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ABSTRACT

In recent years, the U.S. Marine Corps has begun develop
an infrastructure for applying agent-based models and sim
lation, computing power, and data analysis and visualizatio
technologies to help answer complex questions in militar
operations. Factor screening approaches are of particu
interest, since even relatively simple agent-based mode
may have hundreds (or even thousands) of inputs that c
be varied. We describe a new experimental design, call
a frequency-based design, that can be used for explori
the behavior of terminating simulations. We apply this to
a model of a peace-enforcement operation. We exami
the behavior of four performance measures (including tw
attrition ratios) and discuss how the results confirm an
complement earlier findings. We conclude with a brie
discussion of issues that merit further investigation.

1 INTRODUCTION

Our motivation for exploring this approach arose out o
work we have been doing for the U.S. Marine Corps unde
their “Project Albert” umbrella. This multi-year, multi-
national effort attempts to exploit advances in three co
disciplines: 1) Agent-based models and simulations; 2
Computing power; and 3) Data visualization.Data farming
(Brandstein and Horne, 1998) is the application of thes
disciplines to help answer complex questions in militar
operations. The four principal processes of data farmin
are fertilization, cultivation, planting, and harvesting.Fer-
tilization means providing military professionals and othe
experts with ideas on how to capture important aspects
conflict that have not been taken into account in the pas
such as morale, leadership, timing, intuition, adaptability
etc. Cultivation means receiving ideas from these profes
sionals about what might be important in a given situation
Plantingmeans incorporating these ideas into models, to th
extent possible, and running the models over a wide varie
r

of possibilities by varying simulation parameters (also calle
factors). Finally, innovative techniques for understandin
scientific data are used whenharvestingthe model output.
Just as the farmer grows crops to meet the needs of t
consumers, who are hungry for food, the data farmer grow
data to meet the needs of the ultimate decision-makers, w
are hungry for answers.

The propensity to produce large multi-dimensional dat
sets with several measures of performance (MOPs) is i
herent in data farming. However, care must be taken whe
generating data, because the time required to examine
potential factor level combinations grows exponentially with
the number of factors investigated. Furthermore, becau
Project Albert uses agent-based simulations to model mil
tary operations, some of the factors are only notional repre
sentations of human thought or behavior—such as moral
unit discipline, leadership, or aggressiveness. The da
farming environment is thus best viewed as one that ma
provide the decision-makers with qualitative insights rathe
than numerical predictions (Lucas et al., 2002, 2003).

The vagueness associated with interpreting the facto
can complicate the task of capturing and communicatin
the essence of the data set. However, gaining insight in
the model’s behavior is challenging for any simulation with
a large number of factors, particularly if interaction effects
among two or more of these factors are possible. Brut
force methods are not practical unless the number of facto
is small. Trial-and-error methods are unlikely to provide the
analyst with an understanding of how the MOPs are affecte
by the input factor settings. Instead, systematic experiment
designs are needed in order to efficiently generate data th
can be used to provide insights into the model’s behavio
and guide further investigations.

The type of design that is most appropriate depend
on both the number of factors and the nature of the re
sponse surface. For an overview of the possibilities, w
refer the reader to Sanchez and Lucas (2002) or Kleijne
et al. (2003). Clearly, no single design is best for al
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situations. However, the ability to use prior information
can dramatically reduce the need for additional runs. Th
means that sequential designs have distinct advantages o
non-sequential designs.

In this paper, we propose a frequency-based desi
(FBD) that is appropriate for analyzing terminating simu
lations. We present some background material on spect
analysis in Section 2, and describe FDB in Section 3. A
agent-based implementation of a peace-enforcement s
nario is explored using FBD in Section 4. We conclud
with a brief discussion of some issues that merit furthe
investigation.

2 BACKGROUND

In this section we present a very brief overview of som
important concepts in spectral analysis. We also summar
a technique called frequencydomain experimentation, whi
was developed by Schruben and Cogliano (1987) as a fac
screening approach for non-terminating simulations.

2.1 Spectral Analysis

Spectral analysis has long been used for identifying th
cyclic components of time-series data (Chatfield, 1996).

Let Y = [y1 y2 . . . yN ]T be an indexed set of ob-
servations. For notational convenience, assumeN is
even and letH = N/2. We can decomposeY into
its cyclic components by frequency asY = Aθ , where
θ = [

µ α1 β1 . . . αH βH αN/2
]T andA is the matrix

A =




1 . . . cos(ωi ) sin(ωi ) . . . cos(π)

1 . . . cos(2ωi ) sin(2ωi ) . . . cos(2π)
...

...
...

...
...

...

1 . . . cos(Nωi ) sin(Nωi ) . . . cos(Nπ)


 . (1)

The pairs of cosine and sine terms correspond toωi =
2π i /N for i = 1, . . . , H . These frequencies are expresse
in radians per observation,e.g., an oscillation of one cycle p
observationequals 2π radians per observation. Furthermore
for any discretely-sampled signal it is sufficient to displa
only frequencies ranging from[0, π] in the spectrum because
the highest observable frequency isπ radians per cycle
(equivalently, one-half cycle per observation).

The Fourier transform ofY is θ̂ = (ATA)−1ATY.
Moving from the Fourier transform to the (Fourier) spectrum
involves squaring the estimated coefficients for the sin
and cosine terms, and summing them by frequency. T
spectrum components are thus(α2

i + β2
i ) for i = 1, . . . , H

andα2
i for i = N/2. It can be demonstrated that

1

N

N∑
i=1

(yi − y)2 =
N/2∑
i=1

(
α2

i + β2
i

)
+ α2

N/2, (2)
er

l

-

-

r

Figure 1: Example of Aliasing

i.e., the Fourier spectrum partitions the variance. Und
mild assumptions (Chatfield, 1996), the estimated spect
coefficients have a chi-squared distribution.

While the regression representation makes it clear ho
the partitioning works, other computationally efficient meth
ods can be used to estimate the spectrum. The Wien
Khintchine theorem relates the Fourier spectrum of th
model to the Fourier transform of the autocovariance fun
tion of the observations in the data set. Autocovariance
a measure of the covariance of a sequence of observati
with each other. For stationary processes, autocovarian
generally diminishes as the observations become sufficien
far apart. A technique called windowing uses only a spec
fied number of observations (M, called the window size) to
estimate the spectrum efficiently. A common choice is t
selectM to be proportional to

√
N, although other values

of M are possible so long as that the ratioM/N → 0 as
M, N → ∞. A more thorough explanation of Fourier
analysis can be found in Chapter 7 of Chatfield (1996).

One other important issue is frequencyaliasing. If
a frequency oscillates at a rate higher than one-half cyc
per observation, it appears to be “folded" back into th
range[0, π] when sampled discretely. Figure1 illustrates
this behavior. Both signals completes 10 full cycles in th
graph. The sampling rate in the upper figure is high enou
(1/12 cycle per observation) that an observer would vie
the true frequency. However, aliasing occurs in the lowe
graph where the sampling rate is 5/3 cycles per observatio
The sampled data appear to complete only two cycles, f
an apparent frequency of 1/3 cycle per observation.

2.2 Frequency Domain Experiments for
Non-Terminating Simulations

The idea of oscillating input factor levels was first explore
by Schruben and Cogliano (1987). Their approach, calle
frequency domain experimentation (FDE), investigates th
impact of several input factors on system performance b
varying input factor levels within the course of a single, ver
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long run called thesignal run. All input factors are held
constant at nominal levels during another run of the sam
length, called thenoise run. After truncating both the signal
and the noise runs to remove the initial transients, the Fouri
spectra of the two output streams are obtained. The ratios
the signal spectrum to the noise spectrum are computed
frequency. High values or “spikes” in these signal-to-nois
ratios (SNRs) indicate that the associated input term is a
important contributor to the output behavior.

The frequency at which a factor is varied is called its
driving frequency. In the frequency domain, the spectrum
displays all frequencies contributing to the variations in th
response. Furthermore, the indicator frequencies for highe
order effects of the oscillated factors on response show u
at well-defined locations. For example, suppose factorX1
is assigned a driving frequencyω1. The main effect ofX1
on the response spectrum has an indicator frequency ofω1.
If factor X1 has a quadratic effect on the response, this
associated with an indicator frequency of 2ω1. Similarly,
thenth-order effect ofX1 on the response has an indicator
frequency ofnω1 (or its alias) in the response spectrum
For interaction terms, the indicator frequencies are the sum
and differences of the driving frequencies. For example
suppose there is a second-order interaction effect on t
response from two factors,X1 and X2, whereX1 and X2
are assigned driving frequencies ofω1 andω2, respectively.
The second-order interaction term in the response has tw
indicator frequencies:ω1+ω2 andω1−ω2, respectively. If
ω1+ω2 falls outside the interval[0, 2π], then the associated
indicator frequency is the alias (and similarly forω1 −ω2).

Sanchez and Buss (1987) provide a mathematical mod
formulation which explains how and why FDEs work. Ja-
cobson, Buss and Schruben (1991) provide an algorith
which assigns driving frequencies to the factors to allow
investigation of full second-order or third-order models
Sanchez and Konana (2000) investigate how the total da
collection effort should be allocated between the signal an
noise runs, with the goal of improving the efficiency of
FDEs.

3 FREQUENCY-BASED DESIGNS FOR
TERMINATING SIMULATIONS

We now describe a new data-farming approach: the us
of frequency-based designs (FBDs) for terminating simula
tions. While we make use of many of the building blocks
of FDE, the FDE approach cannot be directly applied t
terminating simulations. For some simulation models, suc
as the peace-enforcement application of Section 4, long ru
are not possible. For others, such as rare-event simulatio
the time until termination may itself be the performance
measure.

Our frequency-based designs are similar to the sign
runs for FDEs in terms of factor level selection, etc. The
r
f
y

-

s

l

s
,

l

differ in several notable ways. First, the input factor level
are held constant for the duration of each run, and we obta
only one data summary from each run that will be use
for analysis purposes. Second, all runs are independen
seeded—which means there are no serially correlated err
in the run-to-run results. Third, since there are no concer
about initial bias, we can use all of the data generated b
the simulation. Fourth, our implementation exploits the
power of supercomputers by parallelizing the data farmin
process. While this last point is not a requirement for usin
FBDs, it does have practical benefits by reducing the tot
length of time necessary to acquire the data.

We now provide enough detail for the interested reade
to generate and apply FBDs to terminating simulations
Alternatively, software programs to perform the design an
analysis are available (Sanchez, 2002). Our example a
sumes we are interested in fitting a second-order mod
i.e., one where quadratic and/or two-way interactions ma
be present. A similar approach can be used for higher-ord
models, although the required number of runs increases

Suppose there arek input factorsX1, . . . , Xk we wish
to investigate. To specify the design we must determin
the number of runs (N) and the factor levels at each run
(Xi,t , i = 1, . . . , k; t = 1, . . . , N). Our procedure follows.

1. Specify the input factorsX1, . . . , Xk, along with
middle, minimum and maximum values of interes
for the experiment (mi , mi − ai , mi + ai , respec-
tively).

2. Determine a set of driving frequenciesω1, . . . , ωk

that will allow identification of any important terms
in a 2nd order metamodel:

Ŷt = β̂0 +
k∑

i=1

β̂i Xi,t +
k∑

i=1

k∑
j =i

β̂i j ,t Xi,t X j ,t .

Let f denote the lowest common denominato
of the frequencies when expressed in cycles pe
observation, and letp = 2k+[k(k−1)/2] represent
the total number of terms in the full model.

3. Set N = c f for some number of replicationsc.
Then set

Xi,t = mi + ai cos(ωi t), t = 1, . . . , N.

for i = 1, . . . , k andt = 1, . . . , N. Yt is the output
of run t .

4. Take the Fourier transform of the outputY to obtain
θ̂ . Under mild assumptions, the components of th
spectrum will have chi-squared distributions (letν

denote the degrees of freedom). The varianc
in Y is now partitioned into components for the
frequencies. LetSω denote the spectrum evaluated
at frequencyω (or its alias in the range [0, π ].
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5. Sum the spectral values at all non-indicator term
to obtain an estimate of the noise component. Ca
this valueV . The number of df associated with V
is r = ν [0.5( f − 1) − p].

6. Compute signal-to-noise ratios (SNRs) by mapping
the indicator frequencies to the metamodel term
and dividing by the noise component.
• For the main effect ofXi ,

SNR= Sωi /ν

V/r
.

• For the quadratic effectX2
i ,

SNR= S2ωi /ν

V/r
.

• For the interaction effect ofXi and X j ,

SNR= (Sωi +ω j + Sωi −ω j )/2ν

V/r
.

7. Graph or tabulate the SNRs.
8. For an overall test at levelα, compare the SNRs

for the main and quadratic effects to the critical
value F (1−α/p)

(ν,r ) . and compare the SNRs for the

interaction effects to the critical valueF (1−α/p)

(2ν,r ) .
Alternatively, particularly if many SNRs are statis-
tically significant, a qualitative assessment identi-
fies those terms with the largest SNRs as the mos
important.

9. If no terms are statistically significant, either stop
(and conclude that the selected input factors do no
affect the response over the ranges examined) o
increasec and go back to Step 3 to collect more
data.

Software useful for designing and analyzing FBDs (or
FDEs) is available in the Java© programming languag
(Sanchez, 2002). TheDesign program requires the number
of factors as the input, and returns a set of frequenc
assignments as in Table 1. TheFourier program requires
the following inputs: the number of frequencies into which
the response is to be partitioned, the window size, th
type of windowing, and the number of observations in the
input data set. The program then estimates the spectrum
the observations and produces a response spectrum. T
program automatically adds one more partition for the zer
frequency, that corresponds to the constant term in th
regression model. Thus, the spectral power at the ze
frequency signifies the contribution of the constant term in
the regression model to the response.

Note that the experimental units are independent, b
construction, since we use different random number see
f
e

for each experiment, It follows from the Wiener-Khintchine
theorem (Chatfield, 1996) that the spectrum of independe
observations is flat. Thus, under the null hypothesis th
there are no factor effects, the heights of the indicator an
non-indicator frequencies have the same expected value
all ω, and so the expected value of each SNR is equal to

4 A PEACE-ENFORCEMENT EXAMPLE

Peace enforcement is a critical component of current an
future military operations. According to the U.S. Army
Field Manual 100-23 (Department of the Army, 1994), peac
enforcement is “the application of military force or the threa
of its use, normally pursuant to international authorization
to compel compliance with generally accepted resolutions
sanctions. The purpose of peace enforcement is to mainta
or restore peace and support diplomatic efforts to reach
long-term political settlement."

There are many ways in which peace-enforcement o
erations can be investigated. We consider a scenario dev
oped by Cioppa (2002), who developed and used nearl
orthogonal Latin hypercubes to explore the model’s perfo
mance. The scenario was deemed doctrinally correct a
plausible by the U.S. Army Infantry Simulation Center a
Fort Benning, Georgia. The scenario was implemented
MANA (Map Aware Non-uniform Automata)—an agent-
based modeling platform that was developed for the Ne
Zealand Army and Defence Force (Stephen and Laure
2001). It has a graphical user-interface for specifying ini
tial conditions and trigger states of the agents, as well as f
animating the simulation run. MANA also offers the use
the ability to specify levels of input parameters easily from
a formatted input file. MANA is one of Project Albert’s
data-farmable suite of modeling platforms.

4.1 Scenario

Figure2 illustrates the initial positions of the agents for a
single run of the software. The ellipses indicate four area
of operations (AOs). Clockwise from the center left are
AO Rattler, AO Python, AO Cobra and AO Boa. Blue’s
mission is to clear AO Cobra within the next two hours
in order to facilitate United Nations (UN) food distribution
and military convoy operations. Blue uses a light infantry
platoon composed of three nine-man rifle squads and
platoon headquarters (HQ) of seven soldiers containing tw
machine guns. Their movement scheme is one squad
and two squads back, with the platoon HQ following the
lead squad (squad 2). The lead squad’s task is to condu
a movement to contact with the purpose of clearing AO
Cobra. Their follow-on task is to clear AO Cobra for
subsequent UN food distribution and military operations
Squad 1’s task is to follow and support the lead squad wit
the purpose of clearing AO Cobra. Their follow-on task
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Table 1: Input Factors for the Peace-Enforcement Scenario

Factor Frequency Assignments
Name Description Range Batch 1 Batch 2 Batch 3

U Blue Squad 1 Contact Cohesiveness: controls the
propensity to remain with the squad when it encounters
Red agents.

−64,+64 1/81 29/81 10/81

F Blue Lead Squad Contact Cohesiveness: controls the
propensity to remain with the squad when it encounters
Red agents.

−64,+64 4/81 1/81 17/81

G Blue Squad 3 Injured Cohesiveness controls the
propensity to remain with the squad when one or
more members are injured.

−64,+64 10/81 4/81 29/81

P Movement speed for all Blue agents. 72, 200 17/81 10/81 1/81
V Red Aggression: controls Red’s propensity to pursue

a perceived threat.
−64,+64 29/81 17/81 4/81
a
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Figure 2: Initial Graphical Depiction of MANA Peace-
enforcement Scenario

is to clear AO Python. Squad 3’s task is to follow and
support the lead squad with the purpose of clearing AO
Cobra. Their follow-on task is to clear AO Boa (a small
urban area with four building structures). After the lead
squad clears AO Cobra, the platoon HQ moves to AO Bo
to provide supporting fires.

Red has a five-member element located near AO Cob
and two two-member elements patrolling along the move
ment routes of the two Blue supporting squads. Red als
has a two-member element near AO Boa. A Yellow three
member element begins in the midst of the Blue forces i
the upper left of Figure2. Yellow is initially non-hostile,
but becomes hostile after discovering that there is no potab
water in the vicinity of AO Rattler. Yellow then seeks small
arms from the vicinity of AO Boa and moves to the vicinity
of AO Python.

The devised scenario runs for a user-specified time in
terval before terminating. The scenario is challenging sinc
the Blue force is subjected to a series of encounters wi
the Red force and an originally non-hostile force (Yellow
turns hostile as the scenario progresses. In this scenar
Red is aggressive and exchanges fire with Blue rather th
running away. Modifying the agent personalities, e.g., mak
ing some of the Red agents less likely to approach larg
groups of Blue soldiers, could lead to another scenario wi
quite different behavior. The ability to make such change
quickly is one of the benefits of an agent-based modelin
platform such as MANA.

4.2 Input Factors

Because our primary interest is to determine the feasibility o
applying FBD in a data-farming environment, rather tha
conduct a thorough exploration of a particular scenario
we vary only five factors. These are the factors Ciopp
(2002) found to be most influential when he used a near
orthogonal Latin hypercube design to examine 22 factor
We leave the remaining factors at their nominal values (i.e
the base settings) in all runs of the scenario. Table 1 lis
the factors, along with brief descriptions and the range
over which they are varied.

4.3 Output Responses

At the time this study was conducted, MANA’s outputs
were limited to the numbers of agents “killed” during the
user-specified number of time steps before the simulatio
terminates. If Blue is using non-lethal weapons, then th
number of Red “killed” corresponds to those incapacitate
for the remainder of the operation. Wagner, Sanders, a
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Mylander (1999) provide guidance on choosing an approp
ate measure of effectiveness (MOE): it must be quantitati
measurable, reflect both the benefits and penalties of a
ticular course of action, and a significant increase (decrea
must correspond to a significant improvement (worsenin
in achieving the decision-maker’s objective. We choose n
to limit our investigation to a single MOE. LetNB andNR

denote the numbers of Blue and Red agents in the scena
Our four performance measures follow.

1. KB: the number of Blue killed,
2. KR: the number of Red killed,
3. ER= KR/(KB +1): the modified exchange ratio
4. FER = KB/KR: the fractional exchange ratio.

KB andKR are the MANA outputs, whileERandFERare
computed from these output streams. The denominato
ER is KB + 1 instead ofKB because, in some of the runs
no Blue agents were killed. A similar adjustment could b
made forFER, but was unnecessary for our scenario sin
Red always sustained losses.

4.4 FBD Implementation

We want the ability to fit a second-order polynomial met
model to the output responses. As indicated by theDesign
program (Sanchez, 2002), the spectrum must be partitio
into 81 discrete frequencies to accommodate unique indi
tor frequencies for each of the 5 main effects, 5 quadra
terms, and 20 effects corresponding to the 10 interact
terms. The three sets of frequency assignments are prov
in the last three columns in Table 1. We consider each
to be one batch of five hundred “rows” of eighty-one “ge
netically engineered strains” that we plant using the MAN
distillation. In other words, the frequency assignments r
main the same for all factors within each planted bat
of data. The settings at the beginning of each oscillati
are assigned to their respective maxima as in equation3).
We replicate the set of eighty-one experimental units fi
hundred times in each batch since we know (from Ciopp
2002) the results are highly variable. We also plant thr
batches of data in the data landscape since we have t
frequency assignment schemes for the factors. The to
number of experimental units grown in our FBD is 121,50
It took about 31 hours to complete the runs.

4.5 Results

We harvest the output data sets and process the two MO
and the two attrition ratios for all three batches throug
the spectral analysis program,Fourier . We then use the
list of indicator frequency mappings (provided byDesign
along with the driving frequencies) to collapse the resu
ing response spectrum by the corresponding terms in
regression model.
,
r-
)

.

-

d
t

e
l

s

Figure 3: Signal-to-Noise Ratio for Blue Killed

Figure 4: Signal-to-Noise Ratio for Red Killed

As Step 6 in our procedure describes, we then map
the indicator frequencies in each batch to the associate
terms in our regression model. Because the spectrum is
partition of discrete frequency bins, we present the spectr
as stacked bar graphs rather than continuous linear graph
The combined SNR graphs in Figures3-5 illustrate the
results forKB, KR, andER, respectively. The SNR graph
for FER (not shown) is quite similar to that forER. The
horizontal lines in these figures indicate the criticalF-values
for testing the statistical significance of the terms. Recal
that the interaction terms have twice the degrees of freedom
as do the main and quadratic effects since there are tw
indicator frequencies for each interaction term.

The three shades in each term correspond to contribu
tions from the three different batches. Since the batches a
independent, we could have chosen to run a single batc
(This differs from the FDE approach, where the system
may have inherent tendencies to dampen or magnify effec
at specific frequencies.) However, running three batches
informative. The differences in spike sizes across the thre
batches for several terms either indicates that the system
highly variable, or else highlights the fact that certain sam-
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Figure 5: Signal-to-Noise Ratio for Modified Exchange
Ratio (Red/Blue + 1)

pling patterns (frequencies) are more powerful than othe
for detecting specific types of effects. Were we to perform
secondary experiments, we would continue to use a total
at least 121,500 observations rather than relying on resu
from a single batch of 40,500 new observations. Reca
that the 5 factors we vary are those that Cioppa (2002
found to have the strongest effects on the (unmodified) e
change ratioKR/KB after using a nearly-orthogonal Latin
hypercube design to plant the data. His regression mod
includes main effects for all five factors (F , G, P, U , and
V ), a quadratic term forU , and interaction terms forGU
andFV . (It also includes four main effects and interactions
involving factors we did not vary.) Figure5 illustrates that
the five main effects, one quadratic effect, and two interac
tions identified by Cioppa were also statistically significan
in our FBD. We also found thatG and V have quadratic
effects onER, and that other interaction terms are presen
It is not surprising that our results are somewhat differen
We varied fewer factors, modified the performance measu
slightly, and used different ranges (in part to avoid a rang
of movement speeds where he found that the simulatio
model was broken).

Our results also highlight the importance of examining
several different performance measures if the choice o
MOE is unclear. FactorV (Red aggression) is by far the
dominant factor in the SNR forKB (Figure3). However,
the SNR forKR is quite different (Figure4), with V having
the second-lowest main effect among the five factors. Th
SNR for KR also indicates that a number of interaction
terms involvingF, G, P andU contribute as much or more
to the variability inKR as does factorV . The SNRs forER
andFERshowF has the largest main effect,U andV have
similar main effects, andU has a very strong quadratic effect
as well. Other terms are statistically significant, but thes
four account for the vast majority of the variability inY.
So, an analyst usingKB as the performance measure migh
conclude that since Red aggression is the primary drive
f
s

)
-

l

f

,

there is little that can be done in planning the operation t
reduce the likelihood of Blue losses. An analyst focusin
on Red losses would see these are affected by Blue’s cont
cohesiveness (factorsU andF) and Blue’s movement speed
(factorP). In both cases, the number killed for one affiliation
is a function of the other side’s actions, not their own
However, when looking at the attrition ratios, characteristic
of squads from both sides contribute to the outcome.

Since the spectral terms are proportional to sums o
squaredmetamodel coefficients, further analysis would be
needed to determine appropriate levels for maximizing o
minimizing the various performance measures. This can b
accomplished using multiple regression without generatin
additional data. For numerical stability, it is best to use
standardized independent variablesX∗

i where

X∗
i = αi cos(ωi t) t = 1, . . . , N

(or X∗
i = cos(ωi t)) for i = 1, . . . , k. Quadratic and inter-

action explanatory variables can be obtained by multiplyin
the appropriateX∗

i .

5 CONCLUDING REMARKS

We have presented a frequency-based design (FBD) a
proach that can be used to identify important determinan
of the performance of terminating simulations. Our work
was motivated by the need to develop efficient, effectiv
tools for planting data in a data-farming environment. As
proof of concept for the potential utility of this approach, we
illustrated FBDs using an agent-based model of a peac
enforcement operation. Our results were in consonan
with those obtained in an earlier (and broader) investigatio
that used the exchange ratio as the performance measu
We also considered three other performance measures, a
found that looking at multiple performance measures gav
additional insights into the relative importance of the fac
tors. Therefore, we concluded that FBD is not only a
feasible method for data farming, but also a useful tech
nique for factor screening that is easy to generate. W
are currently examining several issues regarding FBDs
order to further increase their utility. First, we are look-
ing at sequential analysis and display of the results. Th
may be important either when the individual simulation
runs take more time, or when we the number of factors
large. Information obtained early on the experiment ma
allow the analyst greater flexibility in changing the driving
frequencies and/or factor ranges as initial results indica
either very strong or very weak effects. Second, Wu (2002
considered ways of sonifying the output. While furthe
work is needed, sonification may be beneficial because it
another channel of information that could augment visua
displays. Finally, we are assessing the use of expert opini
about what factors are likely to be the most important in
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assigning driving frequencies. Our goals are to see wheth
this additional information can be exploited to reduce th
data requirements.
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