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Abstract. The problem of pose estimation arises in many areas of computer
vision, including object recognition, object tracking, site inspection and updating,
and autonomous navigation using scene models. We present a new algorithm,
called SoftPOSIT, for determining the pose of a 3D object from a single 2D
image in the case that correspondences between model points and image points
are unknown. The algorithm combines Gold's iterative SoftAssign algor[thin [19,
20] for computing correspondences and DeMenthon's iterative POSIT algorithm
[L3] for computing object pose under a full-perspective camera model. Our
algorithm, unlike most previous algorithms for this probletoes not have to
hypothesize small sets of matches and then verify the remaining image points.
Instead,all possible matches are treated identically throughout the search for
an optimal pose. The performance of the algorithm is extensively evaluated in
Monte Carlo simulations on synthetic data under a variety of levels of clutter,
occlusion, and image noise. These tests show that the algorithm performs well in
a variety of difficult scenarios, and empirical evidence suggests that the algorithm
has a run-time complexity that is better than previous methods by a factor equal
to the number of image points. The algorithm is being applied to the practical
problem of autonomous vehicle navigation in a city through registration of a
3D architectural models of buildings to images obtained from an on-board camera.

Keywords: Object recognition, autonomous navigation, POSIT, SoftAssign

1 Introduction

We present an algorithm for solving timaodel-to-image registration problem, which
determines the position and orientation (ibase) of a 3D object with respect to a
camera coordinate system given a model of the object with 3D reference points and a
single 2D image of these points. We assume no additional information to constrain the
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pose of the object or the correspondences. This is also known agriliieaneous pose
and correspondence problem.

Automatic registration of 3D models to images is important for many applications,
including object recognition and tracking, site inspection and updating, and autonomous
navigation using scene models. The problem is difficult because it requires solution of
two coupled problems;orrespondence andpose, each easy to solve only if the other
has been solved first:

1. Solving thepose problem consists of finding the rotation and translation of the
object with respect to the camera coordinate system. Given matching model and
image features, one can determine the pose that best aligns those matches. For3to 5
matches, the pose can be found in closed-form by solving polynomial equations [17,
241 37]. For six or more matches, linear and nonlinear approximate methods are
generally used[13,16,23,25]29].

2. Solving thecorrespondence problem requires matching image and model features.

If the object pose is known, one can determine such matches. Projecting the model
with known pose into the original image, one can match features that project suf-
ficiently close to an image feature. This is the approach typically taken for pose
verification [22].

The classic approach to solving these coupled problems is the hypothesize-and-test
approach|[211] where a small set of correspondences are first hypothesized, and the
corresponding pose of the object is computed. Using this pose, the model points are
back-projected into the image. If the original and back-projected images are sufficiently
similar, the pose is accepted; else a new hypothesis is formed, and the process repeated.
The best known example of this approach is RANSIAC [17] for the case that no informa-
tion is available to constrain the correspondences. When thereisr&ge points and

model poimg, and three correspondences are used to determine pose, a high probability
of success can be achieved by the RANSAC algorithd@(f J*) operations[[11].

The problem we address occurs when taking a model-based approach to object-
recognition. (The other main approach to object recognition is appearance-based [31],
where multiple object views are compared to the image. However, since 3D models
are not used, accurate object pose is not recovered.) Many investigators (elg.] [8,9,15,
26.28.33]) approximate the nonlinear perspective projection via linear affine approxi-
mations. This is accurate when the relative depth of object features is small compared
to the distance of the object from the camera. Among the pioneer contributions were
Baird’s tree-pruning method [1], with exponential time complexity for unequal point
sets, and Ullman’s alignment methdd [35] with time complexity/* K3 log K). Ge-
ometric hashing is employed in [28] to determine an object’s identity and pose using
a hashing metric computed from image features; because the metric must be invariant
to camera viewpoint, the method can only be applied for affine camera mbadels [5]. In
[12] an approach using a binary search by bisection of pose boxes in two 4D spaces
was used, extending the work 6f[[1,6,7] on affine transforms, however the method was
computationally intensive. The approach [0f][27] is similar: An initial volume of pose

! Many authors us&V and M instead ofJ and K to denote the numbers of image and model
points.
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space is guessed, and all correspondences compatible with this volume are accounted
for. Then the pose volume is recursively reduced until it can be viewed as a single pose.

Few researchers have addressed the full perspective problem. The object recognition
approach ofi[2] extends the geometric hashing approach by using non-invariant image
features: off-line training is performed to learn 2D feature groupings associated with a
large number of views. An on-line recognition stage then uses new feature groupings to
index into a database of learned model-to-image correspondence hypotheses, and these
hypotheses are used for pose estimation and verificatidn.lIn [36], the abstract problem is
formalized in a way similar to the present approach, as the optimization of an objective
function combining correspondence and pose. However, the correspondence constraints
are not represented analytically. Instead, each model feature is explicitly matched to the
closest line of sight of the image features. The closest 3D points on the lines of sight are
found for each model feature, and then the pose that brings the model features closest to
these 3D points is selected; this allows an easier 3D to 3D pose problem to be solved. The
process is repeated until a minimum is reached. A randomized pose clustering algorithm
is presented in[32] whose time complexityGg K J3). In this approach, instead of
testing each hypothesis as it is generated (as in the RANSAC approach), all hypotheses
are clustered in a pose space before back-projection and testing. This step is performed
only on high probability poses that are determined from the larger clusters.

A method related to ours is presentediinh [3] that uses random-start local search with
a hybrid pose estimation algorithm employing both full and weak perspective models. A
steepest descent search in the space of model-to-image line segment correspondences i
performed. A weak-perspective algorithm is used in ranking neighboring points in this
search space, and a full-perspective algorithm is used to update the model’s pose for new
correspondence sets. The empirical time complexity(i&2J2).

Our approach, termed tt#ftPOS T algorithm, integrates the iterative pose tech-
nigue called POSIT (Pose from Orthography and Scaling with ITerations) due to DeMen-
thon and Davis[13], and the iterative 2D to 2D or 3D to 3D correspondence assignment
technique callecsoftAssign due to Gold and Rangarajan [19,20]. A global objective
function is defined that captures the nature of the problem in terms of both pose and
correspondence, which are determirsadultaneously by applying a deterministic an-
nealing schedule and by minimizing this global objective function at each step.

In the following sections, we describe each step of the method, and provide pseudo-
code for the algorithm. We then evaluate the algorithm using Monte Carlo simulations
with various levels of clutter, occlusion and image noise, and finally apply the algorithm
to some imagery of a city scene.

2 POSIT Algorithm

We summarize the original POSIT algoritim|[13] and then present a variant that performs
closed-form minimization of an objective function. This function is modified below to
include the simultaneous pose and correspondence problem in one objective.
Consider a pinhole camera of focal lengthand an image feature poiptwith
Euclidean and homogeneous coordinateg and (wz, wy, w), respectivelyp is the
perspective projection of 3D poift with homogeneous coordinateX, Y, Z, 1) in the
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Fig. 1. Geometric interpretation of the POSIT computation. Image pojtihe scaled orthographic
projection of world pointP, is computed by one side of the POSIT equations. Image pbirthe

scaled orthographic projection of poiRt, on the line of sight op, is computed by the other side

of the equation. The equations are satisfied when the two points are superposed, which requires
that the world pointP be on the line of sight of image poipt The plane of the figure is chosen

to contain the plane of the optical axis and the line of sighThe pointsFy, P, P’, andp’ are
generally out of the plane.

frame of an object with originP,. There is an unknown transformation between the
object and the camera coordinates, represented by a rotation matrifR; Ry R3]”

and a translation vect&® = (7,,, T}, T..). RT, R%, R% are the row vectors ak. They

are the unit vectors of the camera coordinate system expressed in the model 9ystem.
is the vector from the center of projectianof the camera to the origif, expressed

in the camera coordinate system. The coordinates of the projectiom related to the
world point P by

wa] [ fRY fT,

Py P
wy | = | R [T, [1" ]
w RI T,

where Py P = (X, Y, Z)T is the vector fromP, to P. The homogeneous image coor-
dinates are defined up to a multiplicative constant; therefore the validity of the equality
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is not affected if we multiply all elements of the projection matrixigy.. Introducing
the scaling factos = f/T., we obtain

wz|  [sRY sT,| [ PoP _
[wy} - [R sTJ L ] w=Ry- PoP/T. 1 1. @)

In Eq.0 forw, Rs - Py P represents the projection &% P onto the optical axis.
When the depth range of the model along the optical axis is small compared to the model
distanceRj3 - Py P is small compared t@,, andw ~ 1. Then, perspective projection
is well approximated bgcaled orthographic projection (SOP) with scaling facter

| SR{ sT, | | PoP @
y|  |sRYsT, | |1 '
The general perspective equatibh (1) can be rewritten as

[XYZI] [i%l z%ﬂ = [wxwy] 3)

Assume the homogeneous coordinatéor each image point has been computed
at a previous step. We can then calculate, wy, and Eq[3B relates the unknown pose
componentsR,, sRs, sT;, sT;,, and the known image components, wy and known
world coordinatesX, Y, Z. If we know K world pointsP, k = 1,..., K, their image
pointsp;, and their homogeneous componets we can write two linear systems of
size K that can be solved for the unknown componentsRf, sRy, andsT, andsT,,
provided at least four of the points of the model with given image points are noncoplanar.
After sR; andsR; are obtained, we gat R; andR,, by imposing thaR; andR, be
unit vectors, and th&3 be the cross-product &; andRs:

s = (|sRy]|sR2|)*2, Ry, = (sRy)/s, Ry = (sRy)/s, Rs=R; x Ry,
T, = (sTy)/s, Ty = (sTy)/s, T, = f/s.

To compute thew;, required in the right-hand side of EQ] (3), we initially sgt = 1
for every pointp;, (corresponding to a SOP model). Once we get the pose for this first
step, we compute better estimates for the using the expression far in Eq. ().
Then we can iteratively solve EgE] (3) again to obtain progressively refined poses. This
iteration is stopped when the process becomes stationary.

3 Geometry and Objective Function

We consider a geometric interpretation of POSIT to represent it as minimization of an
objective function. Consider, as in FIg. 1, a pinhole camera with center of projection at
O, optical axis alon@)z, an image plané! at distancef from O, and an image center

at c. Consider an object, the origin of its coordinate systen@tan object pointP,
corresponding image poipt and line of sight throughp. The image poinp’ is the

SOP of object poinf’. The image poinp” is the SOP of poinf’;, obtained by shifting

P to the line of sight ofy in a direction parallel to the image plane.
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One can show [14] that the image plane vector froto p’, is
Cp/ = S(R1 . P()P + TQHRQ . POP + ﬂJ)

In other words, the left-hand side of EQ] (3) represents the veptdn the image plane.
One can also show [14] that the image plane vector feaop” is cp” = (wz, wy) =
wep. In other words, the right-hand side of EQl (3) represents the vegtérin the
image plane. The image poipt can be interpreted as a correction of the image point
from a perspective projection to a SOP of a pdiatlocated on the line of sight at the
same distance aB. P is on the line of sight. of p if, and only if, the image pointg’
andp” are superposed. Thep’ = cp”, i.e. Eq.[[B) is satisfied.

When we try to match the point8; of an object to the lines of sight;, of image
pointspy, it is unlikely that all or even any of the points will fall on their corresponding
lines of sight, or equivalently thaip;, = cpj’ or p;.pj, = 0. We can minimize a global
objective function® equal to the sum of the squared distandgs-| Dr.Ph " |2 between
image pointg), andp):

E= ZdQ = Z |ep), — cp;c'|2 = Z((M - Sk — wrak)® + (N - S — wiryr)?) (4)
% k

k

where, to simplify the subsequent notation, we introduce the vectors (with four homo-
geneous coordinateS), = (Py P, 1), and

M = (My, My, M3, My) = s(R1,T;), N = (Ny,Na, N3, Ng) = s(Ro, T)).

We callM andN the pose vectors. In Fig.[d, notice thap’p” = sP’'P"” = sPPy.

Thus this corresponds to minimizing the scaled sum of squared distances of model points
along lines of sight, when distances are taken parallel to the image plane. This objective
function is minimized iteratively. Initially, thev;, are all set to one. Then the following

two operations take place at each step:

1. Compute the pose vectdvs andN assumingu are known (Eq.[{4)).
2. Compute the correction termsg, using theM andN just computed (Eq[{1) fap)).

We now focus on the pose vectdvsandN. The objective function is minimized when
the partial derivatives off with respect to the coordinates of the pose vectors vanish.
This condition provided x 4 linear systems foM andN with solutions

Z S.SH)~ Z Wi TESE), Z SKSE) ™ Z wrykSk).  (5)

The matrixL = (37, SySt) is a4 x 4 matrix that can be precomputed.

4 Pose Calculation with Unknown Correspondences

The pointp” can be viewed as the image pairitcorrected” for SOP using’ computed
at the previous step. The next step finds the pose such that the SOP of eadhip@iat
close as possible to its corrected image point. Now when correspondences are unknown,
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each image poing; can match any of the model poin®, and must be corrected using
thew corresponding td:

wy = R - PoPy /T, + 1. (6)

Therefore for each image and model pgiptand P, we generate a corrected image
pointp’;, , aligned with the image centerand withp;, and defined by

cpyy, = WiCP;. @)
The scaled orthographic projectiopls of the pointsP;, are

M-S
cpj, = [N.S:} : ®)
The squared distances between the corrected pgjptsnd the SOPs are
2= [PRpi]” = (M- Sy, — wya))? + (N Sy — wyy;)?. )

The simultaneous pose and correspondence problem can then be formulated as mini-
mization of the global objective function

J K J K
E:Z ijk d?kzz ijk (M-S, — wizi)? + (N - Sy, — U}kyj)2) (10)

j=1k=1 j=1k=1

where then;;, are weights, equal to zero or one, for each ofcthe andJ andK are the
number of image and model points, respectively. g are correspondence variables
that define the assignments between image and model feature points. Note that when
all the assignments are well-defined, this objective function becomes equivalent to the
objective function defined in Eq.1(4).

This functionE is minimized iteratively, as follows:

1. Computethe correspondence variables assuming everything else is fixed (see below).
2. Compute the pose vectdvs andN assuming everything else is fixed (see below).
3. Compute the corrections;, using the computetfl andN (described above).

4.1 PoseProblem

We now focus on finding the optimal poskbk andN, assuming the correspondence
variablesm;;, are known and fixed. As before, the minimizing pose vectorg @it a
given step are those for which the partial derivative&/aofiith respect to these vectors
vanish. This condition provides$ x 4 linear systems for the coordinates MfandN
whose solutions are

K 177 K
N]Z (Z m%S;ﬁZ) ZZ kawkT]Sk ,ZZ kawkyJSk y (11)
k=1 j=1k=1 j=1k=1

withm}, = 23-121 Mk The termsS,, S are4 x 4 matrices. Computinlyl andN requires
inversion of a4 x 4 matrix,L = (Zszl m}.S,Sy), Which is inexpensive.
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4.2 Correspondence Problem

We obtain the correspondence variables assuming that the?, are known and fixed,
and minimizingE. Our aim is to find a zero-onassignment matrlx M = {m;;}, that
specifies the matchings between a sef ohage points and a set &f model points, and
that minimizesE. This assignment matrid has one row for each of theimage points

p; and one column for each of th€ model pointsP,. M must satisfy the constraint
that each image point match at most one model point, and vice veskzckxow J + 1

and aslack column K + 1 are added for points with no correspondences. A one in the
slack columnk + 1 at rowj indicates that the image poipj has no match among the
model points. A one in the slack roW+ 1 at columnk indicates that the feature point
Py is not seen in the imagé: will be a minimum if the assignment matrid matches
image and model points with the smallest distamtg%sThis problem is solved by the
iterative SoftAssign techniquie[l19]20]. We begin with a mattixin which elementng?k

is initialized t0exp(—6(d§k — a)), with 8 very small, and with all slack elements set to
a small constant. The parametedetermines how far apart two points must be before
being considered unmatchable (se€ [20]). The continuous match mktonverges

to a discrete matrifl using two concurrent procedures:

1. Each row and column of the correspondence matrix is normalized, alternately, by
the sum of its elements. The resulting matrix then has positive elements with all
rows and columns summing to one. (see Sinkhorr. [34])

2. The termg is increased as the iteration proceeds.ABicreases and each row
or column of M, is renormalized, the termm(;k corresponding to the smallest
d3, tend to converge to one while other elements tend to converge to zero. This is
a deterministic annealing proces$s [18] knownSaftmax [4]. This is a desirable
behavior, since it leads to an assignment of correspondence to matches that satisfy
the matching constraints and whose sum of distances is minimized.

This procedure was called SoftAssign|in][19,20]. The resulting the assignment
that minimizesF. This procedure along with the substeps that optimize pose and correct
image points by SOP are combined into the iteration loop of SoftPOSIT.

4.3 Pseudocode for SoftPOSIT

The SoftPOSIT algorithm can be summarized as follows:
Inputs:

1. Alist of J image feature pointg; = (z;,y;).
2. Alist of K world pointsS;, = (X, Yx, Zk, 1) = (Po P, 1) in the object.

Initialize slack elements of assignment matkixto v = 1/(max{J, K} + 1), 8to By

(Bo =~ 4 x 10~* if the pose is unconstrained, larger if a good initial guess is available).
Initialize pose vector$/! andN with expected pose or a random pose.

Initialize w,, = 1.

DoA until 8 > Btina (Bfina @around 0.5) Deterministic annealing loop)
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— Compute squared distanaég, = (M - Sy, — wyz;)* + (N - S — wyy;)?
- Computemg?k = 'yexp(—ﬁ(djzk —a))
— Do B until AM small (Snkhorn’s method)

e Update matrixM by normalizing across all rowmjlk = /Zfﬁl m

e Update matrixM by normalizing across all columnm?k = jk/ Z‘]“
— End Do B
— Computet x 4 matrix L = (3, m},SS]) with mj, = 37 my
— Computel !
— ComputeM = L*l(Z'j SN mykwg x;S)

— ComputeN = L~ (Z 1 Zk 1 MWk Y;Sk)

- Computes = | ]\/[1, Mg, M3)‘ R1 = (Ml,M27]\/[3)/S, R2 = (Nl,NQ,Ng)/S,
R3 = R1 X R2

— Computewy, = R3 - Py Py /T, + 1

- ﬁ = Bupdateﬁ (6update around]—~05)

End Do A
Outputs: Rotation matrixR = [R; Rz R3]T, translation vectol = (7, T,,7.), and

assignment matriM = {m;; } between image and world points.

5 Random Start SoftPOSIT

The SoftPOSIT algorithm described above performs a deterministic annealing search
starting from an initial guess for the object’s pose. There is no guarantee of finding
the global optimum. The probability of finding the globally optimal object pose and
correspondences starting from an initial guess depends on a number of factors including
the number of model points, the number of image points, the number of occluded model
points, the amount of clutter in the image, and the image measurement noise. A common
way of searching for a global optimum, and the one taken here, is to run the algorithm
starting from a number of different initial guesses, and keep the first solution that meets
a specified termination criteria. Our initial guesses range [everr] for the three Euler
angles, and over a 3D space of translations containing the true translation.

Since each search for correspondence and pose is relatively expensive, we would like
to have a mathematical statement that allows us to make the claim that, for a given number
of starting points, our starting guesses sample the parameter space in some optimal man-
ner. Fortunately, there are a set of deterministic points that have such properties. These
are the quasi-random, or low discrepancy sequenceés [30]. Unlike points obtained from
a standard pseudo-random generator, quasi-random points are optimally self-avoiding,
and uniformly space filling. We use a standard quasi-random generator [10] to generate
quasi-random 6-vectors in a unit 6D hypercube. These points are scaled to reflect the
expected ranges of translation and rotation.

5.1 Search Termination

Ideally, one would like to repeat the search from a new starting point whenever the
number of correspondences determined is not maximal. However, one usually does not
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know what this maximal number is. Instead, we repeat the search when the number of
model points matching to image points is less than some thresholdue to occlusion

and imperfectimage feature extraction, not all model points will be detected as features in
animage. Lep, be the ratio of the number of model points detected as image features to
the total number of model pointg{ € [0, 1]). In the Monte Carlo simulations described
below, p, is known. With real imagery, howeves,; must be estimated based on the
scene complexity and the reliability of the feature detection algorithm used.

We terminate the search for better solutions when the current solution is such that
the number of model points matching to image points is greater than or equal to the
thresholdt,, = ppsK wherep € [0, 1] determines the fraction of model points to be
matched andy is the total number of model pointsaccounts for measurement noise.

In the experiments discussed below, we take 0.8. This test is not perfect, as it is
possible for a pose to be very accurate even when the number of matched points is less
than this threshold; this occurs mainly in cases of high noise. Conversely, a wrong pose
may be accepted when the ratio of clutter features to detected model points is high.
However, these situations are uncommon.

5.2 Early Search Termination

The deterministic annealing loop of the SoftPOSIT algorithm iterates over a range of
values for the annealing parametgrt In the experiments reported hefg,is initialized
to 0.0004 and is updated according th.+1 = 1.05 x G, and the iteration ends when
Bk > 0.5, or earlier if convergence is detected. This means that the annealing loop can
run for up to 147 iterations. It's usually the case that, by viewing the original image and,
overlaid on top of this, the projected model points produced by SoftPOSIT, a person
can determine early on in the iteration (e.g., around iteration 30) whether or not the
algorithm is going to converge to the correct pose. It is desired that the algorithm make
this determination itself, so that it can end the current unfruitful search and restart.

A simple test is performed oeach iteration to determine if it should continue or
restart. At iteratiork of SoftPOSIT, the match matrix/* = {m ;1 is used to predict
the final correspondences of model to image p0|nts upon convergence we expectimage
point i to correspond to model pointif mk- > mk foralu # iandallv # j
(however, this is not guaranteed). The number of pred|cted correspondences at iteration
k, n, is the number of pair§i, j) that satisfy this relation. We define the match ratio
on iterationk asry = ny/(psK) wherep, is defined above. This metric is commonly
used at the end of a local search to determine if the current solution for correspondence
and pose is good enough to end the search for the global optimum. We, however, use
this metric within the local search itself. LEIP denote the event that the SoftPOSIT
algorithm eventually converges to the correct pose. Then, the algorithm restarts after

the £t iteration if P(CP | 1) < aP(CP)where0 < a < 1. That is, the search is
restarted from a new random starting condition whenever the posterior probability of
eventually finding a correct pose givep drops to less than some fraction of the prior
probability of finding the correct pose. A separate posterior probability is required for
eachk because the ability to predict the outcome usiggmproves as the iteration
progresses. Although this test may result in termination of some searches which would
eventually produce a good pose, it is expected on average that the total time required to
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find a good pose will be less. Our experiments show that this is true; we obtain a speedup
by a factor of at least two.

The posterior probability function forthidNiteration can be computed froR(C P),
the prior probability of finding a correct pose on one random local search, and from
P(ry | CP)andP(r, | CP), the probabilities of observing a particular match ratio on

the kN iteration given that the eventual pose is either correct or incorrect, respectively:
P(CP)P(ri | CP)
P(CP)P(r, | CP)+ P(CP)P(ry | CP)

P(CP | Tk) =

P(CP), P(CP), P(ry | CP),andP(ry, | CP) are estimated in Monte Carlo simula-
tions of the algorithm in which the number of model vertices and the levels of image
clutter, occlusion, and noise are all varied. To estini?te, | CP) andP(ry | CP), the
algorithm is repeatedly run on random test data. For each test, the values of the match
ratio r, computed at each iteration are recorded. Once an iteration completes, ground
truth information is used to determine whether or not the correct pose was found. If the
pose is correct, then the recorded values.adre used to update histograms representing
P(ry | CP); otherwise, histograms fdP(r | CP) are updated. Upon completing the
training, the histograms are normalized. See[Hig. 2.

o T T T T T T T T o T
— P(CP[D — PP
~ - P(r[oP) — - P(r[cP)
P() P()
P(r |~CP) P(r|~CP)

°

Probability

Probability

°

Fig. 2. Probability functions estimated for (a) the first iteration, and (b) the 31st iteration, of the
SoftPOSIT algorithm.

6 Experiments

We investigate two important questions related to the performance of the SoftPOSIT
algorithm: (a) How often does it find a “good” pose? (b) How long does it take?
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6.1 Synthetic Data

The algorithm has been extensively evaluated in Monte Carlo simulations. The simula-
tions are characterized by 5 parameters:K, pq, p., ando. The parameten, is the
number of trials performed for each combination of values for the remaining 4 param-
eters.K is the number of points in a 3D modely is the probability that the image

of any particular model point will be detected. is the probability that any particular
image point is clutter, i.e., is not the image of some 3D model point. Finally,the
standard deviation of the normally distributed noise in the image coordinates of the
non-clutter feature points, measured in pixels fdi0@0 x 1000 image, generated by

a simulated camera having a 37 degree field of view (focal length of 1500 pixels). The
current tests were performed with = 100, K € {20, 30, 40,50}, pq € {0.4,0.6, 0.8},

pe € {0.2,0.4,0.6}, ando € {0.5,1.0,2.5}. There were 10800 independent trials.

For each trial, a 3D model is created in which tiemodel vertices are randomly
located, with uniform probability, in a sphere centered at the origin. Because the al-
gorithm works with points, only the model vertices are important. However, to make
human interpretation of results easier, each model vertex is connected to the two closest
remaining model vertices. The model is placed with random rotation and translation in
the camera view. Each projected model point is detected with probahjlitwe add
Gaussian noise\((0, o)) to bothz andy image coordinates. Finall§ pg/(1 —p.) ran-
domly located clutter feature points are added to the true feature points, $6Ghap..

% of the feature points are clutter. Fig. 3 shows cluttered images of random models.

We consider a pose to lgeod when it allows 80% 4 = 0.8 in sectiori 5.1L) or more
of the detected model points to be matched to image points. The number of random
starts for each trial was limited to 40If a good pose is not found after 48tarts, the
algorithm declares failure. Figl 4 shows two examples of the pose found.

Fig.[8 shows the success rate as a function of the number of model points for the case
of o = 2.5andforall combinations of the parametggsandp... (Due to space limitations,
we only describe results for the caserof 2.5; the algorithm performs better for smaller
o’s.) For more than 86% of the different combinations of simulation parameters, a good
pose is found in 95% or more of the associated trials. For the remaining 14% of the tests,
a good pose is found in 85% or more of the trials. (The overall success rate is 94%.)
As expected, the higher the occlusion rate (loggrand the clutter rate (higher.),
the lower the success rate. For the high-clutter and high-occlusion tests, the success rate
increases as the number of model points decreases. This is because a smaller number of
model points are more easily matched to clutter than a larger number of model points.
Fig.[8 shows the average number of random starts required to find a good pose. These
numbers generally increase with increasing image clutter and occlusion.

The run-time complexity of SoftPOSIT (for a single start) is easily seen (bek)
where/J is the number of image points afdis the number of model points. Our results
show that the mean number of random starts required to find a good pose, to ensure a
probability of success of at least 0.95 in all but the highest clutter and occlusion levels,
is bound by a function that is linear in the size of the input. That is, the mean number
of random starts i€)(.J), assuming thaf{ < .J, as is normally the case. Then, the
run-time complexity of SoftPOSIWith random starts i€ (K J?2). This is better than
any known algorithm that solves simultaneous pose and correspondence problem under
full perspective.
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@ (b) (©

(d) (e) ®

Fig. 3. Typical images of randomly generated models. The number of model points in the models
are 20 — (a), 30 — (b), 40 — (c) and (d), and 50 — (e) and (f). In all gases 1.0 andp. = 0.6.

@) (b)

Fig. 4. Two cluttered images with projected models overlayed for which we found a good pose.
The black dots are the original image points; white dots are projections of model points for the
computed pose, and the gray lines are the initial guess that lead to the true pose being found.
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(Note thaipq andp. are denoted andC', respectively, in the legend of this figure and in the next
few figures.)
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Fig. 6. Number of random starts required to find a good pose as a function of the number of model
points for fixed values gb, andp.. (a) Mean . (b) Standard deviation.

6.2 Experimentswith Images

We applied the SoftPOSIT algorithm to imagery generated from a model of a district
of Los Angeles by a commercial virtual reality (VR) system. [Elg. 7 shows an image
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generated and a world model projected into that image using the pose computed by
SoftPOSIT. Image feature points are automatically located in the image by detecting
corners along the boundary of bright sky regions. Because the 3D world model has over
100,000 data points, we use arough pose estimate (as may be generated by a GPS system
to cull the majority of model points that are far from the estimated field of view. The
world points that do fall into this estimated view are further culled by keeping only those
that project near the detected skyline. So far, the results have been very good, and could
be used for autonomous navigation. Although this is not real imagery, the VR system
used is advanced, and should give a good indication of how the system will perform on
real imagery.

@) (b)

Fig. 7. (a) Original image from a virtual reality system. (b) World model (white lines) projected
into this image using the pose computed by SoftPOSIT.

7 Conclusions

We have developed and tested the SoftPOSIT algorithm for determining the correspon-
dence and pose of objects in an image. This algorithm will be used as a component
in an object recognition system. Our evaluation indicates that the algorithm performs
well under a variety of levels of occlusion, clutter, and noise. We are currently collecting
imagery and 3D models of city environments for the purpose of evaluating the algorithm
on real data.

The complexity of SoftPOSIT has been empirically determined t0 Qi€ J2). This
is better than any known algorithm that solves the simultaneous pose and correspondence
problem for a full perspective camera model. Rigorous validation of this claim is an item
of future work.
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