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This paper deals with the development of a mathematical foundation and practical algorithms to 
compute the safety fans to be used in conjunction with aerodynamic deceleration payload delivery 
systems tests. The paper provides formulas to compute a descent / gliding trajectory for a 
multiple-stage system and then considers several cases of major failures. It also introduces the concept 
of ballistic winds, simplifying calculation of the safety fans so that the computer is no longer needed, 
and shows how to carefully calculate these ballistic winds based on the best known winds aloft. Finally, 
the paper introduces the graphical user interface developed and tested by the authors that is supposed 
to provide test planning officers with a unique variety of trade-off options as well as to effectively 
represent all safety-related information both to the ground personal and to the crew performing a 
payload delivery from a transport aircraft or helicopter. The paper ends with conclusions. 

Notations 
0H , 0V , 0Ψ  = altitude, speed and direction of the aircraft at the release point 

2H , 3H   = altitude AGL, at which the 2nd and 3rd stages are deployed (if present) 
HΔ   = altitude loss before the 1st stage canopy deployment 

x, y, h  = system’s Northing, Easting and altitude 
xi, yi  = Northing and Easting at the altitude of the i-th stage deployment (i=1,2,3) 

( )w h , ( )w hψ  = speed and direction of the wind at altitude h 

viv , iGR   = descent rate and glide ratio during the i-th stage (i=1,2,3) 
 

I. Introduction 
S with any other technical system, aerodynamic delivery systems (ADS) are subject to failures. That is why 
numerous tests are required to tune the system, make it more reliable and therefore minimize the risk of failure. 

A variety of ADSs rely on a parachute, a cluster of parachutes, or most recently autonomous parafoils to deliver 
payloads of different weight m (up to several tons) from different altitudes 0H  (up to several kilometers). The 
canopy opening failures result in a ballistic trajectory that transforms the initial kinetic ( 2

00.5mV ) and potential 
( 0mgH ) energy into kinetic energy at impact. 

A failed, ballistically falling system can cause huge damage at impact. That is why it is important to foresee such 
an unfortunate event and take certain precautions organizing these drops in remote and uninhabited areas. Basic 
physics provides a very simple formula to calculate the ground distance the failed ADS can cover. If we neglect 
aerodynamic drag (yielding the largest ground distance estimate possible) this formula is as simple as 0V T , where 

the time of fall T can be estimated as 1
02T H g −= . Of course if we have strong horizontal winds, they will 

definitely affect this range (horizontal projection of the trajectory will in this case not be a straight line any longer), 
though the effect will be small as the ADS would fall through these winds fairly quickly. 

In case of partial canopy opening failures, however, the effect of winds will be stronger. This is not only because 
the system will descend slower and take longer to reach the ground, but also because we’ll have to account for 
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aerodynamic drag. In the case where we are dealing with a failed parafoil the situation can be even worse because of 
the high glide ratio of such systems. With a fully deployed canopy but with the controls stuck in some 
predetermined position or in the case of a controls failure, the parafoil-based ADS can glide far away from the 
intended point of impact (IPI). 

This paper develops a mathematical foundation and corresponding software for reliable computation of safety 
fans for multistage systems (when the deployment of multiple canopies is staged) and is organized as follows. 
Section II provides the mathematical foundation for computing safety fans for multistage systems in the different 
types of failure modes described above (canopy opening failure and controls failure for controllable ADSs). Next, 
Section III presents a detailed example of computing these safety fans for a two-stage system. Section IV introduces 
the concept of so-called ballistic winds, the instrument allowing major simplification of safety fan computation. This 
simplification provides a reliable method for a range safety officer to compute these fans even without a computer 
by using a simple look-up table prepared upfront using the best known winds at the drop zone (DZ). Section V 
presents a graphical user interface (GUI) developed in the MATLAB development environment that provides much 
more flexibility in computing safety fans, suggesting release points and directions, and therefore allows for assessing 
and mitigating risks. The paper ends with conclusions. 

II. Computation of Safety Fans 
This section considers two major failures. The first case is when the very first stage canopy (or a single canopy 

in a one-stage system) doesn’t open at all and the ADS falls ballistically. This will be the canopy opening failure 
case. The second case is when the first stage is deployed successfully but there are certain problems with steering the 
system in the desired direction. This case will be referred to as the controls failure case. The effect of winds in both 
cases will be accounted for as described above. 

A. Canopy Opening Failure 
Assuming that aerodynamic drag can be neglected, the equations driving the ADS motion are: 
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Here the vertical motion is driven by the gravity force, while the horizontal motion is caused by the initial velocity 
and variable winds. Equations (1) can be further reduced to: 
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From the last equation it follows that 

( )0
2t H h
g

= −       (3) 

With this relationship between elapsed time and altitude the first two equations in (2) can be further rewritten as 
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Now the x and y coordinates at any arbitrary altitude h can be obtained via integrating Eqs.(4): 
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The integrals in these equations can be further split into two separate components, so that 
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If the parameters ( )w h  and ( )w hψ  are given as a look-up table with the elements: kh , kw  and wkψ , 1,...,k N= , 
( 1k kh h −> ), then the effect of the winds can be reduced to the following finite sums: 
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(where 0H  corresponds to Mh  and h  to mh ). 
Next, let us consider the case when the canopy opens successfully but the controls are stuck in some fixed 

position, causing the ADS to glide with a constant heading (ADS dynamics can be neglected). 

B. Controls Failure 
A multiple-stage ADS, say with three stages, assumes the following consecutive descent phases: 

• Ballistic trajectory before the first stage is fully deployed; 
• Deployment of Stage 1; 
• Deployment of Stage 2; 
• Deployment of Stage 3. 

These stages are described below. 
Ballistic trajectory before the first stage is fully deployed. We may apply Eqs.(6), which for the altitude range 

of 0 0[ ; ]h H H H∈ −Δ  yield 
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Specifically, by the time (altitude) the first stage deploys we have 
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From this point on we assume that the initial horizontal speed caused by deploying from an aircraft flying with 
speed V0 is phased out completely. For simplicity we will not consider the gradual transition from a ballistic fall to 
the normal gliding descent. Indeed, accounting for this transition may cause some minor changes in computation of 
the safety fan but being on the conservative side, we will not care that the size of the fan might be smaller without 
the transition. In any case, it is likely that wind changes may introduce lager error than neglect of the transition. 
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Descent of a fully deployed system. After canopy deployment the trajectory obeys the following set of ordinary 
differential equations: 
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Here we assume that the descent rate does not depend on the altitude (air density), and is constant during the entire 
decent. Using the third equation as demonstrated previously, the first two equations can be reduced to 
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Now, we can integrate these equations with respect to an altitude, so that 
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Again, the integrals can be split into two parts 
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where the third terms represent the contribution from the stuck controls and the second terms provide the 
contribution of the variable winds. By the altitude of deployment of the second stage we will have 
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Deployment of Stage 2. If Stage 2 is present then the equations of motion will be similar to those of 
Eqs.(12)-(14). Specifically, we can write 
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respectively. 
Deployment of Stage 3. Finally, for Stage 3 (if present) we will have 
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Now that we have developed the equations of motion for a multi-stage system, let us consider a representative 
example. 

III. Example of Safety Fans for a Two-Stage System 
Consider a system that has two stages, which are described as follows: 

 vi, m/s GRi HΔ ( 2H ), m 
Stage 1 18 2.5 666 
Stage 2 6 0 333 

Assume we release it from 0 1,500H m=  at 0 60 /V m s=  due North-West. The winds are given in a look-up 
table and stored in the Winds(:,1:3) matrix (where the first column contains altitude, second – wind direction, 
and third – wind magnitude). (Hereafter we will use fragments of self-explanatory actual code written in 
MATLAB.) 

Depending on the data collection method the wind measurements may be not distributed evenly in altitude. So, 
before computing definite integrals in Eqs.(6),(8),(12),(15), or (17) numerically (using trapezoidal numerical 
integration) the original look-up table kh , kw , wkψ  should be approximated with, for example, piecewise cubic 
Hermite interpolating polynomials ( )w h  and ( )w hψ : 

%% Setting initial conditions 
V0=60; H0=1500; Psi0=45*pi/180; g=9.81; DR=[18; 6]; GR=[2.5 0]; 
DH=666; H2=333; 
h=linspace(0,H0,98); 
h(end+1)=H0-DH; h(end+1)=H2; h=sort(h); 
%% Producing spline interpolations for the winds 
psih = pchip(Winds(:,1),Winds(:,2),h)*pi/180; 
wh   = pchip(Winds(:,1),Winds(:,3),h); 

Next, the ballistic trajectory due to initial velocity (the last terms in Eqs.(6)) can be computed as follows: 
%% Computing a ballistic fall if no winds were present 
xt1=sqrt(2*(H0-h)/g)*V0*cos(Psi0); 
yt1=sqrt(2*(H0-h)/g)*V0*sin(Psi0); 

If accounting for the winds (the second terms in Eqs.(6)) the trajectory becomes 
%% Computing contribution of winds 
  for i=1:99 
  xw(i)  = trapz(h(i:100),wh(i:100).*cos(psih(i:100))./sqrt(2*g*H0-h(i:100))); 
  yw(i)  = trapz(h(i:100),wh(i:100).*sin(psih(i:100))./sqrt(2*g*H0-h(i:100))); 
  end 
xt2=xt1+[xw 0]; 
yt2=yt1+[yw 0]; 

Both trajectories are shown in Fig.1 (the star represents a release point). This latter trajectory represents the ballistic 
fall if the first- (and second-) stage canopy does not open. The winds are pushing the trajectory to the South-East  
but because the system falls ballistically (very quickly) the winds introduce no major change. 
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a)    b)  
Fig.1 Ballistic trajectories with no wind (a) and winds (b). 

 
Now, deploying the first stage canopy means that we are slowing down the descent and the winds will produce a 

much greater effect. Fig.2a shows the addition of the second terms in Eq.(14) computed as follows: 
%% Deploying the 1st stage 
index1=find(h>H0-DH); Ind1=index1(1)-1; 
  for i=1:Ind1-1 
  xS1(i)  = trapz(h(i:Ind1),wh(i:Ind1).*cos(psih(i:Ind1))./DR(1)); 
  yS1(i)  = trapz(h(i:Ind1),wh(i:Ind1).*sin(psih(i:Ind1))./DR(1)); 
  end 
xS1 = xS1+xt2(Ind1); yS1 = yS1+yt2(Ind1); 

The only difference from Eq.(14) is that the trajectory is propagated all way down to the surface rather than to H2. 
When the second stage is deployed (which leads to even slower rate of descent) the winds play an even greater role 
(Fig.2b): 

%% Deploying the 2nd stage 
index2=find(h>H2); Ind2=index2(1)-1; 
  for i=1:Ind2-1 
  xS2(i)  = trapz(h(i:Ind2),wh(i:Ind2).*cos(psih(i:Ind2))./DR(2)); 
  yS2(i)  = trapz(h(i:Ind2),wh(i:Ind2).*sin(psih(i:Ind2))./DR(2)); 
  end 
xS2 = xS2+xS1(Ind2); yS2 = yS2+yS1(Ind2); 

 

a)    b)  
Fig.2 The first-stage opening (no glide) (a) and the second-stage opening (no glide) (b). 

 
Finally, the effect of the controls failure mode (controls stuck in one position leading to a glide with constant 

ground track angle) is reduced to drawing a circle of appropriate radius (the last term in Eq.(14)) around the last 
point of the current stage. 
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%% Computing a safety fan for the first stage 
[X,Y,Z] = cylinder((H0-DH-H2)*GR(1)); 
%% Computing a safety fan for the second stage 
[X,Y,Z] = cylinder((H0-DH-H2)*GR(1)+H2*GR(2)); 

The results are presented in Fig.3. Since the specific system we are considering uses round parachutes with no glide 
as a second stage, the final safety fan is simply first-stage safety fan shifted South-East. 
 

 
Fig.3 Safety fans in case the controls are stuck in a fixed position. 

 
Computation of the safety fans for different multistage systems is carried out similarly. 

As seen, the computations above are not very complicated and yet, they are unique for each system and carried 
out numerically based on the unevenly-spaced measurements of the winds aloft. If two different systems are to be 
dropped, these calculations should be performed for each system individually. The goal, however, is to have another 
technique allowing the use of some sort of normalized winds that can be computed upfront once and then be applied 
to any system. This brings us to the next section, which discusses the so-called ballistic winds. 

IV. Computation of Ballistic Winds 
For operational use the vertical winds profile can be reduced to the so-called ballistic winds. In other words, if at 

some altitude H we have a ballistic wind of magnitude W and direction ΨW, then the effect of variable winds for 
some system with descent rate Vv on its way from altitude H down to the surface is reduced to simple formulas: 
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A. Deriving Ballistic Winds 
Comparing Eqs.(19) with Eqs.(18) it becomes clear that 
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Substituting integrals with the finite sum of trapezoids based on the discrete values of kh , kw  and wkψ , 1,...,k M= , 
we get 
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The index starts from 2 because by definition the winds measurements at the lowest altitude can be considered 
ballistic winds at this altitude. 

From Eqs.(21) it further follows that 
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For the specific case when 1k kh h h const−− = Δ = , 2,...,k M= , Eqs.(22) can be further reduced to 
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B. Example of Computing Ballistic Winds 
Let us consider a simple example. Suppose that the winds aloft were measured as 

Alt, ft Direction, deg Magnitude, kts 
0      93   10 
1000     101   36 
2000     119   25 
3000     129   21 
4000     135   19 
5000     139   17 
6000     145   16 
7000     150   16 
8000     152   16 
9000     151   16 
10000     144   16 

and stored into the Winds matrix. Then, the following script 
BWinds(:,1)=Winds(:,1); BWinds(1,2)=Winds(1,2); BWinds(1,3)=Winds(1,3); 
  for n=2:11 
  dh=diff(Winds(1:n,1)); 
  wE=sum(dh.*(Winds(2:n,3).  *sin(Winds(2:n,2)  *pi/180)+... 
              Winds(1:n-1,3).*sin(Winds(1:n-1,2)*pi/180)))/2; 
  wN=sum(dh.*(Winds(2:n,3).  *cos(Winds(2:n,2)  *pi/180)+... 
              Winds(1:n-1,3).*cos(Winds(1:n-1,2)*pi/180)))/2; 
  BWinds(n,2)=atan2(wE,wN)*180/pi; 
  BWinds(n,3)=sqrt(wE^2+wN^2)/Winds(n,1); 
  end 

converts them into the ballistic winds: 
      0.0         93.0          10.0 
   1000.0         99.3          23.0 
   2000.0        104.4          26.5 
   3000.0        110.2          25.0 
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   4000.0        114.7          23.5 
   5000.0        118.2          22.1 
   6000.0        121.2          21.0 
   7000.0        124.1          20.1 
   8000.0        126.8          19.4 
   9000.0        129.1          18.8 
  10000.0        130.6          18.5 

Now, if for instance we want to see what would happen to the second stage of the system described in Section III 
if it were deployed at 3,000ft, then instead of calculating integrals in Eq.(18) (which would result in a trajectory 
shown in Fig.4) we could simply apply Eq.(19): 

    X=BWinds(3,1)/GR(2)*BWinds(3,3)*cos(BWinds(3,2)*pi/180); 
    Y=BWinds(3,1)/GR(2)*BWinds(3,3)*sin(BWinds(3,2)*pi/180); 

This accurately computes the forecast point of impact (shown in Fig.4 as a solid circle) in one shot. 
 

 
Fig.4 Calculation of a predicated impact point based on ballistic winds. 

 
To summarize, the ballistic winds (when computed correctly according to Eqs.(22) and (23)) provide an 

excellent tool to rapidly assess the impact point in case of canopy opening failure and descent of a symmetric 
canopy ADS (with zero glide ratio). However, the descent of a parafoil ADS still requires rigorous computations. As 
a result, the next section presents a GUI developed to perform these computations behind the scene, while 
visualizing the drop planning and all safety related information on one screen. This provides the capability to 
conveniently change / adjust / play with different parameters. 

V. Interactive GUI 
Figure 5 presents a screen shot of the developed GUI which performs various computations and manipulations 

(the factual data is replaced with fake data). This GUI was developed in the MATLAB development environment 
using the Open GUI Layout Editor GUIDE. The code that runs this GUI contains over 3000 lines and the GUI itself 
is subdivided into several panels, described next. 

A. Winds Panel 
The Winds panel allows the user to browse for wind files and chose the most appropriate one. The wind source 

files are sounding, Windpack, balloon and JAAWIN winds. Examples of heading and the first three lines of wind 
data for each of these files are shown in Figs.6-9. To read each of these files a corresponding function was created. 
For instance, the following set of commands 

%% Reading heading information 
[Y,M,D,H,f1,f2,f3,lat,lon]=... 
  textread(FileName,'%4c-%2c-%2c_%2c %s i,j=( %f , %f ),lat,long=( %f , %f',... 
           1,'headerlines',2); 
Ldate=[M '/' D '/' Y];, Ltime=[H ':00']; 
file = textread(FileName, '%s', 'delimiter', '\n'); 
%% Reading numerical data 
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N=length(file); i=6; Winds=[0 0 0]; 
while i <= N 
[q,w,e,r,t,y,u]=textread(FileName,'%f %f %f %f %f %f %f',1,'headerlines',i); 
Winds=vertcat(Winds,[w y t]); % the format is altitude, Wdir, Wspeed 
i=i+1; 
end 
Winds(1,:)=[]; 

reads data from the sounding file (Fig.6). 
 
 

 
Fig. 5   Safety fans GUI. 

 
 

37    2 
2008-12-16_00Z,DZID00         i,j=( 15.9, 15.6),lat,long=(54.832,83.104) 
 SFALT,   SFPRES 
  381    968.3 
  LINE  AGL(m)     T(C)    RH(%)   WSPD(m/s)  WDD    P(mb) 
    1      2.0    11.76    50.93     9.33   182.93   968.04 
    2     15.2    11.64    51.16    10.97   182.91   966.53 
    3     56.2    11.26    52.30    13.47   182.37   961.80 

Fig. 6   Example of a winds sounding file. 
 
 

Time(UTC)   Lat(deg)   Long(deg) Altitude(M-HAE) Q StdDev VE(M/sec) VN(M/Sec) VUp(M/Sec) 
53728.000   54.832114  83.104813    5613.796    4 0.697   -0.970    91.957     -0.030 
53728.100   54.832114  83.104813    5613.817    4 0.697   -0.967    91.811     0.142 
53728.200   54.832114  83.104813    5613.828    4 0.697   -1.097    91.665     0.102 

Fig. 7   Example of a Windpack winds file. 
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                                 0700L FLIGHT 
------------------------------------------------------------------------------ 
Station Name:  DZ00  Radiosonde Type:  RS92-SGP 
Latitude:     54.83  Radiosonde Number:  DXXXXXX 
Longitude:    83.10  Altitude: 1322 feet ( 403 Meters) 
Ground Check Corrections 
Pressure: 0.44 mb  RH1: 1.07 % 
Temperature: -0.84 °C  RH2: -0.41 % 
Launch Time: 14:14 UTC  Sounding Started on: 12/15/2008 
------------------------------------------------------------------------------ 
                                       Dew Pt     Air       Wind       Wind 
   Altitude     Press     Temp    RH    Temp    Density    Direct     Speed 
 (FT above msl)  (MB)    ( °F)    (%)   (°F)    (g/m^3)     (degs)    (Kts)  
------------------------------------------------------------------------------ 
     1322       968.0     45.6     44   24.9     1197.94    124.0        9.0 
     1400       965.2     45.4     41   23.0     1195.07    127.0        8.9 
     1500       961.6     45.5     41   23.3     1190.34    129.5       10.7 

Fig. 8   Example of a balloon winds file. 
 

A. Forecast Time, Drop Zone Location, Elevation 
   Valid Time:  1400Z 27 Oct 2008     Data Source: MM5 
   Forecast Model Grid Pt:  Latitude-> 54.83N  Longitude-> 83.104E 
   Forecast Model Grid Pt Elevation: 1719 feet above MSL 
   Point of Impact:  Latitude-> 54.83N  Longitude-> 83.104W 
   Forecast Model Grid Point Bearing/Range from Point of Impact: 90DEG/0.00KM 
(*Note! Model Grid Pt is nearest to entered Lat/Lon and is in decimal degrees format.) 
B. Winds, Temperature, Pressure Altitude, D-Values, Ballistic Winds - 
  HEIGHT(PRESS)   DIR      SPEED     TEMP    PRESS ALT   D-VALUE   BALLISTIC WINDS 
 (KFT AGL)(MB)   (DEG)    (KNOTS)   (DEG C)  (KFT MSL)     (FT)    (DEG)   (KNOTS) 
    SFC( 959)      93       10        20        1.61      +0198      93      10 
     1 ( 926)     101       36        22        2.47      +0245      96      18 
     2 ( 894)     119       25        25        3.42      +0294     108      18 
     3 ( 863)     129       21        24        4.36      +0355     108      18 

Fig. 9   Example of a JAAWIN winds forecast file. 
 

The program will automatically recognize what type of file was chosen and how to read it properly. The wind 
data will then be loaded into the appropriate winds matrix. Auxiliary data such as the name and type of the file, 
when and where the winds data were taken, and altitude range will also be read and displayed in the corresponding 
windows. 

B. Drop Zone and Map Panels 
The Drop Zone panel allows the user to choose one of the drop zones stored in an ASCII file. The script behind 

this panel loads latitude, longitude and mean-sea-level altitude of a chosen drop zone. The corresponding map 
appears on the left. By default the center of the chosen DZ becomes an intended impact point (shown in the 
corresponding windows). It can be changed by selecting a new point on the map or typing new values in the 
windows. 

The map can be any graphical image scaled into a rectangle with respect to the Universal Transverse Mercator 
(UTM) coordinates. When the map loads, the axes of this map are also assigned so that they can be manipulated 
later. For instance, the following set of commands loads the jpg image of some map: 

A = imread('MAP_UTM_WGS84','jpg'); 
MAPimageR = A(:,:,1:3); MAPimage(:,:,1:3) = MAPimageR(end:-1:1,:,1:3); 
clear MAPimageR A 
    Mlat=[60.17 123.51]; 
    Mlon=[53.65  63.93]; 
image(Mlon, Mlat, MAPimage); axis([Mlon Mlat]) 
set(gca,'YDir','normal'); axis equal 

The user can zoom the map in and out, move it, measure distances between selected points, get the coordinates 
of any point selected with the cursor, and read the coordinates of any point in one of the chosen formats (UTM on 
the map, or Lat/Lon in the windows). Two functions support conversion of UTM coordinates into Lat/Lon and back. 
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C. Test System Panel 
The Test System panel allows the user to choose one of the ADSs stored in an Excel file (see Fig.10). This 

system can have one, two, or three stages. The corresponding windows for unused stages are shadowed. The only 
ADS data needed for fan computation are the system’s descent rate, glide ratio and altitude to deploy (altitude loss 
for the first stage). The user is allowed to change any of these three parameters in the corresponding windows or 
create an entirely new system. This data along with winds aloft and release point information is used to compute 
safety fans. 

 
Fig. 10   Examples of ADS input data. 

 

D. Release Point and Units Panels 
The idea behind the Release Point panel is that based on the system being tested and available winds data, the 

user enters various release points and computes safety fans. If the safety requirements are not met, the user moves 
the release point and a new safety fan can be generated. The release point can be moved by clicking on a new 
location in the map, in which case the new coordinates immediately appear in the corresponding panel windows, or 
by entering a new latitude and longitude in the panel windows. Altitude, airspeed, and direction at the release point 
are provided by the user. When a satisfactory release point has been chosen, its coordinates will be provided to the 
crew for execution. 

As an example, the following commands are activated upon clicking the “Move Release” button in the GUI and 
choosing to select a new point by clicking on the map. The current release point, if any exists, is deleted from the 
map. The ginput() function is interactive and allows the user to click anywhere in the map to select a point. The 
new release point is then plotted and the corresponding Lat/Lon calculated: 

 
%% Deleting current release point if any 
h = findobj('MarkerFaceColor','k','-and','MarkerSize',12); 
h2 = findobj('MarkerFaceColor','r','-and','MarkerSize',6); 
delete(h); delete(h2); 
%% Getting and plotting chosen release point 
[x,y] = ginput(1); 
rp = plot(x,y,'k*'); 
set(rp,'MarkerFaceColor','k','MarkerSize',12,'LineWidth',2); 
rp2 = plot(x,y,'ro'); 
set(rp2,'MarkerFaceColor','r','MarkerSize',6); 
%% Determining lat/lon 
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easting = x*10^3 + 350000; 
northing = y*10^3 + 1800000; 
zone = '11S'; 
[RPlatDeg,RPlonDeg]=utm2wgs(easting,northing,zone); 
%% Accounting for sign of longitude (using West in GUI vs. negative) 
RPlonDeg = -RPlonDeg; 

Since the ground crew and the deployment crew can speak different technical languages (units), the Units panel 
allows the user to change units from the International System of Units (SI) to English and back. In addition, Lat/Lon 
coordinates can be visualized throughout all panels in one of the following three formats: 

• Deg  – degrees.decimal degrees 
• DM  – degrees, minutes.decimal minutes 
• DMS – degrees,  minutes, seconds.decimal seconds 

If using the DM or Deg formats, the unused windows are shadowed. For example, the chosen format in Fig.5 is DM, 
and therefore the first windows in all Lat/Lon readings are shadowed. 

E. Operations 
Other operational functions in the GUI include timing, fan computation, loading and saving data, and 

commenting. The “Start Clock” button asks the user for the computer’s time zone setting and starts a continuously 
updating clock in Coordinated Universal Time (UTC). When all the necessary data for fan computation has been 
selected and entered, the user can compute the current safety fan. Corresponding graphics appear on the map. The 
time of the most recent calculation appears under the running clock. 

The GUI can be saved with the Save Data button. Once a GUI has been saved, it can be loaded with the Load 
Data button. When reloaded, the GUI is still interactive. This means that though it can be used as a simple figure 
capturing one state in time, it can also be used as the starting point for continuing operations. If using a loaded GUI, 
the clock must be restarted but all other data are available. 

The user can enter comments on a particular configuration in the Comments panel. These comments will be 
saved with the GUI. The Stop GUI button stops all activity in the figure and is used just prior to closing the 
application. 

VI. Conclusions 
Computation of the safety fans for testing of aero delivery systems involves simple and yet cumbersome 

computations. For uncontrolled systems the precomputed ballistic winds can reduce some of the computational 
burden. However, for effective operations with any system, especially the ones with several stages, some kind of 
automation is required. This paper presented an example of such an automated tool which performs several safety 
checks in convenient graphical form. The mathematical foundation for safety fan computations was also rigorously 
developed. The graphical user interface is ready and will be used soon in a field environment. Feedback will be 
provided to the developers for further improvement and modifications. 
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