% Deploying the 1st stage
index1=find(h>H0-DH); Ind1=index1(1)-1;
 for i=1:Ind1-1
 xS1(i) = trapz(h(i:Ind1),wh(i:Ind1).*cos(psih(i:Ind1))./DR(1));
 yS1(i) = trapz(h(i:Ind1),wh(i:Ind1).*sin(psih(i:Ind1))./DR(1));
 end
xS1 = xS1+xt2(Ind1); yS1 = yS1+yt2(Ind1);

The only difference from Eq.(14) is that the trajectory is propagated all way down to the surface rather than to H2.
When the second stage is deployed (which leads to even slower rate of descent) the winds play an even greater role
(Fig.2b):

%% Deploying the 2nd stage
index2=find(h>H2); Ind2=index2(1)-1;
 for i=1:Ind2-1
 xS2(i) = trapz(h(i:Ind2),wh(i:Ind2).*cos(psih(i:Ind2))./DR(2));
 yS2(i) = trapz(h(i:Ind2),wh(i:Ind2).*sin(psih(i:Ind2))./DR(2));
 end
xS2 = xS2+xS1(Ind2); yS2 = yS2+yS1(Ind2);

a) b)
Fig.2 The first-stage opening (no glide) (a) and the second-stage opening (no glide) (b).

Finally, the effect of the controls failure mode (controls stuck in one position leading to a glide with constant

ground track angle) is reduced to drawing a circle of appropriate radius (the last term in Eq.(14)) around the last
point of the current stage.

7
American Institute of Aeronautics and Astronautics

%% Computing a safety fan for the first stage
[X,Y,Z] = cylinder((H0-DH-H2)*GR(1));
%% Computing a safety fan for the second stage
[X,Y,Z] = cylinder((H0-DH-H2)*GR(1)+H2*GR(2));

The results are presented in Fig.3. Since the specific system we are considering uses round parachutes with no glide
as a second stage, the final safety fan is simply first-stage safety fan shifted South-East.

Fig.3 Safety fans in case the controls are stuck in a fixed position.

Computation of the safety fans for different multistage systems is carried out similarly.

As seen, the computations above are not very complicated and yet, they are unique for each system and carried
out numerically based on the unevenly-spaced measurements of the winds aloft. If two different systems are to be
dropped, these calculations should be performed for each system individually. The goal, however, is to have another
technique allowing the use of some sort of normalized winds that can be computed upfront once and then be applied
to any system. This brings us to the next section, which discusses the so-called ballistic winds.

IV. Computation of Ballistic Winds
For operational use the vertical winds profile can be reduced to the so-called ballistic winds. In other words, if at

some altitude H we have a ballistic wind of magnitude W and direction ΨW, then the effect of variable winds for
some system with descent rate Vv on its way from altitude H down to the surface is reduced to simple formulas:

() cos

() sin

W
v

W
v

Hx h W
V
Hy h W
V

= Ψ

= Ψ
 (19)

A. Deriving Ballistic Winds
Comparing Eqs.(19) with Eqs.(18) it becomes clear that

0

0

1 ()cos () cos

1 ()sin () sin

H

w W
v v

H

w W
v v

Hw h h dh W
V V

Hw h h dh W
V V

ψ

ψ

= Ψ

= Ψ

∫

∫
 (20)

Substituting integrals with the finite sum of trapezoids based on the discrete values of kh , kw and wkψ , 1,...,k M= ,
we get

8
American Institute of Aeronautics and Astronautics

()

()

; 1 ; 1
1 ;

2

; 1 ; 1
1 ;

2

cos cos
cos

2
sin sin

sin
2

M
k w k k w k

k k M M W M
k

M
k w k k w k

k k M M W M
k

w w
h h h W

w w
h h h W

ψ ψ

ψ ψ

− −
−

=

− −
−

=

+
− = Ψ

+
− = Ψ

∑

∑
 (21)

The index starts from 2 because by definition the winds measurements at the lowest altitude can be considered
ballistic winds at this altitude.

From Eqs.(21) it further follows that

()()

()()

()() ()()

1 ; 1 ; 1
2

;

1 ; 1 ; 1
2

2 2

1 ; 1 ; 1 1 ; 1 ; 1
2 2

sin sin
tan

cos cos

1 cos cos sin sin
2

M

k k k w k k w k
k

W M M

k k k w k k w k
k

M M

M k k k w k k w k k k k w k k w k
k kM

h h w w

h h w w

W h h w w h h w w
h

ψ ψ

ψ ψ

ψ ψ ψ ψ

− − −
=

− − −
=

− − − − − −
= =

− +
Ψ =

− +

⎛ ⎞ ⎛ ⎞= − + + − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑

∑

∑ ∑

(22)

For the specific case when 1k kh h h const−− = Δ = , 2,...,k M= , Eqs.(22) can be further reduced to

()

()

() ()

; 1 ; 1
2

;

; 1 ; 1
2

2 2

; 1 ; 1 ; 1 ; 1
2 2

sin sin
tan

cos cos

cos cos sin sin
2

M

k w k k w k
k

W M M

k w k k w k
k

M M

M k w k k w k k w k k w k
k kM

w w

w w

hW w w w w
h

ψ ψ

ψ ψ

ψ ψ ψ ψ

− −
=

− −
=

− − − −
= =

+
Ψ =

+

Δ ⎛ ⎞ ⎛ ⎞
= + + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∑

∑

∑ ∑

 (23)

B. Example of Computing Ballistic Winds
Let us consider a simple example. Suppose that the winds aloft were measured as

Alt, ft Direction, deg Magnitude, kts
0 93 10
1000 101 36
2000 119 25
3000 129 21
4000 135 19
5000 139 17
6000 145 16
7000 150 16
8000 152 16
9000 151 16
10000 144 16

and stored into the Winds matrix. Then, the following script
BWinds(:,1)=Winds(:,1); BWinds(1,2)=Winds(1,2); BWinds(1,3)=Winds(1,3);
 for n=2:11
 dh=diff(Winds(1:n,1));
 wE=sum(dh.*(Winds(2:n,3). *sin(Winds(2:n,2) *pi/180)+...
 Winds(1:n-1,3).*sin(Winds(1:n-1,2)*pi/180)))/2;
 wN=sum(dh.*(Winds(2:n,3). *cos(Winds(2:n,2) *pi/180)+...
 Winds(1:n-1,3).*cos(Winds(1:n-1,2)*pi/180)))/2;
 BWinds(n,2)=atan2(wE,wN)*180/pi;
 BWinds(n,3)=sqrt(wE^2+wN^2)/Winds(n,1);
 end

converts them into the ballistic winds:
 0.0 93.0 10.0
 1000.0 99.3 23.0
 2000.0 104.4 26.5
 3000.0 110.2 25.0

9
American Institute of Aeronautics and Astronautics

 4000.0 114.7 23.5
 5000.0 118.2 22.1
 6000.0 121.2 21.0
 7000.0 124.1 20.1
 8000.0 126.8 19.4
 9000.0 129.1 18.8
 10000.0 130.6 18.5

Now, if for instance we want to see what would happen to the second stage of the system described in Section III
if it were deployed at 3,000ft, then instead of calculating integrals in Eq.(18) (which would result in a trajectory
shown in Fig.4) we could simply apply Eq.(19):

 X=BWinds(3,1)/GR(2)*BWinds(3,3)*cos(BWinds(3,2)*pi/180);
 Y=BWinds(3,1)/GR(2)*BWinds(3,3)*sin(BWinds(3,2)*pi/180);

This accurately computes the forecast point of impact (shown in Fig.4 as a solid circle) in one shot.

Fig.4 Calculation of a predicated impact point based on ballistic winds.

To summarize, the ballistic winds (when computed correctly according to Eqs.(22) and (23)) provide an

excellent tool to rapidly assess the impact point in case of canopy opening failure and descent of a symmetric
canopy ADS (with zero glide ratio). However, the descent of a parafoil ADS still requires rigorous computations. As
a result, the next section presents a GUI developed to perform these computations behind the scene, while
visualizing the drop planning and all safety related information on one screen. This provides the capability to
conveniently change / adjust / play with different parameters.

V. Interactive GUI
Figure 5 presents a screen shot of the developed GUI which performs various computations and manipulations

(the factual data is replaced with fake data). This GUI was developed in the MATLAB development environment
using the Open GUI Layout Editor GUIDE. The code that runs this GUI contains over 3000 lines and the GUI itself
is subdivided into several panels, described next.

A. Winds Panel
The Winds panel allows the user to browse for wind files and chose the most appropriate one. The wind source

files are sounding, Windpack, balloon and JAAWIN winds. Examples of heading and the first three lines of wind
data for each of these files are shown in Figs.6-9. To read each of these files a corresponding function was created.
For instance, the following set of commands

%% Reading heading information
[Y,M,D,H,f1,f2,f3,lat,lon]=...
 textread(FileName,'%4c-%2c-%2c_%2c %s i,j=(%f , %f),lat,long=(%f , %f',...
 1,'headerlines',2);
Ldate=[M '/' D '/' Y];, Ltime=[H ':00'];
file = textread(FileName, '%s', 'delimiter', '\n');
%% Reading numerical data

10
American Institute of Aeronautics and Astronautics

N=length(file); i=6; Winds=[0 0 0];
while i <= N
[q,w,e,r,t,y,u]=textread(FileName,'%f %f %f %f %f %f %f',1,'headerlines',i);
Winds=vertcat(Winds,[w y t]); % the format is altitude, Wdir, Wspeed
i=i+1;
end
Winds(1,:)=[];

reads data from the sounding file (Fig.6).

Fig. 5 Safety fans GUI.

37 2
2008-12-16_00Z,DZID00 i,j=(15.9, 15.6),lat,long=(54.832,83.104)
 SFALT, SFPRES
 381 968.3
 LINE AGL(m) T(C) RH(%) WSPD(m/s) WDD P(mb)
 1 2.0 11.76 50.93 9.33 182.93 968.04
 2 15.2 11.64 51.16 10.97 182.91 966.53
 3 56.2 11.26 52.30 13.47 182.37 961.80

Fig. 6 Example of a winds sounding file.

Time(UTC) Lat(deg) Long(deg) Altitude(M-HAE) Q StdDev VE(M/sec) VN(M/Sec) VUp(M/Sec)
53728.000 54.832114 83.104813 5613.796 4 0.697 -0.970 91.957 -0.030
53728.100 54.832114 83.104813 5613.817 4 0.697 -0.967 91.811 0.142
53728.200 54.832114 83.104813 5613.828 4 0.697 -1.097 91.665 0.102

Fig. 7 Example of a Windpack winds file.

11
American Institute of Aeronautics and Astronautics

 0700L FLIGHT
--
Station Name: DZ00 Radiosonde Type: RS92-SGP
Latitude: 54.83 Radiosonde Number: DXXXXXX
Longitude: 83.10 Altitude: 1322 feet (403 Meters)
Ground Check Corrections
Pressure: 0.44 mb RH1: 1.07 %
Temperature: -0.84 °C RH2: -0.41 %
Launch Time: 14:14 UTC Sounding Started on: 12/15/2008
--
 Dew Pt Air Wind Wind
 Altitude Press Temp RH Temp Density Direct Speed
 (FT above msl) (MB) (°F) (%) (°F) (g/m^3) (degs) (Kts)
--
 1322 968.0 45.6 44 24.9 1197.94 124.0 9.0
 1400 965.2 45.4 41 23.0 1195.07 127.0 8.9
 1500 961.6 45.5 41 23.3 1190.34 129.5 10.7

Fig. 8 Example of a balloon winds file.

A. Forecast Time, Drop Zone Location, Elevation
 Valid Time: 1400Z 27 Oct 2008 Data Source: MM5
 Forecast Model Grid Pt: Latitude-> 54.83N Longitude-> 83.104E
 Forecast Model Grid Pt Elevation: 1719 feet above MSL
 Point of Impact: Latitude-> 54.83N Longitude-> 83.104W
 Forecast Model Grid Point Bearing/Range from Point of Impact: 90DEG/0.00KM
(*Note! Model Grid Pt is nearest to entered Lat/Lon and is in decimal degrees format.)
B. Winds, Temperature, Pressure Altitude, D-Values, Ballistic Winds -
 HEIGHT(PRESS) DIR SPEED TEMP PRESS ALT D-VALUE BALLISTIC WINDS
 (KFT AGL)(MB) (DEG) (KNOTS) (DEG C) (KFT MSL) (FT) (DEG) (KNOTS)
 SFC(959) 93 10 20 1.61 +0198 93 10
 1 (926) 101 36 22 2.47 +0245 96 18
 2 (894) 119 25 25 3.42 +0294 108 18
 3 (863) 129 21 24 4.36 +0355 108 18

Fig. 9 Example of a JAAWIN winds forecast file.

The program will automatically recognize what type of file was chosen and how to read it properly. The wind
data will then be loaded into the appropriate winds matrix. Auxiliary data such as the name and type of the file,
when and where the winds data were taken, and altitude range will also be read and displayed in the corresponding
windows.

B. Drop Zone and Map Panels
The Drop Zone panel allows the user to choose one of the drop zones stored in an ASCII file. The script behind

this panel loads latitude, longitude and mean-sea-level altitude of a chosen drop zone. The corresponding map
appears on the left. By default the center of the chosen DZ becomes an intended impact point (shown in the
corresponding windows). It can be changed by selecting a new point on the map or typing new values in the
windows.

The map can be any graphical image scaled into a rectangle with respect to the Universal Transverse Mercator
(UTM) coordinates. When the map loads, the axes of this map are also assigned so that they can be manipulated
later. For instance, the following set of commands loads the jpg image of some map:

A = imread('MAP_UTM_WGS84','jpg');
MAPimageR = A(:,:,1:3); MAPimage(:,:,1:3) = MAPimageR(end:-1:1,:,1:3);
clear MAPimageR A
 Mlat=[60.17 123.51];
 Mlon=[53.65 63.93];
image(Mlon, Mlat, MAPimage); axis([Mlon Mlat])
set(gca,'YDir','normal'); axis equal

The user can zoom the map in and out, move it, measure distances between selected points, get the coordinates
of any point selected with the cursor, and read the coordinates of any point in one of the chosen formats (UTM on
the map, or Lat/Lon in the windows). Two functions support conversion of UTM coordinates into Lat/Lon and back.

12
American Institute of Aeronautics and Astronautics

C. Test System Panel
The Test System panel allows the user to choose one of the ADSs stored in an Excel file (see Fig.10). This

system can have one, two, or three stages. The corresponding windows for unused stages are shadowed. The only
ADS data needed for fan computation are the system’s descent rate, glide ratio and altitude to deploy (altitude loss
for the first stage). The user is allowed to change any of these three parameters in the corresponding windows or
create an entirely new system. This data along with winds aloft and release point information is used to compute
safety fans.

Fig. 10 Examples of ADS input data.

D. Release Point and Units Panels
The idea behind the Release Point panel is that based on the system being tested and available winds data, the

user enters various release points and computes safety fans. If the safety requirements are not met, the user moves
the release point and a new safety fan can be generated. The release point can be moved by clicking on a new
location in the map, in which case the new coordinates immediately appear in the corresponding panel windows, or
by entering a new latitude and longitude in the panel windows. Altitude, airspeed, and direction at the release point
are provided by the user. When a satisfactory release point has been chosen, its coordinates will be provided to the
crew for execution.

As an example, the following commands are activated upon clicking the “Move Release” button in the GUI and
choosing to select a new point by clicking on the map. The current release point, if any exists, is deleted from the
map. The ginput() function is interactive and allows the user to click anywhere in the map to select a point. The
new release point is then plotted and the corresponding Lat/Lon calculated:

%% Deleting current release point if any
h = findobj('MarkerFaceColor','k','-and','MarkerSize',12);
h2 = findobj('MarkerFaceColor','r','-and','MarkerSize',6);
delete(h); delete(h2);
%% Getting and plotting chosen release point
[x,y] = ginput(1);
rp = plot(x,y,'k*');
set(rp,'MarkerFaceColor','k','MarkerSize',12,'LineWidth',2);
rp2 = plot(x,y,'ro');
set(rp2,'MarkerFaceColor','r','MarkerSize',6);
%% Determining lat/lon

13
American Institute of Aeronautics and Astronautics

easting = x*10^3 + 350000;
northing = y*10^3 + 1800000;
zone = '11S';
[RPlatDeg,RPlonDeg]=utm2wgs(easting,northing,zone);
%% Accounting for sign of longitude (using West in GUI vs. negative)
RPlonDeg = -RPlonDeg;

Since the ground crew and the deployment crew can speak different technical languages (units), the Units panel
allows the user to change units from the International System of Units (SI) to English and back. In addition, Lat/Lon
coordinates can be visualized throughout all panels in one of the following three formats:

• Deg – degrees.decimal degrees
• DM – degrees, minutes.decimal minutes
• DMS – degrees, minutes, seconds.decimal seconds

If using the DM or Deg formats, the unused windows are shadowed. For example, the chosen format in Fig.5 is DM,
and therefore the first windows in all Lat/Lon readings are shadowed.

E. Operations
Other operational functions in the GUI include timing, fan computation, loading and saving data, and

commenting. The “Start Clock” button asks the user for the computer’s time zone setting and starts a continuously
updating clock in Coordinated Universal Time (UTC). When all the necessary data for fan computation has been
selected and entered, the user can compute the current safety fan. Corresponding graphics appear on the map. The
time of the most recent calculation appears under the running clock.

The GUI can be saved with the Save Data button. Once a GUI has been saved, it can be loaded with the Load
Data button. When reloaded, the GUI is still interactive. This means that though it can be used as a simple figure
capturing one state in time, it can also be used as the starting point for continuing operations. If using a loaded GUI,
the clock must be restarted but all other data are available.

The user can enter comments on a particular configuration in the Comments panel. These comments will be
saved with the GUI. The Stop GUI button stops all activity in the figure and is used just prior to closing the
application.

VI. Conclusions
Computation of the safety fans for testing of aero delivery systems involves simple and yet cumbersome

computations. For uncontrolled systems the precomputed ballistic winds can reduce some of the computational
burden. However, for effective operations with any system, especially the ones with several stages, some kind of
automation is required. This paper presented an example of such an automated tool which performs several safety
checks in convenient graphical form. The mathematical foundation for safety fan computations was also rigorously
developed. The graphical user interface is ready and will be used soon in a field environment. Feedback will be
provided to the developers for further improvement and modifications.

Acknowledgments
The authors would like to thank the team of the Air Delivery Systems Branch of the U.S. Army YPG for funding

this project and providing some real test data to verify computational algorithms and the theory behind them.

References
1. The Universal Grids: Universal Transverse Mercator (UTM) and Universal Polar Stereographic (UPG), DMA

Technical Manual DMATM8358.2, Defense Mapping Agency, Faitfax, VA, 1989.

