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Abstract: The paper discusses the use of dual 
stave forward-looking sonar to build a three-
dimensional underwater model for navigation 
in restricted waterways. The sonar normally 
provides separate horizontal and vertical 
images but when the information is 
synthesized into a single three-dimensional 
model it permits, in certain circumstances, the 
AUV to plan and carry out a trajectory where 
no path is otherwise available. As the sonar 
system is fixed mounted to the AUV body, a 
trajectory is presented which uses the 
combined sonar fields-of-view to produce 
paths that optimize situational understanding 
for reactive and deliberative obstacle 
avoidance.  
 

1.0 INTRODUCTION 
 

Currently Autonomous Underwater Vehicles 
(AUV) are used primarily in open oceans where 
the primary danger to the vehicles are from 
unexpected navigation hazards on the ocean 
floor and surface. More and more, vehicles are 
being tasked with collecting information in more 
congested, restrictive waterways such as harbors 
and rivers. Due to the dynamism of the 
environment, it requires an AUV to have more 
flexibility in path planning and reactive 
avoidance behaviors. This requirement for 
greater perceptual awareness is made possible 
through deliberate navigation strategies for map 
building. 

Forward Looking Sonar has developed to the 
point that small AUVs can use it for obstacle 
detection, avoidance [1,2] and map building. The 
configuration of the sonar produces separate 
horizontal and vertical images. 
 
Two examples of sonar images are given in 
Figures one and two. These images were taken as 
the AUV approached a bridge. Notice that in the 
horizontal image there is a strong intensity 
across the entire field of view at approximately 
30 meters distance from the vehicle. This is the 
underwater ground buildup to support the bridge 
pylons. At about 45 meters from the vehicle are 
the bridge pylons, these appear as vertical lines 
in the image. 
 

 
 

Figure 1. Horizontal Sonar Image – AUV 
approaches bridge 

 



Figure two is a vertical sonar image taken at 
approximately the same time. It includes 
annotations for the riverbed, river surface and 
pylon(s) obstructing the vehicle’s path forward.  
In other words, automated image processing and 
path planning algorithms wouldn’t be able to 
produce a trajectory underneath the bridge using 
either of the images. It will be shown that only 
by combining horizontal and vertical sonar 
models together with the intensity images over 
time, is it possible to develop a viable, safe path 
underneath the bridge.  
 

 
 

Figure 2. Vertical Sonar Image – AUV 
approaches bridge 

 
Since the sonar system is fixed to the nose of the 
AUV body, the only way to slew the horizontal 
and vertical sonar staves is through the vehicle 
actuation. Non-linear trajectories can be 
designed to maximize the situational 
understanding for the AUV. This is necessary to 
more fully understand the environment forward 
of the AUV for making time-critical decisions 
associated with collision-free paths. These 
trajectories must be developed in real-time and 
take into consideration the vehicle dynamics, 
sensory information and situational 
understanding represented by its internal map. 
 
The paper discusses the following: First it 
describes the AUV and sonar used in the 
developmental testing. Second, it develops a 
three-dimensional model of the horizontal and 
vertical sonar staves. Third, it discusses the use 
of probabilistic occupancy grids to build an 
internal representation of the environment. 
Fourth, it discusses the image processing 
techniques necessary to deal with noise sources 
that inhibit accurate map building. Fifth, it 
discusses results based on data sets collected in 
the Charles River, Cambridge MA with an AUV 

navigating in and around the Massachusetts 
Avenue Harvard Bridge. Sixth, it discusses a 
control law for maximizing situational awareness 
in restricted waterway areas.  
 

2.0 SYSTEM DESCRIPTION 
 

The system used for the research is a modified 
REMUS 100 AUV with the Blueview Forward 
Looking Sonar and is listed in Figure 3. The 
sonar module contains a secondary or “backseat” 
CPU controller that permits real-time sonar 
image processing and path planning. The AUV 
has a communication protocol that permits the 
backseat controller to take overriding control; 
this functionality is very useful for prototyping 
autonomous behaviors. 
 

 
 

Figure 3. NPS REMUS AUV 
 

2.1 AUV DESCRIPTION 
 

The Charles River data set was collected on a 
REMUS specially configured with an Integrated 
Navigation System (INS) that provided accurate 
position estimation to within .5 percent distance 
traveled by combining together accurate 
accelerometers and rate gyros with velocity 
estimates from the Doppler Velocity Log (DVL) 
and position fixes from a GPS1. The starting 
point for the missions was the MIT Sailing 
Pavilion dock. 
 

2.2 SONAR DESCRIPTION 
 

The Blueview P450-15E Forward Looking Sonar 
was mounted to the front of the AUV. The sonar 

                                                        
1 The authors gratefully acknowledge Dr. Tim Josserand and 
Univ. of Texas Applied Research Lab (UTARL) for the use 
of their INS configured REMUS vehicle. 



has four horizontally mounted staves that 
produce a single image with a ninety degree field 
of view. The sonar also has two vertically 
mounted staves that produce a forty-six degree 
field of view and result in a single, vertical 
image. In each case the range resolution is 
approximately 2 inches and the bearing 
resolution is approximately 1 degree. 
 

3.0 SONAR MODELING 
 
The image created by the sonar is a two-
dimensional representation of a three-
dimensional volume. A depiction of a nominal 
volume ensonified by the horizontally sonar is 
depicted in Figure 5.  
 

 
 

Figure 5. Horizontal Sonar Model 
 

A single stave of the P450-15E has an 
approximate 23-degree field of view in the image 
plane. The ensonified volume covers a fifteen-
degree spread in the vertical plane. The sonar is 
unable to distinguish differences of an object at 
different elevations within this region. For 
example, the object highlighted in Figure 6, 
could be located anywhere within the fifteen-
degree spread. Based on the corresponding 
distance from the AUV this is a spread of +- 4 
meters. This is the ambiguity of the sonar in the 
vertical plane. 
 

 
 

Figure 6. Horizontal Image with circled object 
30 meters from the AUV. 

 

The vertical array is composed of a two staves 
mounted perpendicular to the horizontal array. 
Mounting the array in this fashion provides 
angular resolution in the vertical direction. Due 
to the rotation of the array, the ambiguity of the 
sonar shifts to the horizontal direction. All 
vertical sonar images will have fifteen degrees of 
ambiguity in the horizontal direction. The 
vertical sonar is used to provide the location of 
the ocean floor and the height of the objects 
encountered proud of the ocean floor. The 
vertical sonar head is rigidly mounted on the 
AUV with an approximate 5 degree downward 
angle.  

 
By combining the separate fields of view, the 
two sonars can effectively create a volume with 
resolution in all three planes. The volume 
ensonified by the combination of sonars is 
depicted in Figure 7.  
 

 
 

Figure 7. A combined sonar model depicting 
the vertical and horizontal forward looking 
sonar 

 
Of particular relevance is the fifteen by fifteen-
degree area where the two arrays overlap. By 
combining the resolution of each sonar, it 
effectively creates a cross section where the 
resolution is two inches in range and one degree 
in vertical width and one degree in horizontal 
width. 
 

3.1 GEO-LOCATING IMAGE DATA 
 
The sonar system is fixed mounted to the front of 
the vehicle. The FLS data is referenced to the 
vehicle’s position; it has a local reference frame. 
To be useful, the data needs to be transformed 
into the global space. By combining together the 
vehicle position with the FLS model each data 
point can be geo-located. This results in the 
following equations for translating a locally 
referenced sonar image pixel into a global 
reference frame. 



 
xp = xv + rp cos(θv +θ p )cos(φv + φp )
yp = yv + rp sin(θv +θ p )cos(φv + φp )
zp = zv + rp sin(φv + φp )  

 
Where (xp , yp , zp )  is the globally referenced 
location of the pixel The above equations will 
map data stored in the image space into the 
global space.  
 
The next step is to separate detections from 
image noise. This will be done through the use of 
occupancy grids where the elements in each grid 
will be converted from an intensity pixel to a 
probability of an object being located in the grid 
cell. 
 

4.0 OCCUPANCY GRIDS 
 

To permit deliberative and reactive path planning 
a robot needs an internal representation of it’s 
external environment – in other words it needs a 
map. To create a safe path the vehicle needs to 
know the location of obstacles and the location 
of free space. An additional requirement for the 
vehicle is to create obstacle-free trajectories that 
are globally consistent and not subject to 
trapping conditions - normally described as local 
minima. Probabilistic occupancy grids are an 
appropriate and accepted methodology for 
building and maintaining an internal map [4]. In 
this case the goal is to build and maintain a 
three-dimensional occupancy grid that is used for 
real-time path planning. 
 
Occupancy grids divide the environment into 
gridded cells. Each cell is evaluated to determine 
whether or not an object is present. The range of 
values of each cell is between 0 (no object 
present) and 1 (object present). The cells are 
initialized to .5, which represents impartiality of 
an obstacle presence.  Because it is not necessary 
to recognize and organize objects in the 
underwater map by their shape and location, 
occupancy grids is an appropriate methodology 
for avoidance maneuvers. 
 
Bayes Theorem is used to determine the 
probability of the state of the cell given the 
current reading from the sonar. Based on this, 
Elfes provides an iterative solution to 
determining the probability that a cell is 
occupied given all previous measurements.  

 

  

P s C( ) = OCC | r{ }t+1
⎡⎣ ⎤⎦ =

P r
t+1

| s C( ) = OCC⎡⎣ ⎤⎦ * P s C( ) = Occ | r{ }t
⎡⎣ ⎤⎦

P r
t+1

| s C( )⎡⎣ ⎤⎦ * P s C( ) | r{ }t
⎡⎣ ⎤⎦

∀s C( )
∑

r
t+1

:  The current measurement

s C( ) :  State of the cell

r{ } :   All measurement up to time t

 

 
The definitions of the terms are as follows: 

 

  
P s C( ) = Occ | r{ }t+1
⎡⎣ ⎤⎦  

Prob a cell is occupied 
given the current and all 
prior measurements 

  
P s C( ) = Occ | r{ }t
⎡⎣ ⎤⎦  

Prob a cell is occupied 
given all the prior 
measurements 

  
P s C( ) = Empty | r{ }t
⎡⎣ ⎤⎦  

Prob a cell is empty 
given all the prior 
measurements 

  
P r

t+1
| s C( ) = Occ⎡⎣ ⎤⎦  

Prob of receiving the 
current measurement 
given the cell is 
occupied 

  
P r

t+1
| s C( ) = Empty⎡⎣ ⎤⎦  

Prob of receiving the 
current measurement 
given the cell is empty 

 
Table 1. Definition of terms 

 
The summation in the denominator represents 
two cases – either the cell is occupied or empty. 
Since the cells can have only two states 

  P s C( ) = Empty | r{ }
t

[ ]can be replaced by 

  1 − P s C( ) = Occ | r{ }
t

[ ]  . As an example, assume 
that an occupancy grid cell has a prior 
probability   P s C( ) = Occ | r{ }

t
[ ] = .6 , and a 

new measurement arrives. Based on the new 
measurement and the corresponding probability 
distributions the values of   P r

t + 1
| s C( ) = Occ[ ]  

and   P r
t + 1

| s C( ) = Empty[ ]  are determined. 
Assume those are respectively equal to .2 and .4. 
From these values the probability of the cell 
being occupied is updated. 
 

  

P s C( ) = Occ | r{ }
t +1

[ ] =
0.4 * 0.6

0.2 * (1− .6) + 0.4 * 0.6
= .75

 



As the AUV navigates, an update occurs for each 
globally mapped occupancy grid cell. In other 
words, as the sonar sensor information becomes 
available the range of updated cells reflects the 
transformed local sensor information into the 
global map. The next step is to determine the two 
probability distributions given the cell is either 
empty or occupied. 

 
4.1 FORWARD LOOKING SONAR 

PROBABILITY MODELS 
 

To populate an occupancy grid, requires the 
development of probability models for the FLS. 
For a sensor to be used in an occupancy grid, 
two separate probabilistic models need to be 
generated. One model describes the probability 
of receiving a value when the return can be 
attributed solely to noise. The second model 
describes the probability of receiving a particular 
value when the sonar return can be attributed to a 
physical object.  
 
The development of the models is made more 
difficult from the sporadic noise generated by the 
forward-looking sonar. Noise is generated by 
both internal and external sources. The noise 
sources internal to the vehicle include power 
supply fluctuations, Acoustic Doppler Current 
Profiler (ADCP) and the Acoustic Modem. 
Noise sources external to the vehicle includes 
weather, biological sources and other vehicles or 
man-made sources. To begin we will discuss the 
background FLS noise model. This methodology 
is applicable for both the horizontal and vertical 
images.  
 

4.1.1 BACKGROUND NOISE MODEL 
 

The blazed array sonar system utilizes a principle 
similar to echelette diffraction gratings in optics 
to create a multitude of beams from a single 
sound source [6]. The blazed sonar array maps 
the frequency of a given broadband pulse to the 
angular spatial domain. This creates an image 
that contains a low intensity random signal that 
varies with bearing angle. Because it varies, a 
uniform threshold filter is insufficient for 
describing the background noise. 
 
To adequately handle this image diversity, it is 
necessary to develop a per pixel noise model. To 
do so we took a data set of 300 sonar images that 
contained few objects in the field of view. 
Because of the multitude of noise sources a 
histogram was used to observe the distribution. 

The histogram contained 25 bins with an 
approximate spacing of the image intensity 
values of 160. Figures 9a, 9b and 9c give 
examples of histogram distributions.  
 

 
Figure 9a. Noise Histogram for the horizontal 

FLS at Range 88m and -45 degrees bearing 
 

 
 

Figure 9b. Noise Histogram for the horizontal 
FLS at Range 88m and -5 degrees bearing 

 

 
 

Figure 9c. Noise Histogram for the horizontal 
FLS at Range 88m and 25 degrees bearing 

. 
4.1.2 OBJECT DETECTION MODEL 

 
The process to develop the object detection 
model was similar to the background noise 
model. Since the object detections were not as 
common on a per pixel basis and the intensity 
from an object in the sonar return was not as 
prone to intensity fluctuations over bearing and 
range, a single global model was developed. To 
create the model 200 images in each plane were 
annotated using the LabelMe annotation tool. 
Then the areas containing only objects were 



extracted and a 25 bin histogram was created of 
the intensities for each plane. Figure 10 gives a 
plot of the pixel intensities from the objects 
selected from the horizontal images. This 
normalized histogram can be then used as the 
detection probability distribution. 
 
 

 
 

Figure 10. Normalized histogram of pixel 
intensities from selected objects in horizontal 

sonar images. Note the graphic has been 
truncated in the x axis for viewing. 

 
4.1.3 COMBINING MULTIPLE SENSORS 

 
Our goal is to create a single sonar model from 
both the horizontal and vertical systems. Our 
methodology is to maintain separate occupancy 
grids and combine them using an independent 
opinion pool. Assuming the sonar creates 
occupancy grids P1 and P2. The grid probabilities 
can be combined as a pooled probability: 
 

P1P2
P1P2 + (1− P1)(1− P2 )

 

 
The individual occupancy grid values are 
dependent only on the sensor input and its 
probabilistic model. Maintaining the 
independence between sensors permits greater 
flexible in adding or subtracting sensors. For 
example, if the AUV also had a side-looking 
sonar, it could be used as another sensor in the 
future for enhancing accuracy of the occupancy 
grid. Compared with other approaches this is 
also computationally less intensive and more 
appropriate for real-time robotic applications.  
 

5. RESULTS 
 

The AUV was deployed on the Charles River 
and sent on a path underneath the Massachusetts 
Avenue Harvard Bridge. Figure 11 shows an 
overhead trajectory plot with the bridge pylon 
positions. GPS positions of the pylons were 
acquired by placing a handheld GPS in close 
proximity to the pylons under the bridge. The 

multiple position plots reflect the inconsistency 
of the GPS readings due to the bridge occluding 
satellite reception. 
 
Figures 1 and 2 showed examples of the vertical 
and horizontal images as the AUV approached 
the bridge. Because of the obstacles seen in the 
images the AUV would not be able to navigate 
successfully between the pylons and over the 
berm if it relied on processing each image 
separately.  
 

 
 

Figure 11. AUV trajectory with annotated 
positions of bridge pylons 

 
Figure 12 shows the horizontal occupancy grid 
with the bridge pylon GPS positions plotted. 
Gridded cells in black indicate a probability of 
.98 or greater that an object exists. It can be seen 
that by itself there is not a clear path under the 
bridge. 
 

 
 

Figure 12. Horizontal occupancy grid with 
GPS fixes of bridge pylons (in green) 

 
 Figure 13 shows the three-dimensional map. By 
combining together both the vertical and 
horizontal occupancy grids into a single 



representation, a viable path is now available to 
the vehicle to pass underneath the bridge. Only 
through the combination of horizontal and 
vertical FLS and three-dimensional occupancy 
grid does the path emerge. 
 

 
 
Figure 13. Occupancy grid developed with the 
vehicle on the southwest approach 
 

6.0 SENSORY-BASED TRAJECTORIES 
 

As apparent in the Figure 13, the free space 
available for the vehicle is small. It is defined by 
the cross section resolution obtained by the 
method described above. This free space can be 
expanded to the true distance between the pylons 
by navigating a trajectory over time that “points” 
the cross section of the FLS at the boundaries 
defined by the river surface and bottom and the 
nearest starboard and port bridge pylons. In other 
words, the environmental map is conservatively 
represented by limitations in the field of view of 
the cross section of the sonar. By ensonifying 
additional areas in front of the vehicle it 
improves map resolution and provides greater 
situational awareness for the vehicle. 
 
A trajectory that increases the fidelity of the map 
through “pointing” the cross section of the 
forward looking sonar has two competing 
objectives; the ability to maintain a straight line 
path and the ability to fully ensonify a 
navigational hazard. Both of these objectives can 
be satisfied by a helix maneuver. Helical motion 
is obtained by using the cross-section beam 
model of the sonar and controlling the vehicle in 
such a way as to ensonify in a clockwise manner 
the starboard pylon, the water surface, the port 
pylon and the riverbed.  
 
The control law that represents this helix motion 
can be parameterized in Cartesian coordinates by 

the following equations: 
 

x(t) = αt
y(t) = β cos(t)
z(t) = δ sin(t)  

 
where x, y, and z represents longitudinal, 
latitudinal and altitude positions for the AUV 
and α  is a scalar for circular periodicity of the 
helix, β  is the semi-major axis radius for the 
ellipse (as viewed in the y, z plane) and δ  is 
semi-minor axis radius.  
 
Define the bridge opening as ψ O , as the 
difference between the vehicle headings when 
oriented toward the port and starboard pylon. 
Define the vertical opening as θO , as the 
difference between the water surface and 
riverbed. 
 

ψO =ψ pp −ψ sp

θO = θ pp −θsp

 

 
 The vertical and horizontal angles represented 
by ψ O ,θO increase as a function of speed and 
distance to the bridge. There are two interesting 
considerations in the development of the helical 
trajectory: First the commands to the rudder and 
dive plane are 90 degrees out of phase. Second, 
the amplitude of the commands are increasing 
this reflects the increasing aperture. 
 
At some point the vehicle is unable to maintain 
the helical trajectory while maintaining a 
reasonable forward heading. This can be 
properly accounted for through the control 
parameters α ,  β,  and δ . Figure 14 shows an 
example of initial results from testing helical 
trajectories in Monterey Bay, CA onboard the 
NPS REMUS AUV.  
 
While more rigorous analysis is required, in 
general, the AUV must make a decision to move 
forward within approximately 20-30 meters of 
the obstacle.  



 
 

Figure 14. Helical Trajectory from the NPS 
REMUS in Monterey Bay, CA 

 
6.0 FRENET-SERRET PATH FOLLOWING 
 
An important consideration in the 
implementation of the helical trajectory is the 
ability of the controller to follow the calculated 
path over time. For the secondary controller this 
is accomplished through the kinematic path-
following controller developed in [7]. Figure 16 
depicts the coordinate frames used to develop 
this controller. 
 
 
 
 
 
 
 
  
 
 
 
 

Figure 15. The inertial {I} frame, Serret-
Frenet {F} error frame and the body-fixed 

reference frame describing the problem 
geometry. 

 
Frame {I} is the inertial reference frame. Frame 
{F} is a Serret-Frenet frame attached to an 
arbitrary point on the path described by the 
vector pc (red). Frame {b] is the body-fixed 
reference frame aligned with the AUV forward 
velocity vector. From this geometry, it is 
possible to establish a relationship between 
vector qI, the inertial position of the AUV, and 
the vector qF, its position of expressed in the 
Serret-Frenet frame attached to the spatial 
trajectory. This produces the simple kinematic 
model: 

 

 

xI =U cosγ cosψ
yI =U cosγ sinψ
zI = −U sinγ
γ = q

ψ =
1

cosγ
r

 

 
where γ  is the flight path angle above the 
horizontal plane and ψ  is the heading angle. 
 
Since the spatial trajectory is defined by the 
parametric equations above, it is a simple 
exercise to compute the tangent (T), normal (N), 
and binormal (B) unit vectors of frame {F}. In 
addition, the angular velocity of frame {F} with 
respect to the inertial frame {I}, resolved in {F} 
depends only upon the curvature, κ , and the 
torsion,   ζ,  of the Serret-Frenet frame. This 
angular velocity is proportional to the speed at 
which a virtual AUV traverses the curve, , 
where l is the path length of the curve. We can 
then combine the T, N, B unit vectors into the 
[TNB] rotation matrix from to represent rotation 
from the {F} to {I} frame. Now that we have the 
necessary equations to relate qI, qF, and pc and 
how they evolve in time, we can create a state-
space representation of the error kinematics—
that is, the position and attitude (Euler angles) of 
the AUV body-fixed frame relative to the Serret-
Frenet frame, which is the desired position and 
orientation for the vehicle to assume while 
traversing the helix. In this representation: 
 

 

xF = −l(1−κ yF ) +U cosθe cosψ e

yF = −l(κ xF − ςzF ) +U cosθe sinψ e

zF = −lςyF −U sinθe

θe = uθ
ψ e = uψ
l = K1xF +U cosθe cosψ e

 

 
In the above kinematics, controls the speed of 
the virtual AUV we wish to “follow,” while uθ  

and uψ  are control inputs for pitch rate and turn 
rate, respectively, typically suitable for sending 
to a primary autopilot. Reference [7] contains a 
detailed development of the control input signals  

XI 

YI 

ZI 

{I} 

xF 

yF 

zF 

{F} xb 

yb 

zb 

{b} 
pc qF 

qI 



uθ  and uθ  used to reduce the error kinematics 
to zero (i.e. drive the AUV onto the desired 
trajectory) and provides a proof of this 
controller’s exponential stability. It should be 
stated that in its present form, the REMUS 
control protocol does not accept pitch rate 
commands. Therefore, in the preliminary 
experiments with this type of trajectory, the 
horizontal and vertical plane motions were de-
coupled so that higher-level depth commands 
could be used to control the vertical motion. 
Experimental data may provide a means for 
controlling pitch rate by adjusting the profile of 
these depth commands. Figure 12 depicts the 
helical trajectory with the superimposed tangent, 
normal and binormal unit vectors of the body 
frame. 
 

 
 

Figure 16. The AUV Helical Trajectory  
 
6.0 CONCLUSIONS 
 
In this paper, we demonstrated the ability to use 
complimentary sonar models to build a three 
dimensional probabilistic occupancy grid. This 
methodology was used to discover forward 
trajectories underneath a bridge that weren’t 
otherwise available. A critical aspect to building 
the occupancy grid is a probability distribution 
for empty and occupied grid cells. A histogram 
approach was used for the generating these 
distributions. Results were demonstrated using a 
Charles River data set where the AUV navigated 
underneath the bridge avoiding the pylons. 
Finally a helical trajectory was introduced that 
permits the vehicle to fully take advantage of the 
cross section of the vertical and horizontal sonar 
while maintaining a forward path. Critical in 
developing non-traditional, non-linear AUV 

paths are ensuring the vehicle can track the path, 
this is accomplished through the use of the 
kinematic path following controller utilizing the 
Frenet-Serret framework. 
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