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ABSTRACT 

Many scenarios involving simulation require modeling 
movement and sensing. Traditionally, this has been done in 
a time-stepped manner, often because of a mistaken belief 
that using a pure discrete event approach is infeasible. This 
paper discusses how simple motion (linear, uniform, two-
dimensional) and simple sensing  can be modeled with a 
pure Discrete Event approach.  We demonstrate that this 
approach is not only feasible, it is often more desirable 
from several standpoints. 

1 INTRODUCTION 

Entity locations often play a key role in many simulation 
models, such as combat simulations.  In many cases a Dis-
crete Event Simulation (DES) method of time advance is 
rejected in favor of a time-stepped approach which, al-
though superficially more intuitive than DES, gives rise to 
many modeling difficulties, artifacts, and limitations.  
There are many advantages to adopting a discrete event 
world view.  The fact that movement and sensing can be 
successfully modeled using DES is not widely known.  
This paper presents one way that this can be done in a sim-
ple manner. 

At first glance, modeling movement seems to present a 
challenge to the discrete event approach, since the state of 
an entity in motion (its location, for instance) is in constant 
change when an entity is in motion. This difficulty is over-
come by the notion of implicit state. An implicit state is 
one that is not explicitly stored in state variables (instance 
variables in an object-oriented framework) but rather can 
be implicitly determined from other state variables. An en-
tity that moves in uniform, linear motion can have its posi-
tion modeled by implicit state in that its position is not 
stored as an instance variable but is computed “on de-
mand,” as described below. The implicit state of position is 
determined from three explicit state variables: the entity’s 

 

9

position when it started the move, the time it started the 
move, and its velocity vector. 

Recall that in DES, time does not advance in regular 
intervals or steps. Rather, the simulated time is moved to 
the time of the next occurring event which is then proc-
essed; first the model state is changed, then event cancella-
tions, if any, performed, and finally further events, if any, 
are scheduled. In between the occurrence of events, there is 
no change in the value of any state variable. 

We begin our discussion with a description of uniform 
linear motion in the following section.  We will then con-
sider the simplest kind of sensing, the “cookie-cutter.” A 
cookie-cutter sensor sees everything that is within its range 
R, and must be notified at the precise time a target enters it 
range. In a time-step simulation, cookie-cutter detection is 
very easy. Simply compute the distance between the sensor 
and the target at each time step. If the target is within dis-
tance R of the sensor, then a detection occurs. The precise 
time of detection cannot be determined, of course – we 
know it only up to the resolution of the time step chosen. 

Subsequent sections will present more complex detec-
tion, give an Event Graph implementation using the LEGO 
(Listener Event Graph Objects) framework, and briefly 
discuss some specific scenarios in which this approach has 
proved fruitful. 

2 SIMPLE MOVEMENT 

The simplest possible movement is uniform, linear motion. 
A moving entity starts its move at some initial position x at 
time t0 and begins moving with velocity v. Thus, the loca-
tion of the entity at time t is x + (t − t0 )v . Equivalently, the 
location of the entity s time units after it began its move-
ment is svx + . 

In a DES model the location of moving entities is 
modeled using implicit state, rather than explicit state, as 
mentioned above. Rather than storing the current location 
of the entity at all times, enough information is stored so 
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that the current position can be computed easily whenever 
desired using “dead reckoning.” For uniform linear motion, 
it is enough to store: (1) the initial position x (i.e. the loca-
tion of the entity just prior to when it started moving); (2) 
the velocity vector v; and (3) the time it started moving  t0. 
The equations of motion of the previous paragraph are then 
applied whenever the position is needed within the model.  
Note that since there is no explicit location state, state up-
dates are only required when the velocity vector changes. 

The coordinates and velocities of the entities are all in 
some common base coordinate system, so the motion rep-
resented above can be considered absolute motion in the 
base coordinates. Often it is desirable to consider location 
and motion relative to some particular entity’s coordinates. 
In that case, the locations and velocities can be represented 
relative to that entity’s coordinates. For most purposes the 
entities’ coordinate systems may be considered to be sim-
ply a translation of the base coordinate  system. Thus, an 
entity at position y in base coordinates is at position y −x in 
the coordinates of an entity located at position x in the base 
coordinate system. Relative velocity is equally simple for 
uniform linear motion. Suppose the equations of motion 
for two entities are given by )2,1(, =+ iitvix . Then in the 
coordinate system of entity 1, the motion of entity 2 is 
given by (x2 − x1)+ t(v2 − v1). Thus, relative to the first 
entity, the motion of the second is uniform and linear with 
starting position x2 − x1 and velocity v2 −v1. 

2.1 Modeling Acceleration and Turning 

Using constant linear motion may seem overly simplistic 
and restrictive at first glance.  If a more detailed movement 
model is desired, then more complex equations of motion 
may be used.  For example, equations using constant ac-
celeration (rather than constant velocity) are easily devel-
oped and can be used in place of the constant velocity 
equation of the previous section. 

However, it has been the authors’ experience that lin-
ear motion can provide a wide range of possibilities.  For 
example, acceleration and turning can be modeled using a 
piecewise linear approximation to smooth curved trajecto-
ries.  For all but the most detailed engineering models, this 
turns out to be a sufficient level of detail.  

2.2 Managing Movement 

The model of simple movement described in the previous 
section  is useful for capturing the effects of very simple 
maneuvers, that is, from a single point to a single destina-
tion.  In practice models typically require slightly more 
complex rules of movement.   

Among the simplest movement rules is one in which 
there is a list of waypoints, the rule being to travel to each 
waypoint in turn, stopping at the last one.  A similar 
movement rule follows the waypoints, except after the last 
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one is reached, the entity moves to the first waypoint again, 
and continues cycling through the waypoints.  This last 
movement behavior is one an observer on patrol might fol-
low.  Another patrolling type of behavior is to choose the 
next waypoint at random after each one is reached.  This is 
related to the “random” search pattern that is extensively 
used in search theory. 

Now that we have shown how entities can be modeled 
using a pure DES approach, we turn to a simple way of 
modeling detection using DES. 

3 SIMPLE DETECTION 

The simplest kind of detection is the cookie-cutter sensor. 
Consider the most basic scenario, consisting of one sta-
tionary sensor and one moving target. We will consider the 
sensor to be located at the origin in a two-dimensional co-
ordinate system. At time 0 the target starts at point x (rela-
tive to the sensor) and proceeds with constant velocity v 
(again, relative to the sensor). This situation is illustrated in 
Figure 1. The problem is to determine the time td at which 
the target enters the sensor’s range. Note that the location 
of the target at the time of detection is given by tvx + .  

3.1 Computing Detections 

Since detection occurs whenever the distance between the 
target and the sensor is exactly R, the time at which this 
occurs is the solution to the equation 

 
 .Rtvx =+  (1) 

 
Equivalently, tD is the solution to 
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where “·” represents the vector inner product and || || is the 
length of a vector. Equation (2) is a quadratic in t, so the 
solutions are given by Equation 3 (Buss 2000): 
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provided the expression under the radical is non-negative. 
If the target starts out of range but is eventually detected, 
then the solutions in Equation 3 are both real and positive. 
This is the situation depicted in Figure 1. In this case, the 
smaller of the two solutions is tD, the time of detection, and 
the larger solution tE is the exit time, the time when the tar-
get leaves the sensor’s range. At time tD, therefore, the tar-
get will be at location EnterRange and at time tE it will be 
at location ExitRange. 
3
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The expressions in Equation 3 can be used to schedule 
the time that the target enters the range of the sensor (the 
“EnterRange” event in Figure 1) as well as the target’s exit 
time (the “ExitRange” event in Figure 1). The calculations 
above assumed that the starting time was 0.0. In general, 
the interpretation of tD and tE would be the amount of time 
elapsed after the target started moving. This fits nicely with 
DES, since events are scheduled after a time delay and, in 
general, relative times are easier to model than absolute 
times. 

 
StartMove

EndMove

EnterRange

ExitRange
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Figure 1: Cookie-Cutter Detection: The Basic Scenario 
 

Of course, Figure 1 is a canonical depiction of an in-
teraction in which the target starts outside the sensor’s 
range and subsequently enters it.  In general, the target may 
also miss the sensor’s range altogether or be starting inside 
the sensor’s range when it changes its movement state.  
Figure 2 shows these possibilities with various starting 
points of the target, labeled A-D.  The possible outcomes 
may be summarized in terms of the roots of Equation 3 as 
follows: 

 
• Both roots positive (A). The sensor’s range will be 

entered after a delay of the smaller root and exited 
after a delay of the larger root. In Figure 2, this 
corresponds to a target starting at point A heading 
through C. 

• One positive and one negative root.(B) The target 
is already within the sensor’s range and will exit 
after a delay of the positive root. In Figure 2, the 
target starts at B and proceeds through C. In case 
of equality of the roots, the target will be on a 
course tangent to the range ring. 

• Both roots negative (C). The target is outside the 
sensor’s range and is moving away from the sen-
sor. The target will never enter the sensor’s range. 
In Figure 2, the target starts at point C and heads 
away from the sensor. 
99
• No real roots (D). The target will never enter the 
sensor range. In Figure 2, the target starts at point 
D and proceeds in a direction which completely 
misses the sensor’s ring. 

 

 
 
Figure 2: Cookie-Cutter Detection: All Possibilities 
 
All the above cases assume, of course, that the target 

will not stop, change direction, or change speed. If any of 
these events occur, the results must be recomputed. Any 
events that had been scheduled based on the original com-
putations are of course invalid and must be canceled and 
new events scheduled, if necessary. 

The simple scenario described above was one in which 
the sensor was stationary at the origin and the target was 
moving.  If this approach was only capable of modeling 
such situations its utility would be extremely limited.  Al-
though stationary sensors, such as a ground radar facility, 
are well-modeled as described above, typically in a simula-
tion both sensors and targets are in motion.  Alternatively, 
the trigger for the interaction could be a sensor that starts 
moving towards a previously undetected stationary target. 

3.2 Scheduling Detections 

The methodology outlined in the previous section covers the 
two key events that trigger and end a possible detection of the 
target by the sensor.  The problem now becomes one of 
scheduling the Detection and Undetection events in Figure 1. 

3.2.1 Cookie-Cutter Detection 

The simplest possible sensor is the so-called “cookie-
cutter” that detects all targets within its range and cannot 
detect any target outside its range.  The cookie-cutter sen-
sor is easily modeled by scheduling the Detection event 
with a zero delay from the EnterRange event and the Unde-
tection event with a zero delay from the ExitRange event. 
4
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Although exceedingly simple, the cookie-cutter sensor 
is useful as a starting point for simulating more sophisti-
cated sensors.  In general, the sensor’s maximum range can 
be seen as the “cookie” so that the detection algorithm is 
simply triggered when a target enters the range. The timing 
of the entry and exit would be determined by the cookie-
cutter algorithm described in this note. These entry and exit 
times bound the range of possible detection times, with the 
actual time determined by the particular model used for de-
tection.  For example, suppose that the time to detect a tar-
get after it enters a sensor’s range is exponentially distrib-
uted with mean µ. This sensor could be simulated by 
scheduling the actual detection with an exponential delay 
following the event that the target enters the range. If the 
target exits the sensor’s range before that time has elapsed, 
then that detection must be canceled, of course.  Alterna-
tively, we need not schedule the detection at all if the time 
to detect is greater than the time the target exits the sen-
sor’s range.  These possibilities will be explored further be-
low. 

3.2.2 Constant Rate Detection 

Consider a time-stepped model of detection with the fol-
lowing rule: as long as the target is within a sensor’s range, 
every ∆t times units there is a constant probability p that it 
will be detected.  Although this rule is exceedingly simple, 
it is nevertheless more complex and slightly more realistic 
than the cookie-cutter sensor rule.  For example, with a 
cookie-cutter, every detection will occur at the sensor’s 
maximum range, whereas with this detection rule they will 
occur strictly inside the maximum range. 

Converting this simple time-stepped rule to a DES ap-
proach consists of determining the probability distribution 
of the time between when the range is entered and the de-
tection occurs (see Figure 1).  In this case, the detection at-
tempts are a sequence of Bernoulli trials with identical 
probabilities, so the number N of detection attempts until 
first detection is a geometric random variable with parame-
ter p.  Thus, the time to detection is exactly N·∆t, where N 
is a geometric(p) random variable.  In this case, the DES 
formulation is exact with respect to the original time-step 
rule. 

This DES formulation requires two parameters, ∆t and 
p.  The parameterization can be simplified slightly by ap-
proximating N·∆t with an exponential random variable 
with mean ·µ = ∆t/p. 

3.2.3 General Approach using Instantaneous Detection 
Probability 

The exponential approximation in the previous section can 
be viewed as the limit of the geometric random variable as 
∆t approaches zero, with the mean time to detection held 
constant.  In general, if the instantaneous detection prob-
99
ability at time t is given by γ(t), then the probability distri-
bution of the time to detect, T, can be obtained using the 
complementary cdf (Wagner, et al. 1999) 

 
 ( )∫−=> t duutT 0 )(exp)Pr{ γ . (4) 

 
Note that if the instantaneous detection rate γ(t) is constant, 
that Equation 4 reduces to the complementary cdf of the 
exponential distribution, hence the term “constant rate” 
when applied to that particular rule. 

3.2.4 Meta-Modeling Approach To Detailed Detection 
Algorithms 

In general, an exact probability distribution cannot be ob-
tained for a particular detailed detection algorithm.  In 
these situations an approximate implementation can be es-
timated empirically.  The idea is to treat the detection algo-
rithm, however complicated, as a “black box” and apply a 
meta-modeling approach.  Using an implementation of the 
detailed detection algorithm, a series of experiments are 
conducted with the sensor trying to detect a target under 
various conditions.  The times to detection are recorded for 
each parameter setting and interaction.  Then a statistical 
model is fit to these data, with the independent variables 
being the different parameters such as geometry, target and 
sensor state, environment, etc.  Assuming a reasonable fit 
of this meta-model, the DES implementation uses the fitted 
model to generate the time to detection whenever the range 
of the sensor is entered. 

This approach is being applied using the Acquire algo-
rithm (ACQUIRE 1995), as implemented in 
CASTFOREM (CASTFOREM 2001) and COMBATXXI 
(COMBATXXI 2004)  as the detailed detection algorithm to 
produce a DES.  Although Acquire itself is a reasonably 
fast algorithm, its implementations involve each sensor in-
voking it many times throughout the simulation.  In a 
lower resolution DES model, the additional computational 
effort is not appropriate. 

The result will be a method that can be utilized in DES 
models, resulting in faster runtime and at least a first-order 
similarity to their Acquire implementation. 

4 IMPLEMENTATION 

We now give a brief overview of an implementation of the 
ideas presented.  This implementation is based on the Sim-
kit package (Buss 2002), a Java-based library that supports 
creating component-based DES models.  Simkit is based 
on Schruben’s Event Graph methodology (Schruben 1983) 
for the design of its components.  Event Graphs describe a 
DES by specifying a directed graph in which each node 
specifies a state transition and each directed arc specifies a 
scheduling or canceling relationship between events 
(Schruben 1983). Component interactions are specified us-
5
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ing “LEGO” connections (Buss and Sánchez 2002), which 
are based on Listener patterns (Buss 2002). 

4.1 Mover Component 

A Mover component is based on an equation of motion x(t) 
that describes the location of an entity at any point in time.  
In the previous sections, we have used the uniform linear 
motion equation to describe the entity’s location, but in 
general any such equation can be used to model movement.  
The crucial distinction between this DES approach and the 
traditional time-step approach is that an event is only 
scheduled when the entity changes its movement state.  In 
a time-stepped model, the entity’s state is updated every 
time step regardless of whether the entity’s equation of 
motion has indeed changed or not. 

Since a DES state can only change when an event oc-
curs, the entity’s location cannot be part of its state.  In-
stead, the initial conditions of the equation of motion are 
the quantities that remain fixed throughout a given maneu-
ver, so those quantities are what defines the DES state of 
the moving entity.  Thus )0,,0( tvx are the states for a uni-
form linear mover.  For a more complex equation of mo-
tion, other state variables may be required, since the initial 
conditions will differ.  Given these three values, the loca-
tion of the entity at any point in time can be exactly com-
puted 

The Event Graph for the Mover component is shown 
in Figure 3. 

 

 
 

Figure 3: Mover Event Graph 
 
The Mover component has parameters that include the 

maximum speed.  The basic command is to tell the Mover 
to move to a given destination at its maximum possible 
speed, s, which triggers the StartMove event.  The required 
velocity is computed along with the time required to per-
form the move, giving the delay Mt in Figure 3.  The cur-
rent location is saved in 0x , the current simulation time is 
saved in 0t , and the velocity v is computed by normaliz-
ing the vector difference between the destination and the 
current location to have length s.  Finally, the EndMove 
event is scheduled to occur with a delay of Mt .  At any 
time between the occurrence of the StartMove event and 
the EndMove event, the Mover’s actual location is deter-
mined by the dead reckoning calculation described earlier. 
The EndMove event sets the current location to the desti-
nation and the velocity vector to 0. 
99
This simple component is sufficient to implement the 
DES approach to movement outlined in the previous sec-
tions.  We now turn to issues involved with implementing 
the interactions between sensors and targets, which are 
considerably more complex. 

4.2 Sensor Component 

The Sensor component has two functions: to maintain a list 
of contacts, targets that have already been detected, and to 
be a holder of parameters needed for the detection algo-
rithm used.  The Sensor therefore only has two events: De-
tection and Undetection, shown in Figure 4. 

Note from Figure 4 that there are no scheduling arcs in 
the Sensor component.  That is because the Sensor’s events 
are not scheduled by the Sensor itself, but are “heard” from 
another object called the Mediator, described below.  A 
given detection algorithm is not implemented in the Sen-
sor, but in an instance of the Mediator. 

 

 
 

Figure 4: Sensor Event Graph 

4.3 Listener Patterns 

Simkit implements a listener pattern called the 
“SimEventListener Pattern” (Buss 2002, Buss and Sánchez 
2002).  A simulation component that is interested in re-
sponding to simulation events that occur in other compo-
nents is registered as a SimEventListener to those source 
components.  Whenever a simulation event occurs in a 
source component (i.e. an event scheduled by that compo-
nent is processed by the Event List), after the scheduling 
component executes its state transitions and schedules its 
events, all listeners are notified of the event.  If the listener 
has an event of the same name and signature, it is executed 
as if it had been explicitly scheduled.  If no matching event 
is found, then nothing happens.  The only difference be-
tween a scheduled and a “heard” event is that a heard event 
is not dispatched to its listeners. 

Figure 5 shows a simulation component (Referee, ex-
plained in the next section) listening to a Mover compo-
nent.  When the StartMove event in the Mover occurs, the 
StartMove event in the Referee is also executed.  Similarly, 
when the EndMove event occurs in the Mover, the End-
6
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Move event in the Referee is executed.  We will now ex-
plain the Referee depicted in Figure 5 in more detail. 

4.4 Referee 

As long as a target remains outside the maximum range of 
a given sensor, there is no need to be concerned about any 
interaction between the two.  Only when the range is en-
tered is a detection possible.  Similarly, when the maxi-
mum range is exited by the target, there is no further need 
for any sensing interactions to occur.  Determining when 
the events EnterRange and ExitRange occur is the respon-
sibility of some simulation component.  For the uniform 
linear motion considered here, this amounts to simply ap-
plying Equation 3, considering all the cases enumerated 
above.  In the implementation, these events must be sched-
uled by some entity in the simulation.  The question is 
which entity should do this. 

It does not make sense for these events to be scheduled 
by either the Sensor or the Mover in question because the 
computation in Equation 3 involves “ground truth” data 
that should not be available to either object.  The schedul-
ing of EnterRange and ExitRange events should be done 
by a third party, which is called the “Referee.”  An in-
stance of the Referee maintains a list of targets (Movers) 
and a list of Sensors that could potentially detect those tar-
gets.  The Referee listens for the StartMove and EndMove 
events of both the Movers, as shown in Figure 5; it also lis-
tens for these events from the Sensors, which is not de-
picted in Figure 5. 

Note that in Figure 5 each scheduling edge with a con-
dition also has a canceling edge, which is not depicted to 
make the basic logic more clear.  The condition (a) is that 
the target be out of the sensor’s range and the new move-
ment state will result in entering the sensor’s range t1 time 
units in the future. Condition (b) is that the target is inside 
the sensor’s range and its movement state will result in it 
exiting the sensor’s range t2 time units in the future. 

Also, not depicted in Figure 5 is the fact that the signa-
tures of the EnterRange and ExitRange events include ar-
guments of type Sensor and Mover, which are the sensor 
and target, respectively.  Thus, these events have access to 
the state of the Sensor and the Target that are interacting at 
that event. 

The Referee’s only responsibilities are for scheduling 
(and possibly canceling) EnterRange and ExitRange 
events.  Only uniform linear movement is supported by 
Simkit’s default implementation; modeling another equa-
tion of motion would require implementing a different 
Referee to override the default behavior. 

The Detection and  Undetection events are not sched-
uled by the Referee but by one of another collection of 
third-parties called Mediators, which are discussed next. 
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Figure 5: Referee Event Graph Listening to Mover 

4.5 Sensor-Target Mediators 

Just as with the Referee, implementing a detection algo-
rithm in either a Sensor or a Mover does not make sense, 
because the algorithm requires ground truth information 
that should not be available to entities of either type.  Fur-
thermore, since many different detection algorithms can be 
supported, implementing them in the Referee would re-
quire re-writing the Referee any time a new detection algo-
rithm was to be added. Therefore, another collection of 
third-parties is given responsibility for the Detection and 
Undetection events - the Sensor-Target Mediator, or just 
Mediator for short. 

The Event Graph for the Mediator is shown in Figure 
6 below.  An instance of the Mediator listens to the Referee 
7
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for EnterRange and ExitRange events.  As shown by Fig-
ure 6, the EnterRange event computes the time until detec-
tion, tD, and schedules the Detection event.  Similarly, the 
Detection event schedules the Undetection event.  An 
ExitRange event, which will be heard from the Referee, 
will cancel any pending Detections or Undetections and 
schedule an Undetection immediately (See Figure 6).  The 
Detection and Undetection events are heard by the appro-
priate Sensor (See Figure 4), which maintains responsibil-
ity for the contacts that have been detected. 

Each Mediator is a very small class, since only the En-
terRange and ExitRange events have non-trivial implemen-
tations.  Indeed, for most algorithms the ExitRange event 
consists solely of the scheduling and canceling arcs shown 
in Figure 6.  As with the Referee, the signatures for Enter-
Range and ExitRange include arguments of type Sensor 
and Target.  Thus, these events will also have access to pa-
rameters and state variables for both entities. 

 

Enter
Range DetectiontD

Exit
Range

Undetection

tU

 
 

Figure 6: Mediator Event Graph 
 
Each detection algorithm, therefore, has a Mediator 

class that implements that algorithm, and each simulation 
run will have exactly one instance of each type of Media-
tor.  Typically, it will be matched to a Sensor class that de-
fines parameters needed for the detection algorithm. 

The EnterRange event is responsible for scheduling 
the Detection event using whichever detection algorithm it 
is implementing.  Typically it uses parameters and state 
variables from both the Sensor and the Mover to compute 
the time until detection, tD. 

The CookieCutter detection algorithm is easily im-
plemented because the time until detection is always 0.0.  
No additional parameters are required on the Sensor, and 
the CookieCutterSensor simply has its maximum range as 
the parameter. 

The constant rate detection algorithm described in 
Section 3.2.2 is implemented by the Mediator having a pa-
99
rameter that generates Exponential(1.0) random variables.  
The time to detection is thus computed by first generating 
an Exponential(1.0) random variate and multiplying it by 
the mean time to detection, a parameter of the Constan-
tRateSensor class.  Since there would be only one instance 
of the ConstantRateMediator in a given simulation, the 
generated random variates will be independent. 

A more complicated algorithm, such as the Acquire 
meta-model described in Section 3.2.4, may require pa-
rameters on both the Mover and the Sensor, as well as 
some additional parameters corresponding to the environ-
mental conditions, for example. 

5 ANIMATION 

The fact that movement and sensing is modeled in a pure 
DES way does not preclude the display and animation of 
entities that implement these functions.  In fact, animation 
is very straightforward. 

Animation is fundamentally a time-stepped operation, 
consisting of a sequence of frames displayed in rapid suc-
cession.  Each mover needs an icon associated with it to 
draw on the canvas.  The animation is performed by peri-
odically scheduling a single recurring event.  A listener to 
that recurring event has the simple logic of redrawing the 
screen of the canvas.  Since simulated time has advanced 
with each event, and hence each redraw of the screen, each 
moving entity is drawn in a slightly different location. 

One implementation of this approach involves a com-
ponent responsible to synchronizing simulated time and 
clock time and another component responsible for display-
ing the entities that are to be animated.  The former com-
ponent simply schedules an event with a deterministic time 
between occurrences.  The event also sleeps for a pre-
determined amount of clock time.  This component is 
called a “PingThread” (See Figure 7).  An instance of 
PingThread does not have to be aware of any other objects 
in the simulation.  The animation itself is displayed in a lis-
tener object, one example of which is called a “Sandbox.”    
An instance of this component has Movers and Sensors 
registered with it, with icons specified for each entity.  It 
listens for the “Ping” event and simply redraws its contents 
when Ping occurs.  The location of the icons is determined 
by each Mover and Sensor’s location.  Since ∆t elapses be-
tween each redraw, the entitles appear in slightly different 
locations with each Ping event, thus creating the animation.  

A screenshot of a simple implementation of this is 
shown in Figure 8.  Three different types of sensors are 
shown, distinguished by the colors of the rings.  Each 
mover implements the constant linear motion described 
earlier.  For this application, the movement rule is “ran-
dom” – each mover generates a random destination in a 
square and moves to it.  When it arrives at the destination, 
another destination is generated and moved to. 
8
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Figure 7: Animation Event Graph 
 

 
 

Figure 8: Animation of Movers with Sensors 

6 USE IN MODELING AND ANALYSIS 

Over the past several years a number of specific scenarios 
have been modeled and analyzed, primarily as thesis work 
by students at the Naval Postgraduate.  These scenarios 
have been as diverse as analyzing mine avoidance tactics 
for autonomous underwater vehicles (Allen 2004), dy-
namic allocation of weapons and sensors to ground targets 
(Havens 2002), and waterfront force protection (Childs 
2002), to name just a few. 

Much of the generic framework for modeling move-
ment and sensing, as presented in this paper, is imple-
mented in Simkit.  Using Simkit, students are able to create 
models in a relatively short time, allowing interesting 
analysis to be performed that would not otherwise be pos-
sible.  In most cases, there are no off-the-shelf models that 
capture the essential features required to answer the study 
questions, and creating a scenario using an existing combat 
simulation is often impossible as well.  The pure discrete 
99
event methodology and the robust LEGO component 
framework  are key features that support these efforts. 

A model in support of the United States Army’s Fu-
ture Combat Force has been under development, sponsored 
by the US Army TRADOC Analysis Center, TRAC-
Monterey.  This model, called DAFS (Dynamic Allocation 
of Fires and Sensors), also uses the concepts presented in 
this paper as part of its model of movement and sensing.  
DAFS is an example of an emerging approach to low-
resolution entity-level simulation (Phillips and Jackson 
2005).  DAFS has a number of additional features, discus-
sion of which are beyond the scope of this paper. 

7 DISCUSSION 

We have demonstrated that using a pure discrete event ap-
proach to modeling movement and sensing is in fact possi-
ble.  It turns out that using DES is also more desirable than 
the traditional time-step approach from several standpoints. 

One significant difference is that there is substantially 
less polling that takes place in the DES approach.  Typi-
cally a time-step model must poll every moving entity at 
every time step to determine the necessity of updating its 
position.  The modeler must choose the size of the time 
step carefully – too large a time step introduces errors in 
the model, while too small a time step may cause ex-
tremely large run times.  If sensing interactions occur in 
the model, all possible interactions need to be considered at 
each time step.  If the number of entities with potential in-
teractions is n, the number of interactions to check for is n 
choose 2, and the computational complexity is O(n2/∆t). 

In contrast, in the DES approach presented here, an 
entity only updates its state when its movement status ac-
tually changes.  In most scenarios that is substantially less 
frequent than the time step.  Potential interactions with 
other entities can be determined when a given entity 
changes its movement status.  The amount of work in-
volved is O(nm), where n is the number of entities with po-
tential interactions and m is the number of movement 
change events.  Note that if T is the run length of the simu-
lation, m is generally much smaller than T / ∆t.  Thus, for 
most models the DES approach will be substantially more 
efficient. 

Additionally, the locations of entities in a DES model 
can be anywhere, whereas time-step models often use a 
grid in which the location of an entity can only be specified 
up to the size of the grid cells.  The time step and grid im-
pose limits on the speed of movement.  With a time step of 
∆t and a grid with of ∆x, the minimum speed a unit can 
travel is ∆x/∆t.  In a pure DES model, units can travel at 
whatever speed is desired by the modeler. 
9



 Sánchez 
Buss and
 
8 CONCLUSIONS 

Despite the widespread impression that modeling of 
movement and sensing in simulation must be done using 
time-steps, it is not only possible, but desirable to use a 
pure discrete event approach.  This paper has described the 
basic methodology for such an approach, developed the 
necessary equations and shown some of the Event Graph 
components for implementation, and briefly discussed 
some specific applications in which this approach has led 
to analyses that would not have otherwise been possible in 
the short timeframes available. 
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