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Worldwide, there has been growing interest in the use of autonomous vehicles to execute

missions of increasing complexity without constant supervision of human operators. A key

enabling element for the execution of such missions is the availability of advanced systems

for motion control of autonomous vehicles. Usually, the problems of motion control for a

single autonomous vehicle are roughly classified into threegroups. Namely,point stabilization,

where the goal is to stabilize a vehicle about a given target point with a desired orientation;

trajectory tracking, where the vehicle is required to track a time parameterizedreference; andpath

following, where the objective is to make the vehicle converge to and follow a desired geometric

path, without an explicit timing law assigned to it. Currentresearch goes well beyond single

vehicle control. In fact, challenging mission scenarios and the advent of powerful embedded

systems, sensors, and communications networks have spawned widespread interest in the problem

of cooperative motion control of multiple autonomous vehicles.
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The types of applications considered are numerous and include aircraft and spacecraft

formation control [1–13], coordinated control of land robots [14–17], control of multiple surface

and underwater vehicles [18–22], and networked control of robotic systems [23–29].

In aerospace, for instance, unmanned systems have become ubiquitous in both military

and civilian applications. Today, for example, in a given constrained airspace volume, unmanned

air vehicles (UAVs) must execute military reconnaissance and strike operations, border patrol

missions, forest fire detection, police surveillance, and recovery operations, to name a few. Repre-

sentative applications include sequential auto-landing and coordinated ground-target suppression

using multiple UAVs. The first application refers to the situation in which a fleet of UAVs

must break up and arrive at the assigned glideslope separated by prespecified safe-guarding time

intervals. For the case of ground-target suppression, a formation of UAVs must also break up

and execute a coordinated maneuver to arrive at a predefined position over the target at the

same time. In both cases, only relative –rather than absolute– temporal constraints are specified

a priori, a critical point that needs to be emphasized. Furthermore,the vehicles must execute

maneuvers in close proximity to each other. Thus, the key requirement is that all maneuvers

must be collision-free. In addition, as pointed out in [30, 31], the flow of information among

vehicles may be severely restricted, either for security reasons or because of tight bandwidth

limitations. It is natural, under these circumstances, that no vehicle is able to communicate with

the entire formation; furthermore, the amount of information that can be exchanged may be

severely limited. It is therefore imperative to develop cooperative motion control strategies that

can yield robust performance in the presence of time-varying communications networks arising

from temporary loss of communication links and switching communication topologies.
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Decoupling Space and Time

Motivated by the multi-vehicle mission scenarios mentioned above, in this article we

present a solution to the problem of cooperative control of multiple heterogeneous autonomous

vehicles that must operate under strict spatial and temporal constraints, while ensuring collision-

free maneuvers. The theoretical framework adopted borrowsfrom various disciplines, and

integrates algorithms for trajectory generation, path following, time-critical coordination, and

L1 adaptive control theory for fast and robust adaptation. Together, these techniques yield

a control architecture that allows meeting strict performance requirements in the presence of

complex vehicle dynamics, communication constraints, andpartial vehicle failures.

The methodology developed, which is based on the key idea ofdecoupling space and

time in the problem formulation, can be summarized in three basicsteps. First, given a multiple

vehicle mission, a set of feasible spatial paths together with a set of feasible speed profiles is

generated for all the vehicles involved in the mission. Thisstep relies on optimization methods

that take explicitly into account initial and final boundaryconditions, a general performance

criterion to be optimized, simplified vehicle dynamics, andsafety rules for collision avoidance.

At this stage, the decoupling of spatial and temporal assignments in path generation ensures that

the computational complexity of the trajectory-generation algorithm increases only linearly with

the number of vehicles. This feature is critical for real-time implementation of the trajectory-

generation algorithm. The second step consists of making each vehicle follow its assigned path,

regardless of what the desired speed profile is, as long as thelatter is physically feasible. This

approach also takes advantage of the separation in space andtime introduced during trajectory

generation, and leaves the speed profile of the vehicle as an extra degree of freedom to be
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modified at the time-coordination level. In this sense, the path-following approach adopted is in

contrast to trajectory tracking, for which it is proven in [32] that, in the presence of unstable

zero dynamics, there exist fundamental performance limitations that cannot be overcome by

any controller structure. Finally, in the third step, the speed profile of each vehicle is adjusted

about its desired speed profile obtained from the trajectory-generation algorithm, to enforce the

temporal constraints that must be met in real time to coordinate the entire fleet of vehicles. This

last step relies on the underlying time-varying communications network as a means to exchange

information among the vehicles.

Another key feature of the framework presented in this article is that it exhibits a multiloop

control structure in which an inner-loop controller stabilizes the vehicle dynamics, while a

guidance outer-loop controller is designed to control the vehicle kinematics, providing path-

following and time-coordination capabilities. To make these ideas more precise, we notice that a

typical autonomous vehicle can be modeled as a cascade system consisting of the kinematic and

dynamic equations of the vehicle. Following standard notation, the kinematicsGe of the vehicle

can be represented as

ẋ(t) = f(x(t)) + g(x(t))y(t) , (1)

where x(t) denotes the kinematic state of the vehicle, which usually includes the vehicle’s

position and attitude,y(t) represents the vector of variables driving the vehicle kinematics, such

as vehicle angular and linear velocities, andf(·) and g(·) are known nonlinear functions. The

dynamicsGp of the vehicle can be expressed as

ż(t) = h(z(t), u(t), t) , (2)

y(t) = ho(z(t), u(t), t) , (3)
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wherez(t) denotes the dynamic state of the vehicle,u(t) represents the control signal that drives

the vehicle dynamics, andh(·) and ho(·) are partially known nonlinear functions. The model

adopted is sufficiently general to capture six-degree-of-freedom dynamics, together with plant

uncertainty. In the cooperative control algorithms presented in this article, the path-following and

time-critical coordination control laws are derived at thekinematic level for the systemGe in (1)

and are viewed as guidance outer-loop controllers providing reference commands to an inner-

loop controller. The latter is designed to stabilize the dynamics Gp in (2)-(3) and to ensure

that the vehicle tracks the outer-loop commands. This inner-outer loop approach simplifies

the design process and affords the designer a systematic approach to seamlessly tailor the

algorithms for a very general class of vehicles that come equipped with inner-loop commercial

autopilots. Moreover, in order to meet strict performance requirements in the presence of

modeling uncertainty and significant environmental disturbances, the framework relies on the

design ofL1 adaptive control loops to augment the inner-loop controller. In fact, employing

L1 adaptation allows us to make fairly general assumptions on the vehicle dynamics.

In this article, tools from real-time optimization, Lyapunov-based stability analysis, robust

control, graph theory, andL1 adaptation are brought together for the development of cooperative

control algorithms yielding robust performance of a fleet ofautonomous vehicles executing

various time-critical cooperative missions. In particular, since typical autopilots are normally

designed to provide only guidance loops for waypoint navigation, the framework described in this

article broadens the range of possible applications and mission scenarios of autonomous vehicles.

The conceptual architecture of the complete solution is shown in Figure1. In the subsequent

sections, we describe each of the functional blocks in the figure. We start by formulating the

problem of generation of feasible collision-free trajectories, and refer to specific techniques for
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real-time implementation of trajectory-generation algorithms. Next, we present a nonlinear path-

following controller, derived at the kinematic level, thatensures that each vehicle follows its

desired path independently of its temporal assignments. Afterwards, we describe a strategy for

time-coordinated control of multiple vehicles that relieson the adjustment of the speed profile

of each vehicle. Then, in order to enhance the safety and success of the time-critical cooperative

mission, we consider the implementation ofL1 adaptive architectures so as to ensure consistent

performance in the event of failures, vehicle damage, or in the presence of adverse environmental

disturbances. Finally, we present experimental results ofa cooperative road-search mission that

exploits the multi-vehicle cooperative control frameworkdiscussed in this article.

Cooperative Trajectory Generation for Multiple Autonomous Vehicles

Real-time trajectory generation that explicitly accountsfor given boundary conditions

and vehicle dynamic constraints is a critical requirement for the autonomous vehicles engaged

in executing the missions described in the introduction of this article. Surveys on trajectory-

planning algorithms can be found in [33, 34]. Next, we formulate and describe a solution to the

problem of cooperative trajectory generation to compute feasible spatial paths and speed profiles

for multiple autonomous vehicles that satisfy collision-avoidance constraints.

For the cooperative missions of interest involvingn vehicles, the cooperative

trajectory-generation problemcan be formulated as finding a set ofn 3D time trajecto-

ries Φd,i(td) : R → R
3, conveniently parameterized by a single time variabletd ∈ [0, t∗d], that

together minimize a cost functionJ(·), satisfy desired boundary conditions, do not violate the

dynamic constraints of each vehicle, and ensure that the vehicles maintain a predefined spatial
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clearance. In this formulation, the variabletd represents adesired mission time, which is used

during the trajectory-generation phase and is distinct from the actual mission time that evolves as

the mission unfolds, whilet∗d is thedesired mission duration. For a giventd, Φd,i(td) defines thus

the desired position of theith UAV td seconds after the initiation of the cooperative mission.

From these time trajectories,spatial pathspd,i(τℓ,i) : R → R
3 and the correspondingdesired

speed profilesvd,i(td) : R → R can be easily derived for all the UAVs. For convenience, we

parameterize each spatial path by its path lengthτℓ,i ∈ [0, ℓfi], whereℓfi denotes the total length

of the ith path, whereas the desired speed profiles are parameterized by the desired mission

time td.

Feasible trajectory generation for a single vehicle

Before formulating the cooperative trajectory-generation problem for multiple vehicles,

we first address the problem of generating a feasible trajectory for a single vehicle. We start

by considering a desired spatial path to be followed by theith vehicle and characterized by the

three-dimensional curvepd,i(τℓ,i), conveniently parameterized by its path lengthτℓ,i ∈ [0, ℓfi]. A

desired speed profilevd,i(td) can then be generated by relating the path lengthτℓ,i to mission

time td through a dynamic relation of the formdτℓ,i
dtd

= θi(τℓ,i), whereθi(·) is a positive function,

smooth in its argument. The mission timetd can thus be computed from the path lengthτℓ,i as

td =

τℓ,i
∫

0

1

θi(στ )
dστ .

This notation allows us to express the vehicle’s speed and acceleration as well as the

curvature of the path, its torsion, and the flight path angle in terms ofpd,i(τℓ,i) and its first,

second, and third partial derivatives with respect toτℓ,i, denoted byp′d,i(τℓ,i), p′′d,i(τℓ,i), and
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p′′′d,i(τℓ,i) respectively, as

vd,i(td(τℓ,i)) = ‖p′d,i(τℓ,i)‖ θi(τℓ,i) ,

ad,i(td(τℓ,i)) = ‖p′′d,i(τℓ,i)θi(τℓ,i) + p′d,i(τℓ,i)θ
′
i(τℓ,i)‖ θi(τℓ,i) ,

κd,i(τℓ,i) =
‖p′d,i(τℓ,i)×p′′d,i(τℓ,i)‖

‖p′d,i(τℓ,i)‖
3

,

τd,i(τℓ,i) =

(

p′d,i(τℓ,i)×p′′d,i(τℓ,i)
)

· p′′′d,i(τℓ,i)

‖p′d,i(τℓ,i)×p′′d,i(τℓ,i)‖
,

γd,i(τℓ,i) = arctan







p′d,i(τℓ,i)·~eI3
(

(

p′d,i(τℓ,i)·~eI1
)2

+
(

p′d,i(τℓ,i)·~eI2
)2
)

1

2






,

where the orthonormal vectors{~eI1 , ~eI2 , ~eI3} characterize an inertial reference frameI. The unit

vectors~eI1 and~eI2 lie in the horizontal plane, while the unit vector~eI3 points up vertically in

the opposite direction of gravity. Moreover, the desired mission durationt∗d can be written as

t∗d =

ℓfi
∫

0

1

θi(τℓ,i)
dτℓ,i .

With the above formulation, we define afeasible trajectoryas the one that satisfies maxi-

mum curvature, torsion, and flight-path-angle bounds, and it can be followed by a vehicle without

having it exceed prespecified bounds on the vehicle speedvd,i(td) and accelerationad,i(td).

Letting vmin, vmax, amax, κmax, τmax, γmin, andγmax denote predefined bounds on the vehicle’s

velocity, acceleration, path curvature, torsion, and flight path angle, the trajectoryΦd,i(td) is said

to be feasible if the conditions

0 < vmin ≤ vd,i(td(τℓ,i)) ≤ vmax , |ad,i(td(τℓ,i))| ≤ amax , (4)

|κd,i(τℓ,i)| ≤ κmax , |τd,i(τℓ,i)| ≤ τmax , γmin ≤ γd,i(τℓ,i) ≤ γmax , (5)

are met for allτℓ,i ∈ [0, ℓfi].
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A feasible trajectory for theith vehicle can thus be obtained by solving, for example,

the optimization problem

min
Ξi

J(·)

subject to initial and final boundary conditions as well as the feasibility conditions in (4)-(5). In

the problem above,J(·) is a given cost function, andΞi represents the vector of optimization

parameters for theith vehicle, which might include the total path lengthℓfi, a set of parameters

characterizing the curvepd,i(·), and a set of parameters characterizing the timing functionθi(·).

In the trajectory-generation problem above, the cost function J(·) may include terms related to

mission-specific goals, while additional constraints can also be added to account for vehicle-to-

ground communications limitations, sensory capabilities, and collision avoidance with obstacles.

Real-time collision-free trajectory generation for multiple vehicles

We now formulate the problem of cooperative trajectory generation for multiple vehicles.

In particular, the time-critical missions described in this article require that each vehicle follow

a collision-free trajectory, and that all vehicles arrive at their respective destinations at the

same time, or at different times so as to meet a desired inter-vehicle schedule. Without loss of

generality, we consider the problem of simultaneous arrival. For these missions, the generation of

collision-free trajectories can be addressed using two complementary approaches. The first one,

referred to ascollision avoidance in space, ensures that no feasible paths intersect. Alternatively,

the second approach –collision avoidance in time– implies that no two vehicles are at the same

place at the same time. The first approach may be particularlyuseful in military applications,

where jamming prevents vehicles from communicating with each other, and is preferable to the
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current practice of separating vehicles by altitude. On theother hand, the second approach relies

heavily on inter-vehicle communications to properly coordinate the vehicle motions and is thus a

function of the quality of service (QoS) of the underlying network. Formally, these two strategies

lead to two alternative constraints. For collision avoidance in space, the paths for then vehicles

need to satisfy the constraint

min
j,k=1,...,n,j 6=k

‖pd,j(τℓ,j)− pd,k(τℓ,k)‖
2 ≥ E2 for all (τℓ,j , τℓ,k) ∈ [0, ℓfj]× [0, ℓfk] ,

whereas, for collision avoidance in time, the paths and speed profiles need to verify that

min
j,k=1,...,n,j 6=k

‖pd,j(τℓ,j(td))− pd,k(τℓ,k(td))‖
2 ≥ E2 for all td ∈ [0, t∗d] ,

whereE is the distance for spatial clearance. See Figures2 and 3 for the illustration of these

two approaches.

In addition to collision avoidance, the simultaneous time-of-arrival requirement adds an

additional constraint on trajectory-generation problem.Let δt∗d,i , [t∗dmin,i, t
∗
dmax,i] be thearrival-

time windowfor the ith vehicle, wheret∗dmin,i and t∗dmax,i represent the minimal and maximal

possible durations of the mission for theith vehicle, defined as

t∗dmin,i ,
ℓfi

vmax

, t∗dmax,i ,
ℓfi

vmin

.

Then, the simultaneous arrival problem has a solution if andonly if the intersection of the

arrival-time windows is nonempty, that is,δt∗d,i ∩ δt∗d,j 6= 0 for all i, j ∈ {1, . . . , n}, i 6= j. In

particular, if we define thearrival margin δT ∗ as

δT ∗ , min
i

t∗dmax,i −max
i

t∗dmin,i ,

then non-emptiness of the intersection of arrival-time windows is implied by enforcing a positive

arrival margin; see Figure4. Moreover, enlarging the arrival margin adds robustness tothe mission
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operation at the coordination level.

Then, lettingT ∗
d be a predefined upper bound on the final time for the mission to

be completed, and defining a cost functionJ(·) to be minimized, the cooperativetrajectory-

generation problemcan be formulated as two alternative optimization problems. The first

optimization problem addresses collision avoidance in space and is formulated as follows:

min
Ξ1×···×Ξn

J(·) (6)

subject to initial and final boundary conditions and the feasibility conditions in (4)-(5) for all

vehiclesi ∈ {1, . . . , n}, as well as the constraints

min
j,k=1,...,n,j 6=k

‖pd,j(τℓ,j)− pd,k(τℓ,k)‖
2 ≥ E2 for all (τℓ,j , τℓ,k) ∈ [0, ℓfj]× [0, ℓfk] ,

δT ∗ ≥ δT ∗
0 > 0 ,

t∗d =

ℓfj
∫

0

1

θj(τℓ,j)
dτℓ,j =

ℓfk
∫

0

1

θi(τℓ,k)
dτℓ,k , for all j, k = 1, . . . , n , j 6= k ,

t∗d ≤ T ∗
d ,

where Ξi is the set of optimization parameters for theith vehicle including the total path

length ℓfi, the set of parameters characterizing the curvepd,i(·), and the set of parameters

characterizing the timing functionθi(·). In the above,E is the minimal allowable separation

distance between the paths, which must be selected based on the prespecified path-following

controller performance. Finally,δT ∗ ≥ δT ∗
0 > 0 imposes a bounded away from zero arrival

margin requirement.

The second optimization problem accounts for the collisionavoidance in time and is
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posed as:

min
Ξ1×···×Ξn

J(·) (7)

subject to initial and final boundary conditions and the feasibility conditions in (4)-(5) for all

vehiclesi ∈ {1, . . . , n}, as well as the constraints

min
j,k=1,...,n,j 6=k

‖pd,j(τℓ,j(td))− pd,k(τℓ,k(td))‖
2 ≥ E2 for all td ∈ [0, t∗d] ,

δT ∗ ≥ δT ∗
0 > 0 ,

t∗d =

ℓfj
∫

0

1

θj(τℓ,j)
dτℓ,j =

ℓfk
∫

0

1

θi(τℓ,k)
dτℓ,k , for all j, k = 1, . . . , n , j 6= k ,

t∗d ≤ T ∗
d ,

where Ξi is the set of optimization parameters for theith vehicle including the total path

length ℓfi, the set of parameters characterizing the curvepd,i(·), and the set of parameters

characterizing the timing functionθi(·). In the above,E represents again the minimal allowable

separation distance between the paths, which in this case isto be selected based not only on

the prespecified path-following controller performance, but also of the coordination controller

performance, and the QoS of the communications network, characterized later in the article.

In the cooperative trajectory-generation problems above,the cost functionJ(·) includes

terms related to mission-specific goals and cooperative performance criteria, while additional

constraints can also be added to account, for instance, for inter-vehicle and vehicle-to-ground

communications limitations, sensory capabilities, and collision avoidance with obstacles. The

formulation of these problems can also address the problem of mission planning and task

allocation under resource constraints; see [35, 36] and references therein.
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The optimization problems (6) and (7) are in general complex, and may be NP hard and

nonconvex. Nevertheless, these problems can in principle be tackled using methods that include

multiple shooting [37, 38], pseudospectral Legendre methods [39, 40], the nonlinear trajectory

generation method[41, 42], randomized techniques such as rapidly-exploring randomtrees [43,

44] and probabilistic roadmap algorithms [45], thedirect method for rapid trajectory prototyping

in [46], the generalized Benders decomposition [47], branch and bound approaches [48], outer

approximations [49], and the generalized cross decomposition [50], to name a few.

The outcome of the optimization problems (6) and (7) is a set ofn feasible spatial

pathspd,i(τℓ,i) and corresponding desired speed profilesvd,i(td) such that, if each agent follows

its assigned path and speed profile, the time-critical mission is expected to be executed in the

ideal case. However, the presence of disturbances, modeling uncertainty, and failures in the

communications network, require the synthesis of robust feedback laws to ensure that the mission

can be accomplished with a high degree of confidence. In the remaining sections of this article,

we present a general framework to synthesize path-following and coordination control laws that

can address the performance of the overall time-critical mission in the presence of uncertainty

and a faulty time-varying communications network.

3D Path Following for a Single Vehicle

In this section, we describe an outer-loop 3D path-following control algorithm that

ensures, at a kinematic level, that theith vehicle converges to and follows the pathpd,i(·)

for an arbitrary speed profile, subjected only to feasibility conditions. In particular, the path-

following algorithm described in this article relies on theinsight that a vehicle can follow a

13



given path using only its attitude, thus leaving its speed asan extra degree of freedom to be

used at the coordination level. The key idea of the algorithmis to use the vehicle’s attitude

control effectors to follow avirtual target vehiclerunning along the path. To this effect, we

introduce a frame attached to this virtual target and define ageneralized error vector between

this moving coordinate system and a frame attached to the actual vehicle. With this setup, the

path-following control problem is reduced to driving this generalized error vector to zero by using

only vehicle’s attitude control effectors, while following an arbitrary feasible speed profile. This

approach, which is presented in this article for the case of 3D spatial paths, is motivated by the

work on 2D path-following control reported in [51]. A brief overview of different approaches

used for the derivation of path-following algorithms can befound in “Path-Following Control”.

Next, we characterize the dynamics of the kinematic errors between theith vehicle and

its virtual target, and present an outer-loop 3D path-following control algorithm that solves the

path-following problem at the kinematic level. In the description below, the notation{v}F is used

to denote the vectorv resolved in frameF ; {~e}F represents the versor~e resolved in frameF ;

ωF1/F2 denotes the angular velocity of frameF1 with respect to frameF2; the rotation matrix

from frameF1 to frameF2 is represented byRF2

F1
; and v̇ ]F indicates that the time-derivative of

vectorv is taken in frameF . For notational simplicity, we drop the subscripti used to denote

a particular vehicle.

Following a virtual target vehicle

Figure 5 captures the geometry of the problem at hand. Letpd(·) be the desired path

assigned to one of the UAVs, and letℓf be its total length. LetI denote an inertial reference
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frame {~eI1 , ~eI2 , ~eI3}, and letpI(t) be the position of the center of massQ of the UAV in this

inertial frame. Further, letP be an arbitrary point on the desired path that plays the role of

the virtual target, and letpd(ℓ) denote its position in the inertial frame. Hereℓ ∈ [0, ℓf ] is a

free length variable that defines the position of the virtualtarget vehicle along the path. In the

setup adopted, the total rate of progression of the virtual target along the path is an extra design

parameter. This approach is in striking contrast with the strategy used in the path-following

algorithm introduced in [52], whereP is defined as the point on the path that is closest to the

vehicle. Endowing the pointP with an extra degree of freedom is the key to the path-following

algorithm presented in [51] and its extension to the 3D case described in this article.

For our purposes, it is convenient to define aparallel transport frameF [53, 54] attached

to the pointP on the path and characterized by the orthonormal vectors{~t(ℓ), ~n1(ℓ), ~n2(ℓ)}. The

vectors{~t, ~n1, ~n2} define an orthonormal basis forF , in which the unit vector~t(ℓ) defines the

tangent direction to the path at the point determined byℓ, while ~n1(ℓ) and ~n2(ℓ) define the

normal plane perpendicular to~t(ℓ). Moreover, letpF (t) be the position of the vehicle’s center

of massQ in the parallel transport frame, and letxF (t), yF (t), andzF (t) be the components of

the vectorpF (t) with respect to the basis{~t, ~n1, ~n2}.

Let W denote a vehicle-carriedvelocity frame{~w1, ~w2, ~w3} with its origin at the UAV

center of massQ and itsx-axis aligned with the velocity vector of the UAV. Thez-axis is chosen

to lie in the plane of symmetry of the UAV, and they-axis is determined by completing the right-

hand system. In this article,q(t) andr(t) are they-axis andz-axis components, respectively, of

the vehicle’s rotational velocity resolved in theW frame. With a slight abuse of notation,q(t)

andr(t) are referred to aspitch rateandyaw rate, respectively, in theW frame.
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We also introduce an auxiliary frameD {~b1D ,~b2D ,~b3D}, which is used to shape the

approach attitude to the path as a function of the “cross-track” error componentsyF and zF .

The frameD has its origin at the UAV center of mass and the vectors~b1D(t), ~b2D(t), and~b3D(t)

are defined as

~b1D ,
d~t− yF ~n1 − zF ~n2

(d2 + y2F + z2F )
1

2

, ~b2D ,
yF ~t + d~n1

(d2 + y2F )
1

2

, ~b3D , ~b1D ×~b2D , (8)

with d > 0 being a constant characterizing distance. The basis vector~b1D(t) defines the desired

direction of the UAV’s velocity vector. As illustrated in Figure6, when the vehicle is far from

the desired path, the vector~b1D(t) becomes perpendicular to~t(ℓ). As the vehicle comes closer

to the path and the cross-track error becomes smaller, then~b1D(t) tends to~t(ℓ).

Finally, let R̃(t) be the rotation matrix fromW to D, that is,

R̃ , RD
W = RD

F RF
W = (RF

D)
⊤RF

W ,

and define the real-valued error function

Ψ(R̃) ,
1

2
tr
[

(

I3 −Π⊤
RΠR

)

(

I3 − R̃
)]

, (9)

whereΠR is defined asΠR ,









0 1 0

0 0 1









. The functionΨ(R̃) in (9) can be expressed in terms

of the entries ofR̃(t) as

Ψ(R̃) =
1

2

(

1− R̃11

)

,

whereR̃11(t) denotes the(1, 1) entry ofR̃(t). Therefore,Ψ(R̃) is positive-definite about̃R11 = 1.

We note thatR̃11 = 1 corresponds to the situation where the velocity vector of the UAV is aligned

with the basis vector~b1D(t), which defines the desired attitude of the UAV.
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With the above notation, as shown in [55], the path-following kinematic-error dynamicsGe

between the vehicle and its virtual target vehicle can be written as

ṗF ]F = − ℓ̇~t − ωF/I × pF + v ~w1 , (10)

Ψ̇(R̃) = eR̃ ·

















q

r









− ΠRR̃
⊤
(

RD
F {ωF/I}F + {ωD/F}D

)









, (11)

where · ]F is used to indicate that the derivative is taken in the parallel transport frame,v(t)

denotes the magnitude of the UAV’s ground velocity vector, and eR̃(t) is the attitude kinematic

error vector defined as

eR̃ ,
1

2
ΠR

(

(

I3 −Π⊤
RΠR

)

R̃− R̃⊤
(

I3 − Π⊤
RΠR

)

)∨

,

where(·)∨ : SO(3) → R
3 denotes thevee map[56]. In the kinematic-error model (10)-(11), q(t)

andr(t) play the role of control inputs, while the rate of progression ℓ̇(t) of the pointP along

the path becomes an extra variable that can be manipulated atwill. At this point, it is convenient

to formally define the path-following generalized error vector xpf(t) as

xpf ,

[

p⊤F , e⊤
R̃

]⊤

.

Notice that, within the region whereΨ(R̃) < 1, if xpf = 0, then both the path-following position

error and the path-following attitude error are equal to zero, that is,pF = 0 and R̃11 = 0.

Path-following control law

Using the above formulation, and given a feasible spatiallydefined pathpd(·), we define

the path-following problemas that of determining feedback control laws forq(t), r(t), and

ℓ̇(t) such that all closed-loop signals are bounded and the path-following generalized error
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vector xpf(t) converges to a neighborhood of the origin, regardless of what the temporal

assignment of the mission is –as long as it is physically feasible.

To solve the path-following problem described above, we first let the rate of progression

of point P along the path be governed by

ℓ̇ = (v ~w1 +KℓpF ) · ~t , (12)

whereKℓ is a positive constant gain. Then, the rate commandsqc(t) andrc(t) given by








qc

rc









, ΠRR̃
⊤
(

RD
F {ωF/I}F + {ωD/F}D

)

− 2KR̃eR̃ , (13)

whereKR̃ is also a positive gain, drive the path-following generalized error vectorxpf(t) to

zero with a guaranteed rate of convergence. More precisely,it can be shown that, if the speed

of the vehicle satisfies0 < vmin ≤ v(t) ≤ vmax, then the origin of the kinematic error equations

in (10)-(11) with the controllersqc(t) andrc(t) defined in (13) is locally exponentially stable. A

formal statement of this result can be found in [57], while a detailed proof is provided in [55].

The path-following control law above relies on the use of theSpecial Orthogonal

group SO(3) in the formulation of the attitude control problem. This formulation avoids the

geometric singularities and complexities that appear whendealing with local parameterizations

of the vehicles attitude, and leads thus to a singularity-free path-following control law.

Also, we note that the choice of the characterizing distanced in the definition of the

auxiliary frameD can be used to adjust the rate of convergence for the path-following closed-

loop system. A large parameterd reduces the penalty for cross-track position errors, whichresults

in a slow rate of convergence of the UAV to the path. On the other hand, small values ofd

allow for a high rate of convergence, which however might result in oscillatory path-following

18



behavior. Figure7 illustrates this point. Further insights into this path-following control algorithm

can be found in [57].

The solution to the path-following problem for theith vehicle presented above is

independent of the desired speed profilevd,i(·), and uses only local measurements for feedback.

The path-following control lawsqc(t) andrc(t) represent outer-loop guidance commands that are

to be tracked by the vehicle to ensure the safety and success of the cooperative mission. In this

sense, this solution for path-following control departs from standard backstepping techniques in

that the final path-following control law makes explicit useof the existing autopilot and retains

its stabilizing properties and tracking capabilities.

Time-Critical Cooperative Path Following for Multiple Vehicles

The previous section presents a control algorithm that solves the path-following problem

for a single vehicle and an arbitrary speed profile by using a control strategy in which the vehicle’s

attitude control effectors are used to follow a virtual target running along the path. We now

address the problem of time-critical cooperative path-following control of multiple vehicles. For

this purpose, the speeds of the vehicles are adjusted based on coordination information exchanged

among the vehicles over a time-varying network. In particular, the outer-loop coordination control

law is intended to provide a correction to the desired speed profile vd,i(·) obtained in the

trajectory-generation step, and to generate a total speed commandvc,i(t). This speed command

is then to be tracked by theith vehicle to achieve coordination in time.

To solve this coordination problem, we first formulate it as aconsensus problem, in which

the objective of the fleet of vehicles is to reach an agreementon some distributed variables of
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interest. An overview of consensus algorithms and their application to cooperative control of

networked multi-agent systems can be found in [58].

Limited communication among vehicles

To enforce the temporal constraints that must be met in real time to coordinate the entire

fleet of vehicles, an appropriate coordination variable needs to be defined for each vehicle that

captures the objective of the cooperative mission, in our case, simultaneous arrival of all the

vehicles at their final destinations.

For this purpose, we start by definingℓ′d,i(td) as the desired normalized curvilinear

abscissa of theith UAV along its corresponding path at the desired mission time td, which

is given by

ℓ′d,i(td) ,
1

ℓfi

td
∫

0

vd,i(σt) dσt , (14)

with ℓfi and vd,i(·) being, respectively, the length of the path and the desired speed profile

corresponding to theith UAV. The trajectory-generation algorithm ensures that the desired speed

profilesvd,i(·) satisfy the feasibility conditions

0 < vmin ≤ vd,i(·) ≤ vmax , i = 1, . . . , n . (15)

Hence, from the definition ofℓ′d,i(td) and the bounds in (15), it follows that ℓ′d,i(td) is a strictly

increasing continuous function oftd mapping [0, t∗d] into [0, 1], and satisfyingℓ′d,i(0) = 0 and

ℓ′d,i(t
∗
d) = 1. We also defineηi : [0, 1] → [0, t∗d] to be the inverse function ofℓ′d,i(td), td ∈ [0, t∗d].

Clearly,ηi(·) is also a strictly increasing continuous function of its argument. Then, lettingℓ′i(t)

be the normalized curvilinear abscissa at timet of the ith virtual target vehicle running along
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its path, defined as

ℓ′i(t) ,
ℓi(t)

ℓfi
,

we define the time-dependent variables

ξi(t) , ηi(ℓ
′
i(t)) , i = 1, . . . , n . (16)

From this definition, it follows thatξ(t) ∈ [0, t∗d], and therefore this variable can be seen as a

virtual time that characterizes the status of the mission for theith UAV at time t in terms of the

desired mission timetd.

We note that, for any two vehiclesi and j, if ξi(t) = ξj(t) = t′d at a given timet, then

ℓ′i(t) = ℓ′d,i(t
′
d) andℓ′j(t) = ℓ′d,j(t

′
d), which implies that at timet the target vehicles corresponding

to UAVs i andj have the desired relative position along the path at the desired mission timet′d.

Clearly, if ξi(t) = ξj(t) for all t ≥ 0, then theith and jth virtual target vehicles maintain the

desired relative position along the path at all times and, inparticular, these two target vehicles

arrive at their final destinations at the same time, which does not necessarily correspond to the

desired mission durationt∗d. Also, in the case of collision avoidance in time, ifξi(t) = ξj(t) for

all t ≥ 0, then the solution to the path-generation problem ensures that the virtual targetsi andj

do not collide. Moreover, if theith virtual target travels at the desired speed for all times in

the interval[0, t], that is, ℓ̇i(τ) = vd,i(τ) for all τ ∈ [0, t], then we have thatℓi(τ) = ℓd,i(τ) for

all τ ∈ [0, t], which implies thatξi(τ) = τ (or equivalently, thatξ̇i(τ) = 1) for all τ ∈ [0, t].

This set of properties makes the variablesξi(t) an appropriate metric for vehicle coordination,

and therefore we refer to them ascoordination states. We notice that the use of these specific

coordination variables is motivated by the work in [59].

To meet the desired temporal assignments of the cooperativemission, the coordination
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states are to be exchanged among the UAVs over the supportingcommunications network. Next,

we use tools and facts fromalgebraic graph theoryto model the information exchange over the

time-varying network as well as the constraints imposed by the communication topology. Key

concepts and details on algebraic graph theory can be found in [60].

First, in order to account for the communication constraints imposed by the inter-vehicle

network, we assume that theith UAV can only exchange information with a neighboring set of

vehicles, denoted here byGi. We also assume that the communication between two UAVs is

bidirectional and that the information is transmitted continuously with no delays. Moreover, since

the flow of information among vehicles may be severely restricted, either for security reasons or

because of tight bandwidth limitations, we impose the constraint that each vehicle only exchanges

its coordination stateξi(t) with its neighbors. Finally, we assume that the connectivity of the

communications graphΓ(t) that captures the underlying bidirectional communications network

topology of the fleet at timet satisfies the persistency of excitation (PE)-like condition

1

n

1

T

t+T
∫

t

QL(τ)Q⊤dτ ≥ µ In−1 , for all t ≥ 0 , (17)

whereL(t) is the Laplacian of the graphΓ(t), andQ is an(n−1)×n matrix such thatQ1n = 0

andQQ⊤ = In−1, with 1n being the vector inRn whose components are all1. The parameters

T, µ > 0 characterize the QoS of the communications network, which in the context of this

article represents a measure of the level of connectivity ofthe communications graph.

The PE-like condition (17) requires only the communications graphΓ(t) to be connected

in an integral sense, not pointwise in time. In fact, the graph may be disconnected during some

interval of time or may even fail to be connected for the entire duration of the mission. Similar

type of conditions can be found, for example, in [61] and [62].
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Coordination control law

Using the above formulation, and given a fleet ofn vehicles supported by an inter-vehicle

communications network and a set of desired 3D time trajectoriesΦd,i(td), the problem oftime-

critical cooperative path followingcan be formulated as that of designing feedback control laws

for pitch rateq(t), yaw rater(t), and speedv(t) such that all closed-loop signals are bounded,

for each vehiclei, i ∈ {1, . . . , n}, the path-following generalized error vectorxpf,i(t) converges

to a neighborhood of the origin, and for each pair of vehiclesi and j, i, j ∈ {1 . . . , n}, the

coordination error|ξi(t)− ξj(t)| converges to a neighborhood of the origin, guaranteeing quasi-

simultaneous time of arrival and ensuring collision-free maneuvers.

We start by noting that the evolution of theith coordination state is given by [55]

ξ̇i(t) =
ℓ̇i(t)

vd,i(ξi(t))
.

Recalling from the solution to the path-following problem that the evolution of theith virtual

target vehicle along the path is given by

ℓ̇i = (vi ~w1,i +Kℓ pF,i) · ~ti ,

where for simplicity we keepKℓ without indexing and drop the dependency of the various

variables ont, the dynamics of theith coordination state can be rewritten as

ξ̇i =
(vi ~w1,i +Kℓ pF,i) · ~ti

vd,i(ξi)
. (18)

Then, to solve the time-coordination problem, we use dynamic inversion and define the speed

command for theith vehicle as

vc,i ,
ucoord,i vd,i(ξi)−Kℓ pF,i · ~ti

~w1,i · ~ti
, (19)
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whereucoord,i(t) is a coordination control law, yet to be defined. With this speed command, the

partially closed-loop coordination dynamics for theith target vehicle can be rewritten as

ξ̇i = ucoord,i +
ev,i

vd,i(ξi)
~w1,i · ~ti , (20)

whereev,i(t) , vi(t)− vc,i(t) denotes the velocity tracking error for theith vehicle.

Recall now that each vehicle is allowed to exchange only its coordination parameterξi(t)

with its neighborsGi, which are defined by the possibly time-varying communications topology.

To observe this constraint, we propose the decentralized coordination law

ucoord,1(t) = −a
∑

j∈G1

(ξ1(t)− ξj(t)) + 1 , (21)

ucoord,i(t) = −a
∑

j∈Gi

(ξi(t)− ξj(t)) + χI,i(t) , i = 2, . . . , n , (22)

χ̇I,i(t) = −b
∑

j∈Gi

(ξi(t)− ξj(t)) , χI,i(0) = 1 , i = 2, . . . , n , (23)

where vehicle1 is elected as the formation leader, anda andb are positive adjustable coordination

control gains. Note that the coordination control law has a proportional-integral structure,

which provides disturbance rejection capabilities. Moreover, we note that the vehicles exchange

information only about the corresponding virtual targets,rather than exchanging their own state

information. The importance of this observation can hardlybe overemphasized. The benefits of

using “virtual information” in consensus problems are illustrated in [63].

Convergence properties of the combined cooperative path-following control laws

Figure8 shows the complete time-critical cooperative path-following closed-loop control

architecture for theith vehicle, including the nonlinear path-following algorithm and the
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decentralized coordination control law. With this approach, the overall cooperative control

architecture presented in this article exhibits a multiloop control structure in which an inner-loop

controller stabilizes the vehicle dynamics, while guidance outer-loop controllers are designed to

control the vehicle kinematics, providing path-followingand time-critical cooperative capabilities.

At a kinematic level, it is proven in [55] that, if the connectivity of the communications

graph verifies the PE-like condition (17) and the initial conditions are within a given domain

of attraction, then there exist control gains for the path-following control law (12)-(13) and the

coordination control law (19)-(23) that ensure, first, that the path-following generalized error

vectorxpf ,i(t) of each vehicle converges exponentially fast to zero; second, that for each pair of

vehiclesi and j, i, j ∈ {1 . . . , n}, the coordination error|ξi(t)− ξj(t)| also converges to zero

exponentially fast; and third, that the speed of each vehicle satisfiesvmin ≤ vi(t) ≤ vmax for all

t ≥ 0.

Additionally, the results in [55] also present explicit tracking performance bounds for the

inner-loop controller that ensure stability of the overalltime-critical cooperative path-following

control system. In particular, for the case of non-ideal inner-loop tracking, and provided that the

inner-loop performance bounds are satisfied, the path-following generalized error vectors and

the coordination errors can be proven to converge exponentially fast to a neighborhood of zero

and to beuniformly ultimately bounded. Furthermore, the ultimate bounds are proportional to

the inner-loop angular-rate and speed tracking performance bounds; see [55, Theorem 1].

Lemma 3 in [55] also demonstrates that the QoS of the network, characterized by the

parametersT andµ, limits the achievable guaranteed rate of convergence for the coordination

control loop. These results also imply that, as the parameter T goes to zero and the communica-
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tions graph becomes thus connected pointwise in time, the convergence rate can be set arbitrarily

fast by increasing the coordination control gains. This fact is consistent with results obtained in

previous work on time-critical cooperative path-following control; see [64, Lemma 2].

Finally, we note that successful execution of the mission requires that the design of the

overall cooperative path-following control algorithm with the inner-loop autopilot provide the

level of performance considered for trajectory generation; see optimization problems (6) and (7).

In the context of this article, the performance of the path-following and coordination controllers

can be characterized, for example, in terms of the inner-loop tracking performance bounds or

the ultimate bounds for path-following and coordination errors.

L1 Adaptive Control for Autopilot Augmentation

As shown in [55, Theorem 1], safety and success of the cooperative time-critical mission

relies on the fact that each vehicle can track precisely the angular-rate and speed commands

provided by the outer-loop path-following and coordination algorithms. For the missions of

interest, typical off-the-shelf autopilots are capable ofproviding uniform performance across the

flight envelope of small UAVs while operating in nominal conditions. However, these commercial

autopilots may fail to provide adequate performance acrossthe operational envelope in the event

of actuator failures, vehicle damage, or in the presence of adverse environmental disturbances.

Under these unfavorable circumstances, adaptive augmentation loops are seen as an appealing

technology that can improve vehicle performance.

In this section, we propose the implementation ofL1 adaptive controllers for control

augmentation of onboard commercial autopilots. The theoryof L1 adaptive control enables the
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design of robust adaptive control architectures using fastadaptation schemes, which results in

predictable, repeatable, verifiable, and safe adaptive flight control algorithms. The key feature

of L1 adaptive control is the decoupling of the adaptation loop from the control loop, which

enables fast adaptation without sacrificing robustness. Fast adaptation allows for compensation

of the undesirable effects of rapidly varying uncertainties and significant changes in the system

dynamics, and is also critical to achieve a predictable and consistent response of the closed-loop

adaptive system. The performance and robustness properties ofL1 adaptive control are described

in detail in [65], while insights into the application ofL1 adaptive control to safety-critical flight

control are presented in [66].

In [67, 68], for example, we present anL1 adaptive control architecture for autopilot

augmentation that retains the properties of the onboard commercial autopilot, and adjusts the

autopilot commands only when the tracking performance degrades or the mission effectiveness

is reduced. Figure9 shows the inner-loop control architecture considered in [67, 68], with the

adaptive augmentation loop wrapped around the autopilot. In this setup, the adaptive controller

uses angular-rate and speed measurements to modify the commands generated by the outer-loop

algorithms, which are then sent to the autopilot as references to be tracked. This structure for

autopilot augmentation does not require any modifications to the autopilot itself, and at the same

time it does not use internal states of the autopilot for control design purposes. In particular, the

control architecture illustrated in Figure9 is the one used in the cooperative road-search mission

scenario discussed later in the next section.
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Cooperative Road Search with Multiple Unmanned Aerial Vehicles

In this section we discuss flight test results for a cooperative road-search mission that

show the efficacy of the multi-vehicle cooperative control framework presented in this article.

Cooperative path-following missions involving multiple UAVs were flown for the first time

at Camp Roberts, CA, in November 2009, and then demonstratedfour more times at the

same location in February, May, July, and November of 2010. The flight tests were performed

during the quarterly run Tactical Network Topology field experiments conducted through the

Field Experimentation Cooperative Program, which is beingled by the U.S. Special Operations

Command and the Naval Postgraduate School (NPS) [69, 70]. These results verify the main

theoretical claims of the cooperative control algorithm presented in this article and demonstrate

the feasibility of the onboard implementation of the algorithms and the validity of the approach.

Mission description

Today’s operational environments face a growing need for up-to-date satellite-like

imagery, with enough resolution to detect humans, weapons,and other potential threats. While

accurate high-resolution imagery is traditionally provided by satellites and high-end aerial

intelligence surveillance and reconnaissance platforms,these assets are not always available

to the end-user due to time-of-day, visibility, or mission priority. In such cases, the use of small

tactical UAVs outfitted with the ability to capture actionable, high-resolution, geo-referenced

imagery and full motion video, represents an economical andexpeditious alternative. Moreover,

the fact that the UAVs can deliver the information to the end-user in seconds or minutes, rather

than hours or days, can potentially revolutionize the way weoperate and save lives.
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One of the applications that motivates the use of multiple cooperative UAVs and poses

several challenges to systems engineers, both from a theoretical and practical standpoint, is

automatic road search for improvised explosive device detection; see Figure10. The mission is

initiated by a minimally trained user who scribbles a path ona digital map, generating a precise

continuous ground-track for the airborne sensors to follow. This ground-track is then transmitted

over the network to a fleet of small tactical UAVs equipped with complementary visual sensors.

Decentralized optimization algorithms autonomously generate feasible flight trajectories that

maximize road coverage and account for sensor capabilities–field of view, resolution, and gimbal

constraints– as well as inter-vehicle and ground-to-air communications limitations. The fleet of

UAVs then starts the cooperative road search. During this phase, the information obtained from

the sensors mounted onboard the UAVs is shared over the network and retrieved by remote users

in near real time. The explosive device detection can thus bedone remotely on the ground, based

on in-situ imagery data delivered over the network.

In this particular mission scenario, a robust cooperative control algorithm for the fleet of

UAVs can improve mission performance and provide reliable target discrimination, by effectively

combining the capabilities of the onboard sensors [71]. In fact, flying in a coordinated fashion

is what allows, for example, to maximize the overlap of the fields of view (FOVs) of multiple

sensors and to take full advantage of complementary sensors.

Airborne system architecture

The small tactical UAVs employed in this particular missionare two SIG Rascals 110

operated by NPS; see Figure11. The two UAVs have the same avionics and the same
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instrumentation onboard, the only difference being the vision sensors. The first UAV has a

bank-compensated high-resolution12-MPx imagery camera, while the second UAV has a full-

motion video camera suspended on a pan-tilt gimbal. Due to payload constraints, each UAV is

allowed to carry only one camera at a time, and therefore the two cameras need to be mounted

on different platforms. The rest of the onboard avionics, common to both platforms, includes

two PC-104 industrial embedded computers [72] assembled in a stack, a wireless Mobile Ad-hoc

Network (MANET) link [73], and the Piccolo Plus autopilot [74] with its dedicated900-MHz

command and control channel. Details of the complete airborne network-centric architecture are

presented in Figure12.

The first PC-104 computer acts as a secondary autopilot controller, running the

cooperative-control algorithms in hard real time at100 Hz and directly communicating with the

Piccolo Plus autopilot at50 Hz over a dedicated serial link. This connection efficiently eliminates

communication delays between the outer-loop control algorithms and the autopilot. The second

PC-104 is a mission management computer that implements a set of non-real-time routines

enabling onboard preprocessing and retrieval of the sensory data –high-resolution imagery or

video– in near real time over the network. Integration of theMANET link allows for robust

transparent inter-vehicle and ground communication, which is needed for both the coordination

algorithms and the expedited sensory data delivery to a remote mission operator. In fact, the

MANET link provides “any-to-any” connectivity capability, allowing every node –vehicle or

ground station– to communicate directly with every other node. Moreover, information about

the connectivity of the entire network can be retrieved in near real time. Details on the flight test

architecture, the supporting network infrastructure, andthe management of the communication

bandwidth for coordination control and data disseminationcan be found in [73, 75].
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Flight Test Results

We now present flight test results for a cooperative road-search mission executed by the

two SIG Rascals. The objective of the mission is to detect a target moving along a given road

and, if detection occurs, to collect information about the target. This information is then to be

shared over a MANET link so that it can be retrieved by remote mission operators in near real

time. Success of the mission relies on the ability to overlapthe footprint of the FOVs of the

two cameras along the road, which increases the probabilityof target detection [71]. Next, we

provide details about the execution of this coordinated road-search mission, which we divide in

four consecutive phases, namely, initialization, transition, road search, and vision-based target

tracking. The description is supported by one of the flight tests results performed during a Tactical

Network Testbed field experiment at Camp Roberts, CA; see figures13-16.

In the initialization phase, an operator specifies on a digital map the road of interest.

Then, a centralized optimization algorithm generates road-search suboptimal paths and desired

speed profiles for the two UAVs that explicitly account for UAV dynamic constraints, collision-

avoidance constraints, and mission-specific constraints such as inter-vehicle and vehicle-to-

ground communications limitations as well as sensory capabilities. In particular, the trajectory-

generation algorithm is designed to maximize the overlap ofthe footprints of the FOVs of the

high-resolution camera and the full-motion video during the road search. In addition to the

road-search paths and the corresponding desired speed profiles, the outcome of the trajectory-

generation algorithm includes asensor trajectoryon the ground to be followed by the vision

sensors. The two road-search paths and the sensor path, along with the three corresponding speed

profiles, are then transmitted to the UAVs over the MANET link.
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In thetransition phase, the two UAVs fly from their standby starting positions to theinitial

points of the respective road-search paths. For this purpose, decentralized optimization algorithms

generate feasible collision-free 3D trajectories to ensure that the two UAVs arrive at the initial

points of the road-search paths at the same time. Once these transition trajectories are generated,

the two vehicles start operating in cooperative path-following mode. From that moment on, the

UAVs follow the transition paths while adjusting their speeds based on coordination information

exchanged over the MANET link in order to achieve simultaneous arrival at the starting point of

the road-search paths. The transition and road-search spatially-deconflicted paths obtained for this

particular mission scenario, together with the corresponding desired speed profiles and the path

separations, are shown in Figure13. Figure14 illustrates the performance of the coordination

control algorithm during the transition phase of the mission.

The third phase addresses thecooperative road-search missionitself, in which the two

UAVs follow the road-search paths generated in the initialization phase while adjusting their

speeds to ensure the required overlap of the FOV footprints of the cameras. In this phase, a target

vehicle running along the sensor path is virtually implemented on one of the UAVs. For this road-

search mission, a natural choice for this sensor path is the road itself, and this virtual vehicle

determines thus the spot of the road being observed by the vision sensors mounted onboard

the UAVs at a given time. This virtual vehicle is indeed used as a leader in the coordination

algorithm, and its speed is also adjusted, based on the coordination states of the two UAVs. The

coordination state of this virtual vehicle is also transmitted over the tactical network and used

in the coordination control laws of the two “real” vehicles.The performance of the cooperative

path-following control algorithm is illustrated in Figure15. For this particular mission scenario,

the coordination errors remain below7% during the entire duration of the road search, while
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the path-following cross-track errors converge to a3 m tube around the desired spatial paths.

Finally, when a target is detected on the road, the two UAVs immediately switch to

cooperative vision-based trackingmode. In this phase, the UAVs track the target by means of

guidance loops that use visual information for feedback, while simultaneously providing in-situ

imagery for precise geo-location of the point of interest. During this target-tracking phase, a

coordination algorithm ensures that the two UAVs keep a predefined phase separation ofπ
2
rad

while “orbiting” around the target. This coordination algorithm uses the coordination control

law described in previous sections to adjust the orbiting speed of the UAVs, with the main

difference thatphase on orbitis now used as a coordination state, rather than virtual time.

Besides collision avoidance, cooperation through phase-on-orbit coordination allows for several

additional benefits, including reduced sensitivity to target escape maneuvers [76] and possible

extraction of 3D information from 2D images [77]. The performance of the cooperative path-

following control algorithm is illustrated in Figure16, which shows the trajectories of the two

UAVs while tracking the target as well as the phase-coordination error between the UAVs. Details

about the vision-based guidance loop used in this phase can be found in [78].

Flight test summary and accessory mission outcomes

The results presented above illustrate the benefits of usingcooperative control based on the

algorithms described in this article when dealing with missions involving multiple vehicles. Such

cooperative strategies ensure collision-free maneuvers,and efficiently combine heterogeneous

information provided by complementary sensors.

To visually illustrate the effect of time-critical cooperation among the UAVs, Figure17
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presents a mosaic of four consecutive high-resolution images taken during a flight experiment.

In this experiment, the road-search paths are intentionally separated by altitude and optimized

such that, if the coordination algorithm adequately adjusts the speed of the two UAVs, then the

UAV flying at lower altitude is expected to be continuously present in the FOV of the camera

flying at higher altitude. The figure schematically represents the progression of the lines of

sight connecting the two cameras with the virtual target vehicle running along the sensor path.

Time-coordination ensures that cameras observe the same spot on the road and thus maximize the

overlap of the footprints of their FOVs, which is critical toprovide reliable target discrimination.

Also, in order to illustrate possible accessory mission outcomes, Figure18 presents

examples of imagery data utilization. In Figure18a, for example, the 3D geo-referenced

model of the operational environment is built from 2D high-resolution frames using proprietary

technology [79]. In Figure 18b, a geo-referenced mosaic is obtained in near real time from

high-resolution frames sent by one of the UAVs through the MANET link while in mission [77].

In summary, the results presented above demonstrate the benefits of the onboard

integration of the nonlinear path-following and coordination algorithms as well asL1 adaptation.

During the flight experiments, the required control commands never exceeded the limits defined

for the UAV in traditional waypoint navigation mode. At the same time, the achieved functionality

of the UAV following 3D curves in an inertial space outperforms the conventional waypoint

navigation method typically implemented on off-the-shelfcommercial autopilots. These results

provide also a roadmap for further development and onboard implementation of advanced

cooperative algorithms, opening new frontiers for UAV operations.
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Conclusions

In this article, we describe an approach to cooperative control of multiple autonomous

systems for time-critical missions. The approach presented applies to teams of heterogeneous

systems and does not necessarily lead to swarming behavior,which is unsuitable for many of the

mission scenarios envisioned in this article. The methodology proposed unfolds in three basic

steps. Initially, each vehicle is assigned a feasible path with a desired speed profile that together

satisfy the mission requirements and the vehicle dynamic constraints, while ensuring collision-

free maneuvers. Then, a path-following algorithm ensures that every vehicle follows its own

path independently of the temporal assignments of the mission. Finally, the vehicles coordinate

their position along the path with the remaining vehicles engaged in the mission by exchanging

coordination information over the communications network. These three steps are accomplished

by judiciously decoupling space and time in the formulationof the trajectory-generation, path-

following, and time-coordination problems, and by relyingon the existing inner-loop controllers

for nominal control of the autonomous systems. These inner-loop controllers are augmented with

L1 adaptive loops, which ensure robust performance in the event of failures, vehicle damage, or

in the presence of adverse environmental disturbances. As aresult, the described work yields a

systematic framework for integration of various tools and concepts from a broad spectrum of

disciplines, leading to a streamlined design procedure forcooperative path-following control. The

benefits of this approach have been demonstrated in a cooperative road-search mission scenario

involving multiple unmanned aerial vehicles. The framework presented has also been tested on

cooperative missions involving multiple heterogeneous autonomous marine vehicles operating in

uncertain environments; see [80, 81] and references therein for details about these experiments.
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Figure 1. Conceptual architecture of the cooperative control framework adopted. Decoupling
space and time in the problem formulation allows for the problems of path following and time-
coordination to be solved independently. On one hand, a path-following algorithm ensures that
every vehicle follows its own path independently of the temporal assignments of the mission.
On the other hand, the speed profile of each vehicle is adjusted about a desired speed profile
so as to enforce the temporal constraints that must be met in real time to coordinate the entire
fleet of vehicles.
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Figure 2. Collision avoidance in spaceensures that no feasible paths intersect. This approach
may be particularly useful in military applications, wherejamming prevents vehicles from
communicating with each other, and is preferable to the current practice of separating vehicles
by altitude.
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Figure 3. Collision avoidance in timeimplies that no two vehicles are at the same place at the
same time. This approach relies heavily on inter-vehicle communications and is thus a function
of the quality of service of the underlying network. The example above shows that, even if the
paths intersect at some point –zero path separation–, the desired speed profiles ensure that the
two vehicles maintain a prespecified inter-vehicle separation and do not collide.
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Figure 4. Arrival margin. The simultaneous arrival problemhas a solution if and only if the
intersection of all individual arrival-time windows is nonempty. A positive arrival margin ensures
that this intersection is not empty. Moreover, the magnitude of the arrival margin can be used
to characterize the robustness of the trajectory-generation solution at the coordination level.
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article uses the vehicle’s attitude control effectors to follow a virtual target vehicle running along
the desired path with a rate of progression that can be selected at will. With this approach, the
speed of the vehicle remains as an extra degree of freedom to be used at the coordination level.
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attitude to the path as a function of the cross-track errorp×. (a) When the vehicle is far from the
desired path, the versor~b1D(t) becomes quasi-perpendicular to~t(ℓ). (b) As the vehicle comes
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notice that, for simplicity, the plot above assumes that thealong-path errorxF (t) is zero.
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Figure 7. Effect of the characterizing distanced on the convergence of the vehicle to the path.
The choice of the characterizing distanced in the definition of the auxiliary frameD can be used
to adjust the rate of convergence for the path-following closed-loop system. (a) Whend ∼ ∞,
the vehicle never converges to the path, sinceωD/F = 0. (b) For large values ofd, the term
ωD/F introduces only small corrections to the “feedforward” term ωF/I , and therefore the rate of
convergence of the vehicle to the desired path is slow. On theother hand, (c) small values ofd
allow for higher rates of convergence, which however might result in oscillatory path-following
behavior. In these plots, the blue line is the desired path, the green line represents the desired
approach curve, and the red line corresponds to the resulting vehicle trajectory.
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Closed-loop UAV with its Autopilot
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Figure 8. Coordinated path-following closed-loop for theith vehicle. The cooperative control
architecture presented in this article exhibits a multiloop control structure in which an inner-loop
controller stabilizes the vehicle dynamics, while guidance outer-loop controllers are designed to
control the vehicle kinematics, yielding path-following and time-coordination capabilities.
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UAVAutopilot

Closed-loop UAV with its Autopilot

L1 Adaptive

Augmentation
[qc, rc, vc]

[q, r, v]

Figure 9. Inner-loop structure with the adaptive augmentation loop. The architecture considered
for autopilot augmentation is an output-feedback architecture that uses angular-rate and speed
measurements to modify the commands generated by the outer-loop algorithms, which are then
sent to the autopilot as reference signals to be tracked. This structure for autopilot augmentation
does not require any modifications to the autopilot itself, and at the same time does not use
internal states of the autopilot for control design purposes.
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Figure 10. Coordinated road search using multiple unmannedaerial vehicles (UAVs). Two small
tactical UAVs equipped with complementary vision sensors detect and follow an improvised
explosive device along a road. Cooperative control can ensure a satisfactory overlap of the
field-of-view footprints of the sensors along the road, thusincreasing the probability of target
detection.
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(a) SIG Rascal 110 research aircraft.

(b) High-resolution camera. (c) Full-motion video camera.

Figure 11. SIG Rascal UAV with two different onboard cameras. The SIG Rascal UAVs (a)
used for cooperative path-following missions are equippedwith complementary vision sensors.
The first UAV has a bank-compensated high-resolution12-MPx camera (b), while the second
UAV has a full-motion video camera suspended on a pan-tilt gimballed enclosure (c).
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Figure 12. Network-Centric architecture of the airborne platform. The Rascal UAV avionics
includes two PC-104 industrial embedded computers assembled in a stack, a wireless Mobile
Ad-hoc Network (MANET) link, and the Piccolo Plus autopilotwith its dedicated900-
MHz command and control channel. The PC-104 computers are used to run the cooperative
control algorithms in hard real time as well as mission management routines enabling onboard
preprocessing and retrieval of the sensory data.
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(b) Path separation for road-search phase.

Figure 13. Coordinated road-search trajectory generation. In this mission scenario, two SIG
Rascal UAVs cooperate to detect a target moving along a givenroad. The two UAVs fly from
their standby locations (IC UAV1 and IC UAV2) in a coordinated fashion along transition paths
so as to arrive at the starting points of the road-search paths (IC RS UAV1 and IC RS UAV2) at
the same time. Then, the two UAVs follow the road-search paths while trying to detect a target
moving along the sensor path. During the search, the UAVs cooperate and adjust their speeds to
ensure the required overlap of the field-of-view footprintsof the cameras. The plots show the
desired spatial paths for both the transition and road-search phases (a)-(b), the corresponding
desired speed profiles (c), and the separation between paths(d)-(e).
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Figure 14. Time-coordination during the transition phase.These plots illustrate the performance
of the coordination control algorithm during the transition phase of the mission. Although the
transition paths for the two UAVs have significantly different lengths, decentralized coordination
control laws adjust the speed profiles of the UAVs based on coordination information exchanged
over the supporting communications network. The two UAVs arrive at the starting point of the
road-search paths with an11%-error difference.
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Figure 15. Cooperative path-following control during the road-search phase. These plots
illustrate the performance of the cooperative path-following control algorithm during the road
search. During this phase of the mission, the coordination errors remain below7% during the
entire duration of the road search, while the path-following cross-track errors converge to a3 m
tube around the desired spatial paths. Cooperation ensuresa satisfactory overlap of the footprints
of the fields of view of the two cameras. A target is detected onthe road at time178 s. Upon
detection, the two UAVs switch to cooperative vision-basedtracking mode.
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Figure 16. Cooperative vision-based target tracking (CVBTT). Upon target detection, the
two UAVs start tracking the target by means of guidance loopsthat use visual information
for feedback, while simultaneously providing in-situ imagery for precise geo-location of the
point of interest. During the target-tracking phase, a coordination algorithm ensures that the
two UAVs keep a predefined phase separation ofπ

2
rad while “orbiting” around the target. The

coordination algorithm uses the coordination control law described in this article to adjust the
orbiting speed of the UAVs, with the main difference that thephase on orbit is now used as a
coordination state, rather than virtual time.
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Figure 17. Time-critical cooperation in a road-search mission. In this experiment, the road-
search paths are intentionally separated by altitude and optimized such that the UAV flying at
lower altitude is continuously present in the field of view ofthe camera flying at higher altitude.
A mosaic of four consecutive high-resolution images illustrate the progression of the lines of
sight (LOSs) connecting the two onboard cameras with the virtual target vehicle running along
the sensor path.
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(a) Automated 3D terrain extraction from 2D high-resolution data. (Courtesy of
Urban Robotics)

(b) Near-real-time geo-referenced map obtained from high-resolution data. (Cour-
tesy of 2D3)

Figure 18. High-resolution image exploitation. The use cooperative algorithms in missions
involving multiple UAVs can provide accessory mission outcomes, such as (a) 3D geo-referenced
models of the operational environment, or (b) geo-referenced maps obtained in near real time
from high-resolution imagery.

64



Sidebar: Path-Following Control

The problem of path following can be briefly described as thatof making a vehicle

converge to and follow a desired spatial path, while tracking a desired speed profile that may

be path-dependent. The temporal and spatial assignments are therefore separated. Often, it is

simply required that the speed of the vehicle be kept constant. Path-following control algorithms

are pervasive in many robotic applications and are key to theoperation of multiple vehicles

undergoing cooperative missions.

There is a wealth of literature on path-following algorithms that defies a short summary.

Pioneering work in the area can be found in [S1], where an elegant solution to the problem

of path-following control is presented for a wheeled robot at the kinematic level. In the setup

adopted, the kinematic model of the vehicle is derived with respect to a Frenet-Serret frame

moving along the path, while playing the role of a virtual target vehicle to be tracked by the

real vehicle. The origin of the Frenet-Serret is placed at the point on the path closest to the real

vehicle.

The work in [S1] has spurred a great deal of activity in the literature addressing the path-

following problem. A popular approach that has emerged out of this research effort is to solve

a trajectory-tracking problem and then reparameterize theresulting feedback controller using

an independent variable other than time. See, for example, the work in [S2–S4] and references

therein. The approach proposed in [S1] is extended to unmanned aerial vehicles (UAVs) with full

account of its dynamics in [S5], where the authors address the issue of path following of trimming

trajectories and derive nonlinear path-following controllers that satisfy a linearization property.
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Related results can be found in [S6] for autonomous underwater vehicles using a backstepping

approach. A common feature of the latter papers is to reduce the path-following problem to that

of driving the kinematic errors resolved in Frenet-Serret frame to zero. This approach ensures

that path following is essentially done by proper choice of the vehicle’s attitude, a strategy that

is akin to that used by pilots when they fly airplanes. The sameproperty does not necessarily

hold in the case of the strategies that emerge out of the work in [S2–S4].

The setup used in [S1] is reformulated in [S7], leading to a feedback control law that

steers the dynamic model of a wheeled robot along a desired path and overcomes some of the

constraints present in [S1]. The key to this algorithm is to explicitly control the rateof progression

of the virtual target along the path. This effectively creates an extra degree of freedom that can be

exploited to avoid the singularities that occur when the distance to the path is not well defined –

this occurs for example when the vehicle is located exactly at the center of curvature of a circular

path. Related strategies were exploited in the work of [S8, S9] on output maneuvering and also

in the work of [S10]. The path-following algorithm described in this article is an extension of

the algorithm presented in [S7] to the case of 3D spatial paths.

Other path-following methods have been presented in the literature that depart from the

ideas and concepts of the algorithms described above. In [S11], lateral acceleration commands

are used to make a UAV converge to and follow planar curved paths. A nonlinear path-following

method that generates acceleration commands to steer a holonomic vehicle towards a given 3D

path is presented in [S12]. Path-following algorithms based on the concept of vectorfields can be

found in [S13, S14]. Finally, the work reported in [S15, S16] presents an elegant approach to path

following that uses Lagrange multipliers to derive path-following control laws for mechanical
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systems subject to both holonomic and nonholonomic constraints.
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