

Center for Autonomous Vehicle Research Mechanical &Aerospace Engineering

Wireless Communication Networks Between Distributed Autonomous Systems Using Self-Tuning Extremum Control

> **Deok J. Lee I. Kaminer, D. Horner, A. Healey S. Kragelund, K. Andersson, K. Jones**

Centre for Autonomous Vehicle Research Naval Postgraduate School Monterey, CA

Milestones

Center for Autonomous Vehicle Research Naval Postgraduate School

Motivation and Issues

Comms Propagation Modeling

Self-Tuning Extremum Control

Flight Test Results

Sensor Networks with Multiple UAS

Center for Autonomous Vehicle Research Naval Postgraduate School

Applications

- Nature Monitoring - Civil (Disaster, Forest Fire, Weather)
- Surveillance & Coverage Military (SA, Decision Support, ISR)
- Remote Sensing - Science (GIS, Ocean Map Building, etc)

Research Goals & Issues

Research Goals

□ Dispatch a swarm of networked UAVs as communication relay nodes for real-time decision-making support and situational awareness

Research Goals & Issues

Center for Autonomous Vehicle Research Naval Postgraduate School

Research Issues

□High Bandwidth Communication Links (Max. Throughputs)

□Wide Area/Range Coverage (Network Coverage Control)

□Long-Term Communication Relay (Aerial Platforms)

Maximum Comms Networking

❖ Objective and Approach

□Develop control algorithms that allow UAVs to reposition themselves autonomously at optimal flight location to maximize the communications link quality

Concept for Sensor Networking Between Heterogeneous Vehicles

7

❖ Control Method

¾Methods for controlling flying platforms to operate continually at the maximum point of a performance function can be termed real-time optimization or extremum control

Approaches I

Center for Autonomous Vehicle Research Naval Postgraduate School

❖ Real-Time Optimization

- \triangleright Cost Function : Communication performance
- ¾ Constraint : UAV positioning equation

$$
\max_{\mathbf{x}_k \in D} J_k(\mathbf{x}_k) \quad \text{subject to } \mathbf{x}_{k+1} = f(\mathbf{x}_k, u_k)
$$

□ Cost Function (J)

$$
J(\mathbf{x}_{k})=J(x_{k},y_{k},z_{k},\phi_{k},\mathbf{x}_{node,i})
$$

 $\mathbf{x}_{node,i}$ = communications nodes (x_k, y_k, z_k, ϕ_k) = UAV position and attitude (bank)

□ Equations of 3D/2D UAV Motion

$$
f(\mathbf{x}_{k}) : \begin{cases} x_{k+1} = x_{k} + v \cos(\psi_{h}) \Delta t \\ y_{k+1} = y_{k} + v \sin(\psi_{h}) \Delta t \end{cases}
$$

where v is body-axis speed and $\mathop{\psi_{h}}$ is the yaw angle of the vehicle

Approaches I

Center for Autonomous Vehicle Research Naval Postgraduate School

❖ Real-Time Optimization

- \triangleright If partial derivatives of the cost function are known
- ¾ Solution: Extremum Control (Gauss-Newton Optimization)

$$
\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{u}_k = \mathbf{x}_k - \alpha_k \mathbf{H}_k^{-1} (\mathbf{x}_k) \nabla J (\mathbf{x}_k)
$$

where
$$
\mathbf{H}_k = h_{ij}(\mathbf{x}_k) = \frac{\partial^2 J}{\partial x_{i,k} \partial x_{j,k}}(\mathbf{x}_k), \quad \nabla J(\mathbf{x}_k) = \left(\frac{\partial J}{\partial x_{1,k}}(\mathbf{x}_k), \cdots, \frac{\partial J}{\partial x_{n,k}}(\mathbf{x}_k)\right)^T
$$

¾ Issue: 3-D Complex Optimization Problem

$$
J(x_k, y_k, z_k, \phi_k, \mathbf{x}_{node, i}) = J(\phi_k, \|\mathbf{d}\|)
$$

where
$$
\|\mathbf{d}\| = \sqrt{(x_{uav} - x_{node})^2 + (y_{uav} - y_{node})^2 + (z_{uav} - z_{node})^2}
$$

Methodology

- **❖ Gradient-Type Extremum Control**
	- \triangleright Measured SNR is discontinuous and slow (1 Hz)
	- ¾ Subjective to noise and cluttered environment
	- \triangleright Affected by the orientation of a UAV (fast maneuver)

 \checkmark Computation of gradient/hessian values is nontrivial

- ❖ Approaches and Solutions
	- ¾ Mathematical Communications Modeling
	- ٠ Provide continuous reference values at fast mode
	- \blacksquare Predict a maximum operation point
	- ¾ Model-Free Adaptive Extremum Control
	- Ξ Gradient is obtained by numerical method without model
	- \blacksquare Robust to noise and cluttered environment

Milestones

Center for Autonomous Vehicle Research Naval Postgraduate School

GS

Communication Modeling

\cdot Self-Tuning Extremunit Control

Flight Test Results

SNR Model for Cost Function

Center for Autonomous Vehicle Research Naval Postgraduate School

Why Signal-to-Noise Ratio Model $C = W\log_2\left(1 + SNR\right)$: Shannon-Hartley Theorem

where *C* is channel capacity (bits per second) *W* - bandwidth (Hz) of the channel

 \checkmark Channel capacity (*C*) is proportional to the SNR and the bandwidth (*W*)

□Signal-to-Noise Ratio (SNR) Model

$$
SNR(dBm) = \frac{P_r(dBm)}{P_n(dBm)} = \left(\frac{\lambda}{4\pi \|\mathbf{d}\|}\right)^2 \frac{G_t G_r}{L_{ap}}
$$

where $P_r(dBm)$ is the receiver power $P_n(dB)$ is noise power (-95 dBm) $G_r(dB)$ is receiver antenna gain $G_t(dB)$ is transmitter antenna gain $\lambda = c / f$ where f is the transmission frequency $c = 3 \times 10^8$ m/s \mathbf{d} || = distance

 $L_p(dB) \equiv (4\pi ||\mathbf{d}|| / \lambda)^2$ is path loss

 $L_{\infty}(dB)$ is antenna pattern loss

Antenna Pattern Loss on SNR

Model for UAV Orientation Effects

Antenna Pattern Loss in the Horizontal and Vertical Planes

 \triangleright Antenna Pattern Loss : Function of Arrival Angle $\gamma_i(t)$

 $\gamma_i(t) = -\theta_i(t) - \phi(t) \sin\left(\phi_i(t) - \psi(t)\right)$

which is the angle between the incident ray and horizontal wing of a UAV

$$
\theta_{i}(t) = \tan^{-1}\left(\frac{(z(t) - z_{node,i})}{\sqrt{(x(t) - x_{node,i})^{2} + (y(t) - y_{node,i})^{2}}}\right) \qquad \varphi_{i}(t) = \tan^{-1}\left(\frac{y(t) - y_{node,i}}{x(t) - x_{node,i}}\right)
$$

 $\phi(t)$ is the UAV bank angle $\psi(t)$ is the heading angle of the UAV $\varphi_i(t)$ is the bearing angle

SNR Map Example

□ Static SNR Map in East-North-Up coordinates

- ¾ Fixed altitude, heading & bank angle
- ¾ Path loss, Antenna pattern loss

Milestones

Center for Autonomous Vehicle Research Naval Postgraduate School

GS

Communication Modeling

Self-Tuning Extremum Control

Flight Test Results

Center for Autonomous Vehicle Research Naval Postgraduate School

Use on-line gradient estimation of SNR function to drive the set point to its max location

□On-line estimator does not require a precise model

SNR

Self-Estimating Extremum Control Architecture

Perturbation Based Gradient Estimator

► The purpose is to make θ - θ^* as small as possible, so that the output is driven to its minimum *^J* ∗

Peak-Seeking Architecture (Stability Proof by Kristic, 2001)

¾ How It Works ?

- Let y $=$ $J\big(\theta\big)$ be a general mapping function
- ˆ- Assume θ be a current parameter
- **Peak-Seeking Architecture** $y = J(\hat{\theta} + a \sin wt) \approx J(\hat{\theta}) + a \frac{\partial J}{\partial \theta}\Big|_{\theta = \hat{\theta}} \sin wt$ $= J(\hat{\theta} + a \sin wt) \approx J(\hat{\theta}) + a \frac{\partial}{\partial t}$ $y = J(\theta + a \sin wt) \approx J(\theta) + a \frac{d}{d\theta}\Big|_{\theta = \hat{\theta}} \sin wt$ Perturbation a sin wt around $\hat{\theta}$ leads to
- \blacksquare Applying high-pass filter (differentiator) gets rid of constant term and leads to

$$
y_H \approx a \frac{\partial J}{\partial \theta}\bigg|_{\theta = \hat{\theta}} \sin wt
$$

Center for Autonomous Vehicle Research Naval Postgraduate School

• Demodulating y_H with $\sin wt$ divides the signal into a low-frequency signal and high-frequency signal *^H* high frequency

$$
\varsigma = \frac{1}{2} a \frac{\partial J}{\partial \theta}\bigg|_{\theta = \hat{\theta}} - \frac{1}{2} a \frac{\partial J}{\partial \theta}\bigg|_{\theta = \hat{\theta}} \cos 2wt
$$

- Applying low-pass filter (integrator) gets rid of the sinusoidal term and provides an estimate of the gradient of $J(\theta)$

$$
y_L \approx \frac{1}{2} a \frac{\partial J}{\partial \theta} \bigg|_{\theta = \hat{\theta}}
$$

 $\mathcal{L}_{\mathcal{A}}$ The estimated gradient can be expressed by the parameter change

$$
\dot{\hat{\theta}} = k \frac{1}{2} a \frac{\partial J}{\partial \theta} \bigg|_{\theta = \hat{\theta}}
$$
 Self-Tuning Estimator

 \mathbf{r} ■ Denote $\tilde{\theta} = \hat{\theta} - \theta^*$ the convergence error, and taking a derivative of the errors leads to

$$
\dot{\tilde{\theta}} = \dot{\hat{\theta}} \approx k \frac{1}{2} a J''(\theta^*) \tilde{\theta}
$$

• which become stable with a proper choice of the parameter, a and k i.e., $k a J''(\theta^*)$ < 0

Center for Autonomous Vehicle Research Naval Postgraduate School

How Self-Tuning Extremum Control Works ?

- \triangleright Key idea is to integrate an on-line gradient estimator into an extremum control to get optimal location for UAVs
- **□ Consider 2-D Motion in {***I***} Frame**

 $\big(\overline{\psi}_h(t)\big)$ $(\mathbf{x}_{k}): \begin{cases} \dot{x}(t) = v(t) \cos(\psi_{h}(t)) \\ \dot{y}(t) = v(t) \sin(\psi_{h}(t)) \end{cases}$ $h(k)$: $\left\{\n\begin{array}{l}\n\lambda(k) - V(k) \cos(\psi) \\
\vdots \\
\lambda(k) \end{array}\n\right.$ $\dot{x}(t) = v(t) \cos(yt)$, $(t$ $f(\mathbf{x}_k)$: $\begin{cases} y(t) = v(t) \sin{(w_k t)} \end{cases}$ $\int \dot{x}(t) = v(t) \cos(\psi)$ ⎨ $\overline{\mathcal{L}}$ \mathbf{x}_{k}) : $\begin{cases} \dot{x} \\ 0 \end{cases}$ $\int \dot{y}(t) = v(t) \sin \left(\psi_h(t)\right)$

where $\bm{\nu}$ is body-axis speed and $\bm{\psi}_h$ is the yaw angle of the vehicle

\Box Motion with Constant Speed

 $x(t) = v \cos(\psi_h(t)) = f_1(\psi_h(t), x_0)$ $y(t) = v \sin \left(\psi_h(t) \right) = f_2(\psi_h(t), y_0)$

where $v = const$

Autonomous Controller Design

Center for Autonomous Vehicle Research Naval Postgraduate School

\Box Then SNR function becomes an implicit function of heading angle

$$
J = SNR(x(t), y(t)) = SNR(x(\psi_h(t)), y(\psi_h(t)))
$$

= $J(\psi_h(t))$

□ Gradient Descent Extremum Control is expressed by \Box

 $\psi_{k+1} = \psi_k + \alpha_k \nabla J_{\psi}$

where
$$
\nabla J_{\psi} = \partial J / \partial \psi \in \mathfrak{R}
$$

 \Box Assume that SNR is a quadratic function

$$
J(\hat{\psi}(t)) = J^* + \frac{Q}{2} (\hat{\psi}(t) - \psi^*)^2 + w(t)
$$

 $\hat{\psi}(t)$ is the current heading angle estimate

 J^* is the maximum attainable value of the cost function. μ is the sensitivity of the quadratic curve **U knknown**

 $w(t)$ is a zero-mean white noise

 ψ^* is the heading angle maximizing J

Adaptive Convergence Control

Center for Autonomous Vehicle Research Naval Postgraduate School

\blacktriangleright Adaptive Convergence Rate α_k^{ℓ}

□ Armijo-Wolfe Conditions

$$
J(\mathbf{x}_{k} + \alpha_{k} \mathbf{d}_{k}) \leq J(\mathbf{x}_{k}) + c_{1} \alpha_{k} \mathbf{d}_{k}^{T} \nabla J(\mathbf{x}_{k})
$$

 $\mathbf{d}_k^T \nabla J(\mathbf{x}_k + \alpha_k \mathbf{d}_k) \ge c_2 \mathbf{d}_k^T \nabla J(\mathbf{x}_k)$

where $0 < c_1 < c_2 < 1$

the *Armijo* condition that prevents steps that are too long the Wolfe condition which restricts steps that are too short

□ Adaptive Convergence Control Law

 $\gamma_1 = \gamma \alpha_k$, where $\begin{cases} 0 \le \gamma \le 1, & \text{if } k \neq 1 \\ \gamma \ge 1, & \text{else } \Delta J_{k+1} \end{cases}$ $0 < \gamma < 1$, $\mathcal{L}_{k+1} = \gamma \alpha_k$, where $\begin{cases} 0 \le \gamma \le 1, & \text{if } k \neq 1 \le k_k, \\ \gamma \ge 1, & \text{else } \Delta J_{k+1} < \tau_{\text{tr}} \end{cases}$ $if \Delta J$ *else J* $\gamma < 1$, if $\Delta J_{k+1} > \tau$ $\alpha_{k+1} = \gamma \alpha_k$ $\gamma \geq 1$, else $\Delta J_{k+1} < \tau$ + + $\left(0 < y < 1, \text{ if } \Delta J_{k+1} \right)$ $=\gamma \alpha_k^{\,}$, where \langle $\left\vert \gamma\geq1,\quad \text{else }\Delta J_{k+1}<\tau_{t}$

where τ_{ω} : a specified threshold value

$$
u_{com}(t) = \begin{cases} \dot{\psi}_{com}(t) = \dot{\psi}_{ss} & \text{if } |\dot{\psi}_{com}(t) - \dot{\psi}_{ss} = v / R_{ss}| \le \varepsilon_{ss} \\ \dot{\psi}_{com}(t) = \dot{\psi}_{ss} + \mu \gamma \alpha(t) \dot{\psi}(t) & \text{other} \end{cases}
$$

Autonomous Heading Controller Design

Center for Autonomous Vehicle Research Naval Postgraduate School

 \Box Applying On-Line Gradient Estimator

$$
\nabla J_{\hat{\psi}(t)} \equiv \frac{\partial J(\hat{\psi}(t))}{\partial \hat{\psi}(t)} = \mu(\hat{\psi}(t) - \psi^*) , \qquad \frac{d}{dt}(\nabla J_{\hat{\psi}(t)}) = \mu(\hat{\psi}(t))
$$

 \Box Then the extremum controller is expressed by \Box

$$
\dot{\psi}_{com}(t) = \frac{d\psi(t)}{dt} = \alpha(t)\frac{d}{dt}(\nabla J_{\psi})
$$

$$
= \mu \alpha(t)\hat{\psi}(t)
$$

On-line Gradient Estimator

 $\alpha(t)$: Optimal value can be obtained by Armijo-Wolfe conditions

\Box Orbit Circle Guidance at Final Steady-Stage

$$
u(t) = \begin{cases} \dot{\psi}_{com}(t) = \dot{\psi}_{ss} & \text{if } |\dot{\psi}_{com}(t) - \dot{\psi}_{ss} = v / R_{ss} | \le \varepsilon_{ss} \\ \dot{\psi}_{com}(t) = \dot{\psi}_{ss} + \mu \alpha(t) \dot{\psi}(t) & \text{other} \end{cases}
$$

 ψ_{ss} is introduced to guarantee that the UAV will orbit with a constant radius R_{ss} at the final stage. $R_{_{SS}} = \nu / \dot{\psi}_{_{SS}}$:

Milestones

Center for Autonomous Vehicle Research Naval Postgraduate School

GS

M ti ti Motivations Communication Modeling \cdot Self-Tuning Extremunit Control

Flight Test Results

Flight Test Systems

Center for Autonomous Vehicle Research Naval Postgraduate School

Rascal 110 UAV (ARF Airframe)

Avionics bay of Rascal UAV Avionics bay of Rascal UAV

Piccolo Plus Autopilots 2-Stroke Gas Engine

Engine Mount

Avionics bay of Rascal UAV Mobile GCS

$\frac{1}{2}$ **Rapid Flight Test Design Keys**

- \Box Reduce development time
- \Box Upgrade is flexible
- \Box Convenience of high level programming

Tracking antenna and Wave Relay mesh link Gimbal Camera

Model Verification Flight Test

Center for Autonomous Vehicle Research Naval Postgraduate School

SNR Model Verification

Center for Autonomous Vehicle Research Naval Postgraduate School

SNR Model Verification with respect to UAV Trajectories

SNR Model Verification

Center for Autonomous Vehicle Research Naval Postgraduate School

SNR Variation with respect to UAV Trajectories

Comparison with SNR Model

Center for Autonomous Vehicle Research Naval Postgraduate School

SNR Error Plots Between Real and Model Values

High Band Comms Flight Test

Center for Autonomous Vehicle Research Naval Postgraduate School

***Flight Test (Nov. 20, 2008)**

¾ Validate the designed onboard adaptive self-tuning controller & the communication models

Network Coverage Control using Extremum-Seeking Control

Flight Test Set-Up

Center for Autonomous Vehicle Research Naval Postgraduate School

Sensor Node Locations & Flight Setup in Camp Roberts GCS

UAV Trajectory over SNR MAP

Center for Autonomous Vehicle Research Naval Postgraduate School

(Movie)

UAV Trajectory Control for Max Communication Links (SNR)

UAV Path over SNR Map

Center for Autonomous Vehicle Research Naval Postgraduate School

Plot of UAV Trajectory over SNR Maps

SNR Model Errors

Center for Autonomous Vehicle Research Naval Postgraduate School

Plot of SNR Errors Between Model and Observation Ones

□ Communication Propagation Model

- \triangleright Communication propagation model was developed, which include the effects of the path loss, antenna pattern loss, and the orientation of aerial platforms
- ¾ Proposed models were validated through real flight tests

□ Self-Tuning Extremum Control for UAVs Location

- ¾ On-lie adaptive gradient estimator was integrated into an extremum control architecture
- ¾ Proposed self-estimating extremum control is robust to even low signal-to-noise ratio signal
- ¾ Effectiveness of the self-tuning optimizer was validated through real time flight tests

□ Applicable for Decentralized Network Coverage Control