
Center for Autonomous Vehicle Research Mechanical  &Aerospace Engineering 

Wireless Communication Networks Between 
Distributed Autonomous Systems UsingDistributed Autonomous Systems Using 

Self-Tuning Extremum Control 

Deok J. Lee 
I Kaminer D Horner A HealeyI. Kaminer, D. Horner, A. Healey 

S. Kragelund, K. Andersson, K. Jones  

Centre for Autonomous Vehicle Research
Naval Postgraduate School

Monterey, CA



Milestones 
Naval Postgraduate SchoolCenter for Autonomous Vehicle Research

Motivation and Issues

Comms Propagation Modeling

Self Tuning Extremum ControlSelf-Tuning Extremum Control

Flight Test Results

2



Sensor Networks with Multiple UAS  
Naval Postgraduate SchoolCenter for Autonomous Vehicle Research

Applications
Nature Monitoring CivilNature Monitoring - Civil
(Disaster, Forest Fire, Weather)

Surveillance & Coverage MilitarySurveillance & Coverage - Military
(SA, Decision Support, ISR)

Remote Sensing - ScienceRemote Sensing - Science
(GIS, Ocean Map Building, etc)
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Research Goals & Issues 
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Research Goals   

Dispatch a swarm of networked UAVs as communication relay 
nodes for real-time decision-making support and situationalnodes for real time decision making support and situational 
awareness
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Research Goals & Issues 
Naval Postgraduate SchoolCenter for Autonomous Vehicle Research

Research Issues   
High Bandwidth Communication Links (Max. Throughputs) 

Wide Area/Range Coverage (Network Coverage Control)Wide Area/Range Coverage (Network Coverage Control)

Long-Term Communication Relay (Aerial Platforms) 
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Maximum Comms Networking 
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Objective and Approach 
Develop control algorithms that allow UAVs to reposition 
themselves autonomously at optimal flight location to 

i i th i ti li k litmaximize the communications link quality
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Concept for Sensor Networking Between Heterogeneous Vehicles 



Strategy
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Control Method 
Methods for controlling flying platforms to operate 
continually at the maximum point of a performance y p p
function can be termed real-time optimization or
extremum control 
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Approaches I
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Real-Time Optimization 
C C fCost Function : Communication performance 
Constraint       : UAV positioning equation 
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is the yaw angle of the vehiclehψ

( )1k k hy y ψ+⎪⎩
where     is body-axis speed and v



Approaches I
Naval Postgraduate SchoolCenter for Autonomous Vehicle Research

Real-Time Optimization
If partial deri ati es of the cost f nction are kno nIf partial derivatives of  the cost function are known 

Solution: Extremum Control (Gauss-Newton Optimization) 
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Issue: 3-D Complex Optimization Problem
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2 2 2
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2 2 2( ) ( ) ( )uav node uav node uav nodex x y y z z= − + − + −dwhere



Methodology
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Gradient-Type Extremum Control
M d SNR i di ti d l (1 H )Measured SNR is discontinuous and slow (1 Hz)
Subjective to noise and cluttered environment
Affected by the orientation of a UAV (fast maneuver)Affected by the orientation of a UAV (fast maneuver)

Computation of gradient/hessian values is nontrivial

Approaches and Solutions
Mathematical Communications ModelingMathematical Communications Modeling   
Provide continuous reference values at fast mode
Predict a maximum operation point 

Model-Free Adaptive Extremum Control
Gradient is obtained by numerical method without model
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Gradient is obtained by numerical method without model
Robust to noise and cluttered environment
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SNR Model for Cost Function
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Why Signal-to-Noise Ratio Model

W - bandwidth (Hz) of the channelwhere C is channel capacity (bits per second)
2log (1 )C W SNR= + : Shannon-Hartley Theorem

Signal-to-Noise Ratio (SNR) Model
Channel capacity (C) is proportional to the SNR and the bandwidth (W) 
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( ) 4

t rr

n ap

G GP dBm
dBm

P dBm L
λ
π

= =
d( )n apd m π d

distance=d
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Antenna Pattern Loss on SNR 
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Model for UAV Orientation Effects

AC
z

θ
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x

y

z

x
Effect of the Arrival Angle 
on Antenna Pattern Loss

Antenna Pattern Loss : Function of Arrival Angle ( )tγ
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hi h i th l b t th i id t d h i t l i f UAV

Antenna Pattern Loss : Function of Arrival Angle ( )i tγ
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which is the angle between the incident ray and horizontal wing of a UAV
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SNR Map Example
Naval Postgraduate SchoolCenter for Autonomous Vehicle Research

Static SNR Map in East-North-Up coordinates
Fixed altitude, heading & bank angle
Path loss, Antenna pattern lossp

SNR Map (3-D View)
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SNR Map (2-D Top View)
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Self-Tuning Extremum Control
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Use on-line gradient estimation of SNR function to 
drive the set point to its max location
On-line estimator does not require a precise model

( )J θ=y
J

θ

SNR
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θ

θ

*θ
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θ̂ Jˆ

On-line Adaptive

θ J
( )ˆ d J

dt θθ α= ∇
αθ

Jθ∇k
S

Self-Estimating Extremum Control Architecture
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On-Line Gradient Estimator
Naval Postgraduate SchoolCenter for Autonomous Vehicle Research

Perturbation Based Gradient Estimator 
Th i t k ll ibl th tThe purpose is to make         as small as possible, so that 
the output is driven to its minimum      J ∗

-θ θ ∗

( )J θ=yLet                 be a general mapping function

How It Works ?

θ̂Assume      be a current parameter

Peak-Seeking Architecture ( ) ( )
ˆ

ˆ ˆsin sinJJ a t J a tθ θ
θ
∂

= + ≈ +
∂

y w w

sina twPerturbation around     leads to  θ̂

Peak-Seeking Architecture 
(Stability Proof by Kristic, 2001)

θ θθ =∂

Applying high-pass filter (differentiator) gets rid of constant term and leads to  
J∂
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On-Line Gradient Estimator
Naval Postgraduate SchoolCenter for Autonomous Vehicle Research

Demodulating with            divides the signal into a low-frequency signal and 
high-frequency signal
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Applying low-pass filter (integrator) gets rid of the sinusoidal term and provides an 
estimate of the gradient of   ( )J θ

2 θ θθ =∂

The estimated gradient can be expressed by the parameter change   
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= Self-Tuning Estimator

ˆ2
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θ
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=
∂

Denote                 the convergence error, and taking a derivative of the errors leads to   *ˆθ θ θ= −

Self-Tuning Estimator
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18

which become stable with a proper choice of the parameter, a and k i.e.,  ( ) 0kaJ θ ∗′′ <



Autonomous Controller Design 
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How Self-Tuning Extremum Control Works ?
Key idea is to integrate an on-line gradient estimator into anKey idea is to integrate an on-line gradient estimator into an 
extremum control to get optimal location for UAVs 
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Autonomous Controller Design 
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Then SNR function becomes an implicit function of heading angle  
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Gradient Descent Extremum Control is expressed by  
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where /J Jψ ψ∇ = ∂ ∂ ∈ℜ

Assume that SNR is a quadratic function        
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Adaptive Convergence Control
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Adaptive Convergence Rate kα

Armijo-Wolfe Conditions  

1( ) ( ) ( )T
k k k k k k kJ J c Jα α+ ≤ + ∇x d x d x

2( ) ( )T T
k k k k k kJ c Jα∇ + ≥ ∇d x d d x

1 20 1c c< < <where         

Adaptive Convergence Control Law  p g

1
1

1

0 1,   
 ,  where 

1,
k tv

k k
k

if J
else J

γ τ
α γ α

γ τ
+

+

< < Δ >⎧
= ⎨ ≥ Δ <⎩

where         

( ) ( ) /
( ) com ss com ss ss ss

t if t v R
t

ψ ψ ψ ψ ε=⎧ − = ≤⎪
⎨

11,      k tvelse Jγ τ+≥ Δ <⎩

21

( )
( )

ˆ( ) ( ) ( )
com ss ss ss

com
com ss

f
u t

othert t t
ψ ψ

ψ ψ μ γ α ψ
⎪= ⎨

= +⎪⎩



Autonomous Heading Controller Design 
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Applying On-Line Gradient Estimator        
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Then the extremum controller is expressed by  
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Orbit Circle Guidance at Final Steady-Stage   
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Flight Test Systems
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Piccolo Plus Autopilots 2-Stroke Gas Engine

Rascal 110 UAV (ARF Airframe)

Engine 
Mount

Rascal 0 UAV (ARF Airframe)

Avionics bay of  Rascal UAV 
O b d PC104 & P l d S k

Mobile GCSy
Onboard PC104 & Payload Stack

Rapid Flight Test Design Keys
Reduce development timeReduce development time
Upgrade is flexible
Convenience of high level programming 
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Tracking antenna and Wave Relay mesh link Gimbal Camera
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Model Verification Flight Test 
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3 dB Omni3 dB Omni-
Directional Antenna

9 dB Sector Antenna
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SNR Model Verification
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Movie
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SNR Model Verification with respect to UAV Trajectories



SNR Model Verification
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SNR Variation with respect to UAV Trajectories



Comparison with SNR Model
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SNR Error Plots Between Real and Model Values



High Band Comms Flight Test
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Flight Test (Nov. 20, 2008)
Validate the designed onboard adaptive self-tuning 
controller & the communication models

ucu

( , , )j jJ f= x φ ψ

( , , )i iJ f φ ψ= x

( , , )i iJ f φ ψ= x
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Network Coverage Control using Extremum-Seeking Control



Flight Test Set-Up
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R l UAVRascal UAV

Remote Node
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GCSSensor Node Locations & Flight Setup in Camp Roberts



UAV Trajectory over SNR MAP
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(Movie)
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UAV Trajectory Control for Max Communication Links (SNR)  



UAV Path over SNR Map
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Plot of UAV Trajectory over SNR Maps 
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SNR Model Errors
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Plot of SNR Errors Between Model and Observation Ones 



Conclusions
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Communication Propagation Model 
Communication propagation model was developed whichCommunication propagation model was developed, which 
include the effects of the path loss, antenna pattern loss, 
and the orientation of aerial platformsp
Proposed models were validated through real flight tests 

Self-Tuning Extremum Control for UAVs LocationSelf-Tuning Extremum Control for UAVs Location 
On-lie adaptive gradient estimator was integrated into an 
extremum control architecture  
Proposed self-estimating extremum control is robust to 
even low signal-to-noise ratio signal 
Effectiveness of the self-tuning optimizer was validated 
through real time flight tests  
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Applicable for Decentralized Network Coverage Control 


