
Proceedings of the 2005 Winter Simulation Conference
M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, eds.

SIMPLE MOVEMENT AND DETECTION IN
DISCRETE EVENT SIMULATION

Arnold H. Buss

MOVES Institute
Naval Postgraduate School

700 Dyer Rd.
Monterey, CA 93943 U.S.A

 Paul J. Sánchez

Operations Research Department
Naval Postgraduate School

1411 Cunningham Rd.
Monterey, CA 93943 U.S.A

ABSTRACT

Many scenarios involving simulation require modeling
movement and sensing. Traditionally, this has been done in
a time-stepped manner, often because of a mistaken belief
that using a pure discrete event approach is infeasible. This
paper discusses how simple motion (linear, uniform, two-
dimensional) and simple sensing can be modeled with a
pure Discrete Event approach. We demonstrate that this
approach is not only feasible, it is often more desirable
from several standpoints.

1 INTRODUCTION

Entity locations often play a key role in many simulation
models, such as combat simulations. In many cases a Dis-
crete Event Simulation (DES) method of time advance is
rejected in favor of a time-stepped approach which, al-
though superficially more intuitive than DES, gives rise to
many modeling difficulties, artifacts, and limitations.
There are many advantages to adopting a discrete event
world view. The fact that movement and sensing can be
successfully modeled using DES is not widely known.
This paper presents one way that this can be done in a sim-
ple manner.

At first glance, modeling movement seems to present a
challenge to the discrete event approach, since the state of
an entity in motion (its location, for instance) is in constant
change when an entity is in motion. This difficulty is over-
come by the notion of implicit state. An implicit state is
one that is not explicitly stored in state variables (instance
variables in an object-oriented framework) but rather can
be implicitly determined from other state variables. An en-
tity that moves in uniform, linear motion can have its posi-
tion modeled by implicit state in that its position is not
stored as an instance variable but is computed “on de-
mand,” as described below. The implicit state of position is
determined from three explicit state variables: the entity’s

9

position when it started the move, the time it started the
move, and its velocity vector.

Recall that in DES, time does not advance in regular
intervals or steps. Rather, the simulated time is moved to
the time of the next occurring event which is then proc-
essed; first the model state is changed, then event cancella-
tions, if any, performed, and finally further events, if any,
are scheduled. In between the occurrence of events, there is
no change in the value of any state variable.

We begin our discussion with a description of uniform
linear motion in the following section. We will then con-
sider the simplest kind of sensing, the “cookie-cutter.” A
cookie-cutter sensor sees everything that is within its range
R, and must be notified at the precise time a target enters it
range. In a time-step simulation, cookie-cutter detection is
very easy. Simply compute the distance between the sensor
and the target at each time step. If the target is within dis-
tance R of the sensor, then a detection occurs. The precise
time of detection cannot be determined, of course – we
know it only up to the resolution of the time step chosen.

Subsequent sections will present more complex detec-
tion, give an Event Graph implementation using the LEGO
(Listener Event Graph Objects) framework, and briefly
discuss some specific scenarios in which this approach has
proved fruitful.

2 SIMPLE MOVEMENT

The simplest possible movement is uniform, linear motion.
A moving entity starts its move at some initial position x at
time t0 and begins moving with velocity v. Thus, the loca-
tion of the entity at time t is x + (t − t0)v . Equivalently, the
location of the entity s time units after it began its move-
ment is svx + .

In a DES model the location of moving entities is
modeled using implicit state, rather than explicit state, as
mentioned above. Rather than storing the current location
of the entity at all times, enough information is stored so

92

Buss and Sánchez

that the current position can be computed easily whenever
desired using “dead reckoning.” For uniform linear motion,
it is enough to store: (1) the initial position x (i.e. the loca-
tion of the entity just prior to when it started moving); (2)
the velocity vector v; and (3) the time it started moving t0.
The equations of motion of the previous paragraph are then
applied whenever the position is needed within the model.
Note that since there is no explicit location state, state up-
dates are only required when the velocity vector changes.

The coordinates and velocities of the entities are all in
some common base coordinate system, so the motion rep-
resented above can be considered absolute motion in the
base coordinates. Often it is desirable to consider location
and motion relative to some particular entity’s coordinates.
In that case, the locations and velocities can be represented
relative to that entity’s coordinates. For most purposes the
entities’ coordinate systems may be considered to be sim-
ply a translation of the base coordinate system. Thus, an
entity at position y in base coordinates is at position y −x in
the coordinates of an entity located at position x in the base
coordinate system. Relative velocity is equally simple for
uniform linear motion. Suppose the equations of motion
for two entities are given by)2,1(, =+ iitvix . Then in the
coordinate system of entity 1, the motion of entity 2 is
given by (x2 − x1)+ t(v2 − v1). Thus, relative to the first
entity, the motion of the second is uniform and linear with
starting position x2 − x1 and velocity v2 −v1.

2.1 Modeling Acceleration and Turning

Using constant linear motion may seem overly simplistic
and restrictive at first glance. If a more detailed movement
model is desired, then more complex equations of motion
may be used. For example, equations using constant ac-
celeration (rather than constant velocity) are easily devel-
oped and can be used in place of the constant velocity
equation of the previous section.

However, it has been the authors’ experience that lin-
ear motion can provide a wide range of possibilities. For
example, acceleration and turning can be modeled using a
piecewise linear approximation to smooth curved trajecto-
ries. For all but the most detailed engineering models, this
turns out to be a sufficient level of detail.

2.2 Managing Movement

The model of simple movement described in the previous
section is useful for capturing the effects of very simple
maneuvers, that is, from a single point to a single destina-
tion. In practice models typically require slightly more
complex rules of movement.

Among the simplest movement rules is one in which
there is a list of waypoints, the rule being to travel to each
waypoint in turn, stopping at the last one. A similar
movement rule follows the waypoints, except after the last
99
one is reached, the entity moves to the first waypoint again,
and continues cycling through the waypoints. This last
movement behavior is one an observer on patrol might fol-
low. Another patrolling type of behavior is to choose the
next waypoint at random after each one is reached. This is
related to the “random” search pattern that is extensively
used in search theory.

Now that we have shown how entities can be modeled
using a pure DES approach, we turn to a simple way of
modeling detection using DES.

3 SIMPLE DETECTION

The simplest kind of detection is the cookie-cutter sensor.
Consider the most basic scenario, consisting of one sta-
tionary sensor and one moving target. We will consider the
sensor to be located at the origin in a two-dimensional co-
ordinate system. At time 0 the target starts at point x (rela-
tive to the sensor) and proceeds with constant velocity v
(again, relative to the sensor). This situation is illustrated in
Figure 1. The problem is to determine the time td at which
the target enters the sensor’s range. Note that the location
of the target at the time of detection is given by tvx + .

3.1 Computing Detections

Since detection occurs whenever the distance between the
target and the sensor is exactly R, the time at which this
occurs is the solution to the equation

 .Rtvx =+ (1)

Equivalently, tD is the solution to

 22)(222 Rxtvxtv =+⋅+ (2)

where “·” represents the vector inner product and || || is the
length of a vector. Equation (2) is a quadratic in t, so the
solutions are given by Equation 3 (Buss 2000):

2

2)()22(2

2 v

vxxRv

v

vxt
⋅+−

±⋅−= , (3)

provided the expression under the radical is non-negative.
If the target starts out of range but is eventually detected,
then the solutions in Equation 3 are both real and positive.
This is the situation depicted in Figure 1. In this case, the
smaller of the two solutions is tD, the time of detection, and
the larger solution tE is the exit time, the time when the tar-
get leaves the sensor’s range. At time tD, therefore, the tar-
get will be at location EnterRange and at time tE it will be
at location ExitRange.
3

 Sánchez
Buss and

The expressions in Equation 3 can be used to schedule
the time that the target enters the range of the sensor (the
“EnterRange” event in Figure 1) as well as the target’s exit
time (the “ExitRange” event in Figure 1). The calculations
above assumed that the starting time was 0.0. In general,
the interpretation of tD and tE would be the amount of time
elapsed after the target started moving. This fits nicely with
DES, since events are scheduled after a time delay and, in
general, relative times are easier to model than absolute
times.

StartMove

EndMove

EnterRange

ExitRange

Detection

Sensor

Target

Undetection

Figure 1: Cookie-Cutter Detection: The Basic Scenario

Of course, Figure 1 is a canonical depiction of an in-
teraction in which the target starts outside the sensor’s
range and subsequently enters it. In general, the target may
also miss the sensor’s range altogether or be starting inside
the sensor’s range when it changes its movement state.
Figure 2 shows these possibilities with various starting
points of the target, labeled A-D. The possible outcomes
may be summarized in terms of the roots of Equation 3 as
follows:

• Both roots positive (A). The sensor’s range will be

entered after a delay of the smaller root and exited
after a delay of the larger root. In Figure 2, this
corresponds to a target starting at point A heading
through C.

• One positive and one negative root.(B) The target
is already within the sensor’s range and will exit
after a delay of the positive root. In Figure 2, the
target starts at B and proceeds through C. In case
of equality of the roots, the target will be on a
course tangent to the range ring.

• Both roots negative (C). The target is outside the
sensor’s range and is moving away from the sen-
sor. The target will never enter the sensor’s range.
In Figure 2, the target starts at point C and heads
away from the sensor.
99
• No real roots (D). The target will never enter the
sensor range. In Figure 2, the target starts at point
D and proceeds in a direction which completely
misses the sensor’s ring.

Figure 2: Cookie-Cutter Detection: All Possibilities

All the above cases assume, of course, that the target

will not stop, change direction, or change speed. If any of
these events occur, the results must be recomputed. Any
events that had been scheduled based on the original com-
putations are of course invalid and must be canceled and
new events scheduled, if necessary.

The simple scenario described above was one in which
the sensor was stationary at the origin and the target was
moving. If this approach was only capable of modeling
such situations its utility would be extremely limited. Al-
though stationary sensors, such as a ground radar facility,
are well-modeled as described above, typically in a simula-
tion both sensors and targets are in motion. Alternatively,
the trigger for the interaction could be a sensor that starts
moving towards a previously undetected stationary target.

3.2 Scheduling Detections

The methodology outlined in the previous section covers the
two key events that trigger and end a possible detection of the
target by the sensor. The problem now becomes one of
scheduling the Detection and Undetection events in Figure 1.

3.2.1 Cookie-Cutter Detection

The simplest possible sensor is the so-called “cookie-
cutter” that detects all targets within its range and cannot
detect any target outside its range. The cookie-cutter sen-
sor is easily modeled by scheduling the Detection event
with a zero delay from the EnterRange event and the Unde-
tection event with a zero delay from the ExitRange event.
4

Buss and Sánchez

Although exceedingly simple, the cookie-cutter sensor
is useful as a starting point for simulating more sophisti-
cated sensors. In general, the sensor’s maximum range can
be seen as the “cookie” so that the detection algorithm is
simply triggered when a target enters the range. The timing
of the entry and exit would be determined by the cookie-
cutter algorithm described in this note. These entry and exit
times bound the range of possible detection times, with the
actual time determined by the particular model used for de-
tection. For example, suppose that the time to detect a tar-
get after it enters a sensor’s range is exponentially distrib-
uted with mean µ. This sensor could be simulated by
scheduling the actual detection with an exponential delay
following the event that the target enters the range. If the
target exits the sensor’s range before that time has elapsed,
then that detection must be canceled, of course. Alterna-
tively, we need not schedule the detection at all if the time
to detect is greater than the time the target exits the sen-
sor’s range. These possibilities will be explored further be-
low.

3.2.2 Constant Rate Detection

Consider a time-stepped model of detection with the fol-
lowing rule: as long as the target is within a sensor’s range,
every ∆t times units there is a constant probability p that it
will be detected. Although this rule is exceedingly simple,
it is nevertheless more complex and slightly more realistic
than the cookie-cutter sensor rule. For example, with a
cookie-cutter, every detection will occur at the sensor’s
maximum range, whereas with this detection rule they will
occur strictly inside the maximum range.

Converting this simple time-stepped rule to a DES ap-
proach consists of determining the probability distribution
of the time between when the range is entered and the de-
tection occurs (see Figure 1). In this case, the detection at-
tempts are a sequence of Bernoulli trials with identical
probabilities, so the number N of detection attempts until
first detection is a geometric random variable with parame-
ter p. Thus, the time to detection is exactly N·∆t, where N
is a geometric(p) random variable. In this case, the DES
formulation is exact with respect to the original time-step
rule.

This DES formulation requires two parameters, ∆t and
p. The parameterization can be simplified slightly by ap-
proximating N·∆t with an exponential random variable
with mean ·µ = ∆t/p.

3.2.3 General Approach using Instantaneous Detection
Probability

The exponential approximation in the previous section can
be viewed as the limit of the geometric random variable as
∆t approaches zero, with the mean time to detection held
constant. In general, if the instantaneous detection prob-
99
ability at time t is given by γ(t), then the probability distri-
bution of the time to detect, T, can be obtained using the
complementary cdf (Wagner, et al. 1999)

 ()∫−=> t duutT 0)(exp)Pr{ γ . (4)

Note that if the instantaneous detection rate γ(t) is constant,
that Equation 4 reduces to the complementary cdf of the
exponential distribution, hence the term “constant rate”
when applied to that particular rule.

3.2.4 Meta-Modeling Approach To Detailed Detection
Algorithms

In general, an exact probability distribution cannot be ob-
tained for a particular detailed detection algorithm. In
these situations an approximate implementation can be es-
timated empirically. The idea is to treat the detection algo-
rithm, however complicated, as a “black box” and apply a
meta-modeling approach. Using an implementation of the
detailed detection algorithm, a series of experiments are
conducted with the sensor trying to detect a target under
various conditions. The times to detection are recorded for
each parameter setting and interaction. Then a statistical
model is fit to these data, with the independent variables
being the different parameters such as geometry, target and
sensor state, environment, etc. Assuming a reasonable fit
of this meta-model, the DES implementation uses the fitted
model to generate the time to detection whenever the range
of the sensor is entered.

This approach is being applied using the Acquire algo-
rithm (ACQUIRE 1995), as implemented in
CASTFOREM (CASTFOREM 2001) and COMBATXXI
(COMBATXXI 2004) as the detailed detection algorithm to
produce a DES. Although Acquire itself is a reasonably
fast algorithm, its implementations involve each sensor in-
voking it many times throughout the simulation. In a
lower resolution DES model, the additional computational
effort is not appropriate.

The result will be a method that can be utilized in DES
models, resulting in faster runtime and at least a first-order
similarity to their Acquire implementation.

4 IMPLEMENTATION

We now give a brief overview of an implementation of the
ideas presented. This implementation is based on the Sim-
kit package (Buss 2002), a Java-based library that supports
creating component-based DES models. Simkit is based
on Schruben’s Event Graph methodology (Schruben 1983)
for the design of its components. Event Graphs describe a
DES by specifying a directed graph in which each node
specifies a state transition and each directed arc specifies a
scheduling or canceling relationship between events
(Schruben 1983). Component interactions are specified us-
5

Buss and Sánchez

ing “LEGO” connections (Buss and Sánchez 2002), which
are based on Listener patterns (Buss 2002).

4.1 Mover Component

A Mover component is based on an equation of motion x(t)
that describes the location of an entity at any point in time.
In the previous sections, we have used the uniform linear
motion equation to describe the entity’s location, but in
general any such equation can be used to model movement.
The crucial distinction between this DES approach and the
traditional time-step approach is that an event is only
scheduled when the entity changes its movement state. In
a time-stepped model, the entity’s state is updated every
time step regardless of whether the entity’s equation of
motion has indeed changed or not.

Since a DES state can only change when an event oc-
curs, the entity’s location cannot be part of its state. In-
stead, the initial conditions of the equation of motion are
the quantities that remain fixed throughout a given maneu-
ver, so those quantities are what defines the DES state of
the moving entity. Thus)0,,0(tvx are the states for a uni-
form linear mover. For a more complex equation of mo-
tion, other state variables may be required, since the initial
conditions will differ. Given these three values, the loca-
tion of the entity at any point in time can be exactly com-
puted

The Event Graph for the Mover component is shown
in Figure 3.

Figure 3: Mover Event Graph

The Mover component has parameters that include the

maximum speed. The basic command is to tell the Mover
to move to a given destination at its maximum possible
speed, s, which triggers the StartMove event. The required
velocity is computed along with the time required to per-
form the move, giving the delay Mt in Figure 3. The cur-
rent location is saved in 0x , the current simulation time is
saved in 0t , and the velocity v is computed by normaliz-
ing the vector difference between the destination and the
current location to have length s. Finally, the EndMove
event is scheduled to occur with a delay of Mt . At any
time between the occurrence of the StartMove event and
the EndMove event, the Mover’s actual location is deter-
mined by the dead reckoning calculation described earlier.
The EndMove event sets the current location to the desti-
nation and the velocity vector to 0.
99
This simple component is sufficient to implement the
DES approach to movement outlined in the previous sec-
tions. We now turn to issues involved with implementing
the interactions between sensors and targets, which are
considerably more complex.

4.2 Sensor Component

The Sensor component has two functions: to maintain a list
of contacts, targets that have already been detected, and to
be a holder of parameters needed for the detection algo-
rithm used. The Sensor therefore only has two events: De-
tection and Undetection, shown in Figure 4.

Note from Figure 4 that there are no scheduling arcs in
the Sensor component. That is because the Sensor’s events
are not scheduled by the Sensor itself, but are “heard” from
another object called the Mediator, described below. A
given detection algorithm is not implemented in the Sen-
sor, but in an instance of the Mediator.

Figure 4: Sensor Event Graph

4.3 Listener Patterns

Simkit implements a listener pattern called the
“SimEventListener Pattern” (Buss 2002, Buss and Sánchez
2002). A simulation component that is interested in re-
sponding to simulation events that occur in other compo-
nents is registered as a SimEventListener to those source
components. Whenever a simulation event occurs in a
source component (i.e. an event scheduled by that compo-
nent is processed by the Event List), after the scheduling
component executes its state transitions and schedules its
events, all listeners are notified of the event. If the listener
has an event of the same name and signature, it is executed
as if it had been explicitly scheduled. If no matching event
is found, then nothing happens. The only difference be-
tween a scheduled and a “heard” event is that a heard event
is not dispatched to its listeners.

Figure 5 shows a simulation component (Referee, ex-
plained in the next section) listening to a Mover compo-
nent. When the StartMove event in the Mover occurs, the
StartMove event in the Referee is also executed. Similarly,
when the EndMove event occurs in the Mover, the End-
6

Buss and Sánchez

Move event in the Referee is executed. We will now ex-
plain the Referee depicted in Figure 5 in more detail.

4.4 Referee

As long as a target remains outside the maximum range of
a given sensor, there is no need to be concerned about any
interaction between the two. Only when the range is en-
tered is a detection possible. Similarly, when the maxi-
mum range is exited by the target, there is no further need
for any sensing interactions to occur. Determining when
the events EnterRange and ExitRange occur is the respon-
sibility of some simulation component. For the uniform
linear motion considered here, this amounts to simply ap-
plying Equation 3, considering all the cases enumerated
above. In the implementation, these events must be sched-
uled by some entity in the simulation. The question is
which entity should do this.

It does not make sense for these events to be scheduled
by either the Sensor or the Mover in question because the
computation in Equation 3 involves “ground truth” data
that should not be available to either object. The schedul-
ing of EnterRange and ExitRange events should be done
by a third party, which is called the “Referee.” An in-
stance of the Referee maintains a list of targets (Movers)
and a list of Sensors that could potentially detect those tar-
gets. The Referee listens for the StartMove and EndMove
events of both the Movers, as shown in Figure 5; it also lis-
tens for these events from the Sensors, which is not de-
picted in Figure 5.

Note that in Figure 5 each scheduling edge with a con-
dition also has a canceling edge, which is not depicted to
make the basic logic more clear. The condition (a) is that
the target be out of the sensor’s range and the new move-
ment state will result in entering the sensor’s range t1 time
units in the future. Condition (b) is that the target is inside
the sensor’s range and its movement state will result in it
exiting the sensor’s range t2 time units in the future.

Also, not depicted in Figure 5 is the fact that the signa-
tures of the EnterRange and ExitRange events include ar-
guments of type Sensor and Mover, which are the sensor
and target, respectively. Thus, these events have access to
the state of the Sensor and the Target that are interacting at
that event.

The Referee’s only responsibilities are for scheduling
(and possibly canceling) EnterRange and ExitRange
events. Only uniform linear movement is supported by
Simkit’s default implementation; modeling another equa-
tion of motion would require implementing a different
Referee to override the default behavior.

The Detection and Undetection events are not sched-
uled by the Referee but by one of another collection of
third-parties called Mediators, which are discussed next.
99
Start
Move

End
Move

Enter
Range

Exit
Range

Mover

Referee

Start
Move

End
Move

t1t1t2 t2

t3

(a) (a)

(b)(b)

Figure 5: Referee Event Graph Listening to Mover

4.5 Sensor-Target Mediators

Just as with the Referee, implementing a detection algo-
rithm in either a Sensor or a Mover does not make sense,
because the algorithm requires ground truth information
that should not be available to entities of either type. Fur-
thermore, since many different detection algorithms can be
supported, implementing them in the Referee would re-
quire re-writing the Referee any time a new detection algo-
rithm was to be added. Therefore, another collection of
third-parties is given responsibility for the Detection and
Undetection events - the Sensor-Target Mediator, or just
Mediator for short.

The Event Graph for the Mediator is shown in Figure
6 below. An instance of the Mediator listens to the Referee
7

Buss and Sánchez

for EnterRange and ExitRange events. As shown by Fig-
ure 6, the EnterRange event computes the time until detec-
tion, tD, and schedules the Detection event. Similarly, the
Detection event schedules the Undetection event. An
ExitRange event, which will be heard from the Referee,
will cancel any pending Detections or Undetections and
schedule an Undetection immediately (See Figure 6). The
Detection and Undetection events are heard by the appro-
priate Sensor (See Figure 4), which maintains responsibil-
ity for the contacts that have been detected.

Each Mediator is a very small class, since only the En-
terRange and ExitRange events have non-trivial implemen-
tations. Indeed, for most algorithms the ExitRange event
consists solely of the scheduling and canceling arcs shown
in Figure 6. As with the Referee, the signatures for Enter-
Range and ExitRange include arguments of type Sensor
and Target. Thus, these events will also have access to pa-
rameters and state variables for both entities.

Enter
Range DetectiontD

Exit
Range

Undetection

tU

Figure 6: Mediator Event Graph

Each detection algorithm, therefore, has a Mediator

class that implements that algorithm, and each simulation
run will have exactly one instance of each type of Media-
tor. Typically, it will be matched to a Sensor class that de-
fines parameters needed for the detection algorithm.

The EnterRange event is responsible for scheduling
the Detection event using whichever detection algorithm it
is implementing. Typically it uses parameters and state
variables from both the Sensor and the Mover to compute
the time until detection, tD.

The CookieCutter detection algorithm is easily im-
plemented because the time until detection is always 0.0.
No additional parameters are required on the Sensor, and
the CookieCutterSensor simply has its maximum range as
the parameter.

The constant rate detection algorithm described in
Section 3.2.2 is implemented by the Mediator having a pa-
99
rameter that generates Exponential(1.0) random variables.
The time to detection is thus computed by first generating
an Exponential(1.0) random variate and multiplying it by
the mean time to detection, a parameter of the Constan-
tRateSensor class. Since there would be only one instance
of the ConstantRateMediator in a given simulation, the
generated random variates will be independent.

A more complicated algorithm, such as the Acquire
meta-model described in Section 3.2.4, may require pa-
rameters on both the Mover and the Sensor, as well as
some additional parameters corresponding to the environ-
mental conditions, for example.

5 ANIMATION

The fact that movement and sensing is modeled in a pure
DES way does not preclude the display and animation of
entities that implement these functions. In fact, animation
is very straightforward.

Animation is fundamentally a time-stepped operation,
consisting of a sequence of frames displayed in rapid suc-
cession. Each mover needs an icon associated with it to
draw on the canvas. The animation is performed by peri-
odically scheduling a single recurring event. A listener to
that recurring event has the simple logic of redrawing the
screen of the canvas. Since simulated time has advanced
with each event, and hence each redraw of the screen, each
moving entity is drawn in a slightly different location.

One implementation of this approach involves a com-
ponent responsible to synchronizing simulated time and
clock time and another component responsible for display-
ing the entities that are to be animated. The former com-
ponent simply schedules an event with a deterministic time
between occurrences. The event also sleeps for a pre-
determined amount of clock time. This component is
called a “PingThread” (See Figure 7). An instance of
PingThread does not have to be aware of any other objects
in the simulation. The animation itself is displayed in a lis-
tener object, one example of which is called a “Sandbox.”
An instance of this component has Movers and Sensors
registered with it, with icons specified for each entity. It
listens for the “Ping” event and simply redraws its contents
when Ping occurs. The location of the icons is determined
by each Mover and Sensor’s location. Since ∆t elapses be-
tween each redraw, the entitles appear in slightly different
locations with each Ping event, thus creating the animation.

A screenshot of a simple implementation of this is
shown in Figure 8. Three different types of sensors are
shown, distinguished by the colors of the rings. Each
mover implements the constant linear motion described
earlier. For this application, the movement rule is “ran-
dom” – each mover generates a random destination in a
square and moves to it. When it arrives at the destination,
another destination is generated and moved to.
8

Buss and Sánchez

Figure 7: Animation Event Graph

Figure 8: Animation of Movers with Sensors

6 USE IN MODELING AND ANALYSIS

Over the past several years a number of specific scenarios
have been modeled and analyzed, primarily as thesis work
by students at the Naval Postgraduate. These scenarios
have been as diverse as analyzing mine avoidance tactics
for autonomous underwater vehicles (Allen 2004), dy-
namic allocation of weapons and sensors to ground targets
(Havens 2002), and waterfront force protection (Childs
2002), to name just a few.

Much of the generic framework for modeling move-
ment and sensing, as presented in this paper, is imple-
mented in Simkit. Using Simkit, students are able to create
models in a relatively short time, allowing interesting
analysis to be performed that would not otherwise be pos-
sible. In most cases, there are no off-the-shelf models that
capture the essential features required to answer the study
questions, and creating a scenario using an existing combat
simulation is often impossible as well. The pure discrete
99
event methodology and the robust LEGO component
framework are key features that support these efforts.

A model in support of the United States Army’s Fu-
ture Combat Force has been under development, sponsored
by the US Army TRADOC Analysis Center, TRAC-
Monterey. This model, called DAFS (Dynamic Allocation
of Fires and Sensors), also uses the concepts presented in
this paper as part of its model of movement and sensing.
DAFS is an example of an emerging approach to low-
resolution entity-level simulation (Phillips and Jackson
2005). DAFS has a number of additional features, discus-
sion of which are beyond the scope of this paper.

7 DISCUSSION

We have demonstrated that using a pure discrete event ap-
proach to modeling movement and sensing is in fact possi-
ble. It turns out that using DES is also more desirable than
the traditional time-step approach from several standpoints.

One significant difference is that there is substantially
less polling that takes place in the DES approach. Typi-
cally a time-step model must poll every moving entity at
every time step to determine the necessity of updating its
position. The modeler must choose the size of the time
step carefully – too large a time step introduces errors in
the model, while too small a time step may cause ex-
tremely large run times. If sensing interactions occur in
the model, all possible interactions need to be considered at
each time step. If the number of entities with potential in-
teractions is n, the number of interactions to check for is n
choose 2, and the computational complexity is O(n2/∆t).

In contrast, in the DES approach presented here, an
entity only updates its state when its movement status ac-
tually changes. In most scenarios that is substantially less
frequent than the time step. Potential interactions with
other entities can be determined when a given entity
changes its movement status. The amount of work in-
volved is O(nm), where n is the number of entities with po-
tential interactions and m is the number of movement
change events. Note that if T is the run length of the simu-
lation, m is generally much smaller than T / ∆t. Thus, for
most models the DES approach will be substantially more
efficient.

Additionally, the locations of entities in a DES model
can be anywhere, whereas time-step models often use a
grid in which the location of an entity can only be specified
up to the size of the grid cells. The time step and grid im-
pose limits on the speed of movement. With a time step of
∆t and a grid with of ∆x, the minimum speed a unit can
travel is ∆x/∆t. In a pure DES model, units can travel at
whatever speed is desired by the modeler.
9

 Sánchez
Buss and

8 CONCLUSIONS

Despite the widespread impression that modeling of
movement and sensing in simulation must be done using
time-steps, it is not only possible, but desirable to use a
pure discrete event approach. This paper has described the
basic methodology for such an approach, developed the
necessary equations and shown some of the Event Graph
components for implementation, and briefly discussed
some specific applications in which this approach has led
to analyses that would not have otherwise been possible in
the short timeframes available.

ACKNOWLEDGEMNTS

Part of the work of the first author was supported by the
US Army TRADOC Analysis Center, TRAC_Monterey.
This support is gratefully acknowledged.

The second author gratefully acknowledges the sup-
port of the U.S. Marine Corps’ Project Albert.

REFERENCES

ACQUIRE Range performance model for target acquisi-
tion systems. 1995. Version 1 User’s Guide, U.S.
Army CECOM Night Vision and Electronic Sensors
Directorate Report, Ft. Belvoir, VA.

Allen, Tim. 2004. 2004. Using discrete event simulation to
assess obstacle location accuracy in the REMUS un-
manned underwater vehicle. Masters Thesis, Naval
Postgraduate School, Monterey, CA.

Buss, Arnold H. 2000. Simple movement and detection in
discrete event simulation. Class notes.

Buss, Arnold H. 2002. Component Based Simulation Mod-
eling With Simkit. Proceedings of the 2002 Winter
Simulation Conference, E. Yücesan, C.-H. Chen, J. L.
Snowdon, and J. M. Charnes, eds.

Buss, Arnold H. and Paul J. Sánchez. 2002. Building com-
plex models with LEGOs (listener event graph ob-
jects). Proceedings of the 2002 Winter Simulation
Conference, E. Yücesan, C.-H. Chen, J. L. Snowdon,
and J. M. Charnes, eds.

CASTFOREM User input guide. 2001. US Army TRA-
DOC Analysis Center, White Sands, NM.

Childs, Mathew. 2002. An exploratory analysis of water
front force protection measures using simulation.
Masters Thesis, Naval Postgraduate School, Monterey,
CA

COMBATXXI Programmers manual. 2004. US Army
TRADOC Analysis Center, White Sands, NM.

Havens, Michael. 2002. Dynamic allocation of fires and
sensors. Masters Thesis, Naval Postgraduate School,
Monterey, CA.
10
Phillips, Donovan, and J. Jackson. 2005. Using a low reso-
lution entity level modeling approach. Phalanx, Mili-
tary Operations Research Society, Alexandria, VA.

Schruben, Lee 1983. Simulation modeling with event
graphs. Communications of the ACM. 26: 957-963.

Wagner, Daniel H., W. Charles Mylander, and Thomas J.
Sanders. 1999. Naval operations analysis, third edi-
tion. Naval Institute Press, Annapolis, MD.

AUTHOR BIOGRAPHIES

ARNOLD H. BUSS is a Research Assistant Professor in
the MOVES Institute at the Naval Postgraduate School.
His interests include component-based simulation model-
ing, with emphasis on military applications. His e-mail and
web addresses are abuss@nps.edu and
http://diana.cs.nps.navy.mil/~abuss.

PAUL J. SÁNCHEZ is in the Operations Research De-
partment at the Naval Postgraduate School. His research
interests include component-based simulation modeling,
object-oriented modeling, and simulation output analysis.
He is an avid reader and collector of science fiction, and
enjoys riding recumbent bikes around the Monterey Bay
area. You can reach him by e-mail at
PaulSanchez@nps.edu, and his web address is
http://diana.cs.nps.navy.mil/~pjs.
00

mailto:abuss@nps.edu
http://diana.cs.nps.navy.mil/~abuss
mailto:PaulSanchez@nps.edu
http://diana.cs.nps.navy.mil/~pjs

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

