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This paper addresses the problem of steering a fleet of UAVs along desired paths while
meeting stringent spatial and temporal constraints. A representative example is the chal-
lenging mission scenario where the vehicles are tasked to cooperatively execute collision-free
maneuvers and arrive at their final destinations at the same time (time-critical operations).

In the setup adopted, the vehicles are assigned nominal spatial paths and speed profiles
along those. The paths are then appropriately parameterized and the vehicles are requested
to execute cooperative path following, rather than “open loop” trajectory tracking maneu-
vers. This strategy yields robust behavior against external disturbances by allowing the
vehicles to negotiate their speeds along the paths in response to information exchanged
over the dynamic inter-vehicle communications network.

The paper addresses explicitly the situation where each vehicle transmits its coordina-
tion information to only a subset of the other vehicles, as determined by the communica-
tions topology. Furthermore, we consider the case where the communications graph that
captures the underlying communications topology is disconnected during some interval of
time or even fails to be connected at all times. Conditions are given under which the
complete time-critical cooperative path-following closed-loop system is stable and yields
convergence of a conveniently defined cooperation error to a neighborhood of the origin.
Flight test results of a coordinated road search mission demonstrate the efficacy of the
multi-UAV cooperative control framework developed in the paper.

I. Introduction

Unmanned Aerial Vehicles (UAVs) are becoming ubiquitous and have been playing an increasingly im-
portant role in military reconnaissance and strike operations, border patrol missions, forest fire detection,
police surveillance, and recovery operations, to name but a few. In simple applications, a single autonomous
vehicle can be managed by a crew using a ground station provided by the vehicle manufacturer. The exe-
cution of more challenging missions, however, requires the use of multiple vehicles working in cooperation
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to achieve a common objective. Representative examples of cooperative mission scenarios are sequential
auto-landing and coordinated ground target suppression for multiple UAVs. The first refers to the situation
where a fleet of UAVs must break up and arrive at the assigned glideslope point, separated by pre-specified
safe-guarding time-intervals. In the case of ground target suppression, a formation of UAVs must also break
up and execute a coordinated maneuver to arrive at pre-defined positions over the target at the same time.

In both cases, only relative (rather than absolute) temporal constraints are given a priori, a critical point
that needs to be emphasized. Furthermore, the vehicles must execute maneuvers in close proximity to each
other. In addition, as pointed out in [1,2], the flow of information among vehicles may be severely restricted,
either for security reasons or because of tight bandwidth limitations. As a consequence, no vehicle might be
able to communicate with the entire formation and the amount of information that can be exchanged might
be limited. Moreover, the topology of the inter-vehicle communications network supporting the cooperative
mission may change over time. Under these circumstances, it is important to develop cooperative motion
control strategies that can yield robust performance in the presence of time-varying communications networks
arising from temporary loss of communications links and switching communications topologies.

Motivated by these and similar problems, there has been over the past few years increasing interest
in the study of multi-agent system networks with applications to engineering and science problems. The
range of topics addressed include parallel computing [3], synchronization of oscillators [4], study of collective
behavior and flocking [5], multi-system consensus mechanisms [6], multi-vehicle system formations [7], coor-
dinated motion control [8], asynchronous protocols [9], dynamic graphs [10], stochastic graphs [10–12], and
graph-related theory [2, 13]. Especially relevant are the applications of the theory developed in the area of
multi-vehicle formation control: spacecraft formation flying [14], UAV control [15, 16], coordinated control
of land robots [8], and control of multiple autonomous underwater vehicles (AUVs) [17, 18]. In spite of sig-
nificant progress in the field, much work remains to be done to develop strategies capable of yielding robust
performance of a fleet of vehicles in the presence of complex vehicle dynamics, communications constraints,
and partial vehicle failures.

It is against this backdrop of ideas that in this paper we address the problem of steering a fleet of UAVs
along desired paths while meeting stringent spatial and temporal constraints. A representative example is
the challenging mission scenario where a fleet of vehicles is tasked to cooperatively execute collision-free
maneuvers and arrive at their final destinations at the same time (time-critical operations). In the adopted
setup, the vehicles are assigned desired nominal paths and speed profiles along them. The paths are then
appropriately parameterized, and the vehicles are requested to execute cooperative path following, rather
than “open-loop” trajectory tracking maneuvers. This strategy yields robust performance in the face of
external disturbances by allowing the vehicles to negotiate their speeds along the paths in response to
information exchanged over the supporting communications network. The paper builds upon previous work
by the authors on cooperative path following and extends it to a very general framework that allows for
the consideration of complex vehicle dynamics and time-varying communications topologies in a rigorous
mathematical setting. The reader is referred to [19–24] and the references therein for an introduction to
the subject and a general perspective of the circle of ideas that are at the root of the present work. See
also [25–31] and the textbook [32] for interesting and related pioneering work with applications to marine
robots.

The core concepts and methods leading to the present paper can be tracked back to [23], where the
authors addressed the problem of steering a group of vehicles along pre-defined spatial paths while holding
a desired time-varying geometrical formation pattern. The solution proposed consists of two basic steps:
first, a path-following control law is designed to drive each vehicle to its assigned path, with a nominal
speed profile that may be path dependent. To this effect, each vehicle is made to approach a virtual target
that moves along the path according to a conveniently defined dynamic law. In the second step, the speeds
of the virtual targets (also called coordination states) are adjusted about their nominal values so as to
synchronize their positions and achieve, indirectly, vehicle coordination. In the problem formulation, it was
explicitly considered that each vehicle transmits its coordination state to a subset of the other vehicles only,
as determined by the communications topology adopted. It was shown that the system that is obtained
by putting together the path-following and coordination subsystems can be naturally viewed as either the
feedback or the cascade connection of the latter two. Using this fact and recent results from nonlinear
systems and graph theory, conditions were derived under which the path-following and coordination errors
are driven to a neighborhood of zero in the presence of communication losses and time delays. Two different
situations were considered. The first one captures the case where the communications graph is alternately
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connected and disconnected (brief connectivity losses). The second reflects an operational scenario where the
union of the communications graphs over uniform intervals of time remains connected (uniformly connected
in mean). However, no time-critical issues were addressed.

The extension of the key concepts introduced in [23] to deal with time-critical issues can be found in [19,21,
22]. Especially relevant is the work reported in [19], where a general framework for the problem of cooperative
control of multiple autonomous vehicles that must operate under strict spatial and temporal constraints was
presented. The framework proposed borrows from multiple disciplines and integrates algorithms for path
generation, path following, time-critical coordination, and L1 adaptive control theory for fast and robust
adaptation. Together, these techniques yield control laws that meet strict performance requirements in the
presence of modeling uncertainties and environmental disturbances.

The methodology proposed in [19], exemplified for the case of UAVs, unfolds in three basic steps. First,
given a multiple vehicle task, a set of feasible trajectories is generated for all UAVs using an expedite method
that takes explicitly into account the initial and the final boundary conditions, a general performance criterion
to be optimized, the simplified UAV dynamics, and safety rules for collision avoidance. The second step
consists of making each vehicle follow its assigned path while tracking a desired speed profile. Path-following
control design is first done at a kinematic level, leading to an outer-loop controller that generates pitch- and
yaw-rate commands to an inner-loop controller. The latter relies on off-the-shelf autopilots for angular-rate
command tracking, augmented with an L1 adaptive output-feedback control law that guarantees stability
and performance of the complete system for each vehicle in the presence of modeling uncertainties and
environmental disturbances. Finally, in the third step, the speed profile of each vehicle is adjusted about the
nominal speed profile derived in the first step to enforce the temporal constraints that must be met in real
time in order to coordinate the entire fleet of UAVs. In this step, it is assumed that the vehicles exchange
information over a fixed communications network. The results of path-following flight tests with a single
vehicle are reported; see also [24]. However, despite the large number of simulations no actual flight tests
were done to assess the efficacy of the developed cooperative motion control strategy.

The extension of the above introduced concepts to time-varying communications networks was first
studied in [21]. Related work can also be found in [20], which proposes a new multiple vehicle control
architecture aimed at reducing the frequency at which the information is exchanged among the vehicles by
incorporating logic-based communications. To this effect, the authors borrow from and expand some of
the key ideas exposed in [33, 34], where decentralized controllers for distributed systems were derived by
using, for each system, its local state information together with estimates of the states of the systems that
it communicates with. In [20], a key constraint was introduced: each system (vehicle) is only allowed to
communicate with a set of immediate neighbors. With the scheme adopted, each vehicle decides when to
transmit information to the neighbors by comparing its actual state with its estimate “as perceived” by the
neighboring systems, and transmitting data when the “difference” between the two exceeds a certain level.
As a consequence, the systems communicate at discrete instants of time, asynchronously.

The present paper borrows key ideas and design methods from previous work by the authors on cooper-
ative path following and extends them to a very general setting that allows for the consideration of complex
vehicle dynamics, time-critical constraints, and time-varying communications topologies. From a technical
point of view, the paper departs substantially from previous published work in three key aspects:

(i) it puts forward a new algorithm for path following in 3-D space that overcomes the problems that arise
from using local parameterizations of the rotation matrices;

(ii) it offers a new proof of convergence of the relevant variables involved in cooperative path following that
significantly simplifies the one summarized in [21] and extends it to the case where the speed profiles
of the different vehicles along their paths are arbitrary but meet desired geometrical constraints. In
this setup, the communications graph that captures the underlying communications network topology
is allowed to be disconnected during some interval of time or may even fail to be connected at all
times. It is shown that if the connectivity of the communications graph satisfies a certain persistency
of excitation (PE)-like condition, then the UAVs “reach consensus” in the sense that a conveniently
defined cooperation error converges to a neighborhood of the origin; and

(iii) finally, flight test results of a coordinated road search mission that exploits the multi-UAV cooperative
control framework developed in the paper demonstrate the efficacy of the developed algorithms.

This paper is organized as follows. Section II formulates the time-critical cooperative path-following
problem, describes the kinematics of the systems of interest, and introduces a set of assumptions and limi-
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tations on the supporting communications network. Section III presents a path-following control algorithm
for UAVs in 3-D space. Section IV derives a strategy for time-critical cooperative path following of multiple
UAVs in the presence of time-varying communications networks that relies on the adjustment of the desired
speed profile of each vehicle. Section V addresses the stability and convergence properties of the combined
coordination and path-following systems. Section VI presents actual flight test results performed in Camp
Roberts, CA. Finally, Section VII summarizes the key results and contains the main conclusions.

Notation

Throughout the paper we use the following notation. {v}F is used to denote the vector v resolved in
frame F ; {~e}F represents the versor ~e resolved in frame F ; ωF1/F2 denotes the angular velocity of frame F1
with respect to frame F2; the rotation matrix from frame F1 to frame F2 is represented by RF2

F1 ; and v̇ ]F
indicates that the time-derivative of vector v is taken in frame F . Moreover, unless otherwise noted, ‖·‖ is
used for both the 2-norm of a vector and the induced 2-norm of a matrix.

II. Time-Critical Cooperative Path Following: Problem Formulation

This section provides a rigorous formulation of the problem of time-critical cooperative path-following
control for multiple UAVs in 3-D space, in which a fleet of UAVs is tasked to converge to and follow a set of
desired feasible paths so as to meet spatial and temporal constraints. We also introduce a set of assumptions
and limitations on the supporting communications network.

We note that the problem of cooperative path generation is not addressed in this paper. In fact, we
assume that a set of desired 3-D time trajectories Φd,i(td) : R → R

3, conveniently parameterized by a single
time variable td ∈ [0, t∗d], are known for all the n UAVs involved in a cooperative mission. The variable td
represents a desired mission time (distinct from the actual mission time that evolves as the mission unfolds),
with t∗d being the desired mission duration. For a given td, Φd,i(td) defines the desired position of the
ith UAV td seconds after the initiation of the cooperative mission. From these time trajectories, spatial
paths pd,i(τℓ,i) : R → R

3 and the corresponding desired speed profiles vd,i(td) : R → R can be easily derived
for all the UAVs. For convenience, we parameterize each spatial path by its path length τℓ,i ∈ [0, ℓfi], where
ℓfi denotes the total length of the ith path, whereas the desired speed profiles are parameterized by the
desired mission time td. It is assumed that both the paths and the speed profiles satisfy collision-avoidance
constraints as well as appropriate boundary and feasibility conditions, such as those imposed by the physical
limitations of the UAVs. It is further assumed that the rate and speed commands required to follow the paths
and achieve time-coordination do not result in the UAVs operating outside their normal flight envelope and do
not lead to internal saturation of the onboard autopilots. The problem of generation of feasible collision-free
trajectories for multiple cooperative autonomous vehicles is described in detail in [35].

II.A. Path Following for a Single UAV

Pioneering work in the area of path following can be found in [36], where an elegant solution to the problem
was presented for a wheeled robot at the kinematic level. In the setup adopted, the kinematic model of the
vehicle was derived with respect to a Frenet-Serret frame moving along the path, while playing the role of a
virtual target vehicle to be tracked by the real vehicle. The origin of the Frenet-Serret was placed at the point
on the path closest to the real vehicle. This work spurred a great deal of activity in the literature addressing
the path-following control problem. Of particular interest is the work reported in [37], in which the authors
reformulated the setup used in [36] and derived a feedback control law that steers the dynamic model of
a wheeled robot along a desired path and overcomes stringent initial condition constraints present in [36].
The key to the algorithm in [37] is to explicitly control the rate of progression of the virtual target along the
path. This effectively creates an extra degree of freedom that can be exploited to avoid singularities that
occur when the distance to the path is not well defined.

The solution to the path-following problem described in the present paper extends to the 3-D case the
algorithm presented in [37], and relies on the insight that a UAV can follow a given path using only its
attitude, thus leaving its speed as an extra degree of freedom to be used at the coordination level. The
key idea of the algorithm is to use the vehicle’s attitude control effectors to follow a virtual target vehicle
running along the path. To this effect, following the approach adopted in [37], we introduce a frame attached

4 of 36

American Institute of Aeronautics and Astronautics



Parallel Transport

frame F

Inertial

frame I

desired
path

P

Q
v

~eI1

~eI2

~eI3
pd

pI

pF

xF

yF

zF ~t

~n2

~n1

Figure 1. Following a virtual target vehicle. Problem geometry.

to this virtual target and define a generalized error vector between this moving coordinate system and a
frame attached to the actual vehicle. With this setup, the path-following control problem is reduced to
that of driving this generalized error vector to zero by using only the UAV’s attitude control effectors, while
following an arbitrary feasible speed profile. Next, we characterize the dynamics of the kinematic errors
between the ith vehicle and its virtual target.

Figure 1 captures the geometry of the problem at hand. Let pd(·) be the desired path assigned to one
of the UAVs, and let ℓf be its total length. Let I denote an inertial reference frame {~eI1 , ~eI2 , ~eI3}, and let
pI(t) be the position of the center of mass Q of the UAV in this inertial frame. Further, let P be an arbitrary
point on the desired path that plays the role of the virtual target, and let pd(ℓ) denote its position in the
inertial frame. Here ℓ ∈ [0, ℓf ] is a free length variable that defines the position of the virtual target vehicle
along the path. In the setup adopted, the total rate of progression of the virtual target along the path is an
extra design parameter. This approach is in striking contrast with the strategy used in the path-following
algorithm introduced in [36], where P is defined as the point on the path that is closest to the vehicle.
Endowing the point P with an extra degree of freedom is the key to the path-following algorithm presented
in [37] and its extension to the 3-D case described in this paper.

For our purposes, it is convenient to define a parallel transport frame F attached to the point P on
the path and characterized by the orthonormal vectors {~t(ℓ), ~n1(ℓ), ~n2(ℓ)}, which satisfy the following frame
equations [38, 39]







d~t
dℓ(ℓ)
d~n1

dℓ (ℓ)
d~n2

dℓ (ℓ)






=







0 k1(ℓ) k2(ℓ)

−k1(ℓ) 0 0

−k2(ℓ) 0 0













~t(ℓ)

~n1(ℓ)

~n2(ℓ)






,

where k1(ℓ) and k2(ℓ) are related to the polar coordinates of curvature κ(ℓ) and torsion τ(ℓ) as

κ(ℓ) =
(

k21(ℓ) + k22(ℓ)
)

1

2 , τ(ℓ) = − d

dℓ

(

tan−1

(

k2(ℓ)

k1(ℓ)

))

.

The vectors {~t, ~n1, ~n2} define an orthonormal basis for F , in which the unit vector ~t(ℓ) defines the tangent
direction to the path at the point determined by ℓ, while ~n1(ℓ) and ~n2(ℓ) define the normal plane perpen-
dicular to ~t(ℓ). We note that, unlike the Frenet-Serret frame, this moving frame is well defined when the
path has a vanishing second derivative. This orthonormal basis can be used to construct the rotation matrix
RI

F (ℓ) = [{~t(ℓ)}I ; {~n1(ℓ)}I ; {~n2(ℓ)}I ] from F to I. Furthermore, the angular velocity of F with respect to I,
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resolved in F , can be easily expressed in terms of the parameters k1(ℓ) and k2(ℓ) as

{ωF/I}F =
[

0, −k2(ℓ) ℓ̇, k1(ℓ) ℓ̇
]⊤

.

Let pF (t) be the position of the vehicle’s center of mass Q in the parallel transport frame, and let xF (t),
yF (t), and zF (t) be the components of the vector pF (t) with respect to the basis {~t, ~n1, ~n2}, that is,

{pF}F =
[

xF , yF , zF

]⊤
.

Finally, let W denote a vehicle-carried velocity frame {~w1, ~w2, ~w3} with its origin at the UAV center of
mass and its x-axis aligned with the velocity vector of the UAV. The z-axis is chosen to lie in the plane of
symmetry of the UAV, and the y-axis is determined by completing the right-hand system. In this paper,
q(t) and r(t) are the y-axis and z-axis components, respectively, of the vehicle’s rotational velocity resolved
in the W frame. With a slight abuse of notation, q(t) and r(t) will be referred to as pitch rate and yaw rate,
respectively, in the W frame.

With the above notation, we next characterize the kinematic error dynamics of the UAV with respect to
the virtual target. We start by deriving the position-error dynamics. For this purpose, we note that

pI = pd(ℓ) + pF ,

from which it follows that
ṗI ]I = ℓ̇~t + ωF/I × pF + ṗF ]F ,

where · ]I and · ]F are used to indicate that the derivatives are taken in the inertial and parallel transport
frames, respectively. Because

ṗI ]I = v ~w1 ,

where v(t) denotes the magnitude of the UAV’s ground velocity vector, the path-following kinematic position-
error dynamics of the UAV with respect to the virtual target can be written as

ṗF ]F = − ℓ̇~t − ωF/I × pF + v ~w1 . (1)

To derive the attitude-error dynamics of the UAV with respect to its virtual target, we first introduce
an auxiliary frame D {~b1D ,~b2D ,~b3D}, which will be used to shape the approach attitude to the path as a
function of the “cross-track” error components yF and zF . The frame D has its origin at the UAV center of
mass and the vectors ~b1D (t), ~b2D(t), and ~b3D(t) are defined as

~b1D ,
d~t− yF ~n1 − zF ~n2

(d2 + y2F + z2F )
1

2

, ~b2D ,
yF ~t+ d~n1

(d2 + y2F )
1

2

, ~b3D , ~b1D ×~b2D , (2)

with d being a (positive) constant characterizing distance. The basis vector ~b1D (t) defines the desired

direction of the UAV’s velocity vector. Clearly, when the vehicle is far from the desired path, the vector~b1D(t)
becomes perpendicular to ~t(ℓ). As the vehicle comes closer to the path and the cross-track error becomes

smaller, then ~b1D(t) tends to ~t(ℓ). The rotation matrix RF
D(t) ∈ SO(3) is given by

RF
D =













d

(d2+y2

F
+z2

F
)
1

2

yF

(d2+y2

F
)
1

2

zF d

(d2+y2

F
+z2

F
)
1

2 (d2+y2

F
)
1

2

−yF

(d2+y2

F
+z2

F
)
1

2

d

(d2+y2

F
)
1

2

−yF zF

(d2+y2

F
+z2

F
)
1

2 (d2+y2

F
)
1

2

−zF

(d2+y2

F
+z2

F
)
1

2

0
(d2+y2

F )
1

2

(d2+y2

F
+z2

F
)
1

2













.

Next, let R̃(t) ∈ SO(3) be the rotation matrix from W to D, that is,

R̃ , RD
W = RD

F RF
W = (RF

D)⊤ RF
W ,

and define the real-valued error function on SO(3)

Ψ(R̃) ,
1

2
tr
[

(

I3 −Π⊤
RΠR

)

(

I3 − R̃
)]

, (3)
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where ΠR is defined as

ΠR ,

[

0 1 0

0 0 1

]

.

The function Ψ(R̃) in (3) can be expressed in terms of the entries of R̃(t) as

Ψ(R̃) =
1

2

(

1− R̃11

)

,

where R̃11(t) denotes the (1, 1) entry of R̃(t). Therefore, Ψ(R̃) is positive-definite about R̃11 = 1. We note
that R̃11 = 1 corresponds to the situation where the velocity vector of the UAV is aligned with the basis
vector ~b1D (t), which defines the desired attitude.

The attitude kinematics equation

˙̃
R = ṘD

W = RD
W

(

{ωW/D}W
)∧

= R̃
(

{ωW/D}W
)∧

,

where (·)∧ : R3 → SO(3) denotes the hat map (see Appendix A), can be used to derive the time derivative
of Ψ(R̃), given by

Ψ̇(R̃) = −1

2
tr
[

(

I3 −Π⊤
RΠR

)

R̃
(

{ωW/D}W
)∧
]

.

Property (45) of the hat map (see Appendix A) leads to

Ψ̇(R̃) =
1

2

(

(

(

I3 −Π⊤
RΠR

)

R̃− R̃⊤ (
I3 −Π⊤

RΠR

)

)∨
)⊤

{ωW/D}W ,

where (·)∨ : SO(3) → R
3 denotes the vee map, which is defined as the inverse of the hat map. Moreover,

since the first component of
(

(

I3 −Π⊤
RΠR

)

R̃− R̃⊤ (
I3 −Π⊤

RΠR

)

)∨
is equal to zero, we can also write

Ψ̇(R̃) =
1

2

(

(

(

I3 −Π⊤
RΠR

)

R̃− R̃⊤ (
I3 −Π⊤

RΠR

)

)∨
)⊤

Π⊤
RΠR{ωW/D}W

=

(

1

2
ΠR

(

(

I3 −Π⊤
RΠR

)

R̃− R̃⊤ (
I3 −Π⊤

RΠR

)

)∨
)⊤

ΠR{ωW/D}W . (4)

Next, we define the attitude error eR̃(t) as

eR̃ ,
1

2
ΠR

(

(

I3 −Π⊤
RΠR

)

R̃− R̃⊤ (
I3 −Π⊤

RΠR

)

)∨
,

which allows to rewrite (4) in the more compact form

Ψ̇(R̃) = eR̃ ·
(

ΠR{ωW/D}W
)

.

We note that the attitude error eR̃(t) can also be expressed in terms of the entries of R̃(t) as

eR̃ =
1

2

[

R̃13 , −R̃12

]⊤
,

and therefore, within the region where Ψ(R̃) < 1, we have that if ‖eR̃‖ = 0, then R̃11 = 1. Finally, noting
that {ωW/F }W can be expressed as

{ωW/D}W = {ωW/I}W − R̃⊤ (RD
F {ωF/I}F + {ωD/F }D

)

,

we obtain

Ψ̇(R̃) = eR̃ ·
([

q

r

]

−ΠRR̃
⊤ (RD

F {ωF/I}F + {ωD/F }D
)

)

. (5)
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This equation describes the path-following kinematic attitude-error dynamics of the frame W with respect
to the frame D. The path-following kinematic-error dynamics Ge can now be obtained by combining (1)
and (5), yielding

ṗF ]F = − ℓ̇~t − ωF/I × pF + v ~w1 ,

Ψ̇(R̃) = eR̃ ·
([

q

r

]

−ΠRR̃
⊤ (RD

F {ωF/I}F + {ωD/F }D
)

)

.
(6)

In the kinematic-error model (6), q(t) and r(t) play the role of control inputs, while the rate of progression ℓ̇(t)
of the point P along the path becomes an extra variable that can be manipulated at will. At this point, we
formally define the path-following generalized error vector xpf (t) as

xpf ,

[

p⊤F , e⊤
R̃

]⊤
.

Notice that, within the region where Ψ(R̃) < 1, if xpf = 0, then both the path-following position error and

the path-following attitude error are equal to zero, that is, pF = 0 and R̃11 = 0.

Using the above formulation, and given a spatially defined feasible path pd(·), we now define the problem
of path following for a single vehicle.

Definition 1 (Path-Following Problem (PFP)) For a given UAV, design feedback control laws for pitch
rate q(t), yaw rate r(t), and rate of progression ℓ̇(t) of the virtual target along the path such that all closed-
loop signals are bounded and the path-following generalized error vector xpf (t) converges to a neighborhood
of the origin, regardless of what the temporal speed assignment of the mission is (as long as it is physically
feasible).

Stated in simple terms, the problem above amounts to designing feedback laws so that a UAV converges
to and remains inside a tube centered on the desired path curve assigned to this UAV, for an arbitrary speed
profile (subject to feasibility constraints).

II.B. Time-Critical Coordination and Network Model

To enforce the temporal constraints that must be met in real time to coordinate the entire fleet of vehicles,
the speed profile of each vehicle is adjusted based on coordination information exchanged among the UAVs
over a time-varying communications network. To this effect, an appropriate coordination variable needs to
be defined for each vehicle that captures the objective of the cooperative mission, in our case, simultaneous
arrival of all the UAVs at their final destinations.

For this purpose, we start by defining ℓ′d,i(td) as the desired normalized curvilinear abscissa of the ith UAV
along its corresponding path at the desired mission time td, which is given by

ℓ′d,i(td) ,
1

ℓfi

td
∫

0

vd,i(σt) dσt , (7)

with ℓfi and vd,i(·) being, respectively, the length of the path and the desired speed profile corresponding
to the ith UAV. The trajectory-generation algorithm ensures that the desired speed profiles vd,i(·) satisfy
feasibility conditions, which implies that the following bounds hold for all vehicles:

0 < vmin ≤ vd,imin ≤ vd,i(·) ≤ vd,imax ≤ vmax , i = 1, . . . , n , (8)

where vmin and vmax denote, respectively, the minimum and maximum operating speeds of the UAV, while
vd,imin and vd,imax denote lower and upper bounds on the desired speed profile for the ith UAV. From the
definition of ℓ′d,i(td) and the bounds in (8), it follows that ℓ′d,i(td) is a strictly increasing continuous function
of td mapping [0, t∗d] into [0, 1], and satisfying ℓ′d,i(0) = 0 and ℓ′d,i(t

∗
d) = 1. We also define ηi : [0, 1] → [0, t∗d]

to be the inverse function of ℓ′d,i(td), td ∈ [0, t∗d]. Clearly, ηi(·) is also a strictly increasing continuous function
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of its argument. Then, letting ℓ′i(t) be the normalized curvilinear abscissa at time t of the ith virtual target
vehicle running along its path, defined as

ℓ′i(t) ,
ℓi(t)

ℓfi
,

where ℓi(t) ∈ [0, ℓfi] was introduced in the previous section, we define the time-dependent variables

ξi(t) , ηi(ℓ
′
i(t)) , i = 1, . . . , n . (9)

From this definition, it follows that ξ(t) ∈ [0, t∗d], and therefore this variable can be seen as a virtual time
that characterizes the status of the mission for the ith UAV at time t in terms of the desired mission time td.

We note that, for any two vehicles i and j, if ξi(t) = ξj(t) = t′d at a given time t, then ℓ′i(t) = ℓ′d,i(t
′
d)

and ℓ′j(t) = ℓ′d,j(t
′
d), which implies that at time t the target vehicles corresponding to UAVs i and j have

the desired relative position along the path at the desired mission time t′d. Clearly, if ξi(t) = ξj(t) for all
t ≥ 0, then the ith and jth virtual target vehicles maintain desired relative position along the path at all
times and, in particular, these two target vehicles arrive at their final destinations at the same time, which
does not necessarily correspond to the desired mission duration t∗d. Also, in the case of collision avoidance
in time (see [35]), if ξi(t) = ξj(t) for all t ≥ 0, then the solution to the path-generation problem ensures that
the virtual targets i and j do not collide. Moreover, if the ith virtual target travels at the desired speed for
all time in the interval [0, t], that is, ℓ̇i(τ) = vd,i(τ) for all τ ∈ [0, t], then we have that ℓi(τ) = ℓd,i(τ) for all

τ ∈ [0, t], which implies that ξi(τ) = τ (or equivalently, that ξ̇i(τ) = 1) for all τ ∈ [0, t]. This set of properties
makes the variables ξi(t) an appropriate metric for vehicle coordination, and therefore we will refer to them
as coordination states. We notice that the use of these specific coordination variables is motivated by the
work in [22].

To meet the desired temporal assignments of the cooperative mission, these coordination states are to
be exchanged among the UAVs over the supporting communications network. Next, we use tools and facts
from algebraic graph theory to model the information exchange over the time-varying network as well as the
constraints imposed by the communications topology. The reader is referred to [40] for key concepts and
details on algebraic graph theory.

First, in order to account for the communications constraints imposed by this inter-vehicle network,
we assume that the ith UAV can only exchange information with a neighboring set of vehicles, denoted
here by Gi. We also assume that the communications between two UAVs is bidirectional and that the
information is transmitted continuously with no delays. Moreover, since the flow of information among
vehicles may be severely restricted, either for security reasons or because of tight bandwidth limitations,
we impose the constraint that each vehicle only exchanges its coordination state ξi(t) with its neighbors.
Finally, we assume that the connectivity of the communications graph Γ(t) that captures the underlying
bidirectional communications network topology of the fleet at time t satisfies the persistency of excitation
(PE)-like condition

1

n

1

T

t+T
∫

t

QL(τ)Q⊤dτ ≥ µ In−1 , for all t ≥ 0 , (10)

where L(t) ∈ R
n×n is the Laplacian of the graph Γ(t), and Q is an (n − 1) × n matrix such that Q1n = 0

and QQ⊤ = In−1, with 1n being the vector in R
n whose components are all 1. The parameters T, µ > 0

characterize the quality of service (QoS) of the communications network, which in the context of this paper
represents a measure of the level of connectivity of the communications graph. We note that the PE-
like condition (10) requires only the communications graph Γ(t) to be connected in an integral sense, not
pointwise in time. In fact, the graph may be disconnected during some interval of time or may even fail to
be connected for the entire duration of the mission. Similar type of conditions can be found, for example,
in [41] and [6].

Using the formulation above, we next define the problem of time-critical cooperative path following for a
fleet of n UAVs.

Definition 2 (Time-Critical Cooperative Path-Following Problem (TC-CPFP)) Given a fleet of
n vehicles supported by an inter-vehicle communications network and a set of desired 3-D time trajecto-
ries Φd,i(td), design feedback control laws for pitch rate q(t), yaw rate r(t), and speed v(t) such that

1. all closed-loop signals are bounded;
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2. for each vehicle i, i ∈ {1, . . . , n}, the path-following generalized error vector xpf ,i(t) converges to a
neighborhood of the origin; and

3. for each pair of vehicles i and j, i, j ∈ {1 . . . , n}, the coordination error |ξi(t)− ξj(t)| converges to a
neighborhood of the origin, guaranteeing (quasi-)simultaneous time of arrival and ensuring collision-free
maneuvers.

At this point, we stress that in this paper we address the design of control algorithms for path following
and time coordination yielding robust performance of a fleet of UAVs executing various time-critical coop-
erative missions. These control algorithms are to be seen as guidance outer-loop controllers that provide
reference commands to inner-loop autopilots stabilizing the UAV dynamics and providing angular-rate as
well as speed tracking capabilities. This inner-outer loop approach simplifies the design process and affords
the designer a systematic approach to seamlessly tailor the algorithms for a very general class of UAVs that
come equipped with inner-loop commercial autopilots. In the next section, we present a set of assumptions
on the inner closed-loop performance of the UAVs with their autopilots, which will be useful to analyze the
convergence properties of the path-following and coordination control laws developed later in the paper.

II.C. Unmanned Aerial Vehicle with Autopilot

As mentioned in the previous section, this paper addresses the design of outer-loop control laws for path
following and time-critical cooperation of a fleet of small tactical UAVs. The design of inner-loop onboard
autopilots that are capable of tracking reference commands generated by outer-loop controllers and providing
uniform performance across the flight envelope is beyond the scope of the work presented here. Nevertheless,
it is important to determine performance requirements for the onboard autopilot that ensure that the mission
is successfully accomplished by the fleet of vehicles. To this effect, and for the purpose of this paper, we will
assume that each UAV is equipped with an onboard autopilot designed to stabilize the UAV and to provide
angular-rate as well as speed tracking capabilities. In particular, we make the assumption that the onboard
autopilots ensure that each UAV is able to track bounded pitch-rate and yaw-rate commands, denoted here
by qc(t) and rc(t), with guaranteed performance bounds γq and γr. Stated mathematically,

|qc(t)− q(t)| ≤ γq , ∀ t ≥ 0 , (11a)

|rc(t)− r(t)| ≤ γr , ∀ t ≥ 0 . (11b)

Similarly, we assume that, if the speed commands vc(t) satisfy the bounds

vmin ≤ vc(τ) ≤ vmax , ∀ τ ∈ [0, t] , (12)

then the autopilots ensure that each UAV tracks its corresponding speed command with guaranteed perfor-
mance bound γv:

|vc(τ) − v(τ)| ≤ γv , ∀ τ ∈ [0, t] . (13)

The bounds γq, γr, and γv characterize thus the level of tracking performance that the inner-loop autopilot is
able to provide. These bounds will be used later in the paper to derive design constraints for the inner-loop
tracking performance that guarantee stability of the complete cooperative control architecture.

It is also important to note that, in this setup, it is the autopilot that determines the bank angle required
to track the angular-rate commands qc(t) and rc(t). Therefore, it is justified to assume that the UAV roll
dynamics (roll rate and bank angle) are bounded for bounded angular-rate commands corresponding to the
set of feasible paths considered.

For the missions of interest, typical off-the-shelf autopilots are capable of providing uniform performance
across the flight envelope of small UAVs while operating in nominal conditions. However, these commercial
autopilots may fail to provide adequate performance across the operational envelope in the event of actuator
failures, vehicle damage, or in the presence of adverse environmental disturbances. Under these unfavorable
circumstances, adaptive augmentation loops are seen as an appealing technology that can improve vehicle
performance. In [24, 42], for example, we present an L1 adaptive control architecture for autopilot augmen-
tation that retains the properties of the onboard commercial autopilot, and adjusts the autopilot commands
only when the tracking performance degrades. Figure 2 shows the inner-loop control architecture considered
in [24, 42], with the adaptive augmentation loop wrapped around the autopilot. The adaptive controller

10 of 36

American Institute of Aeronautics and Astronautics



UAVAutopilot

Closed-loop UAV with its Autopilot

L1 Adaptive

Augmentation
[qc, rc, vc]

[q, r, v]

Figure 2. Inner-loop control structure with the L1 adaptive augmentation loop [24, 42].

uses angular-rate and speed measurements to modify the commands generated by the outer-loop algorithms,
which are then sent to the autopilot as references to be tracked. This structure for autopilot augmentation
does not require any modifications to the autopilot itself, and at the same time it does not use internal states
of the autopilot for control design purposes.

III. 3-D Path Following for a Single UAV

This section describes an outer-loop 3-D path-following nonlinear control algorithm that uses vehicle angu-
lar rates to steer the ith vehicle along the spatial path pd,i(·) for an arbitrary feasible speed profile (temporal
assignment along the path). Controller design builds on previous work by the authors on path-following
control of small tactical UAVs, reported in [24], and derives new path-following control laws on SO(3) that
avoid the geometric singularities and complexities that appear when dealing with local parameterizations of
the vehicle’s attitude. First, we address only the kinematic equations of the UAV by taking pitch rate and
yaw rate as virtual outer-loop control inputs. In particular, we show that there exist stabilizing functions for
q(t) and r(t) leading to local exponential stability of the origin of Ge with a prescribed domain of attraction.
Then, we perform a stability analysis for the case of non-perfect inner-loop tracking and show that the
path-following errors are locally uniformly ultimately bounded with the same domain of attraction. The
results yield an efficient methodology to design path-following controllers for UAVs with due account for the
vehicle kinematics and the characteristics of their inner-loop autopilots.

III.A. Nonlinear Control Design using UAV Kinematics

Recall from Section II.A that the main objective of the path-following control algorithm is to drive the
position error pF (t) and the attitude error eR̃(t) to zero. At the kinematic level, these objectives can be

achieved by determining feedback control laws for q(t), r(t), and ℓ̇(t) that ensure that the origin of the
kinematic-error equations in (6) is exponentially stable with a given domain of attraction. Figure 3 presents
the kinematic closed-loop system considered in this section.

To solve the path-following problem, we first let the rate of progression of point P along the path be
governed by

ℓ̇ = (v ~w1 +KℓpF ) · ~t , (14)

where Kℓ is a positive constant gain. Then, the rate commands qc(t) and rc(t) given by

[

qc

rc

]

, ΠRR̃
⊤ (RD

F {ωF/I}F + {ωD/F}D
)

− 2KR̃eR̃ , (15)

where KR̃ is also a positive constant gain, drive the path-following generalized error vector xpf (t) to zero
with a guaranteed rate of convergence. A formal statement of this result is given in the lemma below.
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Path-Following

Kinematics

Ge

Path-Following

Control

Algorithm

[qc, rc] (pF , R̃)

Figure 3. Path-following closed-loop system for a single UAV solved at a kinematic level.

Lemma 1 Assume that the UAV speed v(t) verifies the following bounds:

0 < vmin ≤ v(t) ≤ vmax , ∀ t ≥ 0 . (16)

If, for given positive constants c < 1√
2
and c1, we choose the path-following control parameters Kℓ, KR̃,

and d such that

KR̃ Kp >
v2max

c21(1− 2c2)2
, (17)

where Kp is defined as

Kp , min

{

Kℓ,
vmin

(d2 + c2c21)
1

2

}

, (18)

then the rate commands in (15), together with the law in (14) for the rate of progression of the virtual target
along the path, ensure that the origin of the kinematic-error equations in (6) is exponentially stable with
guaranteed rate of convergence

λ∗
pf ,

Kp +KR̃(1− c2)

2
− 1

2

(

(

Kp −KR̃(1− c2)
)2

+
4(1− c2)

c21(1 − 2c2)2
v2max

)
1

2

(19)

and domain of attraction

Ωc ,

{

(pF , R̃) ∈ R
3 × SO(3) | Ψ(R̃) +

1

c21
‖pF‖2 ≤ c2 <

1

2

}

. (20)

Proof: The proof of this result, which uses some insight from [43], is given in Appendix B.

Remark 1 The choice of the characterizing distance d in the definition of the auxiliary frame D (see (2))
can be used to adjust the rate of convergence for the path-following closed-loop system. This is consistent
with the fact that a large parameter d reduces the penalty for cross-track position errors, which results in a
slow rate of convergence of the UAV to the path. Insights into this path-following control algorithm can be
found in [44].

III.B. Stability Analysis for Non-Perfect Inner-Loop Tracking

The stabilizing control laws in (14) and (15) lead to local exponential stability of the origin of the path-
following kinematic-error dynamics (6) with a prescribed domain of attraction. In general, this result does
not hold when the dynamics of the UAV are included in the problem formulation. In this section, we perform
a stability analysis of the path-following closed-loop system for the case of non-ideal inner-loop tracking. In
particular, we assume that the onboard autopilot ensures that the UAV is able to track bounded pitch-rate
and yaw-rate commands with the performance bounds in (11) and show that the path-following errors pF (t)
and eR̃(t) are locally uniformly ultimately bounded with the same domain of attraction Ωc. The next lemma
states this result formally.
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Lemma 2 Assume that the UAV speed v(t) verifies the bounds in (16). For given positive constants c < 1√
2

and c1, choose the path-following control parameters Kℓ, KR̃, and d according to the design constraint in (17).
Further, let δpf be a positive constant verifying

0 < δλ < λ∗
pf , (21)

where λ∗
pf was defined in (19). If the performance bounds γq and γr in (11) satisfy the following inequality:

γω ,
(

γ2
q + γ2

r

)
1

2 <
2 c

(1− c2)
1

2

δλ , (22)

then, for any initial state (pF (0), R̃(0)) ∈ Ωc, the rate commands in (15), together with the law in (14) for
the rate of progression of the virtual target along the path, ensure that there is a time Tb ≥ 0 such that the
path-following errors pF (t) and eR̃(t) satisfy

‖eR̃(t)‖2 +
1

c21
‖pF (t)‖2 ≤

(

1

1− c2
‖eR̃(0)‖+

1

c21
‖pF (0)‖

)

e−2(λ∗

pf −δλ)t , ∀ 0 ≤ t < Tb , (23)

‖eR̃(t)‖2 +
1

c21
‖pF (t)‖2 ≤ (1 − c2) γ2

ω

4δ2λ
, ∀ t ≥ Tb . (24)

Proof: The proof of this result is given in Appendix C.

Remark 2 Inequalities (23) and (24) show that the path-following errors pF (t) and eR̃(t) are uniformly
bounded for all t ≥ 0 and uniformly ultimately bounded with ultimate bounds

‖eR̃(t)‖ ≤ (1− c2)
1

2

2δλ
γω , ∀ t ≥ Tb ,

‖pF (t)‖ ≤ c1(1− c2)
1

2

2δλ
γω , ∀ t ≥ Tb .

These ultimate bounds are proportional to the inner-loop tracking performance bound γω and, in the limit
ideal case of perfect inner-loop tracking, one recovers the exponential stability result derived in Lemma 1.

IV. Time-Critical Coordination

The previous section offered a solution to the path-following problem for a single vehicle and an arbitrary
feasible speed profile by using a control strategy in which the vehicle’s attitude control effectors are used
to follow a virtual target running along the path. We now address the problem of time-critical cooperative
control of multiple vehicles. To this effect, the speeds of the vehicles are adjusted based on coordination
information exchanged among the vehicles over a time-varying network. In particular, the outer-loop coor-
dination control law is intended to provide a correction to the desired speed profile vd,i(·) obtained in the
trajectory-generation step, and to generate a total speed command vc,i(t). This speed command is then to
be tracked by the ith vehicle to achieve coordination in time.

We start by recalling from Section II.B that the main objective of the time-critical cooperative algorithm
is to drive the coordination errors |ξi(t)− ξj(t)| to a neighborhood of the origin. To solve this coordination
problem, we first note that the evolution of the ith coordination state is given by

ξ̇i(t) =
d

dt

(

ηi (ℓ
′
i(t))

)

=
dηi
dℓ′i

∣

∣

∣

∣

ℓ′
i
(t)

ℓ̇′i(t) .

From the definitions of ℓ′d,i(·) and ηi(·), we have that the following equality holds for all ℓ′i ∈ [0, 1]:

ℓ′d,i (ηi(ℓ
′
i)) = ℓ′i ,

from which one can show that

dηi
dℓ′i

∣

∣

∣

∣

ℓ′
i

=
1

1
ℓfi

vd,i(ηi(ℓ′i))
, ∀ ℓ′i ∈ [0, 1] .
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Then, the time derivative of the ith coordination state can be expressed as

ξ̇i(t) =
ℓ̇i(t)

vd,i(ξi(t))
.

Next, we recall from the solution to the path-following problem that the evolution of the ith virtual target
vehicle along the path is given by

ℓ̇i = (vi ~w1,i +Kℓ pF,i) · ~ti ,
where for simplicity we keep Kℓ without indexing and we drop the dependency of the various variables on t.
The dynamics of the ith coordination state can thus be rewritten as

ξ̇i =
(vi ~w1,i +Kℓ pF,i) · ~ti

vd,i(ξi)
.

At this point, it is important to remark that, if the path-following control law can guarantee that, for
every UAV, the quantity (~w1,i · ~ti) is positive and bounded away form zero for all t ≥ 0, that is,

~w1,i · ~ti ≥ c2 > 0 , ∀ t ≥ 0 , ∀ i ∈ {1, . . . , n} , (25)

where 0 < c2 ≤ 1, then, to solve the coordination problem, we can use dynamic inversion and define the
speed command for the ith vehicle as

vc,i ,
ucoord,i vd,i(ξi)−Kℓ pF,i · ~ti

~w1,i · ~ti
, (26)

where ucoord,i(t) is a coordination control law, yet to be defined. With this speed command, the partially
closed-loop coordination dynamics for the ith target vehicle can be rewritten as

ξ̇i = ucoord,i +
ev,i

vd,i(ξi)
~w1,i · ~ti , (27)

where ev,i(t) , vi(t) − vc,i(t) denotes the velocity tracking error for the ith vehicle. In what follows, we
assume that the bound in (25) holds for every vehicle and derive a coordination control law ucoord,i(t) that
achieves coordination for the entire fleet of UAVs. This assumption will be verified later in Section V, where
we derive an expression for the constant c2, and prove stability of the combined time-critical cooperative
path-following closed-loop system.

Recall now that each vehicle is allowed to exchange only its coordination parameter ξi(t) with its neigh-
bors Gi, which are defined by the possibly time-varying communications topology. To observe this constraint,
we propose the decentralized coordination law

ucoord,1(t) = −a
∑

j∈G1

(ξ1(t)− ξj(t)) + 1 , (28a)

ucoord,i(t) = −a
∑

j∈Gi

(ξi(t)− ξj(t)) + χI,i(t) , i = 2, . . . , n , (28b)

χ̇I,i(t) = −b
∑

j∈Gi

(ξi(t)− ξj(t)) , χI,i(0) = 1 , i = 2, . . . , n , (28c)

where vehicle 1 is elected as the formation leader (which can be a virtual vehicle), and a and b are positive
adjustable coordination control gains. Note that the coordination control law has a proportional-integral
structure, which provides disturbance rejection capabilities at the coordination level. Moreover, we note that
the vehicles exchange information only about the corresponding virtual targets, rather than exchanging their
own state information. The importance of this observation can hardly be overemphasized. The benefits of
using “virtual information” in consensus problems are illustrated in [45].

The coordination law in (28) can be rewritten in compact form as

ucoord(t) = −aL(t) ξ(t) +
[

1
χI (t)

]

,

χ̇I(t) = −b C⊤L(t) ξ(t) , χI,i (0) = 1 ,
(29)
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where ξ(t) , [ξ1(t), . . . , ξn(t)]
⊤, ucoord(t) , [ucoord,1(t), . . . , ucoord,n(t)]

⊤, χI(t) , [χI,2(t), . . . , χI,n(t)]
⊤,

C⊤ , [ 0 In−1 ], and L(t) is the Laplacian of the undirected graph Γ(t) that captures the underlying
bidirectional communications network topology of the UAV formation at time t. It is well known that
the Laplacian of an undirected graph is symmetric, L⊤(t) = L(t), and positive semi-definite, L(t) ≥ 0;
λ1(L(t)) = 0 is an eigenvalue with eigenvector 1n, L(t)1n = 0; and the second smallest eigenvalue of L(t) is
positive if and only if the graph Γ(t) is connected, that is,

min
x 6=0

1⊤n x=0

x⊤L(t)x

‖x‖2 = λ2(L(t)) > 0 ⇔ Γ(t) connected .

Next, we reformulate the coordination problem stated above into a stabilization problem. To this end,
we define the projection matrix Π as

Π , In − 1n1
⊤
n

n
,

and we note that Π = Π⊤ = Π2 and also that Q⊤Q = Π, where Q is the (n − 1) × n matrix introduced
in (10). Moreover, we have that L(t)Π = ΠL(t) = L(t), and the spectrum of the matrix L̄(t) , QL(t)Q⊤

is equal to the spectrum of L(t) without the eigenvalue λ1 = 0 corresponding to the eigenvector 1n. Finally,
we define the coordination error state ζ(t) , [ζ1(t)

⊤, ζ2(t)
⊤]⊤ as

ζ1(t) , Qξ(t)

ζ2(t) , χI(t)− 1n−1 .

By definition, ζ1(t) = 0 is equivalent to ξ(t) ∈ span{1n}, which implies that, if ζ(t) = 0, then all target
vehicles are coordinated at time t.

With the above notation, the closed-loop coordination dynamics formed by (27) and the coordination
control algorithm defined in (29) can be reformulated as

ζ̇(t) = F (t) ζ(t) + H e′v(t) , (30)

where F (t) ∈ R
(2n−2)×(2n−2) and H ∈ R

(2n−2)×n are given by

F (t) ,

[

−aL̄(t) QC

−bC⊤Q⊤L̄(t) 0

]

, H ,

[

Q

0

]

,

and e′v(t) ∈ R
n is a vector with its ith component being equal to e′v,i ,

ev,i
vd,i(ξi)

~w1,i · ~ti.
Next we show that, if the connectivity of the communications graph Γ(t) verifies the PE-like condition (10)

and, in addition, every vehicle travels at the commanded speed vc,i(t) (that is, ev,i(t) ≡ 0), then the
coordinated system asymptotically reaches agreement and all the vehicles travel at the desired speed

lim
t→∞

(ξi(t)− ξj(t)) = 0 , ∀ i, j ∈ {1, . . . , n}

lim
t→∞

ξ̇(t) = 1n .

On the other hand, if ev,i(t) 6= 0 for some t ≥ 0, then the coordination error vector degrades gracefully with

the size of speed tracking error ev(t) , [ev,1(t), . . . , ev,n(t)]
⊤. The next lemma summarizes this result.

Lemma 3 Consider the coordination system (30) and suppose that the Laplacian of the graph that models
the communications topology satisfies the PE-like condition (10) for some parameters µ and T . Moreover,
assume that the speed tracking error vector ev(t) is bounded for all t ≥ 0. Then, there exist coordination
control gains a and b such that the system (30) is input-to-state stable (ISS) with respect to ev(t), satisfying

‖ζ(t)‖ ≤ k1‖ζ(0)‖e−λct + k2 sup
τ∈[0,t)

‖ev(τ)‖ , ∀ t ≥ 0 , (31)

for some (computable) positive constants k1 and k2, and with

λc ≥ λ̄c ,
anµ

(1 + anT )2
1

2n
√
n+ 1

.
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Furthermore, the coordination states ξi(t) and their rates of variation ξ̇i(t) satisfy

lim
t→∞

sup |ξi(t)− ξj(t)| ≤ k3 lim
t→∞

sup ‖ev(t)‖, (32)

lim
t→∞

sup |ξ̇i(t)− 1| ≤ k4 lim
t→∞

sup ‖ev(t)‖ , (33)

for all i, j ∈ {1, . . . , n}, and for some (computable) positive constants k3 and k4.

Proof: The proof of this result is given in Appendix D.

Remark 3 Lemma 3 above indicates that the QoS of the network (characterized by the parameters T and
µ) limits the achievable (guaranteed) rate of convergence for the coordination control loop. According to the
lemma, for a given QoS of the network, the maximum (guaranteed) rate of convergence λ̄∗

c is achieved by
setting a∗ = 1

Tn , which results in

λ̄∗
c =

µ

4T

1

2n
√
n+ 1

.

Also, it is important to mention that, as the parameter T goes to zero (graph connected pointwise in time),
the convergence rate can be set arbitrarily fast by increasing the coordination control gains a and b. This is
consistent with results obtained in previous work by the authors (see [46, Lemma 2]).

Finally, we notice that

γ̄λ ,
anµ

(1 + anT )2

represents the (guaranteed) convergence rate for the coordination loop with a proportional control law, rather
than a proportional-integral control law (see Appendix D). It is straightforward to verify that, for a given
proportional gain a, we have that λ̄c < γ̄λ, which implies that a proportional control law can provide higher
rates of convergence than the proportional-integral control law used in this paper. However, as mentioned
earlier, the integral term in the coordination control law is important in the current application as it provides
disturbance rejection capabilities at the coordination level.

V. Combined Path Following and Time-Critical Cooperation

In the previous sections we have shown that, under an appropriate set of assumptions, the path-following
and coordination control laws are able to ensure stability and ultimate boundedness of the path-following
and time-critical cooperation problems when treated separately. In particular, the solution developed for the
path-following problem assumes that the speed of the UAV is bounded above and below, while the control
law designed for vehicle coordination relies on the assumption that the angle between the UAV’s velocity
vector and the tangent direction to the path is less than 90 deg (see assumptions (16) and (25)). This section
addresses the convergence properties of the combined cooperation and path-following systems, and derives
design constraints for the inner-loop tracking performance bounds that guarantee stability of the complete
system. The cooperative path-following control architecture for the ith UAV is presented in Figure 4.

In this section, we assume that the onboard autopilot ensures that each UAV is able to track bounded
pitch-rate, yaw-rate, as well as speed commands with the performance bounds in (11)-(13). At this point,
we note that, while the pitch-rate and yaw-rate commands in (15) are continuous in time, the same cannot
be said about the speed command in (26). In fact, due to the time-varying nature of the network topology,
the coordination law ucoord(t) in (28) is discontinuous, which implies that the speed command vc(t) is also
discontinuous. Assuming that the following bound holds for all vehicles and for all t ≥ 0,

|vc,i(t)− vi(t)| ≤ γv , i = 1, . . . , n , (34)

which implies that
sup
t≥0

‖ev(t)‖ ≤
√
nγv ,

then the maximum amplitude ∆vc,i of a jump in the speed command vc,i(t) can be derived from (26), (28)
and the results of Lemma 3, and is given by

∆vc,i ,
2a(n− 1)vd,imax (k1‖ζ(0)‖+ k2

√
n γv)

c2
, i = 1, . . . , n ,
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Figure 4. Time-critical cooperative path-following closed-loop for the ith vehicle with L1 augmentation.

where vd,imax was introduced in (8). Thus, a necessary (but by no means sufficient) condition for the bound
in (34) to hold is that

∆vc,i < γv , i = 1, . . . , n .

The above condition limits the choice of the coordination control gains, which in particular need to satisfy
the following inequality

2a(n− 1)vd,imaxk2
√
n < c2 , i = 1, . . . , n .

However, the derivation of sufficient conditions that guarantee that the bound in (13) holds for all time
requires assumptions on vehicle dynamics and autopilot design, and is thus beyond the scope of this paper.
Hence, for the subsequent developments, we make the assumption that the bound in (13) holds –provided the
speed command vc,i(t) satisfies the bounds in (12)–, and derive design constraints for this inner-loop tracking
performance bound that ensure that the overall time-critical cooperative path-following control system is
stable and has desired convergence properties. The next theorem summarizes this result.

Theorem 1 Consider a fleet of n UAVs supported by a communications network that satisfies the PE-like
condition in (10). Let c and c1 be positive constants, with c < 1√

2
. For each UAV, choose the path-following

control parameters Kℓ, KR̃, and d such that

d >
2c(1− c2)

1

2

1− 2c2
c1 , (35)

KR̃Kp >
v2max

c21(1− 2c2)2
, (36)

where Kp is defined as in (18). Also, choose the coordination control gains a and b such that

a > 0 , b =
2n

2n
√
n+ 1

a2nµ

(1 + anT )2
, (37)

and let k1 and k2 be the constants in (31) for this particular choice of control gains a and b. Further, let the
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performance bounds γq, γr, and γv satisfy the following inequalities:

(γ2
q + γ2

r )
1

2 <
2c

(1 − c2)
1

2

δλ , (38)

γv < min

{

vmaxc2 − vdmax −Kℓcc1

c2 + k̄2vdmax
√
n

,
vdmin − vmin −Kℓcc1

1 + k̄2vdmax
√
n

}

, (39)

where δλ is a constant satisfying (21), vdmax , maxi=1,...,n vd,imax, vdmin , mini=1,...,n vd,imin, while c2
and k̄2 are defined as:

c2 ,
d(1 − 2c2)− 2c1c

2(1− c2)
1

2

(d2 + c2c21)
1

2

, k̄2 , (2a(n− 1) + 1)k2 .

Then, the progression law in (14), the rate commands in (15), and the speed commands in (26) with the
coordination control law in (28) ensure that, for all initial conditions

(pF,i(0), R̃i(0)) ∈ Ωc , i = 1, . . . , n , (40)

‖ζ(0)‖ ≤ 1

k̄1

(

min

{

vmax − γv

vdmax
c2 − 1 ,

vdmin

vdmax
− vmin + γv

vdmax

}

− k̄2
√
nγv −

Kℓcc1

vdmax

)

, (41)

where k̄1 , (2a(n − 1) + 1)k1, there exist times Tb,i ≥ 0 and a positive constant λc ≤ λ̄c such that the
path-following errors pF,i(t) and eR̃,i(t) for the ith UAV satisfy

‖eR̃,i(t)‖2 +
1

c21
‖pF,i(t)‖2 ≤

(

1

1− c2
‖eR̃,i(0)‖+

1

c21
‖pF,i(0)‖

)

e−2(λ∗

pf −δλ)t , ∀ 0 ≤ t < Tb,i , (42)

‖eR̃,i(t)‖2 +
1

c21
‖pF,i(t)‖2 ≤ (1 − c2) γ2

ω

4δ2λ
, ∀ t ≥ Tb,i , (43)

while the coordination error states ζ(t) satisfy

‖ζ(t)‖ ≤ k1‖ζ(0)‖e−λct + k2
√
n γv , ∀t ≥ 0 . (44)

Proof: The proof of this result is given in Appendix E.

Remark 4 Inequalities (42) and (43) show that the path-following errors pF,i(t) and eR̃,i(t) are uniformly
bounded for all t ≥ 0 and uniformly ultimately bounded with ultimate bounds

‖eR̃,i(t)‖ ≤ (1− c2)
1

2

2δλ
γω , ∀ t ≥ Tb , ∀ i ∈ {1, . . . , n} ,

‖pF,i(t)‖ ≤ c1(1− c2)
1

2

2δλ
γω , ∀ t ≥ Tb , ∀ i ∈ {1, . . . , n} ,

which are proportional to the inner-loop tracking performance bound γω. On the other hand, inequality (44)
implies that the coordination error state ζ(t) converges exponentially fast to a neighborhood of the origin with
radius proportional to the inner-loop speed tracking performance bound γv. This implies that, in the limit
case of perfect inner-loop tracking, the path-following errors of each vehicle and the coordination error state
vector converge exponentially fast to zero.

VI. Cooperative Road Search with Multiple Unmanned Aerial Vehicles

In this section we discuss flight test results for a cooperative road-search mission that show the efficacy of
the multi-vehicle cooperative control framework presented in this paper. Cooperative path-following missions
involving multiple UAVs were flown for the first time at Camp Roberts, CA, in November 2009, and then
demonstrated four more times at the same location in February, May, July, and November of 2010. More
flight tests are expected in November 2011. The results in this section verify the main theoretical claims
of the cooperative control algorithm presented in this paper and demonstrate the feasibility of the onboard
implementation of the algorithms and the validity of the approach.
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Figure 5. Coordinated road search using multiple UAVs.

VI.A. Mission description

One of the applications that motivates the use of multiple cooperative UAVs and poses several challenges to
systems engineers, both from a theoretical and practical standpoint, is automatic road search for improvised
explosive device detection; see Figure 5. The mission is initiated by a minimally trained user who scribbles
a path on a digital map, generating a precise continuous ground-track for the airborne sensors to follow.
This ground-track is then transmitted over the network to a fleet of small tactical UAVs equipped with
complementary visual sensors. Decentralized optimization algorithms autonomously generate feasible flight
trajectories that maximize road coverage and account for sensor capabilities –field of view, resolution, and
gimbal constraints– as well as inter-vehicle and ground-to-air communications limitations. The fleet of
UAVs then starts the cooperative road search. During this phase, the information obtained from the sensors
mounted onboard the UAVs is shared over the network and retrieved by remote users in near real time. The
explosive device detection can thus be done remotely on the ground, based on in-situ imagery data delivered
over the network.

In this particular mission scenario, a robust cooperative control algorithm for the fleet of UAVs can im-
prove mission performance and provide reliable target discrimination, by effectively combining the capabilities
of the onboard sensors. In fact, flying in a coordinated fashion is what allows, for example, to maximize the
overlap of the fields of view (FOVs) of multiple sensors and to take full advantage of complementary sensors.

VI.B. Airborne system architecture

The small tactical UAVs employed in this particular mission are two SIG Rascals 110 operated by NPS;
see Figure 6. The two UAVs have the same avionics and the same instrumentation onboard, the only
difference being the vision sensors. The first UAV has a bank-compensated high-resolution 12-MPx imagery
camera, while the second UAV has a full-motion video camera suspended on a pan-tilt gimbal. Due to
payload constraints, each UAV is allowed to carry only one camera at a time, and therefore the two cameras
need to be mounted on different platforms. The rest of the onboard avionics, common to both platforms,
includes two PC-104 industrial embedded computers [47] assembled in a stack, a wireless Mobile Ad-hoc
Network (MANET) link [48], and the Piccolo Plus autopilot [49] with its dedicated 900-MHz command and
control channel. Details of the complete airborne network-centric architecture are presented in Figure 7.

The first PC-104 computer acts as a secondary autopilot controller, running the cooperative-control
algorithms in hard real time at 100 Hz and directly communicating with the Piccolo Plus autopilot at
50 Hz over a dedicated serial link. This connection efficiently eliminates communication delays between the
outer-loop control algorithms and the autopilot. The second PC-104 is a mission management computer
that implements a set of non-real-time routines enabling onboard preprocessing and retrieval of the sensory
data –high-resolution imagery or video– in near real time over the network. Integration of the MANET
link allows for robust transparent inter-vehicle and ground communication, which is needed for both the
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(a) SIG Rascal 110 research aircraft.

(b) High-resolution camera. (c) Full-motion video camera.

Figure 6. SIG Rascal UAV with two different onboard cameras.

coordination algorithms and the expedited sensory data delivery to a remote mission operator. In fact, the
MANET link provides “any-to-any” connectivity capability, allowing every node –vehicle or ground station–
to communicate directly with every other node. Moreover, information about the connectivity of the entire
network can be retrieved in near real time. Details on the flight test architecture and the supporting network
infrastructure for coordination control and data dissemination can be found in [48, 50].

VI.C. Flight Test Results

We now present flight test results for a cooperative road-search mission executed by the two SIG Rascals.
The objective of the mission is to detect a target moving along a given road and, if detection occurs, to
collect information about the target. This information is then to be shared over a MANET link so that it
can be retrieved by remote mission operators in near real time. Success of the mission relies on the ability
to overlap the footprint of the FOVs of the two cameras along the road, which increases the probability of
target detection [51]. Next, we provide details about the execution of this coordinated road-search mission,
which we divide in four consecutive phases, namely, initialization, transition, road search, and vision-based
target tracking. The description is supported by one of the flight tests results performed during a Tactical
Network Testbed field experiment at Camp Roberts, CA; see figures 8-11.

In the initialization phase, an operator specifies on a digital map the road of interest. Then, a centralized
optimization algorithm generates road-search suboptimal paths and desired speed profiles for the two UAVs
that explicitly account for UAV dynamic constraints, collision-avoidance constraints, and mission-specific
constraints such as inter-vehicle and vehicle-to-ground communications limitations as well as sensory ca-
pabilities. In particular, the trajectory-generation algorithm is designed to maximize the overlap of the
footprints of the FOVs of the high-resolution camera and the full-motion video during the road search. In
addition to the road-search paths and the corresponding desired speed profiles, the outcome of the trajectory-
generation algorithm includes a sensor trajectory on the ground to be followed by the vision sensors. The
two road-search paths and the sensor path, along with the three corresponding speed profiles, are then
transmitted to the UAVs over the MANET link.

In the transition phase, the two UAVs fly from their standby starting positions to the initial points of
the respective road-search paths. For this purpose, decentralized optimization algorithms generate feasible
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Figure 7. Network-Centric architecture of the airborne platform.

collision-free 3D trajectories to ensure that the two UAVs arrive at the initial points of the road-search
paths at the same time. Once these transition trajectories are generated, the two vehicles start operating
in cooperative path-following mode. From that moment on, the UAVs follow the transition paths while
adjusting their speeds based on coordination information exchanged over the MANET link in order to
achieve simultaneous arrival at the starting point of the road-search paths. The transition and road-search
spatially-deconflicted paths obtained for this particular mission scenario, together with the corresponding
desired speed profiles and the path separations, are shown in Figure 8. Figure 9 illustrates the performance
of the coordination control algorithm during the transition phase of the mission.

The third phase addresses the cooperative road-search mission itself, in which the two UAVs follow the
road-search paths generated in the initialization phase while adjusting their speeds to ensure the required
overlap of the FOV footprints of the cameras. In this phase, a target vehicle running along the sensor path
is virtually implemented on one of the UAVs. For this road-search mission, a natural choice for this sensor
path is the road itself, and this virtual vehicle determines thus the spot of the road being observed by the
vision sensors mounted onboard the UAVs at a given time. This virtual vehicle is indeed used as a leader
in the coordination algorithm, and its speed is also adjusted, based on the coordination states of the two
UAVs. The coordination state of this virtual vehicle is also transmitted over the tactical network and used in
the coordination control laws of the two “real” vehicles. The performance of the cooperative path-following
control algorithm is illustrated in Figure 10. For this particular mission scenario, the coordination errors
remain below 7% during the entire duration of the road search, while the path-following cross-track errors
converge to a 3 m tube around the desired spatial paths.

Finally, when a target is detected on the road, the two UAVs immediately switch to cooperative vision-
based tracking mode. In this phase, the UAVs track the target by means of guidance loops that use visual
information for feedback [52], while simultaneously providing in-situ imagery for precise geo-location of the
point of interest. During this target-tracking phase, a coordination algorithm ensures that the two UAVs
keep a predefined phase separation of π

2 rad while orbiting around the target. This coordination algorithm
uses the decentralized coordination control law described in Section IV to adjust the orbiting speed of
the UAVs, with the main difference that phase on orbit is now used as a coordination state, rather than
virtual time. Besides collision avoidance, cooperation through phase-on-orbit coordination allows for several
additional benefits, including reduced sensitivity to target escape maneuvers [53] and possible extraction of
3D information from 2D images [54]. The performance of the cooperative path-following control algorithm
is illustrated in Figure 11, which shows the trajectories of the two UAVs while tracking the target as well as
the phase-coordination error between the UAVs.

In summary, the results presented above demonstrate feasibility and efficiency of the onboard integration
of the nonlinear path-following and coordination algorithms. During the flight experiments, the required
control commands never exceeded the limits defined for the UAV in traditional waypoint navigation mode.
At the same time, the achieved functionality of the UAV following 3D curves in an inertial space outperforms
the conventional waypoint navigation method typically implemented on off-the-shelf commercial autopilots.
These results provide also a roadmap for further development and onboard implementation of advanced
cooperative algorithms, opening new frontiers for UAV operations.
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Figure 8. Coordinated road-search trajectory generation.
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Figure 10. Cooperative path-following control during the road-search phase.
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Figure 11. Cooperative vision-based target tracking (CVBTT).
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VII. Conclusions

This paper addressed the problem of multiple Unmanned Aerial Vehicle (UAV) cooperative control in
the presence of time-varying communications networks and stringent spatial/temporal constraints. The
constraints involve collision-free maneuvers and simultaneous times of arrival at desired target locations
(time-critical operations). The methodology proposed in the paper built on previous work by the authors on
path following and extended it to a very general setting that allows for the consideration of complex vehicle
dynamics, time-critical specifications, and time-varying communications topologies. In the setup adopted,
single-vehicle path-following control in 3-D space was done by resorting to a nonlinear control strategy derived
at the kinematic level. Decentralized, multiple vehicle time-critical cooperative path following was achieved
by adjusting the speed of each vehicle about a nominal speed profile, in response to information exchanged
with its neighbors over a dynamic communications network. We addressed explicitly the situation where
each vehicle transmits only its coordination state to only a subset of the other vehicles, as determined by the
communications topology adopted. Furthermore, we considered the case where the communications graph
that captures the underlying communications network topology is be disconnected during some interval of
time (or even fails to be connected for the entire duration of the mission) and provided conditions under
which the complete coordinated path-following closed-loop system is stable and yields convergence of conve-
niently defined cooperation error states to a neighborhood of the origin. Flight tests of a coordinated road
search mission scenario that exploited the multi-UAV cooperative control framework exposed in the paper
demonstrated the efficacy of the algorithms developed. Future work will aim at extending the algorithms
presented to other kinds of vehicles and maneuvers; e.g., quadrotor UAVs undergoing complex time-critical
maneuvers that require synchronization of attitude and position.

References

1Isaac Kaminer, António M. Pascoal, Eric Hallberg, and Carlos Silvestreo. Trajectory tracking for autonomous vehicles:
An integrated approach to guidance and control. Journal of Guidance, Control and Dynamics, 21(1):29–38, January–February
1998.

2Yoonsoo Kim and Mehran Mesbahi. On maximizing the second smallest eigenvalue of state-dependent graph Laplacian.
IEEE Transactions on Automatic Control, 51(1):116–120, January 2006.

3John N. Tsitsiklis and Michael Athans. Convergence and asymptotic agreement in distributed decision problems. IEEE
Transactions on Automatic Control, 29(1):42–50, January 1984.

4Rodolphe Sepulchre, Derek Paley, and Naomi Leonard. Collective Motion and Oscillator Synchronization, volume 309
of Lecture Notes in Control and Information Sciences, pages 189–206. Springer-Verlag Berlin, 2005.

5Ali Jadbabaie, Jie Lin, and A. Stephen Morse. Coordination of groups of mobile autonomous agents using nearest
neighbor rules. IEEE Transactions on Automatic Control, 48(6):988–1001, June 2003.

6Zhiyun Lin, Bruce A. Francis, and Manfredi Maggiore. State agreement for continuous-time coupled nonlinear systems.
SIAM Journal on Control and Optimization, 46(1):288–307, 2007.

7Magnus Egerstedt and Xiaoming Hu. Formation constrained multi-agent control. IEEE Transactions on Robotics and
Automation, 17(6):947–951, December 2001.

8Reza Ghabcheloo, António M. Pascoal, Carlos Silvestre, and Isaac Kaminer. Coordinated path following control of
multiple wheeled robots using linearization techniques. International Journal of Systems Science, 37(6):399–414, May 2006.

9Lei Fang, Panos J. Antsaklis, and Anastasis Tzimas. Asynchronous consensus protocols: Preliminary results, simulations
and open questions. In IEEE Conference on Decision and Control, pages 2194–2199, Seville, Spain, December 2005.

10Mehran Mesbahi. On state-dependent dynamic graphs and their controllability properties. IEEE Transactions on
Automatic Control, 50(3):387–392, March 2005.

11Daniel J. Stilwell and Bradley E. Bishop. Platoons of underwater vehicles. IEEE Control Systems Magazine, 20(6):45–52,
December 2000.

12Daniel J. Stilwell, Erik M. Bollt, and D. Gray Roberson. Sufficient conditions for fast switching synchronization in
time-varying network topologies. SIAM Journal of Applied Dynamical Systems, 5(1):140–156, 2006.

13Ming Cao, Daniel A. Spielman, and A. Stephen Morse. A lower bound on convergence of a distributed network consensus
algorithm. In IEEE Conference on Decision and Control, pages 2356–2361, Seville, Spain, December 2005.

14Mehran Mesbahi and Fred Y. Hadaegh. Formation flying control of multiple spacecraft via graphs, matrix inequalities,
and switching. Journal of Guidance, Control and Dynamics, 24(2):369–377, March–April 2001.

15Yongduan D. Song, Yao Li, and Xiao H. Liao. Orthogonal transformation based robust adaptive close formation control
of multi-UAVs. In American Control Conference, volume 5, pages 2983–2988, Portland, OR, June 2005.
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Appendix

A. The hat and vee maps [43]

The hat map (·)∧ : R3 → SO(3) is defined as

(x)∧ =






0 −x3 x2

x3 0 −x1

−x2 x1 0






for x = [x1, x2, x3]
⊤ ∈ R

3. The inverse of the hat map is referred to as the vee map (·)∨ : SO(3) → R
3. A property

of the hat and vee maps used in this paper is given below:

tr
[
M(x)∧

]
= −x ·

(

M −M⊤
)∨

, (45)

for any x ∈ R
3, and M ∈ R

3×3. We refer to [43] for further details on the hat and vee maps.

B. Proof of Lemma 1

We start by noting that over the compact set Ωc introduced in (20) the following upper bounds hold:

‖pF‖ ≤ cc1 <
c1√
2
, (46)

Ψ(R̃) ≤ c2 <
1

2
. (47)

Consider now the Lyapunov function candidate

Vpf (pF , R̃) = Ψ(R̃) +
1

c21
‖pF‖2 .

This function is locally positive-definite about (pF , R̃11) = (0, 1) within the region Ωc defined in (20). Moreover, we
note that ‖eR̃‖ can be related to the function Ψ(R̃) as follows:

‖eR̃‖
2 =

1

4

(

R̃2
12 + R̃2

13

)

=
1

4

(

1− R̃2
11

)

=
1

4

(

1− R̃11

)(

1 + R̃11

)

= Ψ(R̃)
(

1−Ψ(R̃)
)

.

Then, the bound in (47) implies that, inside the set Ωc, the Lyapunov function Vpf can be bounded as

‖eR̃‖
2 +

1

c21
‖pF‖2 ≤ Vpf ≤ 1

1− c2
‖eR̃‖

2 +
1

c21
‖pF ‖2 . (48)
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From equations (1) and (5), the time derivative of Vpf is given by

V̇pf = eR̃ ·
([

q

r

]

−ΠRR̃
⊤
(

RD
F {ωF/I}F + {ωD/F}D

)
)

+
2

c21
pF ·

(

−ℓ̇ ~t− ωF/I × pF + v ~w1

)

.

The rate commands (15), together with the law (14) for the rate of progression of the virtual target along the path,
lead to

V̇pf = −2KR̃ eR̃ · eR̃ +
2

c21

(

−Kℓ

(
pF · ~t

)2 − pF ·
(
ωF/I × pF

)
+ v pF ·

(
~w1 −

(
~w1 · ~t

)
~t
))

. (49)

Since (pF · ~t ) = xF and, moreover, we have that (pF · (ωF/I × pF )) = 0, then (49) reduces to

V̇pf = −2KR̃ eR̃ · eR̃ − 2Kℓ

c21
x2
F +

2v

c21

(
pF ·

(
~w1 −

(
~w1 · ~t

)
~t
))
. (50)

Letting p×(t) denote the cross-track error, which can be expressed as

p× = (pF · ~n1)~n1 + (pF · ~n2)~n2 = yF ~n1 + zF ~n2 , (51)

we have the following equality:

pF ·
(
~w1 −

(
~w1 · ~t

)
~t
)
= pF · ((~w1 · ~n1)~n1 + (~w1 · ~n2)~n2) = p× · ~w1 . (52)

Substituting (52) into (50), we obtain

V̇pf = −2KR̃ eR̃ · eR̃ − 2Kℓ

c21
x2
F +

2v

c21
(p× · ~w1) . (53)

Consider now the quantity (~w1 ·~b1D), which represents the cosine of the angle ψe between the desired direction of

the velocity vector ~b1D and the actual direction of the UAV’s velocity vector ~w1. From the definition of Ψ(R̃) in (3),
we have that

~w1 ·~b1D = cosψe = R̃11 = 1− 2Ψ(R̃) .

The bound in (47) implies that, within the set Ωc, the quantity (~w1 ·~b1D) is bounded away from zero:

~w1 ·~b1D = 1− 2Ψ(R̃) ≥ 1− 2c2 > 0 .

The quantity 1

(~w1·~b1D )
is therefore well defined within the set Ωc. Next, we add and subtract the term 2v

c2
1

(p×·~b1D )

(~w1·~b1D )

to (53) to obtain

V̇pf = −2KR̃ eR̃ · eR̃ − 2Kℓ

c21
x2
F +

2v

c21

(p× ·~b1D )

(~w1 ·~b1D)
+

2v

c21

p× · (~w1 × (~w1 ×~b1D ))

(~w1 ·~b1D )
.

The definitions of ~b1D(t) and p×(t) in (2) and (51) lead to

V̇pf = −2KR̃ eR̃ · eR̃ − 2Kℓ

c21
x2
F − 2v

c21(~w1 ·~b1D) (d2 + p× · p×)
1

2

p× · p× +
2v

c21

p× · (~w1 × (~w1 ×~b1D ))

(~w1 ·~b1D )
.

Next, we note that, within the set Ωc, the following bounds hold:

0 < 1− 2c2 ≤ (~w1 ·~b1D ) ≤ 1 , ‖p×‖ ≤ ‖pF‖ ≤ cc1 .

These bounds, together with the assumption on the UAV speed in (16), yield the following bound for V̇pf :

V̇pf ≤ −2KR̃‖eR̃‖2 −
2Kℓ

c21
x2
F − 2vmin

c21 (d
2 + c2c21)

1

2

‖p×‖2 + 2vmax

c21(1− 2c2)
‖p×‖ ‖~w1 × (~w1 ×~b1D )‖ .

The term ‖~w1 × (~w1 ×~b1D)‖ represents the absolute value of the sine of the angle ψe. Therefore, we can write

‖~w1 × (~w1 ×~b1D)‖ = |sin(ψe)| =
√

1− cos2(ψe) =

√

1− R̃2
11 =

√

R̃2
12 + R̃2

13 = 2‖eR̃‖ ,

which yields

V̇pf ≤ −2KR̃‖eR̃‖
2 − 2Kℓ

c21
x2
F − 2vmin

c21 (d
2 + c2c21)

1

2

‖p×‖2 +
4vmax

c21(1− 2c2)
‖p×‖ ‖eR̃‖ .
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Letting Kp , min

{

Kℓ ,
vmin

(d2+c2c2
1
)
1

2

}

and noting that ‖p×‖ ≤ ‖pF ‖, we have

V̇pf ≤ −2KR̃‖eR̃‖
2 − 2Kp

c21
‖pF‖2 +

4vmax

c21(1− 2c2)
‖pF ‖ ‖eR̃‖ .

From the choice for the characterizing distance d and the path-following control parameters Kℓ and KR̃ in (17) and
the definition of λ∗

pf in (19), it follows that:




KR̃ − vmax

c2
1
(1−2c2)

− vmax

c2
1
(1−2c2)

Kp

c2
1



 ≥ λ∗
pf

[
1

1−c2
0

0 1
c2
1

]

,

which implies that, within the set Ωc, the following bound holds:

V̇pf ≤ −2λ∗
pf

(
1

1− c2
‖eR̃‖

2 +
1

c21
‖pF ‖2

)

≤ −2λ∗
pf Vpf .

It follows from [55, Theorem 4.10] that both ‖eR̃‖ and ‖pF ‖ converge exponentially to zero for all the initial conditions
inside the compact set Ωc. �

C. Proof of Lemma 2

First, we show that the rate commands qc(t) and rc(t) are bounded for all (pF , eR̃) ∈ Ωc. Over the compact
set Ωc, which was introduced in (20), the following inequalities hold:

‖pF ‖ ≤ cc1 , (54)

Ψ(R̃) ≤ c2 . (55)

The first inequality above, together with the bound on the UAV speed in (16), implies that ℓ̇(t) satisfies

|ℓ̇| ≤ vmax +Kℓ cc1 .

From the assumption on the feasibility of the path, we can conclude that both parameters k1(ℓ) and k2(ℓ) are bounded,
and therefore the bound on ℓ̇(t) implies that ωF/I(t) is also bounded. It then follows from (6) that ṗF is bounded,

which, along with the inequality in (54), implies that the entries of ṘF
D(t) are bounded. From the kinematic equation

(
{ωD/F}D

)∧
= RD

F Ṙ
F
D ,

it follows that ωD/F (t) is also bounded. Moreover, (55) implies that the attitude error eR̃(t) satisfies

‖eR̃‖ ≤ c2 .

From the bounds on ωF/I(t), ωD/F (t), and eR̃(t) it follows that, for all (pF , eR̃) ∈ Ωc, the rate commands qc(t)
and rc(t) are bounded. Then, based on the assumption made in Section II.C on the tracking capabilities of the UAV
with its autopilot, we have that, for all (pF , eR̃) ∈ Ωc, the following performance bounds hold:

|qc − q| ≤ γq , (56a)

|rc − r| ≤ γr . (56b)

Next, we consider again the Lyapunov function candidate

Vpf (pF , R̃) = Ψ(R̃) +
1

c21
‖pF‖2 .

From equations (1) and (5), the time derivative of Vpf is given by

V̇pf = eR̃ ·
([

q

r

]

− ΠRR̃
⊤
(

RD
F {ωF/I}F + {ωD/F}D

)
)

+
2

c21
pF ·

(

−ℓ̇ ~t− ωF/I × pF + v ~w1

)

.

We add and subtract the term eR̃ · [ qcrc ] to the above equation to obtain

V̇pf = eR̃ ·
([

qc

rc

]

− ΠRR̃
⊤
(

RD
F {ωF/I}F + {ωD/F}D

)
)

+
2

c21
pF ·

(

−ℓ̇ ~t− ωF/I × pF + v ~w1

)

− eR̃ ·
[

qc − q

rc − r

]

.
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Similar to the proof of Lemma 1, we have that, inside the set Ωc, the following bound holds:

V̇pf ≤ −2λ∗
pf

(
1

1− c2
‖eR̃‖

2 +
1

c21
‖pF ‖2

)

+ ‖eR̃‖
∥
∥
∥
∥
∥

[

qc − q

rc − r

]∥
∥
∥
∥
∥
,

where λ∗
pf was defined in (19). From the performance bounds in (56) and the definition of γω in (22), it follows that

∥
∥
∥
∥
∥

[

qc − q

rc − r

]∥
∥
∥
∥
∥
≤ γω ,

which leads to

V̇pf ≤ −2λ∗
pf

(
1

1− c2
‖eR̃‖

2 +
1

c21
‖pF ‖2

)

+ ‖eR̃‖γω .

We now rewrite the above inequality as

V̇pf ≤ −2(λ∗
pf − δλ)

(
1

1− c2
‖eR̃‖

2 +
1

c21
‖pF ‖2

)

− 2δλ

(
1

1− c2
‖eR̃‖

2 +
1

c21
‖pF‖2

)

+ ‖eR̃‖γω ,

where 0 < δλ < λ∗
pf . Then, for all pF (t) and eR̃(t) satisfying

−2δλ

(
1

1− c2
‖eR̃‖

2 +
1

c21
‖pF ‖2

)

+ ‖eR̃‖γω ≤ 0 , (57)

we have

V̇pf ≤ −2(λ∗
pf − δλ)

(
1

1− c2
‖eR̃‖

2 +
1

c21
‖pF ‖2

)

≤ −2(λ∗
pf − δλ)Vpf .

The inequality in (57) is satisfied outside the bounded set D defined by:

D ,

{

(pF , R̃) ∈ R
3 × SO(3) | 1

1− c2

(

‖eR̃‖ −
(1− c2) γω

4δλ

)2

+
1

c21
‖pF‖2 <

(1− c2) γ2
ω

16δ2λ

}

.

The set D is in the interior of the compact set F given by:

F ,

{

(pF , R̃) ∈ R
3 × SO(3) | 1

1− c2
‖eR̃‖

2 +
1

c21
‖pF‖2 ≤ (1− c2) γ2

ω

4δ2λ

}

,

which in its turn is contained in the compact set Ωb defined by:

Ωb ,

{

(pF , R̃) ∈ R
3 × SO(3) | Ψ(R̃) +

1

c21
‖pF‖2 ≤ (1− c2)γ2

ω

4δ2λ

}

.

Then, the design constraint for the performance bounds γq and γr in (22) implies that the set Ωb is in the interior of
the set Ωc introduced in (20), that is, Ωb ⊂ Ωc.

With the above results and using a proof similar to that of Theorem 4.18 in [55], it can be shown that, for every
initial state (pF (0), R̃(0)) ∈ Ωc, there is a time Tb ≥ 0 such that the following bounds are satisfied:

Vpf (t) ≤ Vpf (0)e
−2(λ∗

pf −δλ)t , ∀ 0 ≤ t < Tb ,

Vpf (t) ≤
(1− c2)γ2

ω

4δ2λ
, ∀ t ≥ Tb .

The bounds in (23) and (24) follow immediately from the two bounds above and the inequalities in (48). �

D. Proof of Lemma 3

To prove ISS we first show that the homogeneous equation of the coordination dynamics

ζ̇(t) = F (t)ζ(t) (58)

is globally uniformly exponentially stable (GUES). To this end, we first consider the system

φ̇(t) = −aL̄(t)φ(t) , (59)

where a is the proportional coordination control gain introduced in (28). Letting D(t) be the time-varying incidence
matrix, L(t) = D(t)D⊤(t), we can rewrite the above system as:

φ̇(t) = −a(QD(t))(QD(t))⊤φ(t) .
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Then, since QD(t) is piecewise-constant and in addition we have that

‖QD(t)‖2 ≤ n ,

one can prove that the system in (59) is GUES, and the following bound holds:

‖φ(t)‖ ≤ kλ ‖φ(0)‖ e−γλt

with
kλ = 1 , and γλ ≥ γ̄λ ,

anµ

(1 + anT )2
.

This result can be proven along the same lines as Lemma 5 in [56] or Lemma 3 in [57]. Since L̄(t) is continuous for
almost all t ≥ 0 and uniformly bounded, and the system (59) is GUES, Lemma 1 in [57] and a similar argument as
in [55, Theorem 4.12] imply that, for any c̄3 and c̄4 satisfying 0 < c̄3 ≤ c̄4, there exists Pc0(t) = P⊤

c0
(t), such that

c̄3
2an
︸︷︷︸

,c̄1

In−1 ≤ Pc0(t) ≤ c̄4
2γλ
︸︷︷︸

,c̄2

In−1 , (60)

Ṗc0(t)− aL̄(t)Pc0(t)− aPc0(t)L̄(t) ≤ − c̄3In−1 . (61)

Next, we apply the similarity transformation

z(t) = Sζζ(t) =

[

In−1 0

− b
a
C⊤Q⊤

In−1

]

ζ(t) , (62)

to the original homogeneous system (58), which leads to

ż(t) = SζF (t)S−1
ζ z(t) =

[

−aL̄(t) + b
a
QCC⊤Q⊤ QC

− b2

a2C
⊤Q⊤QCC⊤Q⊤ − b

a
C⊤Q⊤QC

]

z(t) (63)

Consider now the Lyapunov function candidate

Vc(t, z) , z⊤Pc(t) z ,

where Pc(t) is defined as

Pc(t) ,

[

Pc0(t) 0

0 a3

b3
n In−1

]

.

The time derivative of Vc along the trajectories of the system (63) is given by

V̇c(t) =

z⊤(t)

[
Ṗc0

(t)−aL̄(t)Pc0
(t)−aPc0

(t)L̄(t)+ b
a
QCC⊤Q⊤Pc0

(t)+ b
a
Pc0

(t)QCC⊤Q⊤ Pc0
(t)QC− a

b
nQCC⊤Q⊤QC

C⊤Q⊤Pc0
(t)−a

b
nC⊤Q⊤QCC⊤Q⊤ −2a2

b2
nC⊤Q⊤QC

]

z(t) .

The inequality in (61) implies that

V̇c(t) ≤ z⊤(t)

[
−c̄3In−1+

b
a
QCC⊤Q⊤Pc0

(t)+ b
a
Pc0

(t)QCC⊤Q⊤ Pc0
(t)QC− a

b
nQCC⊤Q⊤QC

C⊤Q⊤Pc0
(t)− a

b
nC⊤Q⊤QCC⊤Q⊤ −2a2

b2
nC⊤Q⊤QC

]

z(t) .

Now, letting

a > 0 , λc =
γλ

2n
√
n+ 1

, b = 2aλcn , c̄3 = c̄4 =
γλ
λc

(
γλ
λc

− 1

)
1

2n2
, (64)

and noting that ‖QC‖ = 1 and λmin(C
⊤Q⊤QC) = 1

n
, one can use Schur complements to prove that the inequality

[

−c̄3In−1 +
b
a
QCC⊤Q⊤Pc0(t) +

b
a
Pc0(t)QCC

⊤Q⊤ Pc0(t)QC − a
b
nQCC⊤Q⊤QC

C⊤Q⊤Pc0(t)− a
b
nC⊤Q⊤QCC⊤Q⊤ −2a2

b2
nC⊤Q⊤QC

]

≤ −2λc

[

c̄2In−1 0

0 a3

b3
n2C⊤Q⊤QC

]

holds for all t ≥ 0. Then, for the choice of parameters in (64), the inequality above implies that

V̇c(t) ≤ −2λc z
⊤(t)

[

c̄2In−1 0

0 a3

b3
n2C⊤Q⊤QC

]

z(t) ,
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which, along with the fact that Pc0(t) ≤ c̄2In−1 and λmin(C
⊤Q⊤QC) = 1

n
, leads to

V̇c(t) ≤ −2λc z
⊤(t)

[

Pc0(t) 0

0 a3

b3
nIn−1

]

z(t) = −2λc Vc(t) .

Application of the comparison lemma (see [55, Lemma 3.4]) leads to the following upper bound:

Vc(t) ≤ Vc(0)e
−2λct ,

and since min{c̄1, a3

b3
n}‖z(t)‖2 ≤ Vc(t) ≤ max{c̄2, a3

b3
n}‖z(t)‖2, we find that

‖z(t)‖ ≤
(

max{c̄2, a3

b3
n}

min{c̄1, a3

b3
n}

) 1

2

‖z(0)‖ e−λct .

The similarity transformation in (62) implies that

‖ζ(t)‖ ≤ ‖S−1
ζ ‖

(

max{c̄2, a3

b3
n}

min{c̄1, a3

b3
n}

) 1

2

‖Sζ‖ ‖ζ(0)‖ e−λct ,

and consequently the system (58) is GUES. Moreover, since γλ ≥ γ̄λ, we have that

λc =
γλ

2n
√
n+ 1

≥ γ̄λ
2n

√
n+ 1

=
anµ

(1 + anT )2
1

2n
√
n+ 1

, λ̄c .

We conclude that the forced system (30) is ISS because it is a linear system, the Laplacian L(t) is bounded, the
homogeneous equation is GUES, and the speed tracking error vector ev(t) is assumed to be bounded for all t ≥ 0.
This implies that the bound in (31) holds. The constants k1 and k2 in (31) can be derived from a proof similar to
those of Theorem 4.19 and Lemma 4.6 in [55].

To prove inequalities (32) and (33), we introduce the disagreement vector ̺(t) , Π ξ(t) and use the facts that

ξi(t)− ξj(t) = ̺i(t)− ̺j(t) i = 1, 2, . . . , n; j = 1, 2, . . . , n , (65)

‖̺(t)‖ = ‖ζ1(t)‖ , (66)

ζ2,i(t) = χI,i(t)− 1 i = 2, . . . , n . (67)

It follows from the relationships (65) and (66) that

|ξi(t)− ξj(t)| = |̺i(t)− ̺j(t)| ≤ |̺i(t)|+ |̺j(t)| ≤ 2‖̺(t)‖ = 2‖ζ1(t)‖ ,

and thus equation (31) leads to (32) with k3 = 2k2. On the other hand, from (27), (29), and (67) one obtains

ξ̇1(t)− 1 = −a
∑

j∈J1

(ξ1(t)− ξj(t)) + e′v,1(t)

ξ̇i(t)− 1 = −a
∑

j∈Ji

(ξi(t)− ξj(t)) + ζ2,i−1(t) + e′v,i(t), i = 2, . . . , n ,

which, along with the bound in (31) and the fact that |e′v,i(t)| ≤ |ev,i(t)|

vmin
, lead to the bound in (33) with k4 =

(2a (n− 1) + 1) k2 +
1

vmin

. �

E. Proof of Theorem 1

First, in order to simplify the notation in this proof, we define the positive constants vcmin and vcmax as vcmin ,

vmin+γv and vcmax , vmax −γv, which —as shown later in the proof— will characterize the lower and upper bounds
on the UAV speed commands. Similarly, let vd,imin and vd,imax be lower and upper bounds on the desired speed
profile for the ith UAV, vd,i(·), that is, vd,imin ≤ vd,i ≤ vd,imax, and define vdmin and vdmax as

vdmin , min
i∈{1,...,n}

vd,imin ,

vdmax , max
i∈{1,...,n}

vd,imax .

We note that the assumptions on the initial conditions in (40) and (41) imply that the following bounds hold at
time t = 0 for all vehicles:

vcmin ≤ vc,j(0) ≤ vcmax , ∀ j ∈ {1, . . . , n} .
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In fact, from the assumption on the initial path-following errors in (40), it follows that, for all j ∈ {1, . . . , n},

‖pF,j(0)‖ ≤ cc1 , (68)

Ψ(R̃j(0)) ≤ c2 . (69)

Also, from the proof of Lemma 1, we have that

~w1,j ·~b1D,j = 1− 2Ψ(R̃j) ,

and therefore it follows from (69) that

~w1,j(0) ·~b1D,j(0) ≥ 1− 2c2 > 0 .

This inequality, together with the definition of ~b1D,j in (2) and the bound in (68), implies that

~w1,j(0) · ~tj(0) ≥
d(1− 2c2)− 2c1c

2(1− c2)
1

2

(d2 + c2c21)
1

2

.

From the choice for the characterizing distance d in (35), it follows that

d(1− 2c2)− 2c1c
2(1− c2)

1

2 > 0 ,

and therefore, we have

~w1,j(0) · ~tj(0) ≥ d(1− 2c2)− 2c1c
2(1− c2)

1

2

(d2 + c2c21)
1

2

︸ ︷︷ ︸

,c2

> 0 , (70)

which implies that the quantity 1
~w1,j (0)·~tj(0)

is thus well defined. From this fact, the definition of the speed commands

in (26), the coordination law in (28), the equalities in (65)-(66), and the bounds in (68) and (70), it follows that the
speed command at time t = 0, vc,j(0), satisfies

vd,imin − 2a(n− 1)vd,imax‖ζ(0)‖ −Kℓcc1 ≤ vc,j(0) ≤ 1

c2
(vd,imax + 2a(n− 1)vd,imax‖ζ(0)‖+Kℓcc1) ,

Then, the assumption on the initial condition in (41) implies that, for all j ∈ {1, . . . , n},

vcmin ≤ vc,j(0) ≤ vcmax .

With this preliminary result in mind, we now prove the claims of the theorem by contradiction. To this effect,
we consider one of the UAVs involved in the mission that has not yet reached its final destination, and assume that
it violates the results of the theorem, that is, either it is not able to remain inside the prespecified tube centered on
its desired path, or its speed command goes outside the acceptable feasible range while trying to keep coordination
with the other UAVs. Without loss of generality, we assume that this UAV is the first one that violates (at least) one
of these conditions, and therefore we suppose that all other vehicles do satisfy the claims of the theorem. In what
follows, we establish the validity of the theorem by showing that the hypotheses above imply a contradiction.

Consider the ith UAV and suppose that, at time t > 0, it has not yet reached the final destination (that is,
ℓ′i(t) < 1). Assume that, at this same time instant t, either the path-following errors of the ith UAV are such that
(pF,i(t), R̃i(t)) /∈ Ωc, or its speed command vc,i(t) does not satisfy the bounds vcmin ≤ vc,i(t) ≤ vcmax (or both). For
all other UAVs, we assume that (pF,j(τ ), R̃j(τ )) ∈ Ωc and vcmin ≤ vc,j(τ ) ≤ vcmax, j ∈ {1, . . . , n}, j 6= i, and for all
τ ∈ [0, t].

Consider first the case in which (pF,i(t), R̃i(t)) /∈ Ωc, while vcmin ≤ vc,i(τ ) ≤ vcmax for all τ ∈ [0, t]. For the
ith UAV, consider the same path-following Lyapunov function candidate as in the proof of Lemma 1:

Vpf ,i(pF,i, R̃i) = Ψ(R̃i) +
1

c21
‖pF,i‖2 .

Since (pF,i(0), R̃i(0)) ∈ Ωc by assumption, and Vpf ,i evaluated along the system trajectories is continuous and
differentiable, we have that, if (pF,i(t), R̃i(t)) /∈ Ωc for some t > 0, then there exists a time t′ (0 ≤ t′ < t) such that

Vpf ,i(t
′) = c2 , (71)

V̇pf ,i(t
′) > 0 , (72)

while
Vpf ,i(τ ) ≤ c2 , ∀ τ ∈ [0, t′) . (73)
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The equality in (71) and the bound in (73) imply that the following inequalities hold for all τ ∈ [0, t′]:

‖pF,i(τ )‖ ≤ cc1 , Ψ(R̃i(τ )) ≤ c2 ,

which, along with the choice for the characterizing distance d in (35), imply that

~w1,i(τ ) · ~ti(τ ) ≥ c2 > 0 , ∀ τ ∈ [0, t′] ,

where c2 was defined in (70). The quantity 1
~w1,i(τ)·~ti(τ)

is thus well defined for all τ ∈ [0, t′], which implies that the

speed command vc,i(τ ) in (26) is also well defined for all τ ∈ [0, t′]. Since vmin < vcmin ≤ vc,i(τ ) ≤ vcmax < vmax for
all τ ∈ [0, t′] by hypothesis, the assumption on the UAV dynamics in (13) implies that

|vc,i(τ )− vi(τ )| ≤ γv , ∀ τ ∈ [0, t′] .

Then, it follows that
vmin ≤ vi(τ ) ≤ vmax , ∀ τ ∈ [0, t′] .

We can now use a proof similar to the one of Lemma 2 to show that, for all τ ∈ [0, t′], V̇pf ,i < 0 on the boundary
of Ωc, which contradicts the claim in (71)-(72).

Next, we consider the case in which the bounds vcmin ≤ vc,i(t) ≤ vcmax do not hold, while (pF,i(τ ), R̃i(τ )) ∈ Ωc

for all τ ∈ [0, t]. Let t′ (0 < t′ ≤ t) be the first time at which vcmin ≤ vc,i ≤ vcmax is not satisfied. Then, we have
that at time t′ one of the following bounds holds:

vcmin > vc,i(t
′) , or vc,i(t

′) > vcmax , (74)

while
vcmin ≤ vc,i(τ ) ≤ vcmax , ∀ τ ∈ [0, t′) . (75)

Since (pF,i(τ ), R̃i(τ )) ∈ Ωc for all τ ∈ [0, t′] by hypothesis, the following bounds hold for all τ ∈ [0, t′]:

‖pF,i(τ )‖ ≤ cc1 , (76)

Ψ(R̃i(τ )) ≤ c2 , (77)

which, along with the choice for the characterizing distance d in (35), imply that

~w1,i(τ ) · ~ti(τ ) ≥ c2 > 0 , ∀ τ ∈ [0, t′] . (78)

The bound in (75), along with the assumption on the UAV dynamics in (13), imply that

|vc,i(τ )− vi(τ )| ≤ γv , ∀ τ ∈ [0, t′) , (79)

which, in turn, leads to
vmin ≤ vi(τ ) ≤ vmax , ∀ τ ∈ [0, t′) .

Continuity of vi and the bound above imply that vi(t
′) is bounded, and therefore ℓ′i(τ ) is continuous and stays

bounded for all τ ∈ [0, t′]. Since we have assumed that the ith UAV has not yet reached its final destination at time t,
we also have that ℓ′i(t

′) < 1. Then, from the definition of the coordination states in (9), it follows that ξi(τ ) is also
continuous and bounded for all τ ∈ [0, t′]. Moreover, since (by hypothesis) the bounds vcmin ≤ vc,j(τ ) ≤ vcmax hold
for all j ∈ {1, . . . , n}, j 6= i, and for all τ ∈ [0, t′], it follows from the assumption on the UAV dynamics in (13) that

|vc,j(τ )− vj(τ )| ≤ γv , ∀ j ∈ {1, . . . , n} ; j 6= i , ∀ τ ∈ [0, t′] , (80)

which leads to
vmin ≤ vj(τ ) ≤ vmax , ∀ j ∈ {1, . . . , n} ; j 6= i , ∀ τ ∈ [0, t′] .

This bound, along with the hypothesis that (pF,j(τ ), R̃j(τ )) ∈ Ωc for all j ∈ {1, . . . , n}, j 6= i, and for all τ ∈ [0, t′],
implies that ξj(τ ) is bounded for all j ∈ {1, . . . , n}, j 6= i, and for all τ ∈ [0, t′]. Boundedness of ξj(τ ) for all j ∈
{1, . . . , n} and for all τ ∈ [0, t′] implies that ucoord,i(t

′) is bounded, which, together with the inequality in (78), implies
that vc,i(t

′) is also bounded. Hence, we can conclude that ev,i(t
′) is bounded. Then, since the speed tracking error

vector ev(τ ) is bounded for all τ ∈ [0, t′], a proof similar to the one of Lemma 3 can be used to show that the choice
of the coordination control gains a and b in (37) ensures that there exists a positive constant λc such that

‖ζ(τ )‖ ≤ k1‖ζ(0)‖e−λcτ + k2 sup
s∈[0,τ)

‖ev(s)‖ , ∀ τ ∈ [0, t′] ,

and hence, the bounds on the speed tracking errors in (79) and (80) lead to

‖ζ(t′)‖ ≤ k1‖ζ(0)‖+ k2
√
n γv .
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From the inequality above, the speed command in (26), the coordination law in (28), the equalities in (65)-(66), and
the bounds in (76) and (78), it follows that the speed command at time t′, vc,i(t

′), satisfies

vd,imin − vd,imax

(
k̄1‖ζ(0)‖+ k̄2

√
nγv

)
−Kℓcc1 ≤ vc,i(t

′) ≤ 1

c2

(
vd,imax + vd,imax

(
k̄1‖ζ(0)‖+ k̄2

√
n γv

)
+Kℓcc1

)
,

where k̄1 and k̄2 were introduced in (41) and (39) respectively. The assumption on the initial condition in (41) implies
that

vmin + γv ≤ vc,i(t
′) ≤ vmax − γv ,

which contradicts the claim in (74).

Finally, similar arguments can be used to prove the impossibility of both (pF,i, R̃i) ∈ Ωc and vcmin ≤ vc,i ≤ vcmax

failing to hold at the exact same time.

Therefore, we have that, for all i ∈ {1, . . . , n} and for all t ≥ 0, the path-following errors pF,i(t) and R̃i(t) satisfy

(pF,i(t), R̃i(t)) ∈ Ωc ,

while the speed command vc,i(t) verifies the bounds

vcmin ≤ vc,i(t) ≤ vcmax . (81)

It follows from the bound in (81) and the assumption on the UAV dynamics in (13) that

|vc,i(t)− vi(t)| ≤ γv , ∀ i ∈ {1, . . . , n} , ∀ t ≥ 0 ,

which leads to
vmin ≤ vi(τ ) ≤ vmax , ∀ i ∈ {1, . . . , n} , ∀ t ≥ 0 .

Moreover, the choice for the characterizing distance d in (35) implies that

~w1,i(τ ) · ~ti(τ ) ≥ c2 > 0 , ∀ i ∈ {1, . . . , n} , ∀ t ≥ 0 .

Then, the bounds in (42)-(43) and (44) follow respectively from proofs similar to those of Lemmas 2 and 3. �
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