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ABSTRACT 

Many military planning problems are difficult to solve us-
ing pure mathematical programming techniques.  One such 
problem is scheduling unmanned aerial vehicles (UAVs) in 
military operations subject to dynamic movement and con-
trol constraints. This problem is instead formulated as a 
dynamic programming problem whose approximate solu-
tion is obtained via the Assignment Scheduling Capability 
for UAVs (ASC-U) model using concepts from both simu-
lation and optimization. Optimization is very effective at 
identifying the best decision for static problems, but is 
weaker in identifying the best decision in dynamic sys-
tems.  Simulation is very effective in modeling and captur-
ing dynamic effects, but is weak in optimizing from alter-
natives.  ASC-U exploits the relative strengths of both 
methodologies by periodically re-optimizing UAV assign-
ments and then having the simulation transition the states 
according to state dynamics.  ASC-U thus exploits the 
strengths of simulation and optimization to construct good, 
timely solutions that neither optimization nor simulation 
could achieve alone. 

1 INTRODUCTION 

Military operations are dynamic, complex series of events. 
The problems associated with military operations are natu-
rally also dynamic and complex. This paper describes the 
dynamic problem associated with the allocation of UAVs 
from their owning military units to mission areas over time 
in Section 2. The complex dynamics of the problem are 
evident from ground control stations and the launch and 
recovery sites, from which the UAVs are launched, return, 
and are recovered, each of which move from one time-
stamped waypoint to the next throughout the scenario. The 
use of fuel during flight and the recovery time once at a 
launch and recovery site are sources of additional dynam-
ics. 
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In Section 3, the paper describes why classical 
mathematical programming or simulation alone have diffi-
culties solving this highly dynamical scheduling problem. 
The strengths and weaknesses of the two approaches are 
discussed. The Dynamic Allocation of Fires and Sensors 
simulation, on which ASC-U is built, is described in Sec-
tion 4. 

A dynamic programming formulation is explained in 
Section 5. This section explains how a dynamic program-
ming approximation can exploit the special structure of the 
problem to obtain quality solutions quickly. Then, a solu-
tion technique that makes use of the strengths of a com-
bined simulation and optimization approach is described in 
Section 6, and, finally, initial results, insights, and conclu-
sions are discussed in Section 7. 

2 THE UNMANNED AERIAL VEHICLE 
SCHEDULING PROBLEM 

We consider a dynamic unmanned aerial vehicle routing 
problem. In addition to unmanned aerial vehicles (UAVs), 
this problem accounts for moving launch and recovery 
sites (LRSs) from which UAVs are launched and must re-
turn, moving ground control stations (GCSs) from which 
UAVs must be controlled at every instant during flight and 
that can control a finite number of UAVs at any one time, 
and stationary missions from which a time-dependent 
value is received if a UAV with the appropriate sensor vis-
its. The objective is to determine the maximum sum of 
mission values that can be accomplished given the number 
of each type of UAVs and their performance characteristics 
of flight time and speed. 

Missions are characterized by a set of sensor require-
ments at a Cartesian coordinate. Each sensor requirement 
has a start and end time, a type of sensor required and a 
value rate. When a UAV with the correct sensor arrives at 
the same location as a sensor requirement, and that re-
quirement does not yet have a sensor accomplishing that 
requirement, the UAV receives credit for accomplishing 
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that sensor requirement. The value received is the UAV’s 
time-on-station multiplied by the value rate of the sensor 
requirement that is satisfied. The UAV receives value until 
the UAV departs or the sensor requirement ends. Since 
UAVs carry sensor packages with potentially many sen-
sors, multiple missions may be satisfied and these values 
are additive.  

UAVs are characterized by a unique name, a type, a 
starting and ending LRS, an operating time, a speed, a 
transition time for recovery and refueling, an allowable op-
erating radius from a controlling GCS, a sensor package, 
and an available start time and an end time. The unique 
name identifies each UAV in order to capture which sensor 
requirements it accomplished and its state throughout the 
problem. The type of UAV is important to ensure that only 
GCSs and LRSs that are compatible with a given UAV are 
used for control and recovery, respectively. Starting and 
ending LRS designations for each UAV allow for the ini-
tial and terminal conditions of the problem and support the 
requirement that a UAV should begin and end at the ap-
propriate organizational unit. Operating time and speed 
dictate whether a mission is feasible for a given UAV and 
how much time-on-station the UAV can achieve before it 
must return to an LRS for recovery and refueling. The 
transition time for recovery and refueling provides the time 
a given UAV must spend at an LRS before it can be 
launched again. The allowable operating radius is the 
maximum distance a UAV can be from a GCS and still be 
controlled by that GCS. A sensor package is a set of sen-
sors that can be assigned to a UAV for a particular flight. 
The available start and end times for a UAV determine the 
times it should be considered as available to fly. 

Sensor packages are sets of sensors, weapons, or 
communications capabilities. A sensor package is assigned 
to a UAV and determines what sensor requirements that 
the UAV can accomplish. Value is only gained for a sensor 
requirement if the UAV's sensor package has the appropri-
ate sensor in its set. 

LRSs are characterized by a unique name, a UAV 
type, a Cartesian coordinate, and a capacity. The LRS is 
where the UAV must originate and end its flight. The LRS 
is also where the UAV will, upon landing, transition 
through recovery and refueling before becoming available 
to depart to accomplish more missions. LRSs may move 
over time. 

GCSs are also characterized by a unique name, a UAV 
type, a Cartesian coordinate, and a capacity. The GCS con-
trols the UAV during flight and may provide the commu-
nications link over which its information is passed when 
necessary. GCSs may move over time. 
135
3 MATHEMATICAL PROGRAMMING VS. 
SIMULATION 

In a mathematical programming problem, one seeks to 
minimize or maximize a real function of real or integer 
variables, subject to constraints on the variables. An inte-
ger programming problem takes the form: 

 
 xcTmax  
subject to 
 ZxbAx ∈=   where,  
 
where c is the vector of costs or rewards, x is the decision 
variable, and Z is the set of integers. Using this formulation 
to model the UAV scheduling problem has several pitfalls. 
If uniform time steps are used for travel to and from the 
missions the solution to an integer program may not be 
feasible.  Additionally, the dynamics involved are difficult 
to model in the constraint function, bAx = . 

Even with effective modeling, the dynamics and time-
steps of the problem cause the number of decision vari-
ables to suffer from high dimensionality so that extensive 
decomposition techniques may be needed to solve the 
problem to optimality or to even find a near-optimal feasi-
ble solution. Solution times for large integer problems are 
notoriously long. 

Mathematical programming is a powerful tool for 
more static problems. However, for dynamic problems it 
suffers from an exponential number of variables and con-
siderable solution challenges. 

On the other hand, simulation allows straightforward 
and efficient modeling of dynamics, especially of moving 
entities (Buss and Sanchez 2005).  Although simulation al-
lows movement, representation of state changes and, easy 
collection of statistical measures of, by itself it does not 
provide the decision capacity needed to solve effectively 
tell UAVs where to go next. Myopic decision policies are 
often used within a simulation but these policies would be 
inadequate for the UAV scheduling problem which re-
quires sequential decisions over time and space in a GCS 
capacity constrained environment. 

The need for complex decisions prohibits the use of a 
traditional simulation to determine the effects of a given 
allocation of UAV systems. The complexities of the prob-
lem caused by moving LRSs and GCSs and their capacities 
prohibit the problem from being easily formulated using 
mathematical programming formulations which are better 
suited for stationary problems. Instead, the problem is 
viewed and formulated as a dynamic programming prob-
lem and, furthermore, solved using approximate dynamic 
programming techniques using a combination of simula-
tion, to model movement, and simple mathematical pro-
gramming, to model the allocation decisions. 
0
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4 DYNAMIC ALLOCATION OF FIRES AND 

SENSORS SIMULATION 

The Dynamic Allocation of Fires and Sensors (DAFS) 
simulation is a low-resolution, constructive entity-level 
simulation framework designed for combat modeling (Ha-
vens 2002; Buss, Ahner, and Ruck 2006). The DAFS 
framework consists of a Discrete Event Simulation Model 
with embedded optimization, Extensible Mark-up Lan-
guage (XML) input and output modules, and an output 
analysis package (Ahner 2005). Through the use of an in-
terchangeable component-based architecture, the simula-
tion provides the user extensive ability to modify entities, 
configurations, simulation parameters and data output. 
DAFS, using a low resolution approach, runs fast and is 
easy to set up.  

DAFS has a component-based architecture. Within the 
simulation model, there are two types of components that 
work together to give DAFS its overall capability, physical 
components and functional components. Physical compo-
nents represent physical items such as sensors and muni-
tions. Functional components control some action within 
the simulation. One functional component is the con-
strained value optimizer (CVO). 

The Constrained Value Optimizer (CVO) is the com-
ponent that provides a myopic optimal solution for the cur-
rent state of the simulation. The CVO allows for the reallo-
cation of BLUE platform resources to improve the BLUE 
forces near-term chances of successfully completing its 
mission.  

The CVO does not perform global dynamic optimiza-
tion which would be computationally intractable for large 
problems. Instead, the CVO takes the current state of 
BLUE resources, compares the capabilities of BLUE 
forces to the state of demands, and through its mathemati-
cal formulation of the problem determines the ‘optimal’ 
actions to take according to the current states modeled in 
the mathematical programming formulation. Since this ap-
proach has a control theory flavor to it, it has been called 
model predictive control. The CVO can employ either a 
mathematical programming solver or a heuristic. 

As currently implemented, the objective function 
formulated for mathematical programs is solved using 
LP_Solve 5.5 (Lp_Solve 2005). LP_Solve 5.5 is an im-
plementation of the simplex method for linear program 
formulations and integer program formulations using 
branch and bound. LP_ Solve is implemented in the C pro-
gramming language, so DAFS communicates with it using 
the Java Native Interface (JNI).  

In DAFS, the constrained value optimizer is imple-
mented as an interface. A CVO is constructed and is called 
periodically to cue UAV allocation decisions given the cur-
rent state of the simulation. 

This use of a control, given a current state, falls within 
the field of dynamic programming, a methodology for op-
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timization of sequential decisions.  The Dynamic Pro-
gramming formulation of the UAV assignment problem is 
discussed in the next section. 

5 DYNAMIC PROGRAMMING FORMULATION 

Consider a finite state and discrete time horizon dynamic 
programming problem. Let S  be the state space of the sys-
tem. The finite time horizon is Tt ,...,0=  where the time 
steps may or may not be uniform. The state SSt ∈ repre-
sents the state at time Tt ,...,0= . A decision vector tuv  that 
acts on the system is selected from a finite set U at each 
time step. The state evolves according to a state equation 
which has the form  

 
 ),,(1 ττ ttt uSfS v=+  
 
where 1f  is a function describing the systems dynamics, 

tS  includes the state of the missions, LRSs, GCSs, and 
UAVs which are defined in the next section, and τ  is the 
time to the next decision event. 
 A policy is a mapping USS tt →∏ :)( that determines a 
decision as a function of the state, i.e. )( tt Su ∏=v . We rep-
resent the one period contribution to the reward as  

),( ttt uSC v . We express the T -stage value to be maximized 
as the value of the summation of the T  costs: 
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The cost-to-go or future value function at time t  is  
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We can solve for )( tt SJ using the recursive equation: 
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It is in this context of dynamic programming that we de-
scribe our formulation and methodology.  

5.1 State Space Description 

 The state SSt ∈  is defined as  
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where UAV, GCS, LRS, and Mission represent the sets of 
UAVs, GCSs, LRSs, and missions, respectively. The state 
of these individual components represent an integral part of 
the overall state of the system. 
 The UAV state, iUAV

tS , is defined as 
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The set accounts for the Cartesian position, yx, , of each 
UAV at time t, the flight time remaining (if applicable, ∅  
otherwise), the recovery time remaining if located at an 
LRS (if applicable, ∅  otherwise), whether the UAV is lo-
cated at an LRS and not airborne (atLRS) or in flight (air-
born), the sensors that  the UAV is carrying at time t, and 
the type of UAV including all the performance characteris-
tics associated with that UAV type. Performance character-
istics for a UAV include 
 

• Speed, 
• Operating time, 
• Transition time, 
• Sensor package, 
• Available start time, and 
• Operating radius. 

 
 The GCS state, jGCS

tS , is defined as 
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The set accounts for the Cartesian position, yx, , of each 
GCS at time t, the capacity remaining, and the type(s) of 
UAV(s) that the GCS can control. The maximum radius of 
control for a GCS is UAV dependent and is given in the set 

iUAV
tS  as a UAV performance characteristic.  

 The LRS state, kLRS
tS , is defined as 
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The set accounts for the Cartesian position, yx, , of each 
LRS at time t , the capacity remaining, and the type(s) of 
UAV(s) that the LRS can land and recover. The recovery 
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time for a GCS is UAV dependent and is given in the set 
iUAV

tS  as a UAV performance characteristic.  

 The mission state, lMission
tS , is defined as 
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where a sensor requirement, sensor_requirementss, is de-
fined as: 
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The set accounts for the Cartesian position, yx, , of each 
mission which is constant and the sensor requirements of 
the mission to include sensor type, open time segments, 
and the value rate received during the open time segments. 
The value rate is multiplied by the UAV time-on-station if 
the UAV has the appropriate sensor in its sensor package. 

5.2 Control Space 

The dynamic programming formulation can be solved by 
solving the recursive equations: 

 
 

fttttt
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where fτ  is the time difference from the end of the time 
horizon and the last applied control, 

ftu τ−
v . Since all mis-

sions are known a priori, ideally the optimal control, tuv , 
could be obtained by  

 
 

fttttt
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∈
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Unfortunately, because of the combinatorial nature of 

the problem, this formulation suffers from the curse of di-
mensionality in both the state and control space. Therefore, 
the cost-to-go function, )( tt SJ , is not easily obtainable. 
The constrained value optimizer of DAFS can be used in-
stead to obtain an approximate solution using the mission 
state “in the near future.” This value “in the near future” is 
substituted for )( tt SJ . This mission state will be described 
further in Section 6. 

5.3 State Dynamics 

DAFS implements a discrete event world view using event 
graph methodology developed originally by Schruben 
(1983). Event graph methodology assumes an event list 
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which advance to the next event on the list and can be rep-
resented graphically, as shown in Figure 1. Each node 
represents a state transition and each arc represents a 
scheduling relationship through which an event can cause 
other events to be placed on the event list. In the example 
shown, a mission could be assigned to a UAV platform by 
the CVO object and that mission might be out of the range 
of all sensors on the platform. This event triggers a Start 
Move event for the platform in order to move the platform 
within the range for the sensor. When the Start Move event 
occurs, the End Move event would be placed on the event 
list with a time delay of t, which in this case would be the 
amount of time it would take the platform to travel to its 
destination 

 

 
Figure 1: Event Graph Example 

 
DAFS’ event graph methodology handles all of the 

dynamic programming state dynamics in an efficient way. 
The simulation’s can easily represent the dynamics, espe-
cially of entities moving and changing Ground Control Sta-
tion capacities.  For further discussion of modeling move-
ment using Event Graph Methodology, see Buss and 
Sanchez (2005). 

6 THE ASSIGNMENT SCHEDULING 
CAPABILITY FOR UAV SYSTEMS APPROACH 

As mentioned previously, ASCU does not use simulation 
in the traditional manner. Instead, it uses simulation to 
transition and capture the state of the system dynamics, es-
pecially the movement of key entities (UAVs, GCSs, and 
LRSs) while applying controls using optimization in order 
to construct feasible UAV schedules. 

ASC-U periodically provides controls to available 
UAVs by solving an assignment problem based on a deci-
sion time window into the future.  There are thus two pa-
rameters of the optimization logic of ASC-U: the duration 
of the decision time window (the amount of future time 
considered in each decision) and the time between re-
optimizations.  These parameters can be independently set 
in the input files. 

When an optimization event occurs, ASC-U assigns 
currently available UAVs to Missions that are open within 
a fixed time horizon in the future that is dependent on the 
type of UAV being assigned. This assignment is made to 
maximize the total value obtained by assigning the avail-
able UAVs to Mission Areas that will have some sensor 
demand in the time horizon.  This fixed time horizon is the 
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same for UAVs of the same type but differs for UAVs of 
differing types. The reason for this difference is that ASC-
U considers each UAV type’s maximum cycle time. A 
UAV’s maximum cycle time is its maximum endurance 
time plus recovery time. This maximum cycle time is mul-
tiplied by a constant which is determined experimentally. 

For example, consider 2 UAVs assigned to 4 missions 
as depicted in Figure 2. ASC-U performs optimal assign-
ments at predetermined time intervals (1). At time t0, as-
sume two UAVs are available, UAV1 and UAV 2. The 
tool considers all available UAVs with available GCS con-
trol and all missions with value in the fixed time horizon 
time window (missions 1,2,3 but not 4 for time t0) (2). A 
UAV is assigned to a mission and can service any sensor 
requirement associated with that mission if it has the cor-
rect sensor. Assume the optimal assignment is UAV 1 as-
signed to Mission 1 and UAV 2 assigned to Mission 2. 
UAV 1 is launched immediately to arrive at Mission 1 as 
soon as possible (3). UAV 2 does not launch but is sched-
uled for launch to arrive just- in-time for the beginning of 
Mission 2. At time t1, UAVs that are scheduled to launch 
but have not yet launched are “unassigned” and considered 
for assignment (UAV 2 is unassigned) (2). UAV 2 is again 
assigned to Mission 2 and scheduled for launch to arrive 
just-in-time. UAV assignments do not change once they 
have been launched.  By advancing in time, each UAV has 
a schedule constructed that reflects the optimal assignment 
for available UAVs considering the fixed time horizon in 
the future. 

 

t

Time window considered 
by optimization at t=t0

t0 t2t1 t4t3 t5 t6

Mission 1

Mission 2

Mission 3

Mission 4

2

1

3
4

Time window considered
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t
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t0 t2t1 t4t3 t5 t6
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Mission 2

Mission 3

Mission 4
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11

33
44

Time window considered
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Figure 2: Assignment Dynamics Example 

 
The value of each mission is determined by the user-

defined valuation rate of sensor requirements for each mis-
sion. These user-defined sensor valuation rates can depend 
on the echelon requiring the mission or the priority given 
to the mission or a combination. The UAV receives a total 
value for missions by determining the time-on-station of 
the UAV and multiplying it by the value rate if the sensor 
requirement’s end time is not exceeded or by the value rate 
from the UAV arrival to the sensor requirement’s end time 
if the mission’s end time is exceeded by the time-on-
station of the UAV. These values are then added to deter-
mine the possible value of each mission if the UAV were 
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assigned to the mission. Finally, if the mission is not within 
a GCS footprint with capacity then the value is set to zero.  

Figure 3 shows the different stages of ASC-U as it 
constructs the UAV schedules. Given a state of the system 
in the lower left of Figure 3, a periodically occurring opti-
mization event is scheduled to occur.  This optimization 
event  first  uses a Value of Potential Assignment Genera-
tor to calculate the value received within the UAV-type 
time windows for every possible assignment for every 
UAV. This value takes into account movement of entities 
and GCS range constraints. These assignment values along 
with constraints on available GCS capacity are handed off 
to the optimization. The optimization determines the 
maximum value of this optimization problem and hands 
these assignments to the UAV Scheduler. The UAV 
Scheduler determines when the UAV is launched so that 
the UAV arrives just-in-time if the mission start time mi-
nus the travel time to the mission is greater than the current 
time. The next optimization event is scheduled to take 
place after a delay of the optimization time interval.  The 
Dynamic Simulation State Transitions then occur until that 
event occurs, so that it will generally be considering a very 
different state than the previous optimization. 

 
 

Value of Potential 
Assignment Generator

UAV Scheduler

Optimization

Dynamic Simulation
State Transitions

Periodic or event triggered 
reoptimization

The value of each assignment is determined BEFORE the optimization 
taking into account travel time, time-on-station, LRS location over time, 
and GCS location and capacity over time.

Values of assignments are passed to Optimization.

Optimization provides “optimal”
assignment as cues for where
airframes should go.

The UAV Scheduler determines when airframes should 
be launched to locations given to it by the optimization. 

Value of Potential 
Assignment Generator

UAV Scheduler

Optimization

Dynamic Simulation
State Transitions

Periodic or event triggered 
reoptimization

The value of each assignment is determined BEFORE the optimization 
taking into account travel time, time-on-station, LRS location over time, 
and GCS location and capacity over time.

Values of assignments are passed to Optimization.

Optimization provides “optimal”
assignment as cues for where
airframes should go.

The UAV Scheduler determines when airframes should 
be launched to locations given to it by the optimization.  

Figure 3: ASC-U Dynamic Cueing and Transitions 
 
The following optimization problem is solved at each 

optimization event. 
 
• Let A be the set of all mission areas with at least 

one mission active within the global time horizon.  
• Let L be the set of all active LRS’s  
• Let G be the set of all GCS’s. 
• Let GL the set of all GCS’s assigned to LRS L. 
• Let Cg the number of UAV’s GCS g is capable of 

controlling. 
• Let Il be the sub-set of all UAV’s at LRS Ll ∈ de-

termined as follows: For each LRS Ll ∈ , get n 
UAV’s where n is the minimum of the number of 
ready UAV’s, the LRS launch limit, the number 
of UAV’s airborne, the sum over GL of Cg, and 
the number of UAV’s assigned to the GCS. 
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• Let lJ  be the sub-set of all sensor packages cur-
rently located at LRS Ll ∈ . 

• Let Yga = 1 if mission area a is assigned to GCS g, 
0 otherwise (by a heuristic discussed below). 

• Let cja = The reward for a UAV with sensor pack-
age j being assigned to mission area a from the 
soonest possible arrival time of the UAV at the 
area to the end of the time horizon, itt Δ+ , for 
UAV i.  

• Xja = 1 if a UAV with sensor package j is assigned 
to mission area a, and 0 otherwise. 

 
Then the formulation is: 
 

 ∑
ja

jaja Xcmax  (1) 

such that 
 

 AaX
j

ja ∈∀∑ ≤ 1  (2) 

 
 ∑ ∈∀≤

a
ja IiX 1  (3) 

 
 ∑ ∈∀≤

ja
gjaga GgCXY  (4) 

 
 ∑ ∈∀≤

∈ aJj
lja

l

LlIX  (5) 

 
1. Maximize the value of Mission Areas covered. 
2. Assign only 1 UAV per Mission Area. 
3. Assign only 1 Mission Area per UAV. 
4. Do not exceed the GCS control limit. 
5. The number of sensors assigned cannot exceed the 

number of UAVs available to carry them. 
 
Heuristic for determining Yga (assignment of Mission 

Areas’ to GCS):  
 
For each LRS and Mission Area a:  
 Let Na the number of GCS’s g that are in range  

 of a UAV assigned to Mission Area a 
For each Mission Area a, sorted by Na:  
 For each GCS g, sorted by ∑

a
gaY (so far) 

If a is in range of g, let Yga = 1. 

Detail of determination of cia 

For each UAV i 
For each Mission Area a 
 Let to = the first time after the ealiest 
 arrival time that UAV i can gain value 
 by being assigned to Mission Area a. 
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 Let t1 = min(the latest time UAV i can 
 remain at Mission Area a, the end of t
 he time horizon, itt Δ+ , for UAV i). 

 Let Ka = the set of all Missions located 
 at Mission Area a. 

 Let Vi,k,t0,t1 = the value that UAV i  gains 
from Mission k by being at Mis -sion 
Area a. 

  Then, ∑=
∈ aKk

ttkiia Vc 1,0,, . 

7 INITIAL RESULTS AND CONCLUSIONS 

ASC-U has been shown in practice to yield quality solu-
tions and perform consistently. This consistent perform-
ance is characterized by increases in UAV performance re-
sulting in corresponding increases in mission coverage and 
overall mission value. Furthermore, a recent thesis by 
Nannini (2006) has also shown ASC-U to perform consis-
tently.   

This paper demonstrates the implementation of ap-
proximate dynamic programming techniques in a discrete 
event simulation where simulation and optimization come 
together doing what they do best to solve a very complex 
scheduling problem. The approach takes an operational 
perspective so that solutions translate well to implementa-
tion in the real world or to a scheduling  approach within a 
larger simulation.  

Simulations allow measures of performance to be eas-
ily obtained from the dynamics and current state of the 
simulation. This capability allows for the following meas-
ures of performance to be easily obtained in ASC-U: 
 

• Sensor Package Utilization, 
• Percent Mission coverage by Mission type, 
• Percent Mission coverage by Mission and UAV 

type, 
• UAV utilization over time, and 
• Ground Control Station load over time. 

 
ASC-U also accounts for the effectiveness of remote view-
ing terminals (RVT) which allow users to see sensor data 
without any control of the actual UAV. Even though these 
RVTs do not effect the UAV schedule solution, they are 
easily inserted within the simulation tool.  

The ASC-U model uses concepts from both simulation 
and optimization. Rather than using traditional simulation 
or optimization techniques in isolation, it utilizes each 
methodology to it advantage.  Simulation is used to capture 
dynamic transitions of a sequential UAV scheduling deci-
sion problem, and optimization is used to allocate UAVs to 
mission areas within the scenario.   ASC-U thus exploits 
the strengths of simulation and optimization to construct 
1355
good, timely solutions that neither optimization or simula-
tion could achieve alone.   
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