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Worldwide, there has been growing interest in the use ofreartmus vehicles to execute
missions of increasing complexity without constant suéon of human operators. A key
enabling element for the execution of such missions is thalahility of advanced systems
for motion control of autonomous vehicles. Usually, the jeons of motion control for a
single autonomous vehicle are roughly classified into tigreeips. Namelypoint stabilization
where the goal is to stabilize a vehicle about a given targattpvith a desired orientation;
trajectory tracking where the vehicle is required to track a time parameternigitence; angath
following, where the objective is to make the vehicle converge to alolwa desired geometric
path, without an explicit timing law assigned to it. Curreesearch goes well beyond single
vehicle control. In fact, challenging mission scenariosl éme advent of powerful embedded
systems, sensors, and communications networks have spavisthespread interest in the problem
of cooperative motion control of multiple autonomous vétsc
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The types of applications considered are numerous anddedchircraft and spacecraft
formation control [-13], coordinated control of land robot$4—17], control of multiple surface

and underwater vehicles §-27], and networked control of robotic systenizs3f29].

In aerospace, for instance, unmanned systems have becametais in both military
and civilian applications. Today, for example, in a givemswained airspace volume, unmanned
air vehicles (UAVs) must execute military reconnaissaneé strike operations, border patrol
missions, forest fire detection, police surveillance, aabyvery operations, to name a few. Repre-
sentative applications include sequential auto-landmdy@ordinated ground-target suppression
using multiple UAVs. The first application refers to the sifion in which a fleet of UAVS
must break up and arrive at the assigned glideslope segdraterespecified safe-guarding time
intervals. For the case of ground-target suppression, mdoon of UAVs must also break up
and execute a coordinated maneuver to arrive at a predefiogitiop over the target at the
same time. In both cases, only relative —rather than alesel@mporal constraints are specified
a priori, a critical point that needs to be emphasized. Furtherntbeeyehicles must execute
maneuvers in close proximity to each other. Thus, the kewirement is that all maneuvers
must be collision-free. In addition, as pointed out &1,[ 31], the flow of information among
vehicles may be severely restricted, either for securigsoas or because of tight bandwidth
limitations. It is natural, under these circumstancest tleavehicle is able to communicate with
the entire formation; furthermore, the amount of inforroatithat can be exchanged may be
severely limited. It is therefore imperative to develop pe@tive motion control strategies that
can yield robust performance in the presence of time-vgrgmmmunications networks arising

from temporary loss of communication links and switchingnoounication topologies.



Decoupling Space and Time

Motivated by the multi-vehicle mission scenarios mentwrabove, in this article we
present a solution to the problem of cooperative control aftiple heterogeneous autonomous
vehicles that must operate under strict spatial and terhporstraints, while ensuring collision-
free maneuvers. The theoretical framework adopted borrfvarm various disciplines, and
integrates algorithms for trajectory generation, pathofeing, time-critical coordination, and
L, adaptive control theory for fast and robust adaptation.eliogy, these techniques yield
a control architecture that allows meeting strict perfano®erequirements in the presence of

complex vehicle dynamics, communication constraints, padial vehicle failures.

The methodology developed, which is based on the key idedeobupling space and
timein the problem formulation, can be summarized in three bstgps. First, given a multiple
vehicle mission, a set of feasible spatial paths togethén wiset of feasible speed profiles is
generated for all the vehicles involved in the mission. ®iep relies on optimization methods
that take explicitly into account initial and final boundargnditions, a general performance
criterion to be optimized, simplified vehicle dynamics, aadety rules for collision avoidance.
At this stage, the decoupling of spatial and temporal asségris in path generation ensures that
the computational complexity of the trajectory-genematagorithm increases only linearly with
the number of vehicles. This feature is critical for reat¢i implementation of the trajectory-
generation algorithm. The second step consists of makioly eehicle follow its assigned path,
regardless of what the desired speed profile is, as long asitiee is physically feasible. This
approach also takes advantage of the separation in spad@venthtroduced during trajectory

generation, and leaves the speed profile of the vehicle asxiaa @egree of freedom to be



modified at the time-coordination level. In this sense, ththgollowing approach adopted is in
contrast to trajectory tracking, for which it is proven ifZ] that, in the presence of unstable
zero dynamics, there exist fundamental performance ltroita that cannot be overcome by
any controller structure. Finally, in the third step, theesp profile of each vehicle is adjusted
about its desired speed profile obtained from the trajeggeneration algorithm, to enforce the
temporal constraints that must be met in real time to coatdithe entire fleet of vehicles. This
last step relies on the underlying time-varying commumicest network as a means to exchange

information among the vehicles.

Another key feature of the framework presented in this rigcthat it exhibits a multiloop
control structure in which an inner-loop controller staedgb the vehicle dynamics, while a
guidance outer-loop controller is designed to control tedéicle kinematics, providing path-
following and time-coordination capabilities. To makesbaedeas more precise, we notice that a
typical autonomous vehicle can be modeled as a cascadersgstesisting of the kinematic and
dynamic equations of the vehicle. Following standard matathe kinematicgj, of the vehicle

can be represented as
#(t) = fz@t) + g(x(t))y(t) , 1)

where z(¢) denotes the kinematic state of the vehicle, which usualGiugtes the vehicle’s
position and attitudey(¢) represents the vector of variables driving the vehicle kiatcs, such
as vehicle angular and linear velocities, afid) and ¢(-) are known nonlinear functions. The

dynamicsg, of the vehicle can be expressed as

2(t) = h(z(t),u(t), 1), 2)
y(t> = ho(z(t)v u(t>7 t) ) (3)



wherez(t) denotes the dynamic state of the vehielé,) represents the control signal that drives
the vehicle dynamics, anfl(-) and h,(-) are partially known nonlinear functions. The model
adopted is sufficiently general to capture six-degreeeddom dynamics, together with plant
uncertainty. In the cooperative control algorithms présern this article, the path-following and
time-critical coordination control laws are derived at #ieematic level for the syster@. in (1)
and are viewed as guidance outer-loop controllers progideéierence commands to an inner-
loop controller. The latter is designed to stabilize the aigits G, in (2)-(3) and to ensure
that the vehicle tracks the outer-loop commands. This Hookgr loop approach simplifies
the design process and affords the designer a systematroaappto seamlessly tailor the
algorithms for a very general class of vehicles that comeppega with inner-loop commercial
autopilots. Moreover, in order to meet strict performaneguirements in the presence of
modeling uncertainty and significant environmental diséunces, the framework relies on the
design of £, adaptive control loops to augment the inner-loop controlie fact, employing

L, adaptation allows us to make fairly general assumptionshernvehicle dynamics.

In this article, tools from real-time optimization, Lyapmrbased stability analysis, robust
control, graph theory, and, adaptation are brought together for the development of e@dpe
control algorithms vyielding robust performance of a fleetastonomous vehicles executing
various time-critical cooperative missions. In particulsince typical autopilots are normally
designed to provide only guidance loops for waypoint navoga the framework described in this
article broadens the range of possible applications andiomiscenarios of autonomous vehicles.
The conceptual architecture of the complete solution isvehim Figure 1. In the subsequent
sections, we describe each of the functional blocks in therdigWe start by formulating the

problem of generation of feasible collision-free trajeies, and refer to specific techniques for
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real-time implementation of trajectory-generation aitjons. Next, we present a nonlinear path-
following controller, derived at the kinematic level, thamsures that each vehicle follows its
desired path independently of its temporal assignment®n&érds, we describe a strategy for
time-coordinated control of multiple vehicles that relms the adjustment of the speed profile
of each vehicle. Then, in order to enhance the safety andessiaf the time-critical cooperative
mission, we consider the implementation®f adaptive architectures so as to ensure consistent
performance in the event of failures, vehicle damage, dnénpresence of adverse environmental
disturbances. Finally, we present experimental resuli@ oboperative road-search mission that

exploits the multi-vehicle cooperative control framewalikcussed in this article.

Cooperative Trajectory Generation for Multiple Autonomous Vehicles

Real-time trajectory generation that explicitly accoufds given boundary conditions
and vehicle dynamic constraints is a critical requirementthe autonomous vehicles engaged
in executing the missions described in the introductionhi$ frticle. Surveys on trajectory-
planning algorithms can be found i3, 34]. Next, we formulate and describe a solution to the
problem of cooperative trajectory generation to compudsifde spatial paths and speed profiles

for multiple autonomous vehicles that satisfy collisiorei@ance constraints.

For the cooperative missions of interest involving vehicles, the cooperative
trajectory-generation problentan be formulated as finding a set of 3D time trajecto-
ries ®4;(tq4) : R — R3, conveniently parameterized by a single time variable [0, 5], that
together minimize a cost functiof(-), satisfy desired boundary conditions, do not violate the

dynamic constraints of each vehicle, and ensure that thieleshmaintain a predefined spatial



clearance. In this formulation, the varialdle represents aesired mission timewhich is used
during the trajectory-generation phase and is distinehftbe actual mission time that evolves as
the mission unfolds, whilg; is thedesired mission duratiarfor a givert,, ®,,(¢;) defines thus
the desired position of thigh UAV t; seconds after the initiation of the cooperative mission.
From these time trajectoriespatial pathsp,;(7;) : R — R® and the correspondindesired
speed profiles,;(t;) : R — R can be easily derived for all the UAVs. For convenience, we
parameterize each spatial path by its path lengthe [0, /;;], where/,; denotes the total length
of the ith path, whereas the desired speed profiles are parametdryzéhe desired mission

time t,.

Feasible trajectory generation for a single vehicle

Before formulating the cooperative trajectory-generagmwoblem for multiple vehicles,
we first address the problem of generating a feasible t@pedbr a single vehicle. We start
by considering a desired spatial path to be followed byithevehicle and characterized by the
three-dimensional curve, ;(7;), conveniently parameterized by its path lengthe [0, ¢4;]. A
desired speed profile;;(¢;) can then be generated by relating the path lengthto mission
time t, through a dynamic relation of the forﬂ&ffdi = 0;(70,;), wheref,(-) is a positive function,

smooth in its argument. The mission timecan thus be computed from the path length as

Te,i

1
td—/mda}.
0

This notation allows us to express the vehicle’'s speed andl@@tion as well as the
curvature of the path, its torsion, and the flight path angleerms ofp,;(7;) and its first,
second, and third partial derivatives with respectrtg, denoted byp; ,(7¢.:), pjj;(7:), and
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Pl (1e:) respectively, as

Va,i(ta(Te4)) = |0gs(1e) |l i (7e)

aa,i(ta(7e:)) = 105 (724)0i(7e.6) + D3 (100 (70.0) || 0i(7e.4)

1945 (7o) X0y i (7o)l
1Pl (7e.0) |IP

(Ps (rea) <0y (124)) - P s(7e,0)
194 (7o) XDl (7o) |

Rd i (Té,z‘) = )

Td,i (Té,z‘) =

Y

p& i(Tz,z’)‘glg
Yai(Te;) = arctan ’ ,

1
((p&,i(Tf,i)‘glz)Q + (]9217,-(7'6,2‘)'6_}2)2) ’

where the orthonormal vectofg’,, é;2, €73} characterize an inertial reference frafieThe unit

vectorse;; andeéy, lie in the horizontal plane, while the unit vectéy; points up vertically in

the opposite direction of gravity. Moreover, the desiredsiun duration’, can be written as

Ly;

) 1
td = / deé’i .
0

With the above formulation, we definef@asible trajectoryas the one that satisfies maxi-
mum curvature, torsion, and flight-path-angle bounds, todn be followed by a vehicle without
having it exceed prespecified bounds on the vehicle spged,;) and acceleration,;(t,).
Letting Vmin, Umaxs Gmax, Fmax, Tmaxs Ymins @NdVmayx denote predefined bounds on the vehicle’s
velocity, acceleration, path curvature, torsion, and fligdth angle, the trajecto,;(¢,) is said

to be feasible if the conditions
0 < Umin S 'Ud,i (td(TZ,i)) S Umax 5 |a'd,i (td(TZ,i))| S Amax 5 (4)
|"€d,i(7_€,i)| S Rmax 5 |7_d,i(7-é,i)| S Tmax 5 “Ymin S 'Vd,i(Té,i) S Ymax 5 (5)

are met for allr,; € [0, 4]



A feasible trajectory for théth vehicle can thus be obtained by solving, for example,

the optimization problem

min J ()

—1

subject to initial and final boundary conditions as well as fiasibility conditions in4)-(5). In
the problem above/(-) is a given cost function, and; represents the vector of optimization
parameters for théh vehicle, which might include the total path lendth, a set of parameters
characterizing the curve,;(-), and a set of parameters characterizing the timing functjon.
In the trajectory-generation problem above, the cost fanci(-) may include terms related to
mission-specific goals, while additional constraints ckso d#e added to account for vehicle-to-

ground communications limitations, sensory capabiljtegsl collision avoidance with obstacles.

Real-time collision-free trajectory generation for multiple vehicles

We now formulate the problem of cooperative trajectory gatien for multiple vehicles.
In particular, the time-critical missions described insthrticle require that each vehicle follow
a collision-free trajectory, and that all vehicles arrivietheir respective destinations at the
same time, or at different times so as to meet a desired wetacle schedule. Without loss of
generality, we consider the problem of simultaneous drriva these missions, the generation of
collision-free trajectories can be addressed using twoptementary approaches. The first one,
referred to agollision avoidance in spa¢c@nsures that no feasible paths intersect. Alternatively,
the second approacttellision avoidance in time implies that no two vehicles are at the same
place at the same time. The first approach may be particulesdyul in military applications,
where jamming prevents vehicles from communicating wittheather, and is preferable to the
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current practice of separating vehicles by altitude. Onatiner hand, the second approach relies
heavily on inter-vehicle communications to properly cooatle the vehicle motions and is thus a
function of the quality of service (QoS) of the underlyingwerk. Formally, these two strategies
lead to two alternative constraints. For collision avoitaim space, the paths for thevehicles

need to satisfy the constraint

emin  1pag(reg) = par(ren) I’ = E* - for all (75, ) € [0, 4] X [0, L]

whereas, for collision avoidance in time, the paths and dpeefiles need to verify that

spoin  1pa(7e(ta)) — pax(rer(ta))[I* = B for all tg € [0, ;]

where E' is the distance for spatial clearance. See Figiresd 3 for the illustration of these

two approaches.

In addition to collision avoidance, the simultaneous tiofi&trival requirement adds an
additional constraint on trajectory-generation probleet.dt); = [t} .. ;. tin...) be thearrival-
time windowfor the ith vehicle, wheretj, . ; andt} .. . represent the minimal and maximal
possible durations of the mission for tlth vehicle, defined as

dmin,i — ) dmax,i ]
max min

Then, the simultaneous arrival problem has a solution if anly if the intersection of the
arrival-time windows is nonempty, that ist;, N6t} # 0 for all 4,5 € {1,...,n}, i # j. In

particular, if we define tharrival margin §7* as
oT™ £ Il’liIl t:lmaxi — Inax trlmini )
7 ’ % ’

then non-emptiness of the intersection of arrival-timedeins is implied by enforcing a positive
arrival margin; see Figuré Moreover, enlarging the arrival margin adds robustnefisg¢onission
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operation at the coordination level.

Then, lettingZ; be a predefined upper bound on the final time for the mission to
be completed, and defining a cost functidft) to be minimized, the cooperativteajectory-
generation problemcan be formulated as two alternative optimization probleifige first
optimization problem addresses collision avoidance ircs@ad is formulated as follows:

_min_ J() (6)

E1 X X2y

subject to initial and final boundary conditions and the ifgiéy conditions in @)-(5) for all

vehiclesi € {1,...,n}, as well as the constraints

omin lpay(7e;) — paw(rer) | = E* for all (o5, 7)) € [0,445] % [0, €4],
g k=1,...n,7#k

or* > 615 > 0,
Lyj Ly

1 1
tjl:/ie dTé,j:/WdT&ka forall jk=1,....n, j#k,

i(Te,5) o k)

where =; is the set of optimization parameters for thth vehicle including the total path
length ¢4;, the set of parameters characterizing the cupyg-), and the set of parameters
characterizing the timing functiof;(-). In the above,E is the minimal allowable separation
distance between the paths, which must be selected basdukqordspecified path-following
controller performance. Finallyy7™ > 675 > 0 imposes a bounded away from zero arrival

margin requirement.

The second optimization problem accounts for the collisiepidance in time and is
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posed as:

min_ J(+) (7)

E1 X XZp

subject to initial and final boundary conditions and the ifgy conditions in @)-(5) for all

vehiclesi € {1,...,n}, as well as the constraints

e 1pa;(7e5(ta) = pan(ren(ta)I* = B for all ta € [0,83],

or* > 615 >0,
Lyj Lsk

1 1
tZI/ﬁdTZ,]:/WdTZ,k7 fora”.]7k:177n7 j%k7

(7.5 To k)

ta <17,

where =; is the set of optimization parameters for thith vehicle including the total path
length ¢;;, the set of parameters characterizing the cupyg-), and the set of parameters
characterizing the timing functiof(-). In the above E' represents again the minimal allowable
separation distance between the paths, which in this cagebs selected based not only on
the prespecified path-following controller performancet &lso of the coordination controller

performance, and the QoS of the communications networkactexized later in the article.

In the cooperative trajectory-generation problems abthe cost function/(-) includes
terms related to mission-specific goals and cooperativeoppeance criteria, while additional
constraints can also be added to account, for instancenfer-vehicle and vehicle-to-ground
communications limitations, sensory capabilities, antliston avoidance with obstacles. The
formulation of these problems can also address the problemmission planning and task
allocation under resource constraints; se® [36] and references therein.
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The optimization problemssf and (7) are in general complex, and may be NP hard and
nonconvex. Nevertheless, these problems can in princpladckled using methods that include
multiple shooting $7, 3], pseudospectral Legendre methods,[4(], the nonlinear trajectory
generation metho¢ 1, 42], randomized techniques such as rapidly-exploring ranttees [i3,

44] and probabilistic roadmap algorithmé], the direct method for rapid trajectory prototyping
in [46], the generalized Benders decompositiéii][ branch and bound approachess]| outer

approximations49], and the generalized cross decompositidfi,[to nhame a few.

The outcome of the optimization problem8) (and (7) is a set ofn feasible spatial
pathsp,;(7;) and corresponding desired speed profilgst,) such that, if each agent follows
its assigned path and speed profile, the time-critical misg expected to be executed in the
ideal case. However, the presence of disturbances, mgdehiertainty, and failures in the
communications network, require the synthesis of robwestliack laws to ensure that the mission
can be accomplished with a high degree of confidence. In thaireng sections of this article,
we present a general framework to synthesize path-follgwimd coordination control laws that
can address the performance of the overall time-criticasion in the presence of uncertainty

and a faulty time-varying communications network.

3D Path Following for a Single Vehicle

In this section, we describe an outer-loop 3D path-follagvitontrol algorithm that
ensures, at a kinematic level, that tita vehicle converges to and follows the paih;(-)
for an arbitrary speed profile, subjected only to feasipitibnditions. In particular, the path-

following algorithm described in this article relies on thesight that a vehicle can follow a
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given path using only its attitude, thus leaving its speedmagxtra degree of freedom to be
used at the coordination level. The key idea of the algoritenio use the vehicle’s attitude
control effectors to follow avirtual target vehiclerunning along the path. To this effect, we
introduce a frame attached to this virtual target and defigerseralized error vector between
this moving coordinate system and a frame attached to thalaeghicle. With this setup, the
path-following control problem is reduced to driving thisrgeralized error vector to zero by using
only vehicle’s attitude control effectors, while followgran arbitrary feasible speed profile. This
approach, which is presented in this article for the caseloRatial paths, is motivated by the
work on 2D path-following control reported irbf]. A brief overview of different approaches

used for the derivation of path-following algorithms canfband in “Path-Following Control”.

Next, we characterize the dynamics of the kinematic erretsvéen theth vehicle and
its virtual target, and present an outer-loop 3D path-feiig control algorithm that solves the
path-following problem at the kinematic level. In the déstion below, the notatiofv} - is used
to denote the vector resolved in frameF; {¢}r represents the verserresolved in framerF;
wri/r2 denotes the angular velocity of frandél with respect to frameF2; the rotation matrix
from frameF1 to frame F2 is represented byr%?; andv | indicates that the time-derivative of
vectorv is taken in frameF. For notational simplicity, we drop the subscriptised to denote

a particular vehicle.

Following a virtual target vehicle

Figure 5 captures the geometry of the problem at hand. Agt) be the desired path

assigned to one of the UAVs, and lét be its total length. LeZ denote an inertial reference
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frame {é},, €2, €15}, and letp;(t) be the position of the center of magsof the UAV in this
inertial frame. Further, lef? be an arbitrary point on the desired path that plays the rble o
the virtual target, and lep;(¢) denote its position in the inertial frame. Hefec [0, /] is a
free length variable that defines the position of the virtaafjet vehicle along the path. In the
setup adopted, the total rate of progression of the virtuglet along the path is an extra design
parameter. This approach is in striking contrast with tlrategy used in the path-following
algorithm introduced in2], where P is defined as the point on the path that is closest to the
vehicle. Endowing the poinP with an extra degree of freedom is the key to the path-folhgwi

algorithm presented irb[l] and its extension to the 3D case described in this article.

For our purposes, it is convenient to definpaaallel transport frameF [53, 54] attached
to the pointP on the path and characterized by the orthonormal vedt@rs, i, (¢), o (¢)}. The
vectors{t, i, i, } define an orthonormal basis fdF, in which the unit vector(¢) defines the
tangent direction to the path at the point determined¢pbwhile 7i;(¢) and 7iy(¢) define the
normal plane perpendicular t@¢). Moreover, letp,(t) be the position of the vehicle’s center
of mass@ in the parallel transport frame, and let(t), yr(t), andzx(t) be the components of

the vectorpr(t) with respect to the basi§t, 7, i, }.

Let VW denote a vehicle-carriedelocity frame{u, @,, w5} with its origin at the UAV
center of mass) and itsz-axis aligned with the velocity vector of the UAV. Theaxis is chosen
to lie in the plane of symmetry of the UAV, and theaxis is determined by completing the right-
hand system. In this article(t) andr(¢) are they-axis andz-axis components, respectively, of
the vehicle’s rotational velocity resolved in th& frame. With a slight abuse of notatioq(t)

andr(t) are referred to apitch rateandyaw rate respectively, in théV frame.
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We also introduce an auxiliary framP {EJD,I;QD,@D}, which is used to shape the
approach attitude to the path as a function of the “crossktrarror componentg/» and zp.
The frameD has its origin at the UAV center of mass and the vectorst), bop (t), andbsp ()
are defined as

A dF—yFﬁl_zFﬁQ DA yFF+dﬁ1

i 2D 15 ggD = gzD X gQD ) (8)
(d? + yh + 25)° (d? +yf)?

bip

with d > 0 being a constant characterizing distance. The basis vegiot) defines the desired
direction of the UAV’s velocity vector. As illustrated in grire 6, when the vehicle is far from
the desired path, the vectér,(¢) becomes perpendicular t¢/). As the vehicle comes closer

to the path and the cross-track error becomes smaller,ithgit) tends tof(¢).

Finally, let 2(t) be the rotation matrix from/ to D, that is,
R R = RPRE, = (RE)T Ry,
and define the real-valued error function

U(R) 2 %tr [(1[3 — TILI0R) (113 . R)] , (9)

. The function¥(R) in (9) can be expressed in terms

lI>

wherelly is defined adly

of the entries ofR(t) as

\I’(R) = % (1 - Rn) )

whereRy; (t) denotes thél, 1) entry of (t). Therefore U (R) is positive-definite abouR,; = 1.
We note that?;; = 1 corresponds to the situation where the velocity vector el is aligned
with the basis vecto&_{w(t), which defines the desired attitude of the UAV.
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With the above notation, as shown k], the path-following kinematic-error dynamics

between the vehicle and its virtual target vehicle can bétevwias

prlp = — €t — wpr X pp + v, (10)

‘I’(R) =€p- ! - HRRT (R?{WF/[}F + {CUD/F}D) s (11)

,
where - | is used to indicate that the derivative is taken in the palrathnsport frameyp(t)
denotes the magnitude of the UAV’s ground velocity vectod a;(¢) is the attitude kinematic
error vector defined as

1 ~ - \Y
ep 2 5l <(113 —TR) R— R (I; — HEHR)> ,

where(-)" : SO(3) — R? denotes thevee mag56]. In the kinematic-error modellQ)-(11), ¢(t)
andr(t) play the role of control inputs, while the rate of progressi¢t) of the pointP along
the path becomes an extra variable that can be manipulateitl. gt this point, it is convenient

to formally define the path-following generalized error tegcr ¢ (t) as

T
A
= T T

Notice that, within the region wher&(R) < 1, if z,; = 0, then both the path-following position

error and the path-following attitude error are equal tamzéhat is,pr = 0 and Ry = 0.

Path-following control law

Using the above formulation, and given a feasible spat@diined pathp,(-), we define
the path-following problemas that of determining feedback control laws fgdt), =(¢), and
((t) such that all closed-loop signals are bounded and the p#twing generalized error
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vector x¢(t) converges to a neighborhood of the origin, regardless oftwha temporal

assignment of the mission is —as long as it is physicallyilidas

To solve the path-following problem described above, we fatsthe rate of progression

of point P along the path be governed by
(= (vith + Kepp) - 1, (12)
where K, is a positive constant gain. Then, the rate comman(sg andr.(t) given by

Ge i
2 NgR" (Rp{wryitr +{wp/rtp) — 2Kpep, (13)

Te

where K is also a positive gain, drive the path-following genewdizerror vectorr(t) to
zero with a guaranteed rate of convergence. More precigedtgn be shown that, if the speed
of the vehicle satisfie8 < v, < v(t) < vmax, then the origin of the kinematic error equations
in (10)-(11) with the controllers;.(t) andr.(t) defined in (3) is locally exponentially stable. A

formal statement of this result can be found &Y][ while a detailed proof is provided ircf].

The path-following control law above relies on the use of Sgecial Orthogonal
group SO(3) in the formulation of the attitude control problem. This rfarlation avoids the
geometric singularities and complexities that appear wieading with local parameterizations

of the vehicles attitude, and leads thus to a singularigg-fpath-following control law.

Also, we note that the choice of the characterizing distahde the definition of the
auxiliary frameD can be used to adjust the rate of convergence for the pdtwialy closed-
loop system. A large parametéreduces the penalty for cross-track position errors, wreshilts
in a slow rate of convergence of the UAV to the path. On the rotted, small values of
allow for a high rate of convergence, which however mightulies oscillatory path-following
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behavior. Figure illustrates this point. Further insights into this pathidaing control algorithm

can be found in57].

The solution to the path-following problem for th#h vehicle presented above is
independent of the desired speed profijg(-), and uses only local measurements for feedback.
The path-following control laws,(¢) andr.(t) represent outer-loop guidance commands that are
to be tracked by the vehicle to ensure the safety and sucteéls oooperative mission. In this
sense, this solution for path-following control departsnirstandard backstepping techniques in
that the final path-following control law makes explicit uskthe existing autopilot and retains

its stabilizing properties and tracking capabilities.

Time-Critical Cooperative Path Following for Multiple Vehicles

The previous section presents a control algorithm thatesollie path-following problem
for a single vehicle and an arbitrary speed profile by usingrdrol strategy in which the vehicle’s
attitude control effectors are used to follow a virtual &rgunning along the path. We now
address the problem of time-critical cooperative patleWing control of multiple vehicles. For
this purpose, the speeds of the vehicles are adjusted bagsmbadination information exchanged
among the vehicles over a time-varying network. In paréicithe outer-loop coordination control
law is intended to provide a correction to the desired spemfdile v,;(-) obtained in the
trajectory-generation step, and to generate a total speednendv.;(¢). This speed command

is then to be tracked by th#h vehicle to achieve coordination in time.

To solve this coordination problem, we first formulate it asbasensus problenm which
the objective of the fleet of vehicles is to reach an agreeroergaome distributed variables of
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interest. An overview of consensus algorithms and theidiegion to cooperative control of

networked multi-agent systems can be found5f][

Limited communication among vehicles

To enforce the temporal constraints that must be met in @& to coordinate the entire
fleet of vehicles, an appropriate coordination variabledsee be defined for each vehicle that
captures the objective of the cooperative mission, in ogecaimultaneous arrival of all the

vehicles at their final destinations.

For this purpose, we start by definingy,(t;) as the desired normalized curvilinear
abscissa of théth UAV along its corresponding path at the desired missiometi,;, which

is given by

tq
Zl,i(td) 2 7 /Ud,i(gt) doy , (14)
with ¢4, and vg;(-) being, respectively, the length of the path and the desipmed profile
corresponding to théh UAV. The trajectory-generation algorithm ensures thatdesired speed

profilesv,;(-) satisfy the feasibility conditions
0 < Umin < V44(+) < Uax i=1,...,n. (15)

Hence, from the definition of);(¢,) and the bounds inlf), it follows that(;; ;(t,) is a strictly
increasing continuous function @f mapping|(0,t] into [0, 1], and satisfying(;; ;(0) = 0 and
42:(ty) = 1. We also definey; : [0,1] — [0, ;] to be the inverse function df, ;(t4), ta € [0,1}].
Clearly,n;(+) is also a strictly increasing continuous function of itstargent. Then, lettind(¢)
be the normalized curvilinear abscissa at titnef the ith virtual target vehicle running along
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its path, defined as

o bilt)

we define the time-dependent variables

gz(t) ém(g;(t)% i = 17"'7”' (16)

From this definition, it follows that(t) € [0,t}], and therefore this variable can be seen as a
virtual time that characterizes the status of the mission forithdJAV at timet in terms of the

desired mission time;.

We note that, for any two vehiclesand j, if &;(t) = ¢;(t) =t at a given timef, then
Gi(t) = 0,,(t,) andl’(t) = £, ;(t,), which implies that at time the target vehicles corresponding
to UAVs i andj have the desired relative position along the path at theetesnission time,.
Clearly, if &(t) = ¢&;(t) for all t > 0, then theith and jth virtual target vehicles maintain the
desired relative position along the path at all times andparticular, these two target vehicles
arrive at their final destinations at the same time, whichsdo& necessarily correspond to the
desired mission duratiotj,. Also, in the case of collision avoidance in time¢jft) = ¢;(t) for
all t > 0, then the solution to the path-generation problem enstashe virtual targets and
do not collide. Moreover, if théth virtual target travels at the desired speed for all tintes i
the interval[0, ¢], that is,¢;(7) = vq,(7) for all T € [0,], then we have that;(r) = ¢4,(r) for
all 7 € [0,t], which implies that¢;(7) = 7 (or equivalently, that;(r) = 1) for all = € [0, 1.
This set of properties makes the variabfg@) an appropriate metric for vehicle coordination,
and therefore we refer to them aeordination statesWe notice that the use of these specific

coordination variables is motivated by the work &H].

To meet the desired temporal assignments of the coopemaiisgion, the coordination
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states are to be exchanged among the UAVs over the suppodimgiunications network. Next,
we use tools and facts fromigebraic graph theoryo model the information exchange over the
time-varying network as well as the constraints imposedhgy dommunication topology. Key

concepts and details on algebraic graph theory can be foufil).

First, in order to account for the communication constgintposed by the inter-vehicle
network, we assume that thith UAV can only exchange information with a neighboring skt o
vehicles, denoted here hy,. We also assume that the communication between two UAVs is
bidirectional and that the information is transmitted @ombusly with no delays. Moreover, since
the flow of information among vehicles may be severely ret&d, either for security reasons or
because of tight bandwidth limitations, we impose the aastthat each vehicle only exchanges
its coordination staté;(¢) with its neighbors. Finally, we assume that the connegtioit the
communications graph(¢) that captures the underlying bidirectional communicatiortwork

topology of the fleet at time satisfies the persistency of excitation (PE)-like conditio
t+T
%% / QL(T)Q"dr > pul,_,, forallt >0, (17)
t
whereL(t) is the Laplacian of the graph(¢), and@ is an(n — 1) x n matrix such thaty1,, =0
andQQ" =1,_,, with 1,, being the vector ifrR” whose components are dll The parameters

T, > 0 characterize the QoS of the communications network, whickhe context of this

article represents a measure of the level of connectivitthefcommunications graph.

The PE-like condition17) requires only the communications grapft) to be connected
in an integral sense, not pointwise in time. In fact, the gramy be disconnected during some
interval of time or may even fail to be connected for the entiuration of the mission. Similar
type of conditions can be found, for example, ] and [62].
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Coordination control law

Using the above formulation, and given a fleetwofehicles supported by an inter-vehicle
communications network and a set of desired 3D time trajes@®,;(¢,), the problem otime-
critical cooperative path followingan be formulated as that of designing feedback control laws
for pitch rateq(t), yaw rater(t), and speed(t) such that all closed-loop signals are bounded,
for each vehicle, i € {1,...,n}, the path-following generalized error vectgy; ;(t) converges
to a neighborhood of the origin, and for each pair of vehiclesd j, i,7 € {1...,n}, the
coordination errot¢;(t) — &;(t)| converges to a neighborhood of the origin, guaranteeingiqua

simultaneous time of arrival and ensuring collision-freanguvers.

We start by noting that the evolution of thh coordination state is given by

()
S0 = @)

Recalling from the solution to the path-following problehmat the evolution of théth virtual

target vehicle along the path is given by
éi = (v; W, + Kipr,) - t; )

where for simplicity we keepi, without indexing and drop the dependency of the various
variables or¢, the dynamics of théth coordination state can be rewritten as

(v; W + Kepry) - t;
Ud,z‘(fz‘)

Then, to solve the time-coordination problem, we use dynamiersion and define the speed

& = (18)

command for theth vehicle as

A Ueoord,i Va,i(&) — Kopri - b

Wi, -t

: (19)

Ve,i
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whereuqoa,i(t) is @ coordination control law, yet to be defined. With thisespeommand, the

partially closed-loop coordination dynamics for thh target vehicle can be rewritten as

€v,i — e

‘i:ucoori_‘_iwi'tiy 20
5 d, UdJ(gl) 17 ( )

wheree, ;(t) = v;(t) — v.;(t) denotes the velocity tracking error for th vehicle.

Recall now that each vehicle is allowed to exchange onlydtgdination paramete;(t)
with its neighborg;, which are defined by the possibly time-varying communaraitopology.

To observe this constraint, we propose the decentralizeddowtion law

ucoord,l@) = _az (u(t) — 53@)) +1, (21)
Jj€G1

Ueoord,i(t) = —a Y (&(t) — (1) + xra(t) i=2,....n, (22)
JE€G;

Xri(t) = =b> (&) = &(0),  x1a(0) =1, i=2...,n, (23
JjeG;

where vehicld is elected as the formation leader, andndb are positive adjustable coordination
control gains. Note that the coordination control law has rapprtional-integral structure,

which provides disturbance rejection capabilities. Mesrpwe note that the vehicles exchange
information only about the corresponding virtual targetgéher than exchanging their own state
information. The importance of this observation can hattyoveremphasized. The benefits of

using “virtual information” in consensus problems aresthated in §3].

Convergence properties of the combined cooper ative path-following control laws

Figure8 shows the complete time-critical cooperative path-foltaywclosed-loop control
architecture for theith vehicle, including the nonlinear path-following algbrn and the
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decentralized coordination control law. With this appigathe overall cooperative control
architecture presented in this article exhibits a mulpl@ontrol structure in which an inner-loop
controller stabilizes the vehicle dynamics, while guidaater-loop controllers are designed to

control the vehicle kinematics, providing path-followiagd time-critical cooperative capabilities.

At a kinematic level, it is proven in5p] that, if the connectivity of the communications
graph verifies the PE-like conditiorl]) and the initial conditions are within a given domain
of attraction, then there exist control gains for the patiefving control law (2)-(13) and the
coordination control law X9)-(23) that ensure, first, that the path-following generalizedbrer
vectorz, ;(t) of each vehicle converges exponentially fast to zero; s&ctbrat for each pair of
vehiclesi and j, i,j € {1...,n}, the coordination errof¢;(t) — &;(¢)| also converges to zero
exponentially fast; and third, that the speed of each velsalkisfies,,i, < v;(t) < vyay for all

t>0.

Additionally, the results in}5] also present explicit tracking performance bounds for the
inner-loop controller that ensure stability of the ovetathe-critical cooperative path-following
control system. In particular, for the case of non-ideakmioop tracking, and provided that the
inner-loop performance bounds are satisfied, the patbvintlg generalized error vectors and
the coordination errors can be proven to converge expaibntast to a neighborhood of zero
and to beuniformly ultimately boundedrurthermore, the ultimate bounds are proportional to

the inner-loop angular-rate and speed tracking performdmoeinds; seesp, Theorem 1].

Lemma 3 in p5] also demonstrates that the QoS of the network, charaetety the
parametersd” and u, limits the achievable guaranteed rate of convergenceh®rcbordination

control loop. These results also imply that, as the paranfégpoes to zero and the communica-
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tions graph becomes thus connected pointwise in time, theecgence rate can be set arbitrarily
fast by increasing the coordination control gains. Thig faconsistent with results obtained in

previous work on time-critical cooperative path-follogigontrol; see G4, Lemma 2].

Finally, we note that successful execution of the missiauires that the design of the
overall cooperative path-following control algorithm tvithe inner-loop autopilot provide the
level of performance considered for trajectory generats@e optimization problem$)and (7).

In the context of this article, the performance of the patiefving and coordination controllers
can be characterized, for example, in terms of the inngo-lmacking performance bounds or

the ultimate bounds for path-following and coordinatioroes.

L, Adaptive Control for Autopilot Augmentation

As shown in p5, Theorem 1], safety and success of the cooperative tinieatrmission
relies on the fact that each vehicle can track precisely tigular-rate and speed commands
provided by the outer-loop path-following and coordinatialgorithms. For the missions of
interest, typical off-the-shelf autopilots are capablguadviding uniform performance across the
flight envelope of small UAVs while operating in nominal catimhs. However, these commercial
autopilots may fail to provide adequate performance adfesgperational envelope in the event
of actuator failures, vehicle damage, or in the presencedeérae environmental disturbances.
Under these unfavorable circumstances, adaptive augtientaops are seen as an appealing

technology that can improve vehicle performance.

In this section, we propose the implementation/f adaptive controllers for control

augmentation of onboard commercial autopilots. The thebrg, adaptive control enables the
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design of robust adaptive control architectures using dastptation schemes, which results in
predictable, repeatable, verifiable, and safe adaptivhatftgntrol algorithms. The key feature
of £, adaptive control is the decoupling of the adaptation loamfrthe control loop, which
enables fast adaptation without sacrificing robustnesst &@aptation allows for compensation
of the undesirable effects of rapidly varying uncertaimtand significant changes in the system
dynamics, and is also critical to achieve a predictable amdistent response of the closed-loop
adaptive system. The performance and robustness prapefifs adaptive control are described
in detail in [65], while insights into the application of, adaptive control to safety-critical flight

control are presented irb{)].

In [67, 6¢], for example, we present afi; adaptive control architecture for autopilot
augmentation that retains the properties of the onboardvanaial autopilot, and adjusts the
autopilot commands only when the tracking performance atigg or the mission effectiveness
is reduced. Figur® shows the inner-loop control architecture consideredsin (€], with the
adaptive augmentation loop wrapped around the autopiiathis setup, the adaptive controller
uses angular-rate and speed measurements to modify thearwsrgenerated by the outer-loop
algorithms, which are then sent to the autopilot as refegno be tracked. This structure for
autopilot augmentation does not require any modificatiorthé autopilot itself, and at the same
time it does not use internal states of the autopilot for idrdesign purposes. In particular, the
control architecture illustrated in Figugeis the one used in the cooperative road-search mission

scenario discussed later in the next section.
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Cooperative Road Search with Multiple Unmanned Aerial Vehicles

In this section we discuss flight test results for a coopegatoad-search mission that
show the efficacy of the multi-vehicle cooperative contmaniework presented in this article.
Cooperative path-following missions involving multipleAds were flown for the first time
at Camp Roberts, CA, in November 2009, and then demonstfated more times at the
same location in February, May, July, and November of 201 flight tests were performed
during the quarterly run Tactical Network Topology field expnents conducted through the
Field Experimentation Cooperative Program, which is béathby the U.S. Special Operations
Command and the Naval Postgraduate School (NBS) {0]. These results verify the main
theoretical claims of the cooperative control algorithregemted in this article and demonstrate

the feasibility of the onboard implementation of the alfuns and the validity of the approach.

Mission description

Today’s operational environments face a growing need foitoughate satellite-like
imagery, with enough resolution to detect humans, weapams,other potential threats. While
accurate high-resolution imagery is traditionally praddby satellites and high-end aerial
intelligence surveillance and reconnaissance platfoimsse assets are not always available
to the end-user due to time-of-day, visibility, or missiaiopty. In such cases, the use of small
tactical UAVs outfitted with the ability to capture action@phigh-resolution, geo-referenced
imagery and full motion video, represents an economicalexekditious alternative. Moreover,
the fact that the UAVs can deliver the information to the esé+ in seconds or minutes, rather

than hours or days, can potentially revolutionize the wayoperate and save lives.
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One of the applications that motivates the use of multiplepeoative UAVs and poses
several challenges to systems engineers, both from a tieadrand practical standpoint, is
automatic road search for improvised explosive devicedtiete see Figurel0. The mission is
initiated by a minimally trained user who scribbles a pathaatigital map, generating a precise
continuous ground-track for the airborne sensors to follbws ground-track is then transmitted
over the network to a fleet of small tactical UAVs equippedwibmplementary visual sensors.
Decentralized optimization algorithms autonomously gatee feasible flight trajectories that
maximize road coverage and account for sensor capabifiels! of view, resolution, and gimbal
constraints— as well as inter-vehicle and ground-to-ammanications limitations. The fleet of
UAVs then starts the cooperative road search. During thes@hthe information obtained from
the sensors mounted onboard the UAVs is shared over the rieand retrieved by remote users
in near real time. The explosive device detection can thudolne remotely on the ground, based

on in-situ imagery data delivered over the network.

In this particular mission scenario, a robust cooperatostrol algorithm for the fleet of
UAVs can improve mission performance and provide reliabitgdt discrimination, by effectively
combining the capabilities of the onboard sensarq.[In fact, flying in a coordinated fashion
is what allows, for example, to maximize the overlap of thédfeof view (FOVs) of multiple

sensors and to take full advantage of complementary sensors

Airborne system architecture

The small tactical UAVs employed in this particular missiare two SIG Rascals 110

operated by NPS; see Figurel. The two UAVs have the same avionics and the same
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instrumentation onboard, the only difference being tha@owmissensors. The first UAV has a
bank-compensated high-resolutio®MPx imagery camera, while the second UAV has a full-
motion video camera suspended on a pan-tilt gimbal. Due ytopd constraints, each UAV is
allowed to carry only one camera at a time, and thereforewlecameras need to be mounted
on different platforms. The rest of the onboard avionicsnown to both platforms, includes
two PC-104 industrial embedded computetg| [assembled in a stack, a wireless Mobile Ad-hoc
Network (MANET) link [73], and the Piccolo Plus autopilot{] with its dedicatedd00-MHz
command and control channel. Details of the complete ambdoetwork-centric architecture are

presented in Figuré?2.

The first PC-104 computer acts as a secondary autopilot aitamfr running the
cooperative-control algorithms in hard real timel@0 Hz and directly communicating with the
Piccolo Plus autopilot &0 Hz over a dedicated serial link. This connection efficientiyn@hates
communication delays between the outer-loop control #@lyms and the autopilot. The second
PC-104 is a mission management computer that implementd af sgon-real-time routines
enabling onboard preprocessing and retrieval of the sgrdata —high-resolution imagery or
video— in near real time over the network. Integration of MANET link allows for robust
transparent inter-vehicle and ground communication, wigcneeded for both the coordination
algorithms and the expedited sensory data delivery to a teemmission operator. In fact, the
MANET link provides “any-to-any” connectivity capabilityallowing every node —vehicle or
ground station— to communicate directly with every othedaoMoreover, information about
the connectivity of the entire network can be retrieved iarreal time. Details on the flight test
architecture, the supporting network infrastructure, #rel management of the communication

bandwidth for coordination control and data disseminatian be found in {3, 75].
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Flight Test Results

We now present flight test results for a cooperative roadekemission executed by the
two SIG Rascals. The objective of the mission is to detectrgetanoving along a given road
and, if detection occurs, to collect information about taggét. This information is then to be
shared over a MANET link so that it can be retrieved by remoigsian operators in near real
time. Success of the mission relies on the ability to ovetlap footprint of the FOVs of the
two cameras along the road, which increases the probabilitgarget detection{l]. Next, we
provide details about the execution of this coordinatedi+s@arch mission, which we divide in
four consecutive phases, namely, initialization, traosijtroad search, and vision-based target
tracking. The description is supported by one of the flightdeesults performed during a Tactical

Network Testbed field experiment at Camp Roberts, CA; seedilLB-16.

In the initialization phase an operator specifies on a digital map the road of interest.
Then, a centralized optimization algorithm generates +s®&atch suboptimal paths and desired
speed profiles for the two UAVs that explicitly account for WAynamic constraints, collision-
avoidance constraints, and mission-specific constrainth @s inter-vehicle and vehicle-to-
ground communications limitations as well as sensory déipab. In particular, the trajectory-
generation algorithm is designed to maximize the overlapheffootprints of the FOVs of the
high-resolution camera and the full-motion video during tlmad search. In addition to the
road-search paths and the corresponding desired speelkgqrtifie outcome of the trajectory-
generation algorithm includes sensor trajectoryon the ground to be followed by the vision
sensors. The two road-search paths and the sensor path véatbrthe three corresponding speed

profiles, are then transmitted to the UAVs over the MANET link
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In thetransition phasethe two UAVs fly from their standby starting positions to thiial
points of the respective road-search paths. For this parpexentralized optimization algorithms
generate feasible collision-free 3D trajectories to emghat the two UAVs arrive at the initial
points of the road-search paths at the same time. Once tfasition trajectories are generated,
the two vehicles start operating in cooperative path-Withg mode. From that moment on, the
UAVs follow the transition paths while adjusting their sgedbased on coordination information
exchanged over the MANET link in order to achieve simultargearrival at the starting point of
the road-search paths. The transition and road-seardalspdeconflicted paths obtained for this
particular mission scenario, together with the correspandesired speed profiles and the path
separations, are shown in Figut&. Figure 14 illustrates the performance of the coordination

control algorithm during the transition phase of the missio

The third phase addresses tt@operative road-search missiatself, in which the two
UAVs follow the road-search paths generated in the in#&lon phase while adjusting their
speeds to ensure the required overlap of the FOV footprirttseocameras. In this phase, a target
vehicle running along the sensor path is virtually impletedron one of the UAVs. For this road-
search mission, a natural choice for this sensor path isdhé itself, and this virtual vehicle
determines thus the spot of the road being observed by thenvéensors mounted onboard
the UAVs at a given time. This virtual vehicle is indeed usedaaleader in the coordination
algorithm, and its speed is also adjusted, based on the icatimh states of the two UAVs. The
coordination state of this virtual vehicle is also transedtover the tactical network and used
in the coordination control laws of the two “real” vehicl@he performance of the cooperative
path-following control algorithm is illustrated in Figufe. For this particular mission scenario,

the coordination errors remain beldi# during the entire duration of the road search, while
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the path-following cross-track errors converge t8 a tube around the desired spatial paths.

Finally, when a target is detected on the road, the two UAVm@&diately switch to
cooperative vision-based trackingode. In this phase, the UAVs track the target by means of
guidance loops that use visual information for feedbackierimultaneously providing in-situ
imagery for precise geo-location of the point of interestiriBg this target-tracking phase, a
coordination algorithm ensures that the two UAVs keep a gfiedd phase separation Hfrad
while “orbiting” around the target. This coordination atgbm uses the coordination control
law described in previous sections to adjust the orbitingespof the UAVs, with the main
difference thatphase on orbitis now used as a coordination state, rather than virtual.time
Besides collision avoidance, cooperation through phaserbit coordination allows for several
additional benefits, including reduced sensitivity to &rgscape maneuversd and possible
extraction of 3D information from 2D imagesS{]. The performance of the cooperative path-
following control algorithm is illustrated in Figur&6, which shows the trajectories of the two
UAVs while tracking the target as well as the phase-cootdnarror between the UAVs. Details

about the vision-based guidance loop used in this phase edound in [/g].

Flight test summary and accessory mission outcomes

The results presented above illustrate the benefits of esiogerative control based on the
algorithms described in this article when dealing with naiss involving multiple vehicles. Such
cooperative strategies ensure collision-free maneuward, efficiently combine heterogeneous

information provided by complementary sensors.

To visually illustrate the effect of time-critical coopémn among the UAVs, Figuré7
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presents a mosaic of four consecutive high-resolution @edgken during a flight experiment.
In this experiment, the road-search paths are intentiprs&parated by altitude and optimized
such that, if the coordination algorithm adequately adjulsé speed of the two UAVs, then the
UAV flying at lower altitude is expected to be continuoushegent in the FOV of the camera
flying at higher altitude. The figure schematically représethe progression of the lines of
sight connecting the two cameras with the virtual targeticlehrunning along the sensor path.
Time-coordination ensures that cameras observe the sashersghe road and thus maximize the

overlap of the footprints of their FOVs, which is critical poovide reliable target discrimination.

Also, in order to illustrate possible accessory missionconies, Figurel8 presents
examples of imagery data utilization. In Figufea for example, the 3D geo-referenced
model of the operational environment is built from 2D higiselution frames using proprietary
technology [9. In Figure 18h a geo-referenced mosaic is obtained in near real time from

high-resolution frames sent by one of the UAVs through theNMA' link while in mission [/ 7).

In summary, the results presented above demonstrate thefitseof the onboard
integration of the nonlinear path-following and coordioatalgorithms as well ag, adaptation.
During the flight experiments, the required control comnsanever exceeded the limits defined
for the UAV in traditional waypoint navigation mode. At tharse time, the achieved functionality
of the UAV following 3D curves in an inertial space outperfig the conventional waypoint
navigation method typically implemented on off-the-shmdimmercial autopilots. These results
provide also a roadmap for further development and onboamplementation of advanced

cooperative algorithms, opening new frontiers for UAV Gigms.
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Conclusions

In this article, we describe an approach to cooperativerobof multiple autonomous
systems for time-critical missions. The approach preskafplies to teams of heterogeneous
systems and does not necessarily lead to swarming behawimt) is unsuitable for many of the
mission scenarios envisioned in this article. The methaglolproposed unfolds in three basic
steps. Initially, each vehicle is assigned a feasible path svdesired speed profile that together
satisfy the mission requirements and the vehicle dynammsttaints, while ensuring collision-
free maneuvers. Then, a path-following algorithm ensuhes$ évery vehicle follows its own
path independently of the temporal assignments of the amssiinally, the vehicles coordinate
their position along the path with the remaining vehiclegaged in the mission by exchanging
coordination information over the communications netwdrkese three steps are accomplished
by judiciously decoupling space and time in the formulatudrthe trajectory-generation, path-
following, and time-coordination problems, and by relyimg the existing inner-loop controllers
for nominal control of the autonomous systems. These itowgy-controllers are augmented with
L, adaptive loops, which ensure robust performance in thetefeailures, vehicle damage, or
in the presence of adverse environmental disturbances.rAsudt, the described work yields a
systematic framework for integration of various tools amhaepts from a broad spectrum of
disciplines, leading to a streamlined design proceduredoperative path-following control. The
benefits of this approach have been demonstrated in a cdeper@ad-search mission scenario
involving multiple unmanned aerial vehicles. The framegwpresented has also been tested on
cooperative missions involving multiple heterogeneous@amous marine vehicles operating in

uncertain environments; see(| 81] and references therein for details about these expersnent
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Figure 1. Conceptual architecture of the cooperative obfitamework adopted. Decoupling
space and time in the problem formulation allows for the fmots of path following and time-

coordination to be solved independently. On one hand, afpdtwing algorithm ensures that

every vehicle follows its own path independently of the temab assignments of the mission.
On the other hand, the speed profile of each vehicle is adjwsteut a desired speed profile
SO as to enforce the temporal constraints that must be meiaintime to coordinate the entire
fleet of vehicles.
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article uses the vehicle’s attitude control effectors ttofe a virtual target vehicle running along
the desired path with a rate of progression that can be selexttwill. With this approach, the
speed of the vehicle remains as an extra degree of freedom tiedal at the coordination level.
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closer to the path and the cross-track error becomes smikerorientation ofgzD(t) tends
to #(¢). (c) Finally, when the cross-track error becomes zérgt) coincides with{¢). We
notice that, for simplicity, the plot above assumes thatalumg-path error(t) is zero.
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the vehicle never converges to the path, singgr = 0. (b) For large values ofl, the term
wp,r introduces only small corrections to the “feedforward’nterr,;, and therefore the rate of
convergence of the vehicle to the desired path is slow. Orother hand, (c) small values df
allow for higher rates of convergence, which however migdsuit in oscillatory path-following

behavior. In these plots, the blue line is the desired péid,green line represents the desired
approach curve, and the red line corresponds to the reguléhicle trajectory.
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Figure 8. Coordinated path-following closed-loop for thie vehicle. The cooperative control

architecture presented in this article exhibits a mulpl@ontrol structure in which an inner-loop

controller stabilizes the vehicle dynamics, while guidaoater-loop controllers are designed to
control the vehicle kinematics, yielding path-followingdatime-coordination capabilities.

53



1
1
1
1
1
|
. | L a7
i Autopilot — UAV i >
! ‘ ' !
1 1
1 1
1 1
1 1
1 1
L e i
L, Adaptive [
[Q(nrcvvc]

Augmentation |

Figure 9. Inner-loop structure with the adaptive augmémtdbop. The architecture considered
for autopilot augmentation is an output-feedback architecthat uses angular-rate and speed
measurements to modify the commands generated by the loofealgorithms, which are then
sent to the autopilot as reference signals to be tracked. Sthicture for autopilot augmentation
does not require any modifications to the autopilot itseffd @t the same time does not use
internal states of the autopilot for control design purgose

54



UAV1 Trajectory.

sl
:E Lo i
"Ti-:--L--Lnunéonuuunnn

WAV Groundirack

Figure 10. Coordinated road search using multiple unmaae&dl vehicles (UAVS). Two small
tactical UAVs equipped with complementary vision sensoegect and follow an improvised
explosive device along a road. Cooperative control can renausatisfactory overlap of the
field-of-view footprints of the sensors along the road, tmmeasing the probability of target

detection.
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(a) SIG Rascal 110 research aircratft.

N
iy

(b) High-resolution camera. (c) Full-motion video camera.

Figure 11. SIG Rascal UAV with two different onboard camerHse SIG Rascal UAVS (a)
used for cooperative path-following missions are equippéd complementary vision sensors.
The first UAV has a bank-compensated high-resolutioriMiPx camera (b), while the second
UAV has a full-motion video camera suspended on a pan-tittbgilled enclosure (c).
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Coordinated road-search trajectory generatioithis mission scenario, two SIG

Rascal UAVs cooperate to detect a target moving along a gwad. The two UAVs fly from
their standby locations (IC UAV1 and IC UAV2) in a coordindtiashion along transition paths
SO as to arrive at the starting points of the road-searctsg#thRS UAV1 and IC RS UAV2) at
the same time. Then, the two UAVs follow the road-search gathile trying to detect a target
moving along the sensor path. During the search, the UAVp@&@te and adjust their speeds to
ensure the required overlap of the field-of-view footprinfshe cameras. The plots show the
desired spatial paths for both the transition and roadebephases (a)-(b), the corresponding
desired speed profiles (c), and the separation between (@ht(s).
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Figure 14. Time-coordination during the transition phadeese plots illustrate the performance
of the coordination control algorithm during the trangitiphase of the mission. Although the
transition paths for the two UAVs have significantly diffetéengths, decentralized coordination
control laws adjust the speed profiles of the UAVs based ondooation information exchanged
over the supporting communications network. The two UAW$varat the starting point of the
road-search paths with an%-error difference.
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Figure 15. Cooperative path-following control during thead-search phase. These plots
illustrate the performance of the cooperative path-folf@yvcontrol algorithm during the road
search. During this phase of the mission, the coordinatioor® remain belowr% during the
entire duration of the road search, while the path-follgvimoss-track errors converge t@an
tube around the desired spatial paths. Cooperation enawwa&issfactory overlap of the footprints
of the fields of view of the two cameras. A target is detectedhenroad at timel 78 s. Upon
detection, the two UAVS switch to cooperative vision-basedking mode.
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Figure 16.

coordination state, rather than virtual time.
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Cooperative vision-based target tracking (CVBTUpon target detection, the
two UAVs start tracking the target by means of guidance lothz use visual information
for feedback, while simultaneously providing in-situ ineag for precise geo-location of the
point of interest. During the target-tracking phase, a doation algorithm ensures that the
two UAVs keep a predefined phase separatio ofid while “orbiting” around the target. The
coordination algorithm uses the coordination control laesaibed in this article to adjust the
orbiting speed of the UAVs, with the main difference that fifease on orbit is now used as a



"path UAV1

path UAV2

Figure 17. Time-critical cooperation in a road-search maissIn this experiment, the road-
search paths are intentionally separated by altitude atichized such that the UAV flying at

lower altitude is continuously present in the field of viewtlé camera flying at higher altitude.
A mosaic of four consecutive high-resolution images illast the progression of the lines of
sight (LOSs) connecting the two onboard cameras with thealitarget vehicle running along
the sensor path.
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(a) Automated 3D terrain extraction from 2D high-resolotidata. (Courtesy of
Urban Robotics)

(b) Near-real-time geo-referenced map obtained from hggielution data. (Cour-
tesy of 2D3)

Figure 18. High-resolution image exploitation. The use payative algorithms in missions
involving multiple UAVs can provide accessory mission autes, such as (a) 3D geo-referenced
models of the operational environment, or (b) geo-refezdnmaps obtained in near real time
from high-resolution imagery.
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Sidebar: Path-Following Control

The problem of path following can be briefly described as tfamaking a vehicle
converge to and follow a desired spatial path, while tragkandesired speed profile that may
be path-dependent. The temporal and spatial assignmentthenefore separated. Often, it is
simply required that the speed of the vehicle be kept cohgath-following control algorithms
are pervasive in many robotic applications and are key toogmeration of multiple vehicles

undergoing cooperative missions.

There is a wealth of literature on path-following algorithimmat defies a short summary.
Pioneering work in the area can be found i1}, where an elegant solution to the problem
of path-following control is presented for a wheeled robbthe kinematic level. In the setup
adopted, the kinematic model of the vehicle is derived wébpect to a Frenet-Serret frame
moving along the path, while playing the role of a virtualgetr vehicle to be tracked by the
real vehicle. The origin of the Frenet-Serret is placed atghint on the path closest to the real

vehicle.

The work in [5]1] has spurred a great deal of activity in the literature askirey the path-
following problem. A popular approach that has emerged déuhis research effort is to solve
a trajectory-tracking problem and then reparameterizerdiselting feedback controller using
an independent variable other than time. See, for exammpewbrk in [52-54] and references
therein. The approach proposed 1] is extended to unmanned aerial vehicles (UAVs) with full
account of its dynamics irtf5], where the authors address the issue of path followingrofting

trajectories and derive nonlinear path-following corlerd that satisfy a linearization property.
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Related results can be found ig€] for autonomous underwater vehicles using a backstepping
approach. A common feature of the latter papers is to rechee@ath-following problem to that

of driving the kinematic errors resolved in Frenet-Serranfe to zero. This approach ensures
that path following is essentially done by proper choiceh# vehicle’s attitude, a strategy that
is akin to that used by pilots when they fly airplanes. The sanoperty does not necessarily

hold in the case of the strategies that emerge out of the wofki-54).

The setup used ind1] is reformulated in £7], leading to a feedback control law that
steers the dynamic model of a wheeled robot along a desirtdgpal overcomes some of the
constraints present irs[l]. The key to this algorithm is to explicitly control the ratéprogression
of the virtual target along the path. This effectively cesaan extra degree of freedom that can be
exploited to avoid the singularities that occur when théagise to the path is not well defined —
this occurs for example when the vehicle is located exattlg@center of curvature of a circular
path. Related strategies were exploited in the worksaf 59 on output maneuvering and also
in the work of [51(. The path-following algorithm described in this articke an extension of

the algorithm presented ir5] to the case of 3D spatial paths.

Other path-following methods have been presented in teetiire that depart from the
ideas and concepts of the algorithms described aboves1f,[lateral acceleration commands
are used to make a UAV converge to and follow planar curvedsp# nonlinear path-following
method that generates acceleration commands to steer aonalo vehicle towards a given 3D
path is presented irc[L]. Path-following algorithms based on the concept of vetigdds can be
found in [S13 S14. Finally, the work reported in§15 S14 presents an elegant approach to path

following that uses Lagrange multipliers to derive pathei@ing control laws for mechanical
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systems subject to both holonomic and nonholonomic cansira
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