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Abstract. This paper addresses the problem of steering a group of vehicles along given spa-
tial paths while holding a desired time-varying geometrical formation pattern. The solution to this
problem, henceforth referred to as the coordinated path-following (CPF) problem, unfolds in two
basic steps. First, a path-following (PF) control law is designed to drive each vehicle to its assigned
path, with a nominal speed profile that may be path dependent. This is done by making each vehicle
approach a virtual target that moves along the path according to a conveniently defined dynamic
law. In the second step, the speeds of the virtual targets (also called coordination states) are ad-
justed about their nominal values so as to synchronize their positions and achieve, indirectly, vehicle
coordination. In the problem formulation, it is explicitly considered that each vehicle transmits
its coordination state to a subset of the other vehicles only, as determined by the communications
topology adopted. It is shown that the system that is obtained by putting together the PF and
coordination subsystems can be naturally viewed as either the feedback or the cascade connection
of the latter two. Using this fact and recent results from nonlinear systems and graph theory, con-
ditions are derived under which the PF and the coordination errors are driven to a neighborhood
of zero in the presence of communication losses and time delays. Two different situations are con-
sidered. The first captures the case where the communication graph is alternately connected and
disconnected (brief connectivity losses). The second reflects an operational scenario where the union
of the communication graphs over uniform intervals of time remains connected (uniformly connected
in mean). To better root the paper in a nontrivial design example, a CPF algorithm is derived for
multiple underactuated autonomous underwater vehicles (AUVs). Simulation results are presented
and discussed.
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1. Introduction. Increasingly challenging mission scenarios and the advent of
powerful embedded systems, sensors, and communication networks have spawned
widespread interest in the problem of coordinated motion control of multiple autono-
mous vehicles. The types of applications considered are numerous and include aircraft
and spacecraft formation control [6], [23], [29], [36], [39], [49], [50], [60], [30], [4], [64],
coordinated control of land robots [16], [52], [22], [58], control of multiple surface and
underwater vehicles [17], [26], [34], [63], [13], and networked control of robotic systems

∗Received by the editors December 31, 2006; accepted for publication (in revised form) Novem-
ber 7, 2008; published electronically February 11, 2009. This research is supported in part by
project GREX/CEC-IST under contract 035223, project NAV-Control/FCT-PT (PTDC/EEAACR/
65996/2006), the FREESUBNET RTN of the CEC, the FCT-ISR/IST pluriannual funding program
(through the POS C initiative in cooperation with FEDER), and by NSF grant ECS-0242798. The
first author benefitted from a Ph.D. scholarship of FCT.

http://www.siam.org/journals/sicon/48-1/67899.html
†Institute for Systems and Robotics and the Department of Electrical Engineering and Comput-

ers, Instituto Superior Técnico, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal (reza@isr.ist.utl.pt,
pedro@isr.ist.utl.pt, antonio@isr.ist.utl.pt, cjs@isr.ist.utl.pt).

‡Department of Mechanical and Astronautical Engineering, Naval Postgraduate School, Monterey,
CA 93943 (kaminer@nps.navy.edu).

§Department of Electrical and Computer Engineering, University of California, Santa Barbara,
CA 93106-9560 (hespanha@ece.ucsb.edu).

234



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COORDINATED PATH FOLLOWING 235

[15], [14], [33], [41], [37], [43], [48]. To meet the requirements imposed by these and
related applications, a new control paradigm is needed that must necessarily depart
from classical centralized control strategies. Centralized controllers deal with systems
in which a single controller possesses all the information required to achieve desired
control objectives, including stability and performance requirements. In many of the
applications envisioned, however, the highly distributed nature of the vehicles’ sensing
and actuation modules and the constraints imposed by the intervehicle communica-
tion network make it impossible to tackle the problems in the framework of centralized
control theory. In part due to these reasons, there has been over the past few years a
flurry of activity in the area of multiagent networks with application to engineering
and science problems. The list of related research topics is vast and includes paral-
lel and distributed computing [7], distributed decision making [61], synchronization
in oscillator networks [46], flocking of mobile autonomous agents [5], [18], [28], [54],
state agreement and consensus problems [20], [38], [51], [40], [44], [42], [11], asyn-
chronous consensus protocols [9], [61], graph theory and graph connectivity [45], [56],
[32], rigidity and persistence in autonomous formations [62], adaptive and distributed
coordination algorithms for mobile sensing networks [12], [11], and concurrent syn-
chronization in dynamic system networks [48]. See also [55] and the references therein
for general expositions on large-scale dynamical systems and decentralized control of
complex systems that bear affinity with the issues addressed in this paper.

In spite of significant progress made in these areas, much work remains to be done
to develop strategies capable of yielding robust performance of a fleet of vehicles in the
presence of complex vehicle dynamics, severe communication constraints, and partial
vehicle failures. These difficulties are especially challenging in the field of marine
robotics for two main reasons: (i) often, the dynamics of marine vehicles cannot be
greatly simplified for control design purposes; and (ii) underwater communications
and positioning rely heavily on acoustic systems, which are plagued with intermittent
failures, latency, and multipath effects.

Inspired by recent theoretical and practical developments in the areas of multiple
vehicle control, we consider the problem of coordinated path-following (CPF) control,
where multiple vehicles are required to follow prespecified paths while keeping a desired,
possibly time-varying, geometric formation pattern. These objectives must be met in
the presence of communication losses and delays. The problem arises, for example, in
the operation of multiple autonomous underwater vehicles (AUVs) for fast acoustic
coverage of the seabed [47]. In this application, two or more vehicles maneuver above
the seabed, at either the same or different depths, along geometrically similar spatial
paths and map the seabed using identical suites of acoustic sensors. By requesting
that the vehicles move along the paths so that the projections of the acoustic beams on
the seabed have a certain degree of overlapping, large areas can be mapped in a short
time. These objectives impose strict constraints on the vehicle formation pattern.

A number of other scenarios can be envisioned that require CPF control of marine
vehicles. Examples include underwater vehicle formation control for 3D vision-based
marine habitat mapping, ship underway replenishment [34], and missions where tem-
poral and spatial path deconfliction are critical [30]. Similar problems arise in the area
of air vehicle control. All of these scenarios share the requirements that a number of
vehicles maneuver along predetermined paths, at nominal speed profiles that may be
path dependent, and keep a possibly time-varying formation pattern. Absolute time
requirements are not part of the problem. As such, they depart considerably from
other related problems such as vehicle rendezvous maneuvers and swarm formation
control. The manner in which the paths and the formation are planned depend on
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the specific problem at hand, for example, using a time optimality criterion when fast
coordinated maneuvering between initial and final positions is required, minimizing
an energy-related criterion when the objective is to scan a certain area or volume
densely and energy is at a premium, or using a combination of criteria that include
geometric constraints when collision avoidance is important. See, for example, [30]
for the case of unmanned air vehicles.

In this paper we formulate and solve the problem of CPF by explicitly taking
into account the vehicle dynamics and the topology of the underlying communication
network, subject to communication losses and delays. The reader is referred to [17],
[21], [22], [35], [58] and the references therein for a historical overview of the topic and a
perspective of the sequence of motion control problem formulations and solutions upon
which the present work builds. See also [19], [57], [47] for an in-depth introductory
exposition to the topic at hand. For the sake of clarity, it is important to point out that
in the scope of the problem at hand, PF and CPF have also been referred to as output
maneuvering and synchronization of multiple maneuvering systems, respectively [58].
A comprehensive survey of related results on consensus in multivehicle cooperative
control can be found in [42], [44], and [51].

The solution to the problem of CPF that we propose unfolds in two basic steps.
First, a PF control law is designed to drive each vehicle to its assigned path, with
a nominal speed profile that may be path dependent. This is done by making each
vehicle approach a virtual target that moves along the path according to a conveniently
defined dynamic law. Each vehicle has access to a set of local measurements only. In
the second step, the speeds of the virtual targets (also called coordination states) are
adjusted about their nominal values so as to synchronize their positions and achieve,
indirectly, vehicle coordination. The vehicles are allowed to exchange only limited
information with their immediate neighbors. Without being too rigorous, it can be
said that the strategy proposed abides by a separation principle whereby the PF and
coordinated motion control designs are almost decoupled. This simplifies the overall
design process. Furthermore, it has the virtue of leaving essentially to each vehicle
the task of dealing with external disturbances acting upon it, directly at the PF level.

The mathematical setup adopted in the paper is well rooted in Lyapunov stability
and graph theory. At the pure PF level, two types of control laws, henceforth referred
to as Type I and Type II, are developed. The difference between them lies in the
types of dynamics chosen for the virtual targets along the paths.

Key concepts from input-to-state stability theory [59] are also used to derive
results on the stability, performance, and robustness of the overall system that results
from putting together the PF and vehicle coordination subsystems. Here, we use the
fact that combination of the above systems takes either a feedback interconnection or a
cascade form, depending on whether the underlying PF laws are of Type I or Type II.
The results are quite general in that they apply to a large class of PF control systems
satisfying a certain input-to-state stable (ISS) property. For the sake of clarity and
completeness, the paper derives a PF strategy for a class of underactuated AUVs that
meets the required ISS property.

The key contribution of the paper is the study of the combined behavior of the
PF and coordination systems in the presence of temporary communication losses
and transmission delays. To deal with communication losses, the paper proposes
two frameworks for studying the effect of communication failures and delays on the
performance of the overall vehicle formation. The first framework, brief connectivity
losses (BCLs), refers to the situation where the communication graph changes in time,
alternating between connected and disconnected graphs. Here, we borrow from and
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expand previous results on systems with brief instabilities, namely, by deriving a new
small-gain theorem that applies to the feedback interconnection of these systems. See
[25] and the references therein for an introduction to systems with brief instabilities
and their application to control systems analysis and design. The second framework,
uniformly connected in mean (UCM), applies to the case where the communication
graph may even fail to be connected at any instant of time; however, we assume there
is a finite time T > 0 such that over any interval of length T the union of the different
graphs is connected. This framework is motivated by the work in [37], [38], [40]. To the
best of our knowledge, this is the first time that the impact of intermittent failures on
coordinated PF is analyzed from a quantitative point of view and estimates on the rate
of decay of all closed-loop error signals are obtained. The impact of communication
delays on the overall system performance is also analyzed for the case of homogeneous
delays and PF systems of Type II. Conditions are derived under which the PF errors
become arbitrarily small and the cooperation errors approach zero exponentially. For
related results on the consensus problems for systems with nonhomogeneous delays,
see [20].

The paper is organized as follows. Section 2 formulates the PF and vehicle co-
ordination problems and describes general stability-related properties that are met
by the PF closed-loop subsystem of each vehicle. Section 3 introduces some basic
notation, summarizes important results on graph theory, and develops the tools that
will be used to study the different types of communication topologies considered in
the paper. Section 4 derives a useful small-gain theorem for the feedback intercon-
nection of systems with brief instabilities. Section 5 studies the CPF problem in the
case where the communications network is subjected to communication losses with no
time delays. Section 6 extends some of the results of section 5 to deal with switching
communication networks and time delays. An illustrative example is presented in sec-
tion 7, where a CPF control algorithm for a general class of underactuated AUVs is
derived. The results of simulations are also described. Finally, section 8 contains the
main conclusions and describes problems that warrant further research. The proofs
of several statements are included in the appendix.

2. Problem statement. This section provides a rigorous formulation of the PF
and coordination problems that are the main subjects of the paper. Consider a group
of n vehicles numbered 1, . . . , n. We let the dynamics of vehicle i be modeled by a
general system of the form

ẋi = fi(xi, ui, wi),
yi = hi(xi, vi),

(2.1)

where xi ∈ R
n is the state, ui ∈ R

m is the control signal, and yi ∈ R
q is the output

that we require to reach and follow a path ydi(γi) : R → R
q parameterized by γi ∈ R.

Signals wi and vi denote the disturbance inputs and measurement noises, respectively.
Later in section 7, an example will be given where the dynamics of (2.1) are those of
a very general class of AUVs. In that case, the output yi corresponds to the position
of the vehicle with respect to an inertial coordinate frame.

For any continuous, differentiable timing law γi(t), define the PF and speed track-
ing error variables

(2.2) ei(t) := yi(t) − ydi(γi(t))

and

(2.3) ηi(t) := γ̇i(t) − vri(t),
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respectively, where vri(t) ∈ R denotes a desired temporal speed profile to be defined.
Inspired by the work in [3, 22, 57], we start by defining the problem of PF for

each vehicle. In what follows, ‖.‖ denotes both the Euclidean norm of a vector and
the spectral norm of a matrix.

Definition 2.1 (PF problem). Consider a vehicle with dynamics (2.1), together
with a spatial path ydi(γi); γi ∈ R, to be followed and a desired, predetermined temporal
speed profile vri(t) to be tracked. Let the PF error and the speed tracking error be as
in (2.2) and (2.3), respectively. Given ε > 0, design a feedback control law for ui

such that all closed-loop signals are bounded and both ‖ei‖ and |ηi| converge to a
neighborhood of the origin of radius ε.

Stated in simple terms, the problem above amounts to requiring that the output
yi of a vehicle converge to and remain inside a tube centered around the desired path
ydi , while ensuring that its rate of progression γ̇i also converge to and remain inside
a tube centered around the desired speed profile vri(t).

We assume that the PF controllers adopted meet a number of technical conditions
described next. In section 7, as an example, we introduce a PF controller for a general
underactuated vehicle that meets these conditions. The interested reader will find
in [22], [57], and the references therein related material on PF control of nonlinear
systems. See also [3] for an interesting discussion on the possible advantages of PF
versus trajectory tracking control. Namely, the fact that PF control for nonminimum
phase systems removes the performance limitations that are inherent to trajectory
tracking schemes.

In preparation for the development that follows, we set vri(t) = vL(γi(t), t) +
ṽri(t), where vL(γi, t) is a nominal predetermined speed profile and ṽri can be seen
as a perturbation component of vri about vL. Later, it will be shown that vL(., .) is
common to all the vehicles and known in advance and that

(2.4) ṽri(t) := vri(t) − vL(γi(t), t)

(the remaining component of vri(t)) is not known beforehand. We assume that ydi(.)
is sufficiently smooth with respect to its argument. We further assume that vL(., .) is
bounded and globally Lipschitz with respect to the first argument, that is, ∃ vM , l > 0,
such that |vL(γi, t)| ≤ vM and |vL(γi, t) − vL(γj , t)| ≤ l|γi − γj |.

Consider vehicle i and assume a feedback control law ui = ui(xi, ydi , vL) exists
that solves the PF problem of Definition 2.1. Let the corresponding closed-loop PF
system be described by

(2.5) ζ̇i = fci(t, ζi, ṽri , di),

where di subsumes all the exogenous inputs (including disturbances and measurement
noises), ṽri is defined as in (2.4), and state vector ζi includes necessarily ei but may
or may not include ηi. Two types of PF strategies will be considered:

1. Type I. In this strategy, variable ηi plays the role of an auxiliary state for
the PF algorithm and specifies the evolution of γi. In this case ηi is a state
of the closed-loop PF system, that is, ζi includes ηi.

2. Type II. This strategy is equivalent to making ηi = 0. The dynamics of γ̇i

are simply γ̇i = vri . Clearly, in this case ζi does not include ηi.
We now recall the definitions of input-to-state stable (ISS) and input-to-state

practical stable (ISpS) for a dynamical system. See [59] and [31, p. 217] for details
on ISS and ISpS and their relation to Lyapunov theory. System (2.5) is said to be



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COORDINATED PATH FOLLOWING 239

ISpS if there exist a class KL function β(., .), class K functions1 ρi(.); i = 1, 2, and a
constant ρ3 > 0 such that for any inputs ṽri and di and any initial condition ζi(t0),
the solution of (2.5) satisfies

‖ζi(t)‖ ≤ β(‖ζi(t0)‖, t−t0)+ρ1

(
sup

t0≤s≤t
‖ṽri(s)‖

)
+ρ2

(
sup

t0≤s≤t
‖di(s)‖

)
+ρ3 ∀t ≥ t0.

System (2.5) is said to be ISS if it satisfies the conditions of ISpS with ρ3 = 0.
Assumption 2.2. We assume there exists a Lyapunov function Wi(t, ζi) for (2.5)

satisfying

α1‖ζi‖2 ≤ Wi ≤ ᾱ1‖ζi‖2,(2.6)

Ẇi ≤ −λ1Wi + ρ1|ṽri |2 + ρ2d
2
i ,(2.7)

where λ1, ρ1, ρ2, α1, and ᾱ1 are positive values and Ẇi is computed along the solutions
of (2.5), that is,

Ẇi =
∂Wi

∂t
+

∂Wi

∂ζi
fci .

With this assumption, the closed-loop PF system (2.5) is ISS with input (di, ṽri)
and state ζi. To verify this, integrate (2.7) and use (2.6) to obtain

α1‖ζi(t)‖2 ≤ ᾱ1‖ζi(t0)‖2e−λ1(t−t0) +
ρ1

λ1
sup |ṽri |2 +

ρ2

λ1
sup |di|2,

and therefore

‖ζi(t)‖ ≤ α‖ζi(t0)‖e−0.5λ1(t−t0) + ρv sup |ṽri | + ρd sup |di|,
with α =

√
ᾱ1/α1, ρv =

√
ρ1/(λ1α1), and ρd = ρ2/(λ1α1).

Assuming a PF controller has been implemented for each vehicle, it now remains
to coordinate (that is, synchronize) the entire group of vehicles so as to achieve a
desired formation pattern compatible with the paths adopted. As will become clear,
this will be achieved by adjusting the desired speeds of the vehicles as functions of
the “along-path” distances among them. To better grasp the key ideas involved in
the computation of these distances, consider as a simple example the case of a fleet
of vehicles that are required to move along parallel straight lines and keep themselves
aligned along a direction perpendicular to the lines. See Figure 1 for the case of two
vehicles.

Let Γi denote the desired path to be followed by vehicle i and assume Γi is simply
parameterized by si, the path length. In other words, γi = si. Because each vehicle
approaches the path as close as required, that is, because yi(t) becomes arbitrarily
close to to ydi(γi), it follows that the vehicles are (asymptotically) synchronized if
γij(t) := γi(t) − γj(t) → 0 ∀i, j ∈ N := {1, . . . , n}. This shows that in the case of
translated straight lines γi,j = si − sj is a good measure of the along-path distances
among the vehicles. Similarly, in the case of vehicles that must be aligned along
the radii of nested circumferences as in Figure 2, an appropriate measure of the
distances among the vehicles is angle γi = si/Ri where si denotes path length and

1A function ρ is of class K if it is strictly increasing and ρ(0) = 0. A function β(r, s) belongs to
class KL if the mapping β(r, s) is of class K for a fixed s, is decreasing with respect to s for a fixed
r, and β(r, s) → 0 as t → ∞.
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γ1

γ2

γ1,2

Γ1

Γ2

e1

e2

Fig. 1. Along-path distances: straight
lines.

γ1

γ2 γ1,2

Γ1 Γ2

e1

e2

R1R2

Fig. 2. Along-path distances: circumferences.

Ri is the radius of circumference i. Clearly, this corresponds to adopting different
parameterizations for the paths that correspond to normalizing their lengths. In
both cases, we say that the vehicles are coordinated if the corresponding along-path
distance is zero, that is, γi−γj = 0. Coordination is achieved by adjusting the desired
speed of each vehicle i as a function of the along-path distances γij ; j ∈ Ni, where Ni

denotes the set of vehicles with which vehicle i communicates. For arbitrary types of
paths and coordination patterns, an adequate choice of path parameterizations will
allow for the conclusion that the vehicles are coordinated or, in equivalent terms, are
synchronized/have reached agreement, iff γi,j = 0 ∀j, i ∈ N ; see [22], [16]. Since the
objective of the coordination is to coordinate variables γi, we will refer to them as
coordination states.

We will require that the formation as a whole (group of multiple vehicles) travel
at an assigned speed profile vL(γi, t) when coordinated, that is, γ̇i = vL ∀i ∈ N ,
where vL is allowed to be a function of path parameter γ and time t. This follows
from the fact that vL(γi, t) = vL(γj , t) when γi = γj . This issue requires clarification.
Note that the desired speed assignment is given in terms of the time derivatives of
the coordination states γi, not in terms of the inertial speeds (actual time derivative
of the positions) of the vehicles undergoing synchronization. In the limit, as shown
later, the combined PF and coordination algorithms will ensure that the coordination
states will be equal and the vehicle speeds will naturally approach dsi

dt : i ∈ N , so
that dγi

dt = dγi

dsi

dsi

dt = vL. Thus, dsi

dt = vL/ dγi

dsi
which shows clearly how coordination

states speed and inertial speeds depend on the path parameterizations adopted. In
the case of the circumferences above, the latter relationship yields simply dsi

dt = RivL.
Notice how the speed assignment in terms of the coordination states avoids the need
to specify the actual inertial speeds of the vehicles in an inertial reference frame, which
would be quite cumbersome. Instead, all that is required is to specify the speeds of
the coordination states which are equal and degenerate simply into vL.

From (2.3), the evolution of the coordination state γi, i ∈ N , is governed by

(2.8) γ̇i(t) = vri(t) + ηi(t),

where the speed tracking errors ηi are viewed as disturbance-like input signals and
the speed profiles vri are taken as control signals that must be assigned to yield
coordination of the states γi. To achieve this objective, information is exchanged
through an intervehicle communication network. Typically, all-to-all communications
are impossible to achieve. In general, γ̇i will be a function of γi and of the coordi-



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COORDINATED PATH FOLLOWING 241

nation states of the so-called neighboring agents defined by set Ni. For simplicity
of presentation, throughout this paper we assume that the communication links are
bidirectional, that is, i ∈ Nj ⇔ j ∈ Ni. Equipped with the above notation, we are
now ready to formulate the CPF problem.

Definition 2.3 (CPF). Consider a set of vehicles Vi; i ∈ N , with dynamics
(2.1), together with a corresponding set of paths ydi(γi) parameterized by γi and a
formation speed assignment vL(γi, t). Assume that for each vehicle there is a feed-
back control law ui(xi, ydi, vL) such that the closed-loop systems (2.5) satisfy Assump-
tion 2.2. Further assume that γi and γj, j ∈ Ni, are available to vehicle i ∈ N . Given
ε > 0 arbitrarily small, derive a control law for vri such that the PF errors ‖ei‖, the
coordination errors γi −γj, and the formation speed tracking errors γ̇i − vL ∀i, j ∈ N ,
converge to a ball of radius ε around zero as t → ∞.

3. Preliminaries and basic results. With the setup adopted, graph theory
becomes the tool par excellence for modeling the constraints imposed by the commu-
nication topology among the vehicles, as embodied in the definition of sets Ni, i ∈ N .
We now recall some key concepts from algebraic graph theory [24] and agreement
algorithms and derive some basic tools that will be used in what follows.

3.1. Graph theory. Let G(V , E) (abbreviated G) be the undirected graph in-
duced by the intervehicle communication network, with V denoting the set of n nodes
(each corresponding to a vehicle) and E the set of edges (each representing a data
link). Nodes i and j are said to be adjacent if there is an edge between them. A path
of length r between node i and node j consists of r + 1 consecutive adjacent nodes.
We say that G is connected when there exists a path connecting every two nodes in
the graph. The adjacency matrix of a graph, denoted A, is a square matrix with rows
and columns indexed by the nodes such that the i, j-entry of A is 1 if j ∈ Ni and
zero otherwise. The degree matrix D of a graph G is a diagonal matrix where the
i, i-entry equals |Ni|, the cardinality of Ni. The Laplacian of a graph is defined as
L := D − A. It is well known that L is symmetric and L1 = 0, where 1 := [1]n×1

and 0 := [0]n×1. If G is connected, then L has a simple eigenvalue at zero with an
associated eigenvector 1, and the remaining eigenvalues are all positive.

We will be dealing with situations where the communication links are time-varying
in the sense that links can appear and disappear (switch) due to intermittent failures
and/or communication links scheduling. The mathematical setup required is described
next.

A complete graph is a graph with an edge between each pair of nodes. A complete
graph with n nodes has n̄ = n(n− 1)/2 edges. Let G be a complete graph with edges
numbered 1, . . . , n̄. Consider a communication network among n agents. To model
the underlying switching communication graph, let p = [pi]n̄×1, where each pi(t) :
[0,∞) → {0, 1} is a piecewise-continuous time-varying binary function which indicates
the existence of edge i in the graph G at time t. Therefore, given a switching signal
p(t), the dynamic communication graph Gp(t) is the pair (V , Ep(t)), where pi(t) = 1
if i ∈ Ep(t) and pi(t) = 0 otherwise. For example, p(t) = [1, 0, . . . , 0]T means that
at time t only link number 1 is active. Denote by Lp the explicit dependence of the
graph Laplacian on p and likewise for the degree matrix Dp and the adjacency matrix
Ap. Further let Ni,p(t) denote the set of the neighbors of agent i at time t.

We discard infinitely fast switchings. Formally, we let Sdwell denote the class
of piecewise constant switching signals such that any consecutive discontinuities are
separated by no less than some fixed positive constant time τD, the dwell time. We
assume that p(t) ∈ Sdwell.
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3.2. Brief connectivity losses (BCL). Consider the situation where the com-
munication network changes in time so as to make the underlying dynamic commu-
nication graph Gp(t) alternately connected and disconnected. To study the impact
of temporary connectivity losses on the performance of the coordination algorithms
developed, we explore the concept of “brief instabilities” developed in [25]. In partic-
ular, this concept will be instrumental in capturing the percentage of time that the
communication graph is not connected.

Recall that the binary value of the element pi in p declares the existence of
edge i in graph Gp. We can thus build 2n̄ graphs indexed by the different possible
occurrence of vector p. Let P denote the set of all possible vectors p, and let Pc and Pdc

denote the partitions of P that give rise to connected graphs and disconnected graphs,
respectively. That is, if p ∈ Pc, then Gp is connected, or otherwise disconnected.
Define the characteristic function of the switching signal p as

(3.1) χ(p) :=
{

0, p ∈ Pc,
1, p ∈ Pdc.

For a given time-varying p(t) ∈ Sdwell, the connectivity loss time Tp(τ, t) over [τ, t] is
defined as

(3.2) Tp(t, τ) :=
∫ t

τ

χ(p(s))ds.

Definition 3.1 (BCL). The communication network is said to have BCL if

(3.3) Tp(t, τ) ≤ α(t − τ) + (1 − α)T0 ∀t ≥ τ ≥ 0

for some T0 > 0 and 0 ≤ α ≤ 1. In this case, p(t) ∈ PBCL(α, T0) ⊂ Sdwell, where
PBCL(α, T0) is identified with the set of time-varying graphs for which the connectivity
loss time Tp(τ, t) satisfies (3.3).

In (3.3), α provides an asymptotic upper bound on the ratio Tp(τ, t)/(t − τ) as
t− τ → ∞ and is therefore called the asymptotic connectivity loss rate. When p ∈ Pdc

over an interval [τ, t], we have Tp(τ, t) = t− τ , and the above inequality requires that
t − τ ≤ T0. This justifies calling T0 the connectivity loss upper bound. Notice that
α = 1 means that the communications graph is never connected.

We now introduce a special coordination error vector and some preliminary results
that will play an important role in the sections that follow. As will be shown later,
the error state thus introduced will be zero iff the coordination states are equal. To
this effect, start by stacking the coordination states in a vector γ := [γi]n×1. Given a
diagonal matrix K > 0, define β := K−11 and the error vector

(3.4) γ̃ := Lβγ,

where

(3.5) Lβ := I − 1
βT 1

1βT

and I is an identity matrix. The following lemma holds true.
Lemma 3.2. The error vector γ̃, the matrix Lβ, and the graph Laplacian Lp

satisfy the following properties:
1. Lβ has n− 1 eigenvalues at 1 and a single eigenvalue at 0 with right and left

eigenvectors 1 and β, respectively, such that Lβ1 = 0 and βTLβ = 0T .
2. LβKLp = KLp ∀p ∈ Pc ∪ Pdc.
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3. νLT

βK−1Lβν ≤ νK−1ν ∀ν ∈ R
n.

4. γ̃ = 0 ⇔ γ ∈ span{1}.
5. βT γ̃ = 0.
6. Lpγ̃ = Lpγ ∀p ∈ Pc ∪ Pdc.
7. If ‖γ̃‖ < ε, then |γi − γj | <

√
2ε and ‖KLpγ‖ < nε‖K‖.

8. Let

λ2,m := min
p∈Pc

1T ν=0
νT ν �=0

νT Lpν

νT ν
, λm := min

p∈Pc

βT ν=0

νT ν �=0

νT Lpν

νT ν
, λ̄m := min

p∈Pc∪Pdc
Lpν �=0

νT ν �=0

νT Lpν

νT ν
.

Then, λm = (βT 1)2

nβT β λ2,m > 0 and λ̄m > 0.
9. If z = Lp(t)γ, then the ith component of z is zi =

∑
j∈Ni,p(t)

γi − γj.

10. ‖LβvL(γ, t)‖ ≤ √
n min(2vM ,

√
2 l‖γ̃‖), where vL(γ, t) = [vL(γi, t)]n×1.

Proof. See the appendix.
Property 4 allows for the conclusion that if γ̃ tends to zero, then |γi − γj | → 0

∀i, j ∈ N , as t → ∞ and coordination is achieved. Property 7 gives a bound on the
coordination errors γi − γj given a bound on the error vector γ̃. In the literature, the
connectivity of a graph with Laplacian L is defined as the second smallest eigenvalue
λ2 of L. The term λ2,m defined in property 8 is an extension of the concept of
connectivity in a collective sense, defined as the smallest graph connectivity over all
connected graphs Gp. Given λm, the lower bound estimate γ̃T Lpγ̃ ≥ λmγ̃T γ̃, when
p ∈ Pc, applies. An identical interpretation applies to λ̄m. Notice from property 9
that if the control signal of vehicle i is computed as a function of zi, then the proposed
control law meets the communication constraints embodied in the sets Ni.

3.3. Uniformly connected in mean topology. In the previous situation, we
considered the case where the communication graph changes in time, alternating
between connected and disconnected graphs. We now address a more general case
where the communication graph may even fail to be connected at any instant of
time; however, we assume there is a finite time T > 0 such that over any interval of
length T the union of the different graphs is somehow connected. This statement is
made precise in what follows. We now present some key results for the time-varying
communication graph that borrow from [37], [38], [40].

Let Gi, i = 1, . . . , q, be q graphs defined on n nodes and denote by Li their
corresponding graph Laplacians. Define the union graph G = ∪i Gi as the graph
whose edges are obtained from the union of the edges Ei of Gi, i = 1, . . . , q. If G is
connected, L =

∑
i Li has a single eigenvalue at 0 with eigenvector 1. Notice that L

is not necessarily the Laplacian of G, because for an edge e, if e ∈ Ei and e ∈ Ej for
i �= j, then e is counted twice in L through Li +Lj, while we consider only one link in
G as representative of e. However, L has the same rank properties as the Laplacian of
G. Since p ∈ Sdwell (only a finite number of switchings are allowed over any bounded
time interval), the union graph is defined over time intervals in the obvious manner.
Formally, given two real numbers 0 ≤ t1 ≤ t2, the union graph G([t1, t2)) is the
graph whose edges are obtained from the union of the edges Ep(t) of graph Gp(t) for
t ∈ [t1, t2).

Definition 3.3 (uniformly connected in mean (UCM)). A switching communi-
cation graph Gp(t) is UCM if there exists T > 0 such that for every t ≥ 0 the union
graph G([t, t + T )) is connected.
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For a given t > 0, let s0 = t and the sequence si, i = 1, . . . , q, be the time instants
at which switching happens over the interval [t, t+T ). If the switching communication
graph is UCM, then the union graph ∪q

i=0 Gi is connected and
∑q

i=0 Lp(si) has a single
eigenvalue at origin with eigenvector 1.

Consider the linear time-varying system

(3.6) γ̇ = −KLpγ,

where K is a positive definite diagonal matrix and Lp is the Laplacian matrix of a
dynamic graph Gp. The following theorem holds; see, for example, [38].

Theorem 3.4 (agreement). Coordination (agreement) among the variables γi

with dynamics (3.6) is achieved uniformly exponentially if the switching communica-
tion graph Gp(t) is UCM. That is, under this connectivity condition, all the coordina-
tion errors γij(t) converge to zero and γ̇i → 0 as t → ∞.

We now consider the delayed version of (3.6). Let the coordination states γi evolve
according to

(3.7) γ̇(t) = −KDp(t)γ(t) + KAp(t)γ(t − τ),

where Dp(t) and Ap(t) are the degree matrix and the adjacency matrix of Gp(t), re-
spectively. The following theorem can be derived from the results in [40].

Theorem 3.5 (agreement-delayed information). The variables γi with dynamics
(3.7) agree uniformly exponentially for τ ≥ 0 if the switching communication graph
Gp(t) is UCM, that is, under this connectivity condition, all the coordination states
γi(t) converge to the same value and γ̇i → 0 as t → ∞.

A version of Definition 3.3 for directed graphs was first introduced in [38], where
the term “uniformly quasi-strongly connected” was used. Here, we adapt this defini-
tion to undirected graphs, thus the term “uniformly connected in mean” seems to be
more adequate. It is interesting to point out that Theorem 3.4 follows naturally from
the work in [38] or from Theorem 3.4 in [37], which recovers some of the results in [38]
for linear systems. Theorem 3.4 can also be derived from Theorem 1 in [40] by using
the fact that p(t) ∈ Sdwell with a dwell time τD > 0. Finally, Theorem 3.5 can be
derived from Theorem 2 in [40] by noticing that −KLp is a matrix with nonnegative
off-diagonal elements (Metzler matrix) with all its row-sums equal to zero.

4. System interconnections. Systems with brief instabilities. This sec-
tion introduces a lemma that will be instrumental in deriving the performance mea-
sure (error decay rate) associated with the coordination algorithm that will be later
derived for multivehicle systems communicating over networks with BCLs (Defini-
tion 3.1). Here, we avail ourselves of some important results on brief instabilities [25].
We start with basic definitions. A switching linear system S : ẋ = Apx + Bpu is a
dynamical system, where Ap and Bp are functions of some time-varying vector func-
tion p(t). The characteristic function of S, denoted χ, is defined as χ(p) = 0 if S is
stable and as χ(p) = 1 otherwise. Let the instability time Tp(t, τ) of S be defined in
a manner similar to (3.2). Then, S is said to have brief instabilities with instability
bound T0 and asymptotic instability rate α if Tp satisfies (3.3).

Lemma 4.1 (system interconnection and brief instabilities). Consider the coupled
system consisting of two subsystems

ż1 = φ1(t, z1, z2, u1),
ż2 = φ2(t, z1, z2, u2),
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denoted System 1 and System 2, respectively, where z1 and z2 denote the state vec-
tors and u1 and u2 the inputs. Assume there exist Lyapunov functions V1(t, z1) and
V2(t, z2) satisfying

α1‖z1‖2 ≤ V1 ≤ ᾱ1‖z1‖2,

α2‖z2‖2 ≤ V2 ≤ ᾱ2‖z2‖2
(4.1)

and

(4.2)

∂V1

∂t
+

∂V1

∂z1
φ1 ≤ −λ1V1 + ρ1‖z2‖2 + u2

1,

∂V2

∂t
+

∂V2

∂z2
φ2 ≤ −λ2(t)V2 + ρ2‖z1‖2 + u2

2,

where αi, ᾱi, ρi, i = 1, 2, and λ1 are positive values. Let system 2 have brief insta-
bilities characterized by

(4.3) χ(p(t)) =
{

0, λ2(p(t)) = λ2,

1, λ2(p(t)) = −λ̃2,

where λ2 > 0, λ̃2 ≥ 0, with asymptotic instability rate α and instability bound T0.
Define

(4.4) λ0 :=
1
2
(λ1 + λ2) −

√
1
4
(λ1 + λ2)2 − λ1λ2 +

ρ1ρ2

α1α2

that satisfies

min(λ1, λ2) −
√

ρ1ρ2

α1α2

≤ λ0 ≤ max(λ1, λ2) −
√

ρ1ρ2

α1α2

.

Assume that α < λ0/(λ2 + λ̃2) and

(4.5) ρ1ρ2 < α1α2λ1λ2.

Then,
1. the interconnected system is ISS with respect to state z = col(z1, z2) and input

u = col(u1, u2).
2. there is a Lyapunov function V (t, z) such that

(4.6)
α‖z‖2 ≤ V ≤ ᾱ‖z‖2,

V (t) ≤ cV (t0)e−λ(t−t0) + g sup[t0,t] u
2,

where c = e(λ2+λ̃2)(1−α)T0 , g = c
λ max(1, α1(λ1 − λ0)/ρ2), and the rate of

convergence λ is given by λ = λ0 − α(λ2 + λ̃2).
In particular, if ρ2 = 0 and ρ1 > 0, then the interconnected system takes a cascade
form and is ISS with input u and state z. Furthermore, the system exhibits convergence
rate λ = min(λ1, (1 − α)λ2 − αλ̃2). The conclusions are also valid with α = 0 for the
case where system 2 has no instabilities, that is, λ2(t) = λ2.

Proof. An indication of the proof for the case where ρ1 and ρ2 are nonzero is
given next. See the appendix for the proof in the general case.
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Define V = V1 + aV2 for some a > 0 to be chosen later. Taking the derivative of
V yields

V̇ ≤ −
(

λ1 − aρ2

α1

)
V1 − a

(
λ2(t) − ρ1

aα2

)
V2 + g‖d‖2,

where g = max(1, a). Given any constant λ2 > 0, there exists a > 0 such that

(4.7) λ1 − aρ2

α1

= λ2 − ρ1

aα2

if (4.5) is satisfied (small-gain condition). Then V̇ ≤ −λ0V + g‖d‖2, where λ0 is
given by (4.4), and the interconnected system is ISS with input d. Furthermore, its
convergence rate is λ = λ0.

Consider now the situation where λ2(t) is time-varying. In this case, V̇ ≤ −λ0V +
a(λ2 − λ2(t))V2 + g‖d‖. Because system 2 has brief instabilities with characteristic
function χ(p), using the relationship aV2 = V − V1 yields

V̇ ≤ −(λ0 − λ3χ(p(t)))V + g‖d‖2,

where λ3 := λ2 + λ̃2. Integrating the above differential inequalities, it can be shown
that

V (t) ≤ V (t0)e−λ0(t−t0)+λ3Tp+ g sup[t0,t] ‖d‖2
∫ t

t0
e−λ0(t−τ)+λ3Tpdτ.

Using (3.3) concludes the proof.
It is interesting to notice how the lemma invokes two conditions: (i) the small-

gain condition (4.5), which is sufficient to guarantee that the results stated hold true
when system 2 is stable, and (ii) the extra inequality α < λ0/(λ2 + λ̃2), that must
also be satisfied when system 2 has brief instabilities. In this respect, the above
lemma generalizes the results derived in [27] for the case where system 2 has no
brief instabilities. As an example of application of the lemma, assume λ1 = λ2 =
λ̃2 = 1

k

√
ρ1ρ2
α1α2

, where 0 < k < 1. Then the small-gain condition is satisfied and the

interconnected system of the lemma above is ISS if α < 1−k
2 , which is smaller than 0.5

for any admissible k.
Equipped with the results derived so far, the next two sections offer solutions to

the CPF problem formulated in section 2.

5. CPF in the absence of communication delays. Consider the coordina-
tion control problem introduced in section 2 with a switching communication topology
parameterized by p : [0,∞) → {0, 1} and with no communication delays. Recall that
the coordination states γi are governed by (2.8). Inspired by the work in [28], [61],
we propose the following decentralized feedback law for the reference speeds vri as a
function of the information obtained from the neighboring vehicles:

(5.1) vri = vL − ki

∑
j∈Ni,p(t)

(γi(t) − γj(t)),

where vL(γi, t) is the common, nominal speed assigned to the fleet of vehicles and
ki > 0. Let km := mini ki and kM := maxi ki. Notice that with this choice of control
law, the term ṽri = vri − vL, for which the time derivative is not available, is given by

(5.2) ṽri = −ki

∑
j∈Ni,p(t)

(γi(t) − γj(t)).
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Using (2.8), (5.1), and property 9 of Lemma 3.2, the coordination control closed-
loop system can be written in vector form as

(5.3) γ̇ = −KLp(t)γ + vL(γ, t) + gηη,

where K = diag[ki]. The auxiliary term gη was added for simplicity of exposition:
gη = 1 when the closed-loop PF system is of Type I (η is considered a state), and
gη = 0 when the PF system is of Type II (η = 0); see Assumption 2.2. Using
properties 2 and 6 of Lemma 3.2, the coordination dynamics (5.3) take the form

(5.4) ˙̃γ = −KLpγ̃ + LβvL(γ, t) + gηLβη.

Notice from (5.3) that η can be viewed as a coupling term from the PF to the coor-
dination dynamics.

At this stage, in preparation for the following sections, we state a lemma on an
ISS property that applies to a collection of PF systems.

Lemma 5.1. Consider n PF subsystems, each satisfying Assumption 2.2, and let
ζ = [ζi]n×1. Then there exists a single Lyapunov function V1 satisfying

α1‖ζ‖2 ≤ V1 ≤ ᾱ1‖ζ‖2,

V̇1 ≤ −λ1V1 + ρ1n
2k2

M‖γ̃‖2 + u2
1,

(5.5)

where u2
1 :=

∑n
i=1 d2

i . In addition, the ISS property

(5.6) ‖η(t)‖ ≤ ‖ζ(t)‖ ≤ e−λ̄1(t−t0)‖ζ(t0)‖ + ρ̄1 sup
τ∈[t0,t)

‖γ̃‖ + ρ̄2‖u1‖

holds with λ̄1 = α1
2ᾱ1

λ1, ρ̄1 =
√

ρ1n2k2
M

λ1ᾱ1
, and ρ̄2 = 1√

λ1ᾱ1
.

Proof. See the appendix.
Close inspection of the ISS property (5.6) and the dynamics (5.4) shows that the

PF and coordination systems form a feedback interconnected system.
To deal with switching communication topologies, two approaches are introduced

next: “uniform switching topologies” and “brief connectivity losses,” as defined in sec-
tion 2. We now derive conditions under which the overall closed-loop system consisting
of the PF and coordination subsystems is stable. We also derive some convergence
properties for the complete system.

5.1. UCM topology. This section addresses the case where the communication
network changes but the underlying communication graph is UCM (see Definition 3.3).
Recall in this case that there is T > 0 such that for any t ≥ 0, the union graph
G([t, t + T )) is connected. The section starts with some preliminary results leading to
the statement of Theorem 5.2, a proof of which is included in the appendix.

Consider the unforced coordination closed-loop dynamics derived from (5.4), that
is,

(5.7) ˙̃γ = −KLpγ̃.

First, we will show that if the switching communication graph is UCM (with parameter
T > 0), then ∀t > 0, ∃τ ∈ [t, t + T ), such that Lp(τ)γ̃(τ) �= 0. To this effect, we let
V = 1

2 γ̃T K−1γ̃ whose time derivative along the solutions of (5.7) is

V̇ = −γ̃T Lpγ̃.
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Notice that V̇ is negative semidefinite whether the graph is connected or not. Thus,
γ̃ remains bounded. Consider now the sequence si, i = 1, . . . , q, of switching times in
the interval [t, t + T ), with t < s1 < sq < t + T and si ≤ si+1 − τD, i = 1, . . . , q − 1,
where τD is the dwell time. Let s0 = min(t, s1−τD) and T1 = max(sq +τD, t+T )−s0.
With this construction T ≤ T1 ≤ T + 2τD, s1 − τD ≥ s0, and sq + τD ≤ s0 + T1. We
now show that2 ∃τ ∈ T := [s0, s0 + T1) such that Lp(τ)γ̃(τ) �= 0.

Assume by contradiction that Lpγ̃ = 0 ∀τ ∈ T and discard the trivial solution
γ̃ = 0. Then, from (5.7) it follows that ˙̃γ = 0; that is, γ̃ remains unchanged over T.
Therefore,

0 =
q∑

i=0

Lp(si)γ̃(si) =

(
q∑

i=0

Lp(si)

)
γ̃(s0).

As shown in section 3, since the graph is UCM the matrix
∑q

i=0 Lp(si) has rank n− 1
and its kernel is span{1}. As a consequence, γ̃(s0) ∈ span{1}, which contradicts the
fact that βT γ̃ = 0.

Without loss of generality, assume Lp(s0)γ̃(s0) �= 0 and define TD := [s0, s0 +τD).
Clearly, ∀t̄ ∈ TD the inequality Lp(t̄)γ̃(t̄) �= 0 applies because (5.7) is a linear time
invariant system during the interval considered and its solutions cannot tend to zero
in finite time. It follows that

(5.8) V̇ (t̄) ≤
{ −2kmλ̄mV (t̄), t̄ ∈ TD,

0, t̄ ∈ T\TD,

with λ̄m as defined in property 8 of Lemma 3.2. We can now conclude that system (5.7)
with UCM switching communication graphs has brief instabilities with asymptotic
instability rate ᾱ = 1 − τD/T1 ≤ 1 − τD/(T + 2τD) and instability upper bound
T̄0 = T1 − τD ≤ T + τD. That is, if a characteristic function χ̄ is defined as

χ̄(t) =
{

0, t ∈ TD,
1, t ∈ T\TD,

then V̇ (t) ≤ −2kmλ̄m(1 − χ̄(t))V (t). Integrating this differential inequality yields

V (t) ≤ cV (τ)e−2λα(t−τ) ∀t ≥ τ ≥ 0,

with

(5.9) λα = (1 − ᾱ)kmλ̄m, c = e2λαT̄0 ,

and where we used the fact that∫ τ

t

χ̄(s)ds ≤ ᾱ(t − τ) + (1 − ᾱ)T̄0 ∀t ≥ τ ≥ 0.

Therefore, ‖γ̃(t)‖ ≤ c1e
−λα(t−τ)‖γ̃(τ)‖ and

(5.10) ‖Φp(t, τ)‖ ≤ c1e
−λα(t−τ),

where Φp(t, τ) denotes the state transition matrix of (5.7) and c1 =
√

ckM

km
. Notice

that the above inequality is valid for all p(t) ∈ Sdwell such that the graph Gp is UCM.

2Notice that if ∃τ ∈ T such that Lp(τ)γ̃(τ) �= 0, then ∃τ1 ∈ [t, t + T ) such that Lp(τ1)γ̃(τ1) �= 0
because t ≤ s0 + τD and t + T ≥ s0 + T − τD .
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For a given switching signal p(t), input η(t), and initial state γ(t0), the solution of
(5.4) is given by (see [53, p. 87])

γ̃(t) = Φp(t, t0)γ̃(t0)+
∫ t

t0

Φp(t, τ)LβvL(γ(τ), τ)dτ +gη

∫ t

t0

Φp(t, τ)Lβη(τ)dτ ∀t ≥ t0.

Letting

(5.11) λ̄α = λα − c1

√
2nl = λα − eλαT̄0 l

√
2n

kM

km

and using (5.10) and property 10 of Lemma 3.2, an upper bound for γ̃(t) can be
derived as
(5.12)

‖γ̃(t)‖ ≤ c1e
−λα(t−t0)‖γ̃(t0)‖ + c1l

√
2n

∫ t

t0

e−λα(t−τ)‖γ̃(τ)‖dτ + gη
c1

λα
sup

τ∈[t0,t)

‖η(τ)‖

if λ̄α > 0, and

(5.13) ‖γ̃(t)‖ ≤ c1e
−λα(t−t0)‖γ̃(t0)‖ +

2vMc1
√

n

λα
+ gη

c1

λα
sup

τ∈[t0,t)

‖η(τ)‖

otherwise. It is now straightforward to multiply both sides of (5.12) by eλαt and to
use the Gronwall–Bellman theorem [31, p. 66] to arrive at

(5.14) ‖γ̃(t)‖ ≤ c1e
−λ̄α(t−t0)‖γ̃(t0)‖ + gη

c1

λ̄α
sup ‖η(τ)‖

provided that λ̄α > 0. Notice from (5.11) that λ̄α cannot be made arbitrarily large.
It can be shown that there are control gains (km = kM ) that make λ̄α > 0 if the
Lipschitz constant l of vL satisfies

(5.15) l <
1

(T + τD)
√

2ne
.

For each such l, the corresponding maximum value of λ̄α can be easily computed.
Equipped with these introductory results, we now state the main theorem of this

section.
Theorem 5.2 (CPF with UCM). Consider the interconnected system Σ depicted

in Figure 3, consisting of n PF subsystems satisfying Assumption 2.2 together with
the coordination control (CC) subsystem (5.3) supported by a communication network

γ̃

η

u1

ζ

γ

P.F.

C.C.

Fig. 3. Σ: Overall closed-loop system consisting of the PF and CC subsystems.
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that is UCM with parameter T and switching dwell time τD. Then, Σ is input-to-
state practical stable (ISpS) with respect to the states γ̃ and ζ, the input u1, and the
constant 2vMc1

√
n/λα if

(5.16)

{
c1

√
ρ1n2k2

M

λ1ᾱ1
< λ̄0, PF of Type I,

always, PF of Type II,

where λ̄0 = λα as defined in (5.9). If (5.15) holds, the control gains can be chosen
such that λ̄α > 0. In this case, Σ is ISS with respect to the states γ̃ and ζ and input u1

under condition (5.16) with λ̄0 = λ̄α as defined in (5.11). Furthermore, the PF error
vectors ei, the speed tracking errors |γ̇i − vL|, and the coordination errors |γi − γj |
∀i, j ∈ N converge exponentially fast to some ball around zero as t → ∞, with rate at
least min(λ̄0, λ̄1).

Proof. A proof of (5.15) is given in the appendix. Using the ISS version of the
small-gain theorem for the interconnection of (5.14) and (5.6) in the case of λ̄α > 0,
and for the interconnection of (5.13) and (5.6) otherwise, leads to the result.

From the above, under the UCM assumption, it follows that the complete CPF
control system is ISS if condition (5.15) is satisfied. In the absence of disturbances
and noise, the origin of the system becomes globally asymptotically stable (in fact,
exponentially stable). In the case when condition (5.15) is not satisfied, all that can
be shown is that the complete system is ISpS.

5.2. BCLs. This section addresses the situation where the communication net-
work has BCLs; see Definition 3.1. In this case the underlying communication graph
switches between connected and disconnected configurations with known asymptotic
connectivity loss rate α and connectivity loss upper bound To.

The following result provides conditions under which the overall closed-loop sys-
tem consisting of the PF and coordination subsystems is ISS.

Theorem 5.3 (CPF with BCLs). Consider the interconnected system Σ de-
picted in Figure 3, consisting of n PF subsystems that satisfy Assumption 2.2 and
the coordination subsystem (5.3) with a communication network subjected to BCLs
characterized by (3.3). Let λ2 := kmλm − kM l

√
2n

km
. Define kg := kmλ2

2
n2k3

M
and

λ0 = λ̃0 −
√

λ̃2
0 − λ1λ2

(
1 − ρ1

kgα1λ1

)
,

where λ̃0 = 1
2 (λ1 + λ2) and λm is defined in Lemma 3.2, property 8. Assume

(5.17)
k2

m

kM
>

l
√

2n

λm
.

Further assume the following conditions hold:
(a) [PF of Type I] The asymptotic connectivity losses rate α satisfies

α <
λ0

2kmλm

and
ρ1

α1λ1
< kg.
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(b) [PF of Type II] α < 1 − kM l
√

2n
λmk2

m
.

Then, Σ is ISS with respect to the states γ̃ and ζ and input u1 (see Figure 3). Further-
more, the PF error vectors ei, the speed tracking errors |γ̇i−vL|, and the coordination
errors |γi − γj | ∀i, j ∈ N converge exponentially fast to some ball around zero (de-
pending on the size of u1) as t → ∞, with rate at least

λ =
{

λ0 − 2αkmλm, PF of Type I,
min(λ1, λ2 − 2αkmλm), PF of Type II.

Proof. Choose the Lyapunov candidate function

V2 :=
1
2
γ̃T K−1γ̃

whose time derivative along the solutions of (5.4) is

V̇2 = −γ̃T Lpγ̃ + γ̃T K−1LβvL(γ, t) + gηγ̃T K−1Lβη

≤ −γ̃T Lpγ̃ +
l
√

2n

km
‖γ̃‖2 + gηθ1γ̃

T K−1γ̃ +
gη

4θ1
ηTLT

βK−1Lβη,

where we used Young’s inequality and property 10 of Lemma 3.2. Using properties 3
and 8 of Lemma 3.2, the above inequality yields

(5.18) V̇2 ≤
{ −λ2V2 + ρ2‖η‖2, p ∈ Pc,

λ̃2V2 + ρ2‖η‖2, p ∈ Pdc,

with λ̃2 = 2kM l
√

2n
km

+ 2gηθ1, λ2 = 2λmkm − λ̃2, ρ2 = gη

4kmθ1
. In order for λ2 and λ̃2 to

be positive, θ1 must satisfy 0 < θ1 < λmkm − l
√

2nkM

km
. It is straightforward to check

that this condition holds if k2
m

kM
> l

√
2n

λm
.

Close inspection of (5.5) and (5.18) shows that the PF and coordination subsys-
tems form a feedback interconnected system with η and γ̃ as interacting signals, as
shown in Figure 3. We now use Lemma 4.1 and the fact that the coordination subsys-
tem has BCLs as defined in (3.3) to find conditions under which the interconnected
system is ISS from input u1. We consider the cases where the PF algorithms are of
Type I or II.

[PF of Type I] Consider the feedback interconnection of (5.5) and (5.18) for the
case where gη = 1, that is, with ρ2 > 0. Resorting to Lemma 4.1 for interconnected
systems with brief instabilities and applying the small-gain condition (4.5), we obtain

(ρ1n
2k2

M )
(

1
4kmθ1

)
< (α1)

(
1

2kM

)
(λ1)

(
2λmkm − 2

l
√

2nkM

km
− 2θ1

)
,

or equivalently,

ρ1

α1λ1
<

4km

n2k3
M

θ1

(
λmkm − l

√
2nkM

km
− θ1

)
,

the right-hand side of which is maximized for θ1 = 1
2km

(λmk2
m − l

√
2nkM ). Inserting

the latter value of θ1 in the inequality above, the conditions of the theorem for PF
strategies of Type I follow immediately.
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[PF of Type II] In this case the interconnection of (5.5) and (5.18) takes a cascade
form, that is, gη = 0 and (5.18) simplifies to

V̇2 ≤
{ −λ2V2, p ∈ Pc,

λ̃2V2, p ∈ Pdc,

where λ̃2 = 2 l
√

2nkM

km
and λ2 = 2λmkm − λ̃2. Using Lemma 4.1 with ρ2 = 0 the

conditions of the theorem for PF strategies of Type I are easily obtained.
At this point, it is interesting to work out a simple numerical example to illustrate

some of the results derived. To this effect, consider the CPF problem for three vehicles
(n = 3). In this case, λm = 1. We consider both the case where the speed profile
vL is constant and the case where vL(γi) = 2 + sin(γi), for which l = 0 and l = 1,
respectively. Choose K = 2

√
6I3 to guarantee condition (5.17) for both cases of

vL. Further assume that the ISS property of the PF subsystem is satisfied with
λ1 =

√
6 and α1 =

√
6. It is now straightforward to compute the following parameters

consecutively. For l = 0: λ2 = 2
√

6, kg = 4/36, and λ̃0 = 3/2
√

6. The small-gain
condition (4.5) will require that ρ1 < 4/6. For l = 1: λ2 =

√
6, kg = 1/36, and

λ̃0 =
√

6. The same small-gain condition will yield ρ1 < 1/6 in this case. As expected,
ρ1 (which can be viewed as a stability margin) is reduced when the vL depends on
the path parameter. Let ρ1 = 1/24 to ensure stability for both cases of vL above.
We can now compute λ0 = 0.54

√
6 for l = 0 and λ0 = 0.5

√
6 for l = 1. It follows

from the above that when PF is of Type I the interconnected system will be ISS if
the asymptotic connectivity loss rate is α < 13.5% for l = 0 and α < 12.5% for l = 1.
When PF is of Type II, the bounds are relaxed to α < 100% for l = 0 and α < 50%
for l = 1. Better convergence rates could be guaranteed if one were to aim for ISpS
rather than ISS.

6. CPF: Delayed information. In this section we study the problem of CPF
in the presence of communication delays. We consider the case where all communica-
tion channels have the same delay, τ > 0. We further assume that the PF closed-loop
subsystems are of Type II, that is, η = 0.

Motivated by (5.1), we assume that the control law for the reference speed vri of
each vehicle is given by

(6.1) vri = vL − ki

∑
j∈Ni,p(t)

(γi(t) − γj(t − τ)).

Using (2.8) and (6.1), the closed-loop coordination subsystem can be written as

(6.2) γ̇(t) = vL(γ, t) − KDp(t)γ(t) + KAp(t)γ(t − τ),

where Dp and Ap are the degree matrix and the adjacency matrix of the communi-
cation graph, respectively. We now determine conditions under which coordination
is achieved, that is, under which there exists a signal γ0(t) such that γ = γ0(t)1 is a
solution of (6.2). Should such a solution exist, then substituting it in (6.2) and using
the fact that Ap = Dp − Lp yields

γ̇01 = vL(γ0, t)1 − KDpγ0(t)1 + K(Dp − Lp)γ0(t − τ)1,

which simplifies to

(6.3) γ̇01− vL1 = −(γ0(t) − γ0(t − τ))KDp1.
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The equality above is verified iff all elements of the right-hand side vector are equal.
For this to be true, one of the following two conditions must apply:

[C1] γ0(t) is either a constant or a periodic signal with period τ . In this case
γ0(t) − γ0(t − τ) = 0 ∀t and (6.3) holds with γ̇0 = vL. This condition is not
relevant from a practical standpoint.
[C2] ∀t, KDp(t) = kI for some k > 0. This requires that the degrees of
the nodes of the switching communication graph Gp never vanish, that is,
|Ni,p| �= 0 ∀t, so that the degree matrix Dp is always nonsingular and we can
set the control gains to K = kD−1

p . In this case, the control gains become
piecewise constant functions of p.

In view of the above discussion we consider only condition C2. To lift the constraint
|Ni,p| �= 0 and have the CPF algorithm be applicable to more general types of switch-
ing topologies, we will later modify the control law (6.1). In what follows, we assume
vL is constant. We start by studying the convergence properties of only the coordi-
nation dynamics in Lemmas 6.1 and 6.2 below. This is followed by the analysis of the
combined PF and coordination systems in Theorem 6.3.

Lemma 6.1. Consider the coordination system dynamics (2.8) with the control
law (6.1). Assume that |Ni,p(t)| �= 0 ∀ t, and let the control gains be ki(t) = k/|Ni,p(t)|.
Then, the states γi uniformly exponentially agree if the underlying communication
graph Gp is UCM. In this situation, |γi − γj | → 0 and γ̇i → γ̇0 as t → ∞, where γ0

is a solution of the delay differential equation

(6.4) γ̇0 = −k(γ0(t) − γ0(t − τ)) + vL.

Proof. As explained before, with the control law (6.1) the coordination system
takes the form (6.2). Let

(6.5) γ̃(t) = γ(t) − γ0(t)1

and substitute γ from (6.5) in (6.2) to obtain

γ̇0(t)1 + ˙̃γ = −K(t)Dp(t)γ̃(t) + K(t)Ap(t)γ̃(t − τ) +
−K(t)Dp(t)γ0(t)1 + K(t)Ap(t)γ0(t − τ)1 + vL1,

(6.6)

which simplifies to

(6.7) ˙̃γ = −kγ̃(t) + kD−1
p Apγ̃(t − τ)

if γ0(t) is the solution of (6.4) and K(t) = kD−1
p . From Theorem 3.5, states γ̃i in

(6.7) agree uniformly exponentially. In particular, γ̃ → 0 as t → ∞. Thus, from (6.5)
γ → γ01, and the results follow.

In general, if vL is not constant the delayed differential equation (6.4) has no
closed form solution. However, for the particular case of vL constant, one solution is
γ0(t) = v∗Lt, where v∗L = vL

1+kτ . Notice that due to the transmission delay τ there is a
finite error in the speed tracking; that is, γ̇i converges to v∗L and not to vL.

Consider now the case where there are instants of t time at which |Ni,p(t)| = 0
for some i ∈ N . Notice that with the setup adopted in this paper, this condition
will necessarily hold over a countable number of disjoint intervals of time, where the
length of each interval is bounded above and below by T0 and τD, respectively.

In this case, (6.2) can be rewritten in terms of γ̃ defined in (6.5) as

(6.8) ˙̃γ = −K(t)Dp(t)γ̃(t) + K(t)Ap(t)γ̃(t − τ) + v∗Lτ(kI − K(t)Dp)1.
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Clearly, when τ = 0 agreement is achieved for any choice of positive definite K due
to Theorem 3.5. However, this is not necessarily the case when τ �= 0. To see this,
assume, for example, that the agreement dynamics (6.8) are at rest, that is, ˙̃γi = 0
∀i ∈ N . Then, if |Ni,p(t)| = 0 for some i and t in a given interval of time, the dynamics
of the ith row of (6.8) become ˙̃γi = vL−v∗L. This problem can be resolved by applying
different desired speeds when vehicle i has no neighbors. The solution is stated next.

Lemma 6.2. Consider the coordination system dynamics with control law

(6.9) vri =
{

vL + k
|Ni,p|

∑
j∈Ni,p

γi(t) − γj(t − τ), Ni,p �= ∅,
v∗L, Ni,p = ∅,

where k > 0. Then, the states γi uniformly exponentially agree if the underlying
communication graph Gp is UCM. In this case, |γi − γj | → 0 and γ̇i → v∗L as t → ∞.

Proof. The closed-loop coordination dynamics can be expressed in vector form as

γ̇ = −KDpγ(t) + KApγ(t − τ) +
vL − v∗L

k
KDp1 + v∗L1.

Letting γ(t) = v∗Lt1 + γ̃(t) simplifies the closed-loop dynamics to

˙̃γ = −KDpγ̃(t) + KApγ̃(t − τ).

Theorem 3.5 implies that γ̃ and ˙̃γ will converge to the span{1} and to 0, respectively,
as t → ∞. This concludes the proof.

Notice that in order to implement the control law (6.9) the vehicles need to know
the delay τ in order to compute v∗L. This raises the practical issue of how to estimate
τ . This issue is not addressed in this paper. The following theorem concludes this
section.

Theorem 6.3 (CPF with delay). Consider system Σ that is obtained by putting
together the n PF subsystems satisfying Assumption 2.2 and the coordination subsys-
tems studied in Lemma 6.1 or 6.2. Then, the complete system Σ is ISS with input
u1. In particular, PF errors ‖ei‖ tend to some ball around zero, and the coordination
errors |γi − γj | and the speed tracking errors |γi − v∗L| converge to zero exponentially.

Proof. Using Lemma 6.1 or 6.2, we conclude that ṽri = vri − vL = γ̇i − vL

converges to vL − v∗L exponentially. Close examination of (2.7) shows that the PF
and coordination control subsystems form an interconnected cascade system where
ṽri is the output of the coordination control (CC) subsystem and the input to the PF
subsystems. Since that latter is ISS from input ṽri , the results follow.

The exposition in this section was strongly motivated by previous work on agree-
ment problems for systems with delays. Especially relevant are the results available
in [40] and [8], [10] for continuous time and discrete time, respectively. In particular,
the results in [40] address the unforced version of (6.2), that is, with vL(γ, t) = 0.
The results in this section reformulate those in [40] to the case where the agreement
dynamics are forced by vL(γ, t).

7. Illustrative example. This section presents an example that illustrates the
application of the CPF techniques developed for the control of three AUVs.

7.1. CPF of three underactuated AUVs. Consider the problem of CPF
control of three underactuated AUVs. Vehicle 2 is allowed to communicate with
vehicles 1 and 3, but the latter two do not directly communicate between themselves.
To simulate losses in the communications, we considered the situation where both
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links fail 75% of the time, with the failures occurring periodically with a period of
10[sec]. Moreover, the information transmission delay is 5[sec]. Notice that during
failures all the links become deactivated. Since in this scenario the valencies of the
nodes vanish periodically, we apply the results of Lemma 6.2. In the simulations, we
used the control law (6.9) with k = 0.1[sec−1].

7.1.1. AUV model. Consider an underactuated vehicle modeled as a rigid body
subject to external forces and torques. (See [19] for details on vehicle modeling.) Let
{I} be an inertial coordinate frame and {B} a body-fixed coordinate frame whose
origin is located at the center of mass of the vehicle. The configuration (R,p) of the
vehicle is an element of the special Euclidean group SE(3) := SO(3)×R

3, where R ∈
SO(3) := {R ∈ R

3×3 : RRT = I3, det(R) = +1} is a rotation matrix that describes
the orientation of the vehicle and maps body coordinates into inertial coordinates,
and p ∈ R

3 is the position of the origin of {B} in {I}. Denote by ν ∈ R
3 and

ω ∈ R
3 the linear and angular velocities of the vehicle relative to {I} expressed in

{B}, respectively. The following kinematic relations apply:

ṗ = Rν,(7.1a)

Ṙ = RS(ω),(7.1b)

where

S(x) :=

⎡
⎣ 0 −x3 x2

x3 0 −x1

−x2 x1 0

⎤
⎦ ∀x := (x1, x2, x3)T ∈ R

3.

We consider underactuated vehicles with dynamic equations of motion of the form

Mν̇ = −S(ω)Mν + fν(ν,p, R) + B1u1,(7.2a)
Jω̇ = fω(ν, ω,p, R) + B2u2,(7.2b)

where M ∈ R
3×3 and J ∈ R

3×3 denote constant symmetric positive definite mass and
inertia matrices, respectively. u1 ∈ R and u2 ∈ R

3 denote the control inputs, which
act upon the system through a constant nonzero vector B1 ∈ R

3 and a constant non-
singular matrix B2 ∈ R

3×3, respectively; and fν(·), fω(·) represent all the remaining
forces and torques acting on the body. For the special case of an underwater vehicle,
M and J also include the so-called hydrodynamic added-mass MA and added-inertia
JA matrices, respectively, i.e., M = MRB +MA, J = JRB +JA, where MRB and JRB

are the rigid-body mass and inertia matrices, respectively.
A solution to the PF problem (defined in section 2) of an AUV was given in [1], [2],

where the control laws require that γ̇i and γ̈i be known. Recall that we decomposed
the desired speed profile into two parts as vri = vL + ṽri in which only the derivatives
of vL can be computed accurately. However, it can be shown that in the control laws
of [1], [2], if the terms γ̇i and γ̈i are replaced with vL and v̇L, respectively, the resulting
PF closed-loop system becomes ISpS from ṽri as an input. This leads to the following
result.

Theorem 7.1 (PF-AUV). Consider an underactuated AUV with the equations of
motion given by (7.1) and (7.2) and a desired path pd(γ) in 3D-space to be followed.
There is a control law for u1 and u2 as functions of the local states pd and vL that
makes the closed-loop system satisfy Assumption 2.2.

Proof. See the appendix.
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Fig. 4. CPF of three AUVs, with communication losses and delay.

Remark 7.2. It is important to notice that the particular PF algorithm that we
derive yields input-to-state practical stability, not input-to-state stability. However,
the key results obtained in the paper hold true, for input-to-state practical stability
can always be viewed as an input-to-state stability condition with an extra constant
input.

7.1.2. Simulations. In the simulations, the AUVs are required to follow three
similar spatial paths shifted along the depth coordinate; that is, the paths are of the
form

pdi(γi) =
[
c1 cos

(
2π

T
γi + φd

)
, c1 sin

(
2π

T
γi + φd

)
, c2γi + z0i

]
,

with c1 = 20 m, c2 = 0.05 m, T = 400, φd = − 3π
4 and z01 = −10 m, z02 = −5 m, z03 =

0 m. The initial conditions are p1 = (5 m,−10 m,−5 m), p2 = (5 m,−15 m, 0 m),
p3 = (5 m,−20 m, 5 m), R1 = R2 = R3 = I, and v1 = v2 = v3 = ω1 = ω2 = ω3 = 0.
The reference speed vL was set to vL = 0.5[sec−1].

The vehicles are also required to keep a formation pattern that consists of having
them aligned along a common vertical line. Figure 4 shows the trajectories of the
AUVs. Figure 5 illustrates the evolution of the coordination and PF errors when
the communication links fail periodically. Clearly, the vehicles adjust their speeds
to meet the formation requirements, and the coordination errors γ12 := γ1 − γ2 and
γ13 := γ1 − γ3 converge to zero.

8. Conclusions. This paper addressed the problem of steering a group of vehi-
cles along given paths while holding a desired intervehicle formation pattern (coordi-
nated path-following), all in the presence of communication losses and time delays.
The solution proposed builds on Lyapunov-based techniques and addresses explicitly
the constraints imposed by the topology of the intervehicle communications network.
The problem of temporary communication failures was addressed under two scenar-
ios: “brief connectivity losses” and “connected in mean” communication graphs. With
the framework adopted, path-following and coordinated control system design become
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Fig. 5. 75% of temporal communication losses; time delay 5[sec].

partially decoupled. As a consequence, the dynamics of each autonomous underwater
vehicle can be dealt with by each vehicle controller locally, at the path-following con-
trol level. Coordination can then be achieved by resorting to a decentralized control
law whereby the exchange of data among the vehicles is kept at a minimum. The
system obtained by putting together the path-following and the vehicle coordination
strategies proposed was shown to be either a feedback interconnection or a cascade
of two input-to-state stable systems. Stability and convergence properties of the re-
sulting interconnected system were studied formally by introducing a new small-gain
theorem for systems with brief instabilities. Simulations illustrated the efficacy of the
solution proposed.

Further work is required to extend the methodology proposed to tackle more
complex coordination control problems, namely, coordinated control in the presence
of stringent communication constraints that arise in the underwater world such as
nonhomogeneous time variable delays, tight energy budgets, and reduced channel
capacity. In particular, the study of coordinated path-following control systems yield-
ing quantifiable measures of performance in the case of unidirectional, event driven
communications, is warranted.

Appendix.
Proof of Lemma 3.2.
1. Since Rank(I − Lβ) = 1, Lβ has n − 1 eigenvalues at 1. Using the definition

of Lβ , it can be easily verified that Lβ1 = 0 and βTLβ = 0T , that is, zero is
an eigenvalue. Therefore, we can conclude that zero is a single eigenvalue.

2. LβKLp = (K − 1
βT 111T )Lp = KLp, since 1T Lp = 0T .

3. Straightforward computations show that LT

βK−1Lβ = K−1− 1
βT 1ββT . There-

fore, νTLT

βK−1Lβν = νT K−1ν − 1
βT 1νT ββT ν ≤ νT K−1ν for any ν ∈ R

n and
the equality holds for βT ν = 0, thus proving the result.

4. The result follows from the fact that γ̃ = Lβγ, Lβ1 = 0, and RankLβ = n−1.
5. This follows from the definition of γ̃ in (3.4).
6. This follows from the definition of γ̃ and the fact that Lp1 = 0.
7. From

|γ̃i − γ̃j |2 = γ̃2
i + γ̃2

j − 2γ̃iγ̃j ≤ 2(γ̃2
i + γ̃2

j ) ≤ 2‖γ̃‖2 < 2ε2

and γ̃i − γ̃j = γi − γj it follows that |γi − γj | <
√

2ε. Furthermore, from
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KLpγ = KLpγ̃ it follows that ‖KLpγ‖ ≤ ‖K‖.‖Lp‖.‖γ̃‖ ≤ nε‖K‖, where we
used the fact that ‖Lp‖ ≤ n and equality occurs for a complete graph, that
is, for p = [1, . . . , 1]T .

8. Recall the fact that if a graph is connected (p ∈ Pc), then Lp has a single
eigenvalue at zero associated to the (right and left) eigenvector 1, and the rest
of the eigenvalues are positive. Let L be a representative graph Laplacian of
Lp for p ∈ Pc. Then, there is a unitary matrix U = [u1, . . . , un] with u1 = 1√

n
1

and a diagonal matrix Λ = diag[λ1, λ2, . . . , λn] with 0 = λ1 < λ2 ≤ · · · ≤ λn

such that L = UΛUT . For any ν ∈ R
n,

νT Lν =
n∑

i=1

λi(uT

i ν)2

=
n∑

i=2

λi(uT

i ν)2

≥ λ2

n∑
i=2

(uT

i ν)2

= λ2

n∑
i=1

(uT

i ν)2 − λ2(uT

1ν)2

= λ2ν
T ν − λ2

1
n (1T ν)2.

To compute λ2,m, simply observe that the second term on the right-hand side
of the inequality above is zero. Therefore, λ2,m is the minimum λ2 over p ∈ Pc.
If β �= 1, a standard minimization of the vector function νT ν − 1

n (1T ν)2 with
constraints βT ν = 0 and νT ν = 1 yields the results. Similarly, it can be shown
that λ̄m > 0. Simple numerical computations show that λ2,m = λ̄m.

9. Recall that the graph Laplacian is L = D−A. Using the definitions of degree
matrix D and adjacency matrix A, the result follows easily.

10. Because vL(γi, t) is bounded and Lipschitz, |vL(γi, t) − vL(γj , t)| ≤ 2vM and
|vL(γi, t) − vL(γj , t)| ≤ l|γi − γj | = l|γ̃i − γ̃j| ≤

√
2l‖γ̃‖. Then, using

‖LβvL(γ, t)‖2 =
n∑

i=1

⎛
⎝ n∑

j=1

vL(γi, t) − vL(γj , t)
σj

⎞
⎠

2

,

where σj = kj

∑
i

1
ki

, it is easy to show that ‖LβvL(γ, t)‖ ≤ √
2nl‖γ̃‖ and

‖LβvL(γ, t)‖ ≤ 2
√

nvM , and the result follows.
Proof of Lemma 5.1. First we show that

(A.1)
n∑

i=1

|ṽri |2 = γ̃T LpK
2Lpγ̃ ≤ n2k2

M‖γ̃‖2,

where ṽri and γ̃ are as defined in (5.2) and (3.4), respectively. Denote by li,p the ith
column (or row) of Lp. Then ṽri = kil

T

i,pγ and∑
i

|ṽri |2 =
∑

i

k2
i γT li,pl

T

i,pγ

= γT
∑

i

k2
i li,pl

T

i,pγ

= γT LpK
2Lpγ

= γ̃T LpK
2Lpγ̃.
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Now, consider n PF subsystems, each satisfying Assumption 2.2, and let ζ = [ζi]n×1

and V1 =
∑

i Wi. Using (2.6), (2.7), and (A.1) yields

α1‖ζ‖2 ≤ V1 ≤ ᾱ1‖ζ‖2,

V̇1 ≤ −λ1V1 + ρ1n
2k2

M‖γ̃‖2 + u2
1.

Integrating the above differential inequality, the ISS property (5.6) follows.
Proof of Proposition 4.1 (system interconnection). Define V = V1 + aV2 for some

a > 0 to be chosen later. Clearly, V satisfies the first condition of (4.6) for some
α > 0, ᾱ > 0. Next, we will show that the second condition is also satisfied. Taking
the derivative of V yields

V̇ ≤ −
(

λ1 − aρ2

α1

)
V1 − a

(
λ2 − ρ1

aα2

)
V2 + g‖d‖2,

where g = max(1, a). At this stage assume ρ1 and ρ2 are nonzero, and let

(A.2) λ0 = λ1 − aρ2

α1

= λ2 − ρ1

aα2

.

Consider the case where λ2(t) = λ2 > 0 is constant. If ρ1ρ2 < α1α2λ1λ2, there
exist positive numbers λ0 and a satisfying (A.2). As a consequence, V̇ ≤ −λ0V +
g‖d‖2, the interconnected system is ISS with input d, and the convergence rate is
λ = λ0.

Consider now the case where λ2(t) is not constant and system 2 has brief instabil-
ities characterized by χ(p) and λ2(t) as in (4.3). Using the same Lyapunov function
V = V1 + aV2 and λ0 as in (A.2), compute the derivative of V to obtain

V̇ ≤ −λ0V + a(λ2 − λ2(t))V2 + g‖d‖2

that yields

V̇ ≤
{ −λ0V + g ‖d‖2, χ(p) = 0,

(λ3 − λ0)V + g ‖d‖2, χ(p) = 1,

where λ3 := λ2 + λ̃2. Again, λ0 exists if ρ1ρ2 < α1α2λ1λ2. Rewrite

V̇ ≤ −λ0V + a(λ2 − λ2(t))V2 + g‖d‖

and use aV2 = V − V1 to derive

V̇ ≤ −(λ0 − λ3χ(p))V + g‖d‖2,

where λ3 := λ2 + λ̃2. Integrating the above differential inequalities, it is easy to show
that

V (t) ≤ V (t0)e−λ0(t−t0)+λ3Tp + g sup[t0,t] ‖d‖2

∫ t

t0

e−λ0(t−τ)+λ3Tpdτ.

This yields

V (t) ≤ V (t0)e−(λ0−αλ3)(t−t0)+λ3Tα +
eλ3Tα

λ0 − αλ3
g sup[t0,t] d

2,
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where Tα = (1−α)T0 if the system has brief instabilities as defined in (3.3). Therefore,
the interconnected system is ISS with d as input if α < λ0/λ3.

Suppose now that ρ2 = 0 and ρ1 > 0. In this case, the interconnected system
takes a cascade configuration and the dynamics of system 2 are reduced to

V̇2 ≤
{ −λ2V2 + d2

2, χ(p) = 0,

λ̃2V2 + d2
2, χ(p) = 1,

whose solution takes the form

V2(t) ≤ V2(t0)e−(λ2−αλ3)(t−t0)+λ3Tα +
eλ3Tα

λ2 − αλ3
sup[t0,t] d

2
2.

Using the above inequality together with (4.1) and (4.2) it is easy to obtain

V1(t) ≤ a1e
−λ1t + a2e

−(λ2−αλ3)t + a3 sup[t0,t] ‖d‖2

for some ai ≥ 0, i = 1, 2, 3. Therefore, the cascade system is ISS with d as input if
α < λ2/λ3 and the convergence rate will be min(λ1, λ2 − αλ3).

Proof of (5.15). The objective is to make λ̄0 > 0, that is, λα − c1l
√

2n > 0.
Replacing c1 =

√
ckM/km in the above inequality yields

λα − l
√

2neλαT̄0

√
kM

km
> 0.

The left-hand side of the inequality takes its maximum at

λα =
1
T̄0

ln

(
1

l
√

2nT̄0

√
km

kM

)
,

from which it follows that

max λ̄0 =
1
T̄0

ln

(
1

el
√

2nT̄0

√
km

kM

)
.

To make λ̄0 positive it is required that

1
elT̄0

√
km

2nkM
> 1.

Using T̄0 ≤ T + τD gives

l

√
kM

km
<

1
e(T + τD)

√
2n

,

from which the result follows.
Proof of Theorem 7.1. PF of an underactuated AUV. The methodology adopted

for PF control system design is rooted in Lyapunov-based and backstepping tech-
niques. The exposition that follows is based on the work in [2].

Step 1. Define the global diffeomorphic coordinate transformation

e := RT [p− pd(γi)],
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which expresses the path tracking error p− pd in a body-fixed frame. For simplicity
of presentation, we will for the most part drop the index i in this section. Recall the
definition of speed tracking error η = γ̇i − vr, where vr is a reference speed profile.
Recall also how the reference speed vr is decomposed as vr = vL + ṽr, where the
derivatives of vL are known but those of ṽr are not. The derivative of e yields

ė = −S(ω)e + ν − vLRT pγ
d − η̃RT pγ

d ,

where η̃ := η + ṽr (or equivalently γ̇i = vL + η̃) and superscript γ stands for partial
derivative with respect to γ. For example, pγ

d = ∂pd

∂γ and pγ2

d = ∂2pd

∂γ2 .
We define the Lyapunov function W1 := 1

2e
T e and compute its time derivative to

obtain

Ẇ1 = eT (ν − vLRT pγ
d) − η̃eT RTpγ

d ,

where we used the fact that eT S(ω)e = 0 ∀e, ω ∈ R
3. We regard ν as a virtual control

signal and introduce the virtual control tracking error variable

z1 := ν − vLRTpγ
d + keM

−1e.

Then, Ẇ1 can be rewritten as

Ẇ1 = −keeT M−1e + eT z1 + α1η̃,

where α1 := −eT RT pγ
d . Ideally, in the absence of η̃ one would like to drive z1 to zero

so as to render Ẇ1 negative. This motivates the next step.
Step 2. The time derivative of z1 yields

Mż1 = vLΓω + S(Mz1)ω + B1u1 + η̃h1 + h2,

where

Γ := MS(RTpγ
d) − S(MRTpγ

d),

h1 := −vLMRTpγ2

d − vγ
LMRTpγ

d − keR
T pγ

d ,

h2 := fν + keν + vLh1.

It turns out that due to lack of actuation, it is not always possible to drive z1 to
zero. Instead, we drive z1 to a constant design vector δ ∈ R

3. To this effect, we define
a new error vector φ := z1 − δ and the augmented Lyapunov function

W2 := W1 +
1
2
φT M2,

whose derivative is

Ẇ2 = −keeT M−1e + eT δ + φT M(Bζ + M−1e + h2) + α2η̃,

with α2 := α1 + φT Mh1,

B :=
(

B1 S(Mδ) + vLΓ
)
, and ζ :=

(
u1

ω

)
,
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where we used the fact that φT MS(Mz1)ω = φT MS(Mδ)ω. Matrix B can always be
made full rank; see [2] for details. Let

β1 := BT (BBT )−1(−h2 − M−1e − kφφ).

To complete this step, we set u1 to be the first entry of β1, that is, u1 =
(

1 01×3

)
β1,

and introduce the error variable

z2 := ω − Πβ1, Π :=
(

03×1 I3×3

)
that should be driven to zero. It follows that

Ẇ2 = −keeT M−1e + eT δ − kφφT Mφ + φT MBΠT z2 + α2η̃.

Step 3. Let β̇1 := h3 + h4η̃, where h3 collects the terms in β̇1 not containing η̃.
For simplicity we do not expand h3 and h4. Define

W3 := W2 +
1
2
zT

2 Jz2,

whose time derivative, after applying the control law

u2 = B−1
2 (−fω + JΠh3 − ΠBT Mφ − kzz2),

yields

(A.3) Ẇ3 = −keeT M−1e + eT δ − kφφT Mφ − kzz
T

2 z2 + α3η̃,

where α3 = α2 − zT
2 JΠh4. At this point it is important to notice that

(A.4) |α3| ≤ k1‖e‖ + k2‖φ‖ + k3‖z2‖
for some ki > 0, i = 1, 2, 3, that are functions of vL, vγ

L, M , pγ
d , and pγ2

d . The design
phase is concluded at this step for the case where η = 0 simply by making γ̇i = vr.
In this case, η̃ = ṽr and

Ẇ3 ≤ −λW3 + ρ1‖δ‖2 + ρ2|ṽr|
for some λ > 0, ρ1 > 0, and ρ2 > 0. That is, the PF closed-loop system is ISpS with
input ṽr, state x1 = (e, φ, z2)T , and constant ρ1‖δ‖2.

Step 4. This extra step contemplates the situation where η �= 0. To this effect,
augment the Lyapunov function W3 to obtain

W4 := W3 +
1
2
η2 =

1
2
eT e +

1
2
φT M2φ +

1
2
zT

2 Jz2 +
1
2
η2.

Set the feedback law

η̇ = −α3 − kηη

to make

Ẇ4 = −keeT M−1e− kφφT Mφ − kzz
T

2 z2 − kηη2 + eT δ + α3ṽr,

which can be rewritten as

(A.5) Ẇ4 ≤ −λW4 + ρ1‖δ‖2 + ρ2|ṽr|
for some λ > 0, ρ1 > 0, and ρ2 > 0. Again, this makes the closed-loop system ISpS
with input ṽr , state x1 = (e, φ, z2, η)T , and constant ρ1‖δ‖2.
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