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I. INTRODUCTION

The Brown Water Navy doctrine recently issued
by DoD calls for the Naval ships to operate in a close
vicinity of the enemy shore. Furthermore, the Navy
foresees increasing reliance on the use of unmanned
air vehicles (UAVs) for reconnaissance and other
missions. This combination of greater utilization of
UAVs while operating in proximity of the enemy
has highlighted the necessity of using stealth in
the recovery of UAVs by the Naval ships. In other
words, the ship will not jeopardize its security by
communicating its position to the UAV. Therefore,
this consideration rules out employing such position
sensors as GPS and places emphasis on other passive
sensors. Clearly, the only passive sensors capable
of providing relative position information are vision
based. Moreover, since UAVs are expected to operate
around the clock and in all weather conditions
infrared (IR) cameras are the passive sensors of
choice.
The UAV shipboard autoland includes finding

the ship, constructing a landing trajectory based
on the relative position, velocity and orientation
information (the navigation solution) obtained from
passive sensors, and then tracking this trajectory
using onboard control system. We are not considering
the landing itself because at short ranges low-power
communication between UAV and the ship is allowed.
Determining the navigation solution with respect

to the ship using passive sensors can be divided into
two distinct phases: 1) at large distances the ship is
seen as a single hot spot by the onboard IR camera;
2) at closer distances additional features can be
determined (see Fig. 1). Phase 1 has been addressed
in our previous work, see [1, 2], where new filtering
algorithms have been developed that integrate IR and
inertial navigation system (INS) sensor systems to
obtain relative position and velocity of a UAV with
respect to a ship. These algorithms are designed to
handle out-of-frame events and occlusions that are
common to vision sensors. In this work we obtain
the navigation solution for the Phase 2. Specifically,
the problem of determining range and orientation
of an aircraft to a ship, which has a minimum of
three identifiable points is addressed. The filtering
algorithms developed in [1, 2] that use a single point
have been used to initialize the algorithm developed
here. Once again this algorithm is supposed to
help bring the UAV as close to the ship as possible
(while all three reference points are visible in the IR
camera). After this any final landing procedure may
be implemented.
The visual range at which a ship on the surface of

the sea can be located depends on the contrast of the
ship to its surroundings according to Koshmieder’s
relation [3, 4]. The visual range centered around
0.55 micrometers depends on weather conditions and
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Fig. 1. IR images of ship at decreasing distances from the camera. (a) Over 5 mi. (b) Between 3 and 5 mi. (c) Below 3 mi.

ambient light, which can produce glare obscuring the
ship. Although one can often detect ships at great
distances in daylight, the visible spectrum is severely
limited under poor weather conditions and especially
at night for military vessels without running lights

[5]. Since all powered ships will radiate strongly in
the 8—12 micrometer IR atmospheric window, it is
preferable to locate ships by their hot smokestack and
engine. Use of the IR greatly simplifies the problem
of locating a ship and reduces susceptibility to glare.
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Fig. 2. IR images of naval ship.

Fig. 3. Extraction of ship from background.

The visible spectrum may be used to supplement
the IR for long-range detection in clear daylight
conditions.
The hot IR smokestack reliably gives the

location of the ship with minimal image processing
as compared with visible light. Examples of the
information available at different ranges are presented
in Fig. 1 in a contour plot and surface plot overlaying
the image. At the limit of the detection range for a
given minimum resolvable temperature difference,
the only detectable point may be the smokestack
(Fig. 1(a)), but at closer range there will be many
relatively hot points that can be recovered using image
processing (Fig. 1(b),(c)).
However, only a few of the hottest points projected

onto the focal plane of the IR camera can be identified
reliably at great distances. This observation naturally
leads to the following critical question: what is
the minimum number of known reference points
(RPs) that is necessary to determine the range and
orientation of the IR camera with respect to the
ship. It turns out the answer to this question is three.
But using only three points always results in more
than one solution as has been shown by a number
of researchers in the areas ranging from projective
geometry to photogrammetry. Indeed, a survey of the
scientific literature reveals that the number of possible
solutions may range from four to fifteen. (A detailed
discussion of these results is given in Section III.)
This problem of nonuniqueness is usually resolved
at very close ranges by using more than three points

that must lie in the same plane (see for example [6—8]
and references therein). However, at greater ranges
the computational cost of obtaining each additional
known point that lies in plane defined by the initial
three becomes prohibitive for real-time applications.
Therefore, we assume here that three reliable points
may be computed from the location of the smokestack
and the extents (width and height) of the ship. An
illustration of how these images of three RPs can be
obtained from an IR image of the ship is given next.
Fig. 2 presents examples of IR images of the

naval ship passing through San Diego harbor at
two different distances of more than two miles. The
images are shown in contour and surface plot above
a false color image to illustrate the information that
is available. Using previously developed algorithms
[5] the ship may be extracted from the background
as shown in Fig. 3. The false-color image of the ship
has been automatically located and indicated by a box
in the first insert. The next two inserts are the single
level binary and gray-scale images of the ship that
have been extracted from the background.
Finally, Fig. 4 shows images of three RPs that

can be used by the algorithm developed here. These
images may be obtained as follows: the smokestack
by using thresholding of the image directly, while
the other two points by intersecting the images of the
edges of the ship’s deck.
Having shown how the ship may be located and

the three points of information (images of RPs)
established, we focus our attention on determining
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Fig. 4. Examples showing images of 3 RPs.

Fig. 5. Three-point geometry applied to shipboard navigation.

the range and orientation of an IR camera with respect
to the ship using images of three RPs (see Fig. 5). To
address the problem of non-uniqueness of the solution
we introduce a concept of an admissible solution and
using extensive numerical analysis show that under
reasonable assumptions on the relative geometry of
the camera and RPs there can be at most two such
solutions. (The admissible solution implies that the
camera is in front of the ship.) Based on this analysis
we develop an efficient numerical algorithm that
identifies the two admissible solutions and selects the
correct one. The utility of the algorithm is illustrated
in simulation and using flight test data collected by an
IR camera mounted on a small UAV.
This paper is organized as follows. Section II

contains a mathematical formulation of the problem.
Section III describes previous work in this area, which
dates back to 1841. Section IV contains numerical
analysis of the problem and discusses proposed
numerical solution. Results of computer simulation are
shown in Section V. Sections VI and VII discuss the

flight test setup and present the results obtained using
flight test data. The paper ends with conclusions.

II. PROBLEM FORMULATION

Consider Fig. 6. Let ~pi = fxi,yi,zig, i= 1, : : : ,3
denote the vectors connecting the origin of the camera
frame O with the three known points Pi, i= 1, : : : ,3.
Let di, i= 1, : : : ,3 denote distances between these
points:

k~p1¡~p2k= d1 6= 0, k~p1¡~p3k= d2 6= 0,
k~p2¡~p3k= d3 6= 0, d1 6= d2 6= d3

(1)

and si = k~pik, i = 1, : : : ,3 denote the norms of the
vectors ~pi. We utilize the pinhole camera model [9].
Using this model the projection of each RP onto the
image plane of the camera with the focal length f has
the following form:

¼(pi) =
µ
ui

vi

¶
=
f

xi

µ
yi

zi

¶
, i= 1, : : : ,3: (2)
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Fig. 6. 3P3 geometry.

Now by combining (1) and (2) we obtain nine
equations in nine unknowns fxi,yi,zig, i= 1, : : : ,3.
Using (2) we get

yi =
xiui
f
, zi =

xivi
f
: (3)

By substituting these expressions into (1) and after
simple algebra we can reduce (2) and (1) to a set of
three nonlinear equations in three unknowns:X
i=1,2

(f2 + u2i + v
2
i )x

2
i ¡ 2(f2 + u1u2 + v1v2)x1x2 = (fd1)2

X
i=1,3

(f2 + u2i + v
2
i )x

2
i ¡ 2(f2 + u1u3 + v1v3)x1x3 = (fd2)2

X
i=2,3

(f2 + u2i + v
2
i )x

2
i ¡ 2(f2 + u2u3 + v2v3)x2x3 = (fd3)2:

(4)

To simplify notation we rewrite (4) as follows

Ax21¡ 2D12x1x2 +Bx22 = d̄1
Ax21¡ 2D13x1x3 +Cx23 = d̄2
Bx22¡ 2D23x2x3 +Cx23 = d̄3:

(5)

Note, that the coefficients A, B, C, d̄i, i= 1, : : : ,3 are
strictly positive by construction.
Using (5) one can obtain another system of

equations better suited for further analysis. First,
observe that

x1 =
fp
A
s1, x2 =

fp
B
s2, x3 =

fp
C
s3: (6)

Now by rewriting system (5) in terms of si, i= 1, : : : ,3
we get

s21¡ 2s1s2 cos®1 + s22 = d21
s21¡ 2s1s3 cos®2 + s23 = d22
s22¡ 2s2s3 cos®3 + s23 = d23

(7)

where

cos®1 =
(~p1,~p2)
k~p1kk~p2k

, cos®2 =
(~p1,~p3)
k~p1kk~p3k

,

cos®3 =
(~p2,~p3)
k~p2kk~p3k

(see Fig. 6).

Obviously system (7) has an upper bound of
eight (2£ 2£ 2) real solutions. Moreover they form
four symmetric pairs, because if a triplet (s¤1,s

¤
2,s

¤
3)

is a solution, than the triplet (¡s¤1,¡s¤2,¡s¤3) forms a
solution as well.
Geometrically system (7) can be described as an

intersection of three orthogonal elliptic cylinders with
the semiaxes rotated around corresponding symmetry
axes by the angle of 45±. This follows directly from
the canonical form of equation (7). The magnitudes of
the semiaxes for each cylinder are equal to

ai,bi =
dip

1§ cos®i
, i= 1, : : : ,3: (8)

It is clear that the intersection of any two
cylinders is always nonempty and the number of
solutions in this case is infinite. However, by adding
a third cylinder one can get only a finite number
of intersection points. In practice for the system (7)
this number cannot be zero or two (as will be shown
in Section IV). The only possible set of solutions
contains four, six, or eight points. For instance,
Fig. 7(a) demonstrates an example with four real
solutions to system (7) (two pairs of symmetric
points). Increasing the size of the cylinder along the
s2 axis, results in three pairs of solutions (Fig. 7(b)).
Further increase leads to four pairs (Fig. 7(c)) and
again to three pairs of solutions (Fig. 7(d)). Eventually
only two pairs of solutions remain (Fig. 7(e)).
In the work reported here, we make the following

assumption.
A1. The camera is always in front of the plane

defined by three RPs Pi, i= 1, : : : ,3.
In the sequel the set of all vectors ~pi = fxi,yi,zig,

i= 1, : : : ,3 that satisfy Assumption A1 is called
admissible. Assumption A1 implies that the
x-component of each vector in the admissible set is
positive (i.e., si > 0, i= 1, : : : ,3).
Summarizing, the problem to be addressed

here is to find all admissible solutions to (7) using
Assumption A1 and two additional assumptions
discussed in Section IV. Furthermore, since the set of
admissible solutions contains more than one element
we would like to develop a test to select the correct
solution.

III. PREVIOUS WORK

It turns out that the three-point perspective pose
estimation problem (P3P) (as the problem addressed
here is called in computer vision) was first formulated
by the German mathematician Grunert in 1841
([10]). Since then it has been addressed by many
scientists throughout the world. As a result it has been
well established that the problem does not have an
analytical solution and most attempts were directed
at getting a numerical one. In the remainder of this
section we present a brief overview of the existing
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Fig. 7. Examples of possible geometry for system (7). (a) and (e) Two solutions. (b) and (d) Three solutions. (c) Four solutions.

results partly based on reference by Haralick, Lee,
Ottenberg, and Nölle ([11], 1991).
According to Müller ([12], 1925) Grunert obtained

(7) by simple use of the law of cosines implemented
for the corresponding tetrahedron. Most of the work

addressing this problem used formulation (7) as well.
Grunert himself introduced two new variables

u¤ =
s2
s1

and v¤ =
s3
s1

(9)
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to show that with their help system (7) can be reduced
to a fourth-order polynomial with respect to v¤. Since
the coefficients of this polynomial were expressed
as complicated functions of the problem data, this
polynomial could be neither solved/simplified
analytically nor analyzed. This is due to the fact that,
in general, the roots of the fourth order polynomial
cannot be obtained analytically (see for example [13]
and references therein).
The same approach was used by Merritt ([14, 15],

1949) and independently by Fischler and Bolles
([6], 1981). With the same substitution and by
manipulating different pairs of equations and different
multipliers, they reduced the problem to a fourth-order
polynomial in terms of u¤, rather than v¤.
Several attempts to decrease the order of the final

polynomial to be solved are known as well ([11]). For
example, Finsterwalder ([16], 1903) instead of finding
all roots of a fourth-order polynomial reduced the
problem to finding a root of a cubic polynomial and
the roots of two quadratic polynomials. Grafarend,
Lohse, and Schaffrin ([17], 1989) applied different
transformations to (7) in order to reduce the problem
to finding the same roots of a cubic polynomial
and the roots of two quadratic polynomials. In [18]
Lohse further extended these results to show that
admissible solutions can be picked up from as many
as 15 solutions provided by his transformations.
Linnainmaa, Hanvood, and Davis ([19], 1988),

using another and more effective substitution, that is

s2 = u
¤+ s1 cos®1 and s3 = v

¤+ s1 cos®2

(10)

reduced system (7) to fourth-order polynomial in s21.
Quan and Lan ([8], 1999) mentioned that they

could use classical Sylvester resultant to rewrite (7)
as an eighth-order polynomial in s1 (fourth-order
polynomial in s21).
Today availability of powerful computers has made

it easy to find all possible solutions to either three- or
four or eight-order polynomial. Moreover, Haralick,
Lee, Ottenberg, and Nölle [11] did compare numerical
accuracy of possible solutions obtained using all
approaches mentioned in this section (and showed
by the way that only approaches by Fischler and
Bolles, and Linnainmaa, Hanvood, and Davis involve
no singularity in the computation). But the questions
of what is the number of admissible solutions for
the specific problem geometry and how to select the
correct one still have not been completely answered.
To show that at most four admissible solutions

can be found, Fischler and Bolles considered a
specific case of equilateral triangle P1P2P3 (see Fig. 6)
where di = 2

p
3, cos®i = 5=8, i= 1, : : : ,3, i.e., when

system (7) becomes singular. For this case they
obtained numerically four admissible solutions shown
graphically in Fig. 8(a).

Fig. 8. Solutions shown in Fischler and Bolles [6]. (a) Singular
case. (b) General case.

Note that for case of equilateral triangle, system
(7) is reduced to the following

s21¡2s1s2 cos®+ s22 = d2

s21¡2s1s3 cos®+ s23 = d2

s22¡2s2s3 cos®+ s23 = d2:
(11)

By subtracting the second equation from the first, we
obtain

(s2¡ s3)(s2 + s3¡ 2s1 cos®) = 0: (12)

Equating s2 and s3 in the third equation of system (11)
we get

s2 = s3 =
dp

2(1¡ cos®) : (13)

Finally, either the first or the second equation provides
two solutions for s1:

s1 =
½
s2;
d(2cos®¡ 1)p
2(1¡ cos®)

¾
: (14)

Note that due to symmetry, four admissible
solutions can be obtained for this particular case
(the second multiplier in (12) gives the same
nonsymmetric roots). Moreover, four admissible
solutions exist for a more general case, when only two
of the three equations in (7) are singular, i.e., when
triangle P1P2P3 is isosceles and camera resides in the
symmetry plane (these solutions can be obtained in
the same manner as was done in (11)—(14)). Now, the
natural question to ask is could it still be the general
case?
To answer this question Fischler and Bolles

propose the following procedure to obtain four
admissible solutions (see Fig. 8(b)). Moving along the
line OP1 (see Fig. 8(b)) and fixing the pair of points
fP2,P02g and fP3,P 03g corresponding to edges d1 and
d2, respectively, one obtains four candidate solutions
([P2;P3], [P

0
2 ;P

0
3 ], [P

0
2 ;P3], and [P2;P

0
3 ]). In the general

case, these candidate solutions have different lengths
that do not equal d3. Therefore, Fischler and Bolles
suppose that each of them can be equal to d3 for a
certain s1, resulting in four admissible solutions. That
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Fig. 9. FASS for example of Fischler and Bolles [6].

is true. However, this is true only for singular cases
discussed above and for a certain configuration of
problem data in the general case (as shown in the next
section).
The P3P is also well known in the field of

photogrammetry. The term photogrammetry came
into general use in the U.S. about 1934, although
the term already had been widely used in Europe
since 1893 after German A. Meydenbauer [20, 21].
The main objective of photogrammetry is to obtain
reliable landscape measurements by means of aerial
photographs. Since tilted photographs introduce
errors in the map position, it is important to take into
account tilt and swing in aerial photographs at the
time of exposure. This task is one of the fundamental
problems in the photogrammetry and is called “space
resection involving the determination of the spatial
position of a camera exposure station.” Despite
numerous attempts to solve system (7) analytically, the
only solution that is in use in photogrammetry today

is a numerical solution developed by E. Church in the
mid 1930s [22, 23, 9].
Church’s approach considers two pyramids–

ground pyramid with three RPs and exposure center
of a camera, and image-plane pyramid with three
image points and the same center (see Fig. 6).
This procedure finds a solution that makes the two
pyramids coincide and can, in fact, be interpreted as
a well-known method of Newton’s iterations. This
procedure seems to work well when the initial guess
is sufficiently close to the correct admissible solution.
However, Church’s method does not address the issue
of the nonuniqueness of the solution. It improves on
an initial guess, which has to be quite accurate (within
a few percentage points of the true solution [24, 20]).
Otherwise Church’s method does not guarantee
convergence to the correct solution. Moreover, even
with a good initial guess this method converges only
if the exposure station is “high over the ground and
located inside the cylinder or the sphere containing
three RPs” [20].
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Fig. 10. Cross-sections of FASS for general geometry of RPs.

IV. NUMERICAL ANALYSIS

In this section we present results of the numerical
analysis of the P3P. The critical issue addressed
includes determining geometry of the feasibility
regions (i.e., the regions that have two, three, or four
admissible solutions). First these regions are computed
for the example used by Fischler and Bolles [6], who
considered the case where RPs form an equilateral
triangle. Then a similar exercise is performed for the
case of an arbitrary triangle. This exercise suggests
that the shape of the feasibility regions is complex and
invariant of the shape of the triangle formed by the
RPs. Finally, an algebraic analysis motivated by the
geometric solution proposed by Fischler and Bolles
is given. This analysis is used to develop an efficient
numerical algorithm to solve the P3P.
Fig. 9 contains the results of a numerical analysis

of the specific example of an equilateral triangle given
in Fischler and Bolles [6]. Here the shaded areas
represent the set of points where four admissible
solutions (FASS) to the P3P exist. In particular,

left-bottom part of Fig. 9 shows the 3D view of this
solution set parameterized by the elevation above the
plane formed by the triangle. Other plots in the figure
show the top view of each level set. Fig. 9 clearly
shows that FASS can be obtained not only at the
point of complete symmetry (central point on Fig. 9
at z = 0:2, : : : ,5:0) as shown in [6], but at many other
points as well. In fact, one can see that the geometry
of FASS is fairly complex. This explains why it has
been so difficult to characterize FASS analytically and
why Church’s iterative procedure does not converge
on its boundary (see Section III).
In Fig. 10 FASS is computed for the case where

RPs form an arbitrary triangle. It suggests that the
shape of FASS is invariant of the shape of the triangle
formed by RPs. Together, Figs. 9 and 10 suggest that
FASS is a complex inverted “pyramid” that is normal
to the plane formed by the three RPs. At its base it
forms a circle that contains the triangle generated by
the RPs.
Now we make the following additional

assumptions.
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Fig. 11. Illustration of two sets of solutions.

Fig. 12. Illustration of two admissible solutions for s1.

A2. mini=1,:::,3 siÀmaxi=1,:::,3 di.
A3. The camera resides outside of FASS.

Assumption A2 implies that the camera is sufficiently
far from the ship. As is shown next, Assumptions
A1—A3 guarantee that the P3P addressed in this work
has only two admissible solutions.
First observe that inside the region that satisfies

A1—A3 the following inequalities hold

0< ®i < ¼=2,
3X
i=1

®i < ¼, ®i ·
X

l=1,:::,3; l 6=i
®l,

i= 1, : : : ,3: (15)

Now from first two equations in (7) we obtain the
following expressions for s2 and s3:

si = cos®i¡1s1§
q
(cos®i¡1s1)2¡ (s21¡ d2i¡1),

i= 2,3: (16)

From (16) it is clear that the set of all possible
admissible solutions for s1 lies in the following
interval

0< s1 · s¤1 = min
i=1,2

(
dip

1¡ cos2®i

)
=min
i=1,2

½
di
sin®i

¾
:

(17)

Furthermore, since due to (15) sin®i > 0, i= 1,2, this
interval is never empty. We first consider the case

d1
sin®1

6= d2
sin®2

:

By substituting the expressions for s2 and s3 given
by (16) into the last equation of (7) we obtain

four equations in s1. Let

¢++(s1) =
X
i=1,2

µ
cos®is1 +

q
d2i ¡ s21 sin2®i

¶2
¡ 2cos®3

Y
i=1,2

µ
cos®is1 +

q
d2i ¡ s21 sin2®i

¶
¡ d23 :

(18)

Similarly define ¢¡+, ¢+¡, and ¢¡¡, obtained by
taking all possible combinations of expressions (16).
Notice, by setting each of these expressions to zero:

¢++(s1) = 0 ¢¡+(s1) = 0

¢+¡(s1) = 0 ¢¡¡(s1) = 0
(19)

we obtain admissible solutions for s1.
Consider Fig. 11, which includes the plots of ¢¡+,

¢++, ¢+¡, and ¢¡¡ versus s1. It can be seen that
solving (19) for s1 will result in two sets of solutions,
one of which is admissible.
In Fig. 12 the area that contains two admissible

solutions in Fig. 11 is magnified. Clearly, the set of
admissible solutions for s1 may contain one or two
elements. One-element case results from the fact
that either s2 or s3 in (16) have one solution, which
leads us to the conclusion that s1 = s

¤
1. On the other

hand, in the two-element case both s2 and s3 have two
solutions. Finally observe that due to Assumption A2
none of the following expressions can be zero when
evaluated at s1 = 0:

¢++(0) =¢¡¡(0) = d
2
1 ¡2d1d2 cos®3 +d22 ¡ d23

= 2d1d2(cosP3P1P2¡ cos®3)< 0,
¢+¡(0) =¢¡+(0) = d

2
1 +2d1d2 cos®3 + d

2
2 ¡d23

= 2d1d2(cosP3P1P2 + cos®3)> 0:

(20)
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Thus, the functional dependence of the expressions
¢++(s1), ¢¡+(s1), ¢+¡(s1), ¢¡¡(s1) on s1 will
always have the form shown in Figs. 11 and 12, i.e.,
when Assumptions A1—A3 hold only two admissible
solutions can only be obtained.
Next we consider the case

d1
sin®1

=
d2
sin®2

:

Using previous arguments we conclude that

s1 = s
¤
1 =

d1
sin®1

=
d2
sin®2

:

This leads to

si = cos®i¡1s1, di¡1 = sin®i¡1s1,

i= 2,3: (21)

Substituting these expressions into the last equation of
(7) we obtain

s1 =
d3qP

i=1,2 cos2®i¡ 2
Q3
i=1 cos®i

and

d1p
1¡ cos2®1

=
d2p

1¡ cos2®2
=

d3qP
i=1,2 cos2®i¡ 2

Q3
i=1 cos®i

(22)
which results in a unique solution for all si, i=
1, : : : ,3. Is this geometrically possible? Notice that
the expression (21) shows that the angles between
edges s2 and d1, and s3 and d2 are 90

± (see Fig. 6).
But since the solution is unique, by expressing s1 in
terms of s2 and s3, due to symmetry we obtain that
s1 = cos®i¡1si, di¡1 = sin®i¡1si, i= 2,3. This leads us
to the conclusion that the angles between the edges s1
and d1 and s1 and d2 are 90

± as well, i.e., the triangle
contains two right angles. Therefore, the case with one
admissible solution is not realizable (it means that the
camera is located at infinity with respect to the plane
generated by the three points). This statement can
also be proved algebraically. Replace ®3 in the right
hand side of the denominator in (22) with ®1 +®2.
Because of (15), ®1 +®2 > ®3. Using this substitution
the denominator can be reduced to sin j®1¡®2j. Thus,
the following set of equations should hold

sin®1 =
d1
s1
, sin®2 =

d2
s1
, sin j®1¡®2j ¸

d3
s1
:

(23)

However, for small values of angles ®1 and ®2 this
leads to the inequality jd1¡d2j ¸ d3, which implies
that in this case cosP3P1P2 ¸ 1 (see Fig. 6). Therefore,

the region outside of FASS that satisfies Assumptions
A1—A3 contains two admissible solutions.
Now for completeness we analyze what happens

to the solution of the P3P as the camera traverses
FASS. Consider Figs. 13(a)—(b). The plots shown here
were obtained for the points A through F defined in
Fig. 9 in the same way as the plots shown in Fig. 12
(recall the intersection of each graph with the x-axis
determines an admissible solution).
Notice the points A and F lie outside of FASS and

result in only two admissible solutions; point B lies on
the boundary of FASS and produces three admissible
solutions (it corresponds to the cases shown in Figs.
7(b) and 7(d)). The rest of the points lie inside of
FASS and result in four admissible solutions.
Since we have shown that under Assumptions

A1—A3 the nonsingular system (7) always has two
admissible solutions, this result can be used to develop
a test that selects the correct solution. The idea is to
numerically obtain both admissible solutions to (7).
Then using (6) and (3) construct two sets of vectors
~pi 1 or ~pi 2, i= 1, : : : ,3. Then, compute the normals to
the plane generated by each solution and utilize them
to identify the correct one. Now, is it possible that two
admissible solutions have the same normal? It is fairly
easy to see that both solutions have the same normal
if they are colinear, i.e., ~pi 1 = ¹~pi 2, i= 1, : : : ,3, since
in this case solutions must lie on parallel planes.
Now by applying condition (1) we deduce that ¹´ 1.
Thus two admissible solutions always have different
(noncolinear) normals. Therefore, the correct solution
can be determined by analyzing normals generated by
each solution. Using normals to resolve ambiguity is a
standard device employed in the structure from motion
literature (see for example [25]). This test will fail to
identify the correct solution for the case where camera
resides inside or on the boundary of FASS. This can
be clearly seen for points B through E in Fig. 13,
where two or more of the solutions are very close.
This implies that resulting normals will be almost
colinear. This observation underscores the importance
of Assumption A3 for the algorithm presented next.
Based on the results presented above we propose

the following algorithm for solving the P3P. Suppose
a good initial guess of the normal ~n(0) to the plane
generated by the three points is available. Then, for
step k:
1) solve numerically (10) for x(k)1 in the interval

(17), using x(k¡1)1 as an initial guess,
2) substitute each solution x(k)1 obtained in 1) into

(3) to get ~̂p
(k)

i 1 and ~̂p
(k)

i 2,
3) compute normals

~n(k)1 =
(~̂p
(k)

1 1¡~̂p
(k)

2 1)£ (~̂p
(k)

1 1¡ ~̂p
(k)

3 1)

k~̂p(k)1 1¡ ~̂p
(k)

2 1kk~̂p
(k)

1 1¡ ~̂p
(k)

3 1k
and
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Fig. 13. Illustration of nonlinear behavior of solutions to (19) in the vicinity and inside FASS.

~n(k)2 =
(~̂p
(k)

1 2¡ ~̂p
(k)

2 2)£ (~̂p
(k)

1 2¡ ~̂p
(k)

3 2)

k~̂p(k)1 2¡ ~̂p
(k)

2 2kk~̂p
(k)

1 2¡ ~̂p
(k)

3 2k
,

4) choose set ~̂p
(k)

i 1, i= 1, : : : ,3 or ~̂p
(k)

i 2, i= 1, : : : ,3
that maximizes the dot product h~n(k),~n(k¡1)i.
Using the solution provided by the P3P algorithm

the relative orientation of the aircraft with respect to
the plane formed by the three RPs can be computed
as follows [26]. Let f3pg denote an orthogonal
coordinate system attached to the plane generated

by the three RPs, let fcg denote the coordinate
system attached to the camera and let c

3pR be the
coordinate transformation from f3pg to fcg. Form

three orthogonal vectors ~r1, ~r2, ~r3 using the correct
solution ~̂p1, ~̂p2, ~̂p3 as follows:

~r1 =
(~̂p2¡ ~̂p1)
k~̂p2¡ ~̂p1k

, ~r3 =
(~̂p2¡ ~̂p1)£ (~̂p3¡ ~̂p1)
k~̂p2¡ ~̂p1kk~̂p3¡ ~̂p1k

,

~r2 =~r3£~r1: (24)

Then c
3pR = [~r1 ~r2 ~r3].

The transformation matrix c
3pR can also be

expressed using Euler angles

c
3pR =

264 cosÃ3p cosµ3p sinÃ3p cosµ3p ¡sinµ3p
cosÃ3p sinµ3p sinÁ3p¡ sinÃ3p cosµ3p sinÃ3p sinµ3p sinÁ3p+cosÃ3p cosÁ3p cosµ3p sinÁ3p
cosÃ3p sinµ3p cosÁ3p+sinÃ3p sinµ3p sinÃ3p sinµ3p cosÁ3p¡ cosÃ3p sinÁ3p cosµ3p cosÁ3p

375 (25)

where Ã3p, µ3p, Á3p are yaw, pitch, and bank angles,
respectively, with respect to the plane formed by the
three RPs. Therefore, one can easily find the Euler
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Fig. 14. Horizontal projection of aircraft’s and ship’s trajectories.

Fig. 15. 3D representation of simulation scenario.

angles in the following manner:

Ã3p = arctan
r12
r11
, µ3p =¡arcsinr13,

Á3p = arctan
r23
r33
: (26)

In general case the coordinate system f3pg does
not coincide with the inertial coordinate system fig
(see Figs. 4 and 5). Obviously, in this case the attitude
fcg of the camera with respect to fig can be found
using (26) from the transformation matrix c

3pR
3p
i R,

where 3piR can be obtained from the known positions
of the three RPs in fig, using the same manner.

V. APPLICATION TO SHIPBOARD NAVIGATION

Next we present a simulation example where the
P3P algorithm is applied to the determination of the
range of the aircraft with respect to the ship.
The simulation scenario is shown in Figs. 14—15.

The ship is moving North at a constant speed of
10 m/s. Its motion is characterized by pitch and
heave oscillations with a period of 12 s. The aircraft
is performing a left turn with descent from the
initial point (¡1450, ¡200, 470) m with respect
to the ship’s initial position at an airspeed of 53
m/s. The camera’s focal length is f = 0:1 m and
declination angle with respect to aircraft longitudinal
axis is ¡6±. The errors in the projection of each RP
onto the image plane of the camera are modeled as
independent Gaussian random process with zero mean
and standard deviation of one pixel.

Fig. 16. Illustration of realistic case for intersection of elliptic
cylinders in (7).

Fig. 17. z-components of normals generated by each solution.

Fig. 14 shows the horizontal projection of each
of the three RPs on the ship tracked by the camera
and of the aircraft’s motion. Fig. 15 gives the
corresponding 3D representation.
Fig. 16 contains elliptical cylinders with the

coefficients computed from the data taken at the 10th

second of the simulation.
Fig. 17 includes the time histories of the

z-components of the normals generated by
each solution. The z-component of the normal
corresponding to the correct solution is close to ¡1
(in camera coordinate frame). This figure also shows
how the algorithm switches between the two solutions.
Fig. 18 shows the differences between true and

estimated values of the components of the vectors
~pi = fxi,yi,zig, i= 1, : : : ,3 versus relative range to the
ship. Clearly the errors are decreasing as the aircraft
approaches the ship.

VI. FLIGHT TEST SETUP AND DATA

Naval Postgraduate School has recently completed
the development of a rapid flight test prototyping
system (RFTPS) for a prototype UAV named Frog
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Fig. 18. Errors/range history.

[27]. The RFTPS consists of a test bed UAV equipped
with an avionics suite necessary for autonomous
flight, and a ground station responsible for flight
control of the UAV and flight data collection, as
shown in Fig. 19. A functional block diagram of the
RFTPS is also shown in Fig. 19.
The RFTPS provides the following capabilities.

Within the RFTPS environment, one can synthesize,
analyze, and simulate guidance, navigation, control,
and mission management algorithms using a

Fig. 19. RFTPS at Naval Postgraduate School.

high-level development language; algorithms are
seamlessly moved from the high level design and
simulation environment to the real time processor; the
RFTPS utilizes industry standard I/O including digital
to analog, analog to digital, serial, and pulsewidth
modulation capabilities; the RFTPS is portable, easily
fitting into a van. In general, testing will occur at
fields away from the immediate vicinity of the Naval
Postgraduate School; the UAV can be flown manually,
autonomously, or using a combination of the two. For
instance, automatic control of the lateral axis can be
tested while the elevator and throttle are controlled
manually; all I/O and internal algorithm variables
can be monitored, collected, and analyzed within the
RFTPS environment.
To test the developed navigation algorithms the

Frog UAV was equipped with an Infrared Components
Corporation MB IRES IMAGE CLEARTM Uncooled
Microbolometer Module-based IR camera. The camera
included a Boeing U3000A uncooled 8—12 ¹m sensor
and the Microbolometer Module which produced
National Television Standards Committee (NTSC)
video signal and output it via a RS-232 interface.
The focal length of the camera lens as installed in
the Frog UAV was 25 mm with a field of view of
40± £ 30±. The pixel resolution of the camera video
was 320£240.
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Fig. 20. Flight test setup: charcoal grills at Camp Roberts.

The camera was shock mounted in the nose of the
aircraft (see Fig. 19), and the pointing angle was fixed
in the x-z plane of the aircraft body axes, declined
5± from the longitudinal axis of the aircraft. As a
result of the fixed mounting in the aircraft, the aircraft
heading and attitude alone determined the camera
pointing angle. Because the focal length of the camera
was fixed, the camera’s field of view was fixed.
The IR camera video signal was recorded in the

Frog using a Sony Digital Video Walkman, model
GV-D300. This digital video tape recorder (VTR)
recorded the live NTSC format video signal from the
IR camera in the Digital Video (DV) Standard format
on a DV mini video magnetic cassette using a helical
scan. In addition to the video image, the VTR also
recorded the elapsed recording time of each video
frame. Flight tests in support of this project were
conducted at an airfield at Camp Roberts, CA. Three
charcoal grills were used to simulate the hot spots on
the ship (see Fig. 20).
To determine the precision of the P3P algorithm

the Frog UAV was equipped with a Trimble AgGPS

Fig. 22. Examples of IR images of three RPs (inside ellipses). (a) At range of » 450 m. (b) » 80 m.

Fig. 21. 2D representation of DGPS-recorded trajectories.

132 Differential Global Positioning System (DGPS).
The AgGPS 132 system consisted of a 12 C/A-code
channel receiver, a combined GPS/DGPS receiver,
and a ruggedized antenna. The receiver included
ground beacon and satellite DGPS capability. The
receiver produced messages that included aircraft
latitude, longitude, antenna height (altitude), GPS
quality indication, number of satellites, horizontal
dilution of precision, speed over ground, and magnetic
variation. These messages were transmitted in ASCII
format via 38KBaud spread spectrum radio frequency
data modems to the ground station. Samples of UAV
trajectories recorded by onboard DGPS are shown in
Fig. 21. The data obtained by DGPS together with the
WGS-84 coordinates of the charcoal grills was used to
evaluate the accuracy of the P3P solution during post
flight analysis.

VII. FLIGHT-TEST DATA ANALYSIS

The landing sequence was digitized using a frame
grabber at a rate of 30 Hz (see Fig. 22) and a simple
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Fig. 23. Comparisons of IR images. (a) Of a ship. (b) Of the three hot spots at Camp Roberts.

image-processing algorithm was developed to identify
three hot spots on the runway and implemented in
real-time on a Pentium-II PC.
The image processing problem, i.e., that of finding

the hot spots in the image on the runway, turned out

to be nontrivial due to the presence of multiple hot
spots in the surrounding area. This is in contrast to
finding hot spots on a ship, where they are clearly
much hotter than the ocean (compare plots on Fig.
23).
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Fig. 24. Main ideas of the first step for IR image processing.

Fig. 25. Main ideas of the second step for IR image processing.
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Fig. 26. Isometric (a) and plane projections (b) of DGPS (green line) and evaluated (blue dots) positions of aircraft with respect to
three hot spots (red dots) in local-tangential-plane coordinates.

As a result an image processing algorithm was
developed to find and track the hot spots observed
by the IR camera onboard the UAV Frog [28]. The
algorithm consisted of two steps. The first step
included finding the hot spots in the initial image and
involved a search over the complete image plane (see
Fig. 24). The cornerstone of the first step included 1)
computing a running average of each row of pixels,
2) subtracting the average from the actual value of
each pixel, and 3) and selecting the point that exceed
10 sigma from the average. Once the hot spots were
found in the initial image, they were tracked for
the remainder of the approach (see Fig. 25). The
tracking algorithm involved 1) computing a bounding
box around the hot spots, 2) using thresholding and
Gaussian weighting to identify the groups of hot
spots corresponding to each image of RP within the
bounding box, and 3) using inertial data to predict the
approximate location and size of the bounding box in
the next image.

Fig. 27. Error between evaluated aircraft position and GPS
position versus range to hot spots.
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This data plus the geometry of three hot spots with
respect to the runway were used further by the P3P
algorithm to determine range and orientation of the
Frog with respect to the runway.
Results of this application are shown in Fig. 26

together with the trajectory obtained by the onboard
DGPS. Fig. 27 shows the errors between the DGPS
positions and the trajectories computed using P3P
algorithm. Clearly, the algorithm performed as
expected with the total error decreasing as a function
of range.

VIII. CONCLUSIONS

In this paper we have developed a new efficient
solution to the P3P problem and applied it to UAV
navigation relative to the shipboard. We have shown
that in this particular application the problem has only
two admissible solutions, and we have developed a
numerical algorithm that determines both. A simple
test was proposed to select the correct admissible
solution. This numerical algorithm was tested in
simulation and using flight test data. The accuracy of
the resulting solution was evaluated using onboard
DGPS system. The algorithm was determined to
perform well. Finally, the algorithm was implemented
on a Pentium II computer and was successfully tested
in real-time using the flight test data provided by the
onboard IR camera at 20 Hz.

REFERENCES

[1] Kaminer, I., Kang, W., Yakimenko, O., and Pascoal, A.
(2001)
Application of nonlinear filtering to navigation system
design using passive sensors.
IEEE Transactions on Aerospace and Electronic Systems,
37, 1 (2001), 158—172.

[2] Hespanha, J., Yakimenko, O., Kaminer, I., and Pascoal, A.
(2002)
Linear parametrically varying systems with brief
instabilities: An application to integrated vision/IMU
navigation.
In Proceedings of the 40th IEEE Conference on Decision
and Control, Orlando, FL, Dec. 12—15, 2002.

[3] Koshmieder, H. (1924)
Theorie der Horizontalen Sichtweite.
Beitrage zur Physik der freien Atmosphäre, 12 (1924),
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