

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

ANALYSIS AND TUNING OF A
LOW COST INERTIAL NAVIGATION SYSTEM

IN THE ARIES AUV

by

Steven R. Vonheeder

December 2006

 Thesis Advisor: Anthony J. Healey

THIS PAGE INTENTIONALLY LEFT BLANK

i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
December 2006

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Analysis and Tuning of a Low Cost Inertial
Navigation System in the ARIES AUV

6. AUTHOR: Vonheeder, Steven R.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
 Naval Postgraduate School
 Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Office of Naval Research, Code 32

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE
A

13. ABSTRACT
Autonomous underwater vehicle navigation is a complex problem of state estimation. Accurate

navigation is made difficult due to a lack of reference navigation aids or use of the Global Positioning System
(GPS) that could establish the vehicles position. Accurate navigation is critical due to the level of autonomy and
range of missions and environments into which an underwater vehicle may be deployed. Navigational accuracy
depends not only on the initialization and drift errors of the low cost Inertial Motion Unit (IMU) gyros and the
speed over ground sensor, but also on the performance of the sensor fusion filter used.

This thesis will present the method by which an Extended Kalman Filter (EKF) was tuned after
installation of an IMU in the ARIES Autonomous Underwater Vehicle. The goal of installing the IMU, analyzing
the navigational results and tuning the EKF was to achieve navigational accuracy in the horizontal plane with a
position error of less than one percent of distance traveled when compared with GPS. The research consisted of
IMU installation and software modifications within the vehicle to fully realize the design goal. Data collection
and analysis was conducted through field experiments and computer simulation. A significant result of this work
was development of a pseudo-adaptive algorithm to vary the measurement noise values in selected channels to
force a desired response in the filter and improve accuracy and precision in the state estimates.

15. NUMBER OF
PAGES: 140

14. SUBJECT TERMS Navigation, Underwater vehicle, AUV, ARIES, Kalman Filter,
Extended Kalman Filter, IMU, Inertial Navigation System

16. PRICE CODE
17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

ii

THIS PAGE INTENTIONALLY LEFT BLANK

iii

Approved for public release; distribution is unlimited

ANALYSIS AND TUNING OF A
LOW COST INERTIAL NAVIGATION SYSTEM

IN THE ARIES AUV

Steven R. Vonheeder
Lieutenant Commander, United States Navy

B.S. Nuclear Engineering, Oregon State University, 1994
M.S. Environmental Management, University of Maryland University College, 2002

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 2006

Author: Steven R. Vonheeder

Approved by: Anthony J. Healey

Thesis Advisor

Anthony J. Healey
Chairman, Department of Mechanical and
Astronautical Engineering

iv

THIS PAGE INTENTIONALLY LEFT BLANK

v

ABSTRACT

Autonomous underwater vehicle navigation is a complex problem of state

estimation. Accurate navigation is made difficult due to a lack of reference navigation

aids or use of the Global Positioning System (GPS) that could establish the vehicles

position. Accurate navigation is critical due to the level of autonomy and range of

missions and environments into which an underwater vehicle may be deployed.

Navigational accuracy depends not only on the initialization and drift errors of the low

cost Inertial Motion Unit (IMU) gyros and the speed over ground sensor, but also on the

performance of the sensor fusion filter used.

This thesis will present the method by which an Extended Kalman Filter (EKF)

was tuned after installation of an IMU in the ARIES Autonomous Underwater Vehicle.

The goal of installing the IMU, analyzing the navigational results and tuning the EKF

was to achieve navigational accuracy in the horizontal plane with a position error of less

than one percent of distance traveled when compared with GPS. The research consisted

of IMU installation and software modifications within the vehicle to fully realize the

design goal. Data collection and analysis was conducted through field experiments and

computer simulation. A significant result of this work was development of a pseudo-

adaptive algorithm to vary the measurement noise values in selected channels to force a

desired response in the filter and improve accuracy and precision in the state estimates.

vi

THIS PAGE INTENTIONALLY LEFT BLANK

vii

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1
B. MOTIVATION ..2
C. THE ARIES VEHICLE ..3
D. THESIS STRUCTURE ...4

II. THEORY OF INERTIAL NAVIGATION ...7
A. INTRODUCTION..7
B. INERTIAL MOTION UNIT...7
C. EXTENDED KALMAN FILTER ..8

1. Assumptions of the EKF..9
2. System Model ...9

D. NAVIGATION ERROR DEFINED...12
E. THEORETICAL ERROR ANALYSIS ...13

III. HARDWARE IMPLEMENTATION ..17
A. INTRODUCTION..17
B. INERTIAL MOTION UNIT INSTALLATION...17

IV. SOFTWARE IMPLEMENTATION ...19
A. INTRODUCTION..19

1. Vehicle Operating System ...19
2. MATLAB® Simulation ...19
3. Unscented Kalman Filter ..20
4. Vehicle Code ...21

B. INERTIAL MOTION UNIT CODE ..22
C. NAVIGATION FILTER CODE...26

1. Gyro Rate Bias ...26
2. Adaptive Process and Measurement Noise Algorithms27
3. Pseudo-Adaptive Measurement Noise Matrix.................................27

V. EXPERIMENTS AND RESULTS ...35
A. INTRODUCTION..35
B. EXPERIMENT GEOMETRIES ..35

1. GPS Pop-up Maneuvers ..35
2. Geometry Modifications..36

C. EXPERIMENT RESULTS ...37
1. Original Navigation Filter...37
2. Initial Hardware Modification..39
3. Gyro Rate Bias Modification ..40
4. IMU Code Averaging Scheme...43
5. Pseudo-Adaptive Measurement Noise Modification.......................44
6. Surface Time Delay Implementation ...46

VI. CONCLUSIONS AND RECOMMENDATIONS...51

viii

A. CONCLUSIONS ..51
B. RECOMMENDATIONS...51

APPENDIX A: EXPERIMENT DATA ..55

APPENDIX B: SIMULATION EKF CODE..59

APPENDIX C: SIMULATION UKF CODE ...69

APPENDIX D: VEHICLE IMU CODE ...79

APPENDIX E: VEHICLE NAVIGATION FILTER CODE..89

LIST OF REFERENCES..117

BIBLIOGRAPHY..119

INITIAL DISTRIBUTION LIST ...121

ix

LIST OF FIGURES

Figure 1. Tactical Application of AUV (From: UUV Master Plan, 2004)2
Figure 2. ARIES Operations in Monterey Bay (From: Healey, 2006)..............................3
Figure 3. Basic Strap-down IMU (From: Roth, 1999) ..8
Figure 4. Theoretical Cross Track Error ...14
Figure 5. Theoretical Error Growth...15
Figure 6. IMU Installed in ARIES ..18
Figure 7. UKF vs. EKF for ARIES Run – 9/7/05 ...21
Figure 8. Earth Frame of Reference (From: Yakimenko, 2006)24
Figure 9. Simulation with Pseudo-Adaptive Algorithm of Run 3 - 7/25/0629
Figure 10. Pseudo-Adaptive Algorithm for Measurement Noise......................................29
Figure 11. Three vs. Four GPS Satellite Fix ...30
Figure 12. Forward Speed Filter Results of Run 3 -7/25/06 ...31
Figure 13. Lateral Speed Filter Results of Run 3 -7/25/06 ...32
Figure 14. EKF Bias Learning with Pseudo-adaptive R Matrix – 7/25/0633
Figure 15. Multi-Heading Run Geometry – 5/18/06...36
Figure 16. Evolution of Navigation Filter Errors ..37
Figure 17. Expanded Evolution of Navigation..38
Figure 18. Compass Based Track – 6/10/05..38
Figure 19. Compass Based Track – 8/9/05..39
Figure 20. Initial Post-IMU Install Run – 9/7/05 ..40
Figure 21. Navigation Filter Rate Bias – 9/7/05 ...41
Figure 22. Navigation Filter Rate Bias – 5/12/06 ...41
Figure 23. Typical Run with Rate Bias set to Zero – 6/14/06...42
Figure 24. ARIES Run with IMU change – 7/19/06...43
Figure 25. ARIES Run with IMU change – 7/25/06...44
Figure 26. 2 km Run with Pseudo-Adaptive Algorithm – 8/24/0645
Figure 27. 4 km Run with Pseudo-Adaptive Algorithm – 8/24/0646
Figure 28. Bias Learning Rate after 10 second surface delay – 10/17/06.........................47
Figure 29. Enhanced view of Bias Learning – 10/17/06...47
Figure 30. EKF Estimate and GPS Convergence – 10/17/06..48
Figure 31. Initial GPS Pop-Up Maneuver with Surface Time Delay – 10/17/0648

x

THIS PAGE INTENTIONALLY LEFT BLANK

xi

LIST OF TABLES

Table 1. Pre-IMU ARIES Data ..55
Table 2. Post-IMU Installation ARIES Data ...56
Table 3. ARIES Data with Gyro Rate Bias Set to Zero...57
Table 4. ARIES Data with IMU Data Averaging Change...58
Table 5. ARIES Data with Pseudo-Adaptive Algorithm ...58

xii

THIS PAGE INTENTIONALLY LEFT BLANK

xiii

LIST OF ACRONYMS AND ABBREVIATIONS

ARIES Acoustic Radio Interactive Exploratory Server

AUV Autonomous Underwater Vehicle

EKF Extended Kalman Filter

GPS Global Positioning System

IMU Inertial Motion Unit

INS Inertial Navigation System

RDI RD Instruments

UKF Unscented Kalman Filter

UUV Unmanned Underwater Vehicle

xiv

THIS PAGE INTENTIONALLY LEFT BLANK

xv

ACKNOWLEDGMENTS

 I thank God first and foremost for the blessings and opportunities He has

presented in my life. I would like to thank my family. To my wife, Dawn, I want you to

know how much I appreciate the support and encouragement you have provided. To my

sons, Travis and Nathan, I appreciate your patience with me when I always seemed to be

too busy to spend time with you.

 I would like to thank my thesis advisor, Professor Anthony Healey, for his expert

insight, direction, and assistance during this work. His knowledge and guidance were

instrumental in the conduct of this work.

 I would like to thank Sean Kragelund for his technical help throughout this

endeavor and for always managing to set me straight when I would get lost in the fields

of data and code. His programming skills and patience for all of my seemingly crazy

ideas were invaluable.

 Finally, to all the members of the NPS AUV Research Group, particularly Dr.

Hag Seong Park of South Korea, I express my gratitude for listening, providing input,

and offering thoughts and opinions over the course of this work.

xvi

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. BACKGROUND

Autonomous underwater vehicle (AUV) navigation is a complex problem of state

estimation. Accurate navigation is further made difficult due to a lack of reference

navigation aids or use of the Global Positioning System (GPS) that could be used to

establish the vehicles position. Potential mission requirements necessitate accurate

navigation due to the level of autonomy and the potential range of missions and

environments into which an underwater vehicle may be deployed. Navigational accuracy

depends not only on the initialization and drift errors of the low cost Inertial Motion Unit

(IMU) gyros and the speed over ground sensor, but also on the performance of the sensor

fusion filter used.

An IMU helps the problem of state estimation by providing accurate sensory

inertial inputs that can be used along with a model of the vehicle dynamics. The outputs

of the IMU take the form of linear accelerations and angular rates that can then be input

into a system model that will allow for estimation of the vehicles state, in particular the

vehicle position that is necessary for conduct of various missions.

This thesis will present the method by which an Extended Kalman Filter (EKF)

was tuned after installation of an IMU in the ARIES AUV. The goal of installing the

IMU, analyzing the navigational results and tuning the EKF was to achieve navigational

accuracy in the horizontal plane with a position error of less than one percent of distance

traveled when compared with GPS. The research consisted of IMU installation and

software modifications within the vehicle to fully realize the design goal. Data collection

and analysis was conducted through field experiments and computer simulation. A

significant result of this work was development of a pseudo-adaptive algorithm to vary

the measurement noise values in selected channels to force a desired response in the filter

and improve accuracy and precision in the state estimates.

2

B. MOTIVATION
Unmanned Underwater Vehicles (UUVs) are being actively pursued in the United

States Navy as a means to enhance war fighting in the underwater realm. UUVs refer to

both remotely controlled vehicles and AUVs. These vehicles can be used in a wide range

of mission functions from Intelligence, Surveillance, and Reconnaissance to Mine

Warfare to Salvage and Recovery operations as detailed in the Navy’s Master UUV Plan

(2004). They are a force multiplier and allow the Navy the accomplish missions that may

be too dangerous or impractical for current practices. “The long-term UUV vision is to

have the capability to: (1) deploy or retrieve devices, (2) gather, transmit, or act on all

types of information, and (3) engage bottom, volume, surface, air or land targets (UUV

Master Plan, 2004).” Figure 1 shows UUVs in use during recent military operations.

These missions require accurate navigation to perform their tasks.

Figure 1. Tactical Application of AUV (From: UUV Master Plan, 2004)

The motivation for this thesis research was to obtain navigational estimates of

position in the horizontal plane that were within one percent error of the distance

traveled. This design goal would need to be addressed through both software and

hardware configuration changes to the navigation architecture of the ARIES vehicle. The

most significant physical change was in the hardware configuration which would utilize a

3

relatively low cost IMU currently used in production of military missile technology.

Once the gains in positional accuracy from the hardware were realized the navigation

filter would be tuned in order to achieve the design goal.

C. THE ARIES VEHICLE

“The ARIES is used for development of computer architecture, software, sensors

and navigational hardware for small to medium sized autonomous systems (Healey,

2006).” It is approximately three meters in length and is fitted with various sensors and

electronics in order to carry out the development and research noted above. Figure 2

shows the ARIES being loaded onto the research support vessel Cyprus Sea in Monterey

Harbor.

Figure 2. ARIES Operations in Monterey Bay (From: Healey, 2006)

The vehicles nominal operating speed is 1.2 to 1.5 meters per second developed

from twin thrusters mounted in the rear. The vehicle operates off of a bank of batteries

that provide a nominal bus voltage of 60 volts for the vehicle propulsion and hotel loads.

4

Vertical maneuvering control for the vehicle is provided by two forward and two rear

plane surfaces. Steering control is provided by a top mounted twin rudder configuration,

one forward and one aft.

Communications with the vessel occur through several antennas on top of the

vehicle which include 802.11 type wireless digital communication as well as standard

radio free wave communication. A GPS receiver is mounted on top of the aft rudder to

allow for receipt of GPS signals when on the surface. Navigation in the ARIES is

performed without the use of any radio beacons and relies solely on GPS, inertial

navigation system, and the Doppler speed sensor.

There are three main compartments in the vehicle that house the equipment

necessary to run the vehicle. The forward compartment consists of a PC-104 computer

that operates the sonar imaging obtained from ARIES forward looking blazed array

sonar. The forward compartment also houses the servos for the forward control surfaces.

The mid compartment is the largest and houses the vehicle relays for ancillary sensors,

the battery banks, and the two main computers used for operating the vehicle. There is

one computer dedicated to executive level process management and mission execution

and one computer dedicated to tactical execution of commands used for vehicle motion.

Finally, the aft compartment houses the motors for the thrusters and servos for the aft

control surfaces, the wireless router for communications and on the forward bulkhead of

the aft compartment, the IMU.

D. THESIS STRUCTURE

The research conducted was an attempt to achieve navigational errors within one

percent of the distance traveled. This was an iterative approach conducted over an

approximately one year period that involved data analysis from field experiments coupled

with computer simulation. The analyses of the errors and modifications made to the

vehicle from each significant evolution are presented.

Chapter II will present the theory of the inertial navigation model used, covering

specifically the operation of inertial motion units and the theory of the EKF as used in the

5

ARIES vehicle. Chapter III will provide the details of the IMU installation into the

vehicle. Chapter IV will detail the software changes that were implemented over the

course of this work. Chapter V will present the field experiments and the geometries

utilized, and the results obtained, presenting in detail the navigational errors. Finally,

Chapter VI provides thesis conclusions and recommendations for future work. The

supporting code utilized in this work will be retained in the appendices to this thesis.

6

THIS PAGE INTENTIONALLY LEFT BLANK

7

II. THEORY OF INERTIAL NAVIGATION

A. INTRODUCTION

Inertial navigation systems (INS) have become increasingly widespread in their

use over the last few decades. This is due in large part to technological gains made in

computing power and in increasing sensitivity of inertial sensor units made from quality

manufacturing. The backbone of an inertial navigation system is the IMU, which has

gained increasing use due to manufacturing techniques allowing the production of small

and accurate light weight systems as well as larger extremely precise units.

Coupled with the several order of magnitude increase in computing power that

has been observed in the last few decades is the development of sophisticated algorithms

that can process and manipulate the large data streams from an inertial sensor. These

algorithms allow for increased accuracy in state estimation by using more information

and increasingly smaller time steps in computing dynamic information. The latter is a

result of extremely fast processing speeds now capable in computer systems. These

algorithms allow for inertial navigation of vehicles relying on inputs from inertial sensors

for navigation such as underwater vehicles and submarines without continuous external

reference navigation inputs.

B. INERTIAL MOTION UNIT

Inertial motion units (also called inertial measurement units) have become

increasingly popular as measurement devices of vehicle motion for use in inertial

navigation systems. These units come in a wide variety of forms from simple strap-down

systems to extremely accurate complex gimbaled or stabilized platform systems. These

instruments work by sensing the vehicle’s inertial linear accelerations and angular

rotation rates which can then be sent to a computer for processing with a filter that fuses

data from different sensors. The intricate details of inertial motion units are well

published and the following provides a basic understanding of the strap-down style

system that was used for this research.

8

A strap-down style IMU is ideal for a wide range of applications; particularly in

vehicles where space is limited due to its relatively small size and low weight. These

units are robust and their use of solid state electronics make them more reliable than

mechanical gimbaled systems (Yakimenko, 2006). For the details of mathematics and

mechanization of a strap-down IMU the reader is referred to Siouris (1993). The strap-

down system uses accelerometers to measure linear accelerations and a set of gyroscopes

to measure the angular rates of the body. From these accelerations velocity and position

information may be obtained through integration. The gyroscopes measure the rate at

which the vehicles attitude changes. From this data the vehicles yaw, pitch, and roll may

be obtained. A simple illustration of a strap-down IMU is shown in Figure 3.

Figure 3. Basic Strap-down IMU (From: Roth, 1999)

C. EXTENDED KALMAN FILTER

The EKF was developed to address the problem of utilizing a standard Kalman

filter, a linear estimator, for problems involving non-linear system dynamics and

measurements. Motion of vehicles with non-linear dynamics can be made locally linear

through the use of the Jacobian of the dynamics matrix from the vehicle equations of

9

motion. By taking a first-order series expansion of the non-linear equations, the system is

linearized about a point in time (Bar-Shalom, 2001). The algorithm can then employ the

estimation techniques of a Kalman filter to produce an estimate of the vehicle state at an

instant in time.

1. Assumptions of the EKF

The EKF utilizes some well known assumptions that are an extension from the

original Kalman Filter. These assumptions are relevant when comparing filters of

various types, e.g. the Unscented Kalman Filter, in order to understand the strengths and

weaknesses of different estimation methods. The EKF assumes that the process noise

(q(t)) and the measurement noise (v(t)) are white, additive and zero mean. Additionally,

the process and measurement noises are uncorrelated, i.e. independent of each other.

Finally, the initial state and its covariance are independent of either the process or

measurement noise. In summary the process and measurement noise are given as (Bar-

Shalom, 2001):

() 0
()

E
E

=
′ =

q(t)
qq Q

 (1)

() 0
()

E
E

=
′ =

v(t)
vv R

 (2)

2. System Model

The literature on EKFs is well developed and extensive; therefore, the following

discussion will focus on the specifics of the EKF as used in the ARIES AUV. For more

information on EKFs the reader is referred to Bar-Shalom (2001).

Navigational state estimates in the ARIES vehicle are made by utilizing an EKF

to predict and correct these states every 0.125 seconds. The state of the vehicle for the

horizontal plane is contained in an eight state vector as follows (Healey, 1995):

() [, , , , , , ,] 'g g rt X Y r u v b bψψ=x (3)

10

Where:

 X = North-South position in Local Navigation Plane

 Y = East-West position in Local Navigation Plane

 Ψ = Heading

 r = Yaw (Heading) rate

 ug = Forward speed over ground

 vg = Lateral speed over ground

 br = Yaw rate bias

 bψ = Heading bias

The system dynamics and measurement model are given by (Healey, 1995):

()
()

=
=

x t f(x(t)) + q(t)
y t h(x(t)) + v(t)
&

 (4)

For ARIES the vector valued function h(x(t)) is constant and can be represented

as:

y(t) = Cx(t) (5)

The EKF may be formulated in either continuous or discrete time; the discrete

time is necessary for computer application (Healey, 1995). The vehicle states are linked

through the following vehicle equations of motion and are contained in the dynamics

matrix.

11

cos() sin()

sin() cos()

0
0

0

0

0

g g

g g

g

g

r

X u v

Y u v

r
r

u

v

b

bψ

ψ ψ

ψ ψ

ψ

= −

= +

=
=
=

=

=

=

&

&

&

&

&

&

&

&

 (6)

Linearizing these equations yields the transition matrix, Φ, used to propagate the

state and covariance matrix between time steps in the discrete model.

The measurements are associated with the state vector as follows:

)(
or

;
;

;

;

;

;

6

5

4

3

2

1

t

Yy
Xy

bry

by

vy

uy

r

g

g

Cxh(x(t))y ==

=
=

+=

+=

=

=

ψψ

 (7)

The discrete-time filter can then be represented as:

ˆ ˆ

ˆ ˆ ˆ

′

′ ′

i+1/i i|i

i/ii+1/i
-1

i+1/i i+1/i i+1|i

i+1|i+1 i+1/i i+1 i+1 i+1/i

i+1|i+1 i+1 i+1|i

x = Φx

P = ΦP Φ + Q

L = P C (CP C + R)

x = x + L (y - Cx)

P = (I - L C)P

 (8)

Where:

 x̂ = Estimate of state

 P = Covariance of states

 Q = Process noise matrix

 R = Measurement noise matrix

12

 L = Kalman Gain

The resulting algorithm provides discrete state updates at each time step and

predicts the successive time step and then corrects the estimate based on the

measurements received. When properly tuned and with good quality sensors the EKF

provides very good estimates of the vehicle state. Tuning the filter is done through the

choice of the values for the process and measurement noise matrices, based on known

information about the sensors and/or experience through application of the filter.

D. NAVIGATION ERROR DEFINED

The navigational accuracy must be defined to provide a standard quantitative

measure by which to evaluate the changes made to the ARIES inertial navigation system.

For this work, only motion in the horizontal plane was analyzed. The absolute error (E%)

in meters is defined as norm of the error vector taken as the difference between the initial

GPS position at a time step (i) and the navigation filter estimate at the (i-1) time step.

() ()2 2

() (1) () (1)GPS i NavFilter i GPS i NavFilter iE X X Y Y− −= − + −% (9)

The method in which the GPS information is used when obtained in the

navigation process required the use of the (i-1) position. This is because at time step (i),

if GPS position information is available this information is inserted into the EKF for the

X and Y measurements and the estimates are updated, providing a new position estimate

based on this information. It was necessary to see where the filter thought it was located

prior to obtaining updated position information compared to the actual vehicle position

determined by GPS. The assumption was made that GPS information was absolute truth

for position in order to compare filter performance. The processing of GPS information

had to be modified slightly in order to obtain increased accuracy by rejecting fixes for

which the number of satellites visible to the receiver were below a set threshold. This

modification is discussed further in Chapter IV. The error induced from using the (i-1)

13

position is at most vehicle speed times the time interval of 0.125 seconds, or 0.15 meters,

which can be considered negligible in this analysis.

E. THEORETICAL ERROR ANALYSIS

The ideal position error can be estimated from the manufacturers published gyro

drift rate for the IMU and some basic assumptions for vehicle dynamics. The Honeywell

HG1700 has a published drift rate of one degree per hour. Given the dynamics as:

Y U= Ψ&% % (10)

0ktΨ = +Ψ% % (11)

0

Where:

Cross Track Error Rate
Heading Error

=Heading Initialization Error 1deg
Gyro Drift Rate 1deg/
Forward Vehicle Speed 1.2 /

Y

k hr
U m s

=

Ψ =

Ψ =
= =
= =

%&

%

%

()00 0

T T
Y Y dt U kt dt= = +Ψ∫ ∫&% % %

2

02
TY U k T

⎛ ⎞
= +Ψ⎜ ⎟

⎝ ⎠
% % (12)

The theoretical cross track error for a thirty minute run is as follows:

2 2m deg 1rad 0.5 hr 1rad 3600sec1.2 1 1deg 0.5 hr 47.1 m
sec hr 57.3deg 2 57.3deg 1hr

mDistance Traveled = 1.2 1800sec=2160 m
sec

Y

Y

⎛ ⎞ ⎛ ⎞
= ⋅ ⋅ + ⋅ ⋅ ⋅ =⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠

≡ ⋅

%

The resulting error as a percentage of distance traveled is 2.18%. Based on this a

design goal of one percent of the distance traveled was set for this research. Figure 4

14

illustrates the theoretical cross track error that develops over time based on the above

formulations. Figure 5 illustrates the percentage error growth over time. Both figures are

parameterized by the initialization error from using the original compass to align the

IMU. The effects of the initialization error can be seen on the resulting cross track error

and error per unit distance traveled.

0 10 20 30 40 50 60
0

100

200

300

400

500

600

700

800
Cross Track Error

time (min)

E
rro

r (
m

)

ψo = 0.1 deg

ψo = 1 deg

ψo = 5 deg

ψo = 10 deg

Figure 4. Theoretical Cross Track Error

15

0 10 20 30 40 50 60
0

2

4

6

8

10

12

14

16

18

20
Percentage Error as Function of Distance Traveled

time (min)

E
rro

r (
%

)

ψo = 0.1 deg

ψo = 1 deg

ψo = 5 deg

ψo = 10 deg

Figure 5. Theoretical Error Growth

As can be seen from these two figures the amount of error in position estimates

that will develop is strongly dependent on the initialization error of the IMU and to some

degree the drift rate of the gyro. Therefore, it is critical that the navigation filter learn the

heading bias quickly in order to compensate for this initialization error. The rate of

learning must be balanced against the overall performance of the filter.

16

THIS PAGE INTENTIONALLY LEFT BLANK

17

III. HARDWARE IMPLEMENTATION

A. INTRODUCTION

The ARIES vehicle originally used a compass to provide heading and a Systron

Donner Motion Pak IMU provided gyro rate inputs to the navigation filter. The compass

was a Honeywell HMR3000 magneto-restrictive compass and provided reasonable

outputs for the sensor (Marco et al., 2001). However, a compass has the disadvantage of

induced errors from the true heading due to magnetic field variations caused locally

around and within the vehicle. Additionally, there will be a deviation from true North

based on location of operations that must be corrected for. As a result the compass would

lose accuracy over time and produce significant navigational errors.

The accuracy achievable with the compass is a direct result of the ability to

conduct calibrations with the compass and vehicle as well as a reasonably accurate and

updated deviation table used for corrections. Another difficulty in utilizing the compass

was that the heading bias learned was dependent on heading and thus required extensive

use of the deviation tables (Kragelund, 2006). The calibrations, if successful,

significantly reduced the error that resulted in the navigation filter but they were difficult

to obtain good runs and required a considerable amount of time.

B. INERTIAL MOTION UNIT INSTALLATION

For this work a Honeywell HG1700 IMU was purchased and installed in the

vehicle. The HG1700 is a strap-down type of IMU and is considered a low cost military

grade production unit. The location was selected to place the unit as close to body center

as possible without displacing elements of the vehicle previously installed. The inertial

motion unit and associated electronic circuitry represent the only hardware modification

associated with this work.

The IMU was installed in the aft compartment mounted vertically against the

forward bulkhead. Figure 6 illustrates the installation of this unit.

18

Figure 6. IMU Installed in ARIES

The unit was centered on the body lateral and vertical axis and mounted in place

for the output values to correspond directly to the body local x, y and z axis. The body

defined axis’ for the ARIES uses traditional orientations with the x-axis along the body

centerline, the y-axis is athwartships on the body and the z axis is defined positive in the

downward direction.

The unit utilizes +/- 15 volt DC and +5 volt DC input power for the associated

electronics. This power is tapped off of the main battery bus power and stepped down

from 60 volts to the required input power using two Calex DC-DC converters shown in

Figure 6. The larger one supplies the +/- 15 volt DC power while the smaller supplies the

+5 volt DC power (Kragelund, 2006).

19

IV. SOFTWARE IMPLEMENTATION

A. INTRODUCTION

Once the hardware was installed and the results of the hardware were analyzed,

attention was turned towards the software architecture of the navigation filter realizing

that to achieve the design goal of one percent of distance traveled both hardware and

software improvements were going to be required. The approach taken was dual in

nature utilizing simulation and field experiments. The EKF presented in Chapter II is

embedded in the navigation code and is often referred to as the navigation filter. The

terms EKF and navigation filter are synonymous with respect to this work.

This chapter will present the changes made to the system software as well as what

was in use for the operating system. Additionally, the method in which MATLAB® was

used to enhance the result of this research for the UKF and EKF will be shown. The

order of the following sections represents modifications as performed in chronological

order. The results obtained from these changes are shown in Chapter V in the same

chronological order

1. Vehicle Operating System
The ARIES vehicle utilizes a QNX real time operating system with code written

in ANSI – C for both the tactical and executive computers. The system operates on an 8

hertz (Hz) data cycle and the measurements obtained for state information are

asynchronous. GPS data, when available, have a frequency of 1 Hz. Speed information

from the RDI Doppler is provided at a frequency of 2 Hz. Lastly, the IMU provides data

at 100 Hz but is selectively chosen over each 8 Hz cycle. This will be discussed more in

section B.

2. MATLAB® Simulation
For simulations, a MATLAB® code was developed based on previous work by A.

Healey, which modeled the navigation filter in the vehicle and utilized data obtained from

20

experiments. This code was then manipulated to determine effects on navigation

performance from changes to the filter. The MATLAB® version of this code is

contained in Appendix B.

3. Unscented Kalman Filter
In recent years there have been many attempts in the literature to improve upon

the EKF due to the difficulties in implementation and tuning. The EKF requires

reasonable determinations of the process and measurement noise for the system in order

to implement; this can be rather difficult and may require much time to achieve optimal

performance.

The Unscented Kalman Filter (UKF) was developed by Simon Julier and Jeffrey

Uhlmann (1997) as an alternative method to the EKF. This filter characterizes the mean

and covariance parameters by the use of a set of discrete points (Julier et. al, 1997).

These points are then propagated through time and the mean and covariance are

reconstructed to provide the updated estimate of the state. This filter does not require that

the process or measurement noise be Gaussian and the Jacobian is not required to be

calculated for the system. These last two are the major advantages for this type of filter

over the EKF. The literature indicates that this particular application of Kalman Filter

has shown better results for particular applications when compared to the EKF. Based on

this latter claim a UKF was attempted for implementation in the navigation filter of the

ARIES AUV.

A UKF, based on Julier and Uhlmann’s work was developed, in MATLAB® for

ARIES navigation by Dr. Hag Seong Kim, a research assistant with the AUV Research

Group assisting with this work, utilizing data from experiments. The MATLAB®

version of this filter is contained in Appendix C. This filter was run for a multitude of

values for process and measurement noise and compared to the in-vehicle filter. Figure 7

shows the results of the UKF developed when compared to the EKF contained in the

vehicle.

21

-155 -150 -145 -140 -135 -130 -125

-2015

-2010

-2005

-2000

-1995

Y [m]

X
 [m

]

d090705_05.d Path Plot

GPS Data
UKF Estimate
EKF Estimate

Figure 7. UKF vs. EKF for ARIES Run – 9/7/05

It was determined that, for this vehicle and application, the UKF produced results

and errors on the same scale as the EKF without sufficient improvement in accuracy. It

was noted that the UKF provided tighter estimates of position when updated with GPS

and the same results can be observed with the speed components where less filtering

occurs and more of the dynamics are retained in the estimates. However, when later

work was performed with tuning the vehicle EKF, better results were obtained.

Therefore, further work in code development and implementation in the vehicle was not

warranted for the UKF. It can be said that the implementation of the filter was slightly

easier since derivatives were not necessary, however, the same difficulties, i.e.,

determining appropriate process and measurement noise matrices, encountered in tuning

the EKF, would be the same for the UKF.

4. Vehicle Code

There were two primary areas of vehicle code that were both developed and

modified in order to install and make usable the data from the IMU. The first was an

22

operating code for the IMU that would control and convert the data flow from the IMU to

be used by the navigation filter in the onboard computers. The original IMU code was

developed by Jack Nicholson, CAPT, USN during the installation of the IMU. This code

is contained in Appendix D. The second was the navigation filter code which contained

the routines of the EKF that developed vehicle state information at each time step. A

copy of this code is contained in Appendix E.

The ARIES operating system operates asynchronously accepting sensor inputs

from multiple locations at different frequencies. The vehicle operates at a high enough

time constant to be able to ensure no aliasing occurs among the sensors and the data. The

vehicle time constant can be estimated to be:

3 2sec
1.5 /

L m
U m s

τ = =� (13)

This leads to a dynamic frequency for the vehicle of:

max
1 0.5

2sec
f Hz= = (14)

Therefore according to the Nyquist Sampling Criterion:

max2 1samplef f Hz≥ ⋅ = (15)

The conclusion here is that as long as the sensor inputs occur at a rate greater than

1 Hz, the vehicle dynamics are slow enough to ensure that adequate sampling of those

dynamics by the sensors are sufficient. This is important from the standpoint of utilizing

IMU data to be discussed shortly.

B. INERTIAL MOTION UNIT CODE

The IMU code used by the ARIES was developed to handle the flow of data

obtained from the Honeywell HG1700. The IMU provides inertial information for linear

acceleration and angular rotation rates in three dimensions for the vehicle in the local

body fixed frame. The code converted the readings into the local navigational tangent

plane and corrected the measurements for the Earth’s rotational rate. While three

23

dimensional inertial information can be obtained from the unit, it was the heading rate

that was of primary concern for the navigation filter. The heading rate was integrated

within the code using a simple Euler integration scheme over the 8 Hz time interval. The

simple integration scheme was justified based on the short time interval compared with

the rate of vehicle motion. The result of this integration was a sufficiently accurate

heading input to replace the compass heading previously utilized.

The IMU code provides for the necessary rotations and adjustments that are

necessary to obtain truly inertial measurements from the IMU. The accelerometers and

gyros associated with the IMU measure the acceleration and rotations felt upon the

sensor, and not all of the measurement is due to body motion of the vehicle. The IMU

will sense the rotation of the Earth frame in which the vehicle is moving. The

measurements thus obtained from the IMU must be corrected for the Earth’s sidereal

rotation rate. Once the IMU information has been rotated and corrected it can then be

fused with other data obtained in the same reference plane with which position estimates

can then be made.

One of the primary calculations needed is to rotate the Earths angular rotation rate

of approximately 15.04 degrees per hour into the body fixed frame. This is necessary to

obtain purely inertial measurements for the vehicle since the local navigation plane is

rotating. Figure 8 provides the illustration showing the relationship between the

navigation plane the vehicle moves in with the Earth’s rotating reference frame. The

local navigation plane oriented in the North-East-Down configuration rotates at the

Earths sidereal rotate and this rotation is felt upon the gyros in the IMU.

24

Figure 8. Earth Frame of Reference (From: Yakimenko, 2006)

Once rotated, the elements corresponding to the Earth’s rotation can be removed

from the measurements for angular rates within the IMU. Only those elements needed to

obtain the heading rate were calculated. The equations and process used are outlined as

follows and are contained in the IMU code in Appendix D.

1) The Earth’s sidereal rotation vector [0,0,Ω]’ is rotated into the body fixed frame

[pe,qe,re]’ using the current geodetic latitude of the vehicle and the vehicle body

Euler angles (φ,θ,ψ).

25

[]-cos() sin() cos(Lat)-sin() cos() sin(Lat)eq φ ψ φ θ= ⋅ ⋅ ⋅ ⋅ ⋅Ω (16)

[]er = (sin() sin()+cos() sin() cos()) cos(Lat)-cos() cos() sin(Lat)φ ψ φ θ ψ φ θ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅Ω (17)

2) The elements of the Earths sidereal rotation rate are then removed from the

angular rate measurements from the IMU gyros [pout, qout, rout]’.

out out e

out out e

q q q
r r r

= −
= −

 (18)

3) The adjusted angular rate values which represent the true angular rate of the

vehicle with respect to a true inertial frame can be used to obtained the heading

rate (ψ&).

sin() cos()
cos() cos()out outq rφ φψ

θ θ
= ⋅ + ⋅& (19)

4) The heading rate is then integrated using Euler integration with the result being

an updated heading value at the i+1 time step.

tψ ψ∆ = ⋅∆& (20)

1i iψ ψ ψ+ = + ∆ (21)

The output of the IMU is at 100 Hz, i.e. there are 100 readings of all channels per

second. Originally, twelve readings were averaged over an 8 Hz period in order to align

the IMU output with the operating system. Checks for data stream integrity were utilized

in the form of identification of a unique hexadecimal identifier that indicated a new 44 bit

data stream. During the research period it was identified that the data streams were

becoming corrupted and providing invalid information over some of the read cycles.

This was contributing to errors propagating into the position estimates.

26

It was determined that, due to the errors developing in the data streams over an 8

Hz period, instead, a single 44 bit data stream would be used as the average for the

interval. Additionally, more rigorous data checks would be placed on the data to ensure

that it was a complete and valid data message. These checks included continuing to

identify a new message by the unique identifier and the use of a checksum at the end of

the data stream to ensure that the preceding 42 bits of data were correct and belonging to

the same message. The new message identifier and checksum are IMU manufactured

features in the data message. The use of a single reading of the 100 Hz data in each 8 Hz

cycle was reasoned to be appropriate because the vehicle dynamics did not change

rapidly enough to have significantly different readings from interval to interval and the

sampling frequency was still greater than the system dynamics frequency as discussed

above to justify this averaging scheme.

C. NAVIGATION FILTER CODE

The majority of the code changes were made in the navigation filter that contains

the EKF in the vehicle. The next few sections will provide the methods by which the

navigation filter code was changed with the results shown in Chapter V.

1. Gyro Rate Bias

The EKF originally used was developed for eight states as previously discussed.

After examination of the first run utilizing the IMU on September 7, it was observed that

the filter was learning a gyro rate bias that varied greatly and was significantly greater

than the manufacturer specified maximum gyro drift rate of one degree per hour. Thus, it

appeared as if the filter was developing a larger gyro rate error than the maximum

specified. The correction for this was zeroing out the associated gyro rate bias state in

the filter. This was accomplished by setting the rows and columns of the observation

matrix to zero and to set the gyro rate bias state to zero during the calculation cycle.

27

2. Adaptive Process and Measurement Noise Algorithms

There has been much work performed to find optimal algorithms that can

adaptively determine the values for the process and measurement noise matrices. Much

of the available literature researched indicates that most of the work is based on ideas

proposed by Mehra (1970) or work by Myers and Tapley (1976). The method originally

proposed by Mehra (1970) as modified and presented by Busse et al. (2002), was

attempted for use in the navigation filter for the ARIES.

Successful results have not yet been obtained for this application. The literature

suggests that the algorithms are highly dependent on tuning factors in the schemes.

Therefore, a purely adaptive routine has not been found for this particular application and

the pseudo-adaptive routine developed in this work continues to provide the best results

with respect to navigational accuracy.

3. Pseudo-Adaptive Measurement Noise Matrix

The last major innovation to the EKF was the tuning of the weights for

measurement noise values used in the algorithm. Prior to this work the values for both

process noise and measurement noise values were assumed to be constant and obtained

experimentally over significant periods of operation with the vehicle and as such were a

very good first guess to the optimal values to use in the filter.

The measurement vector is a six state vector in the navigation model consisting of

position, both X and Y, forward and lateral speed over ground and heading and gyro rate.

It was postulated that by selectively forcing the weights of specific states up or down that

the overall filter would place more or less emphasis on the measurements for that state. It

has been observed that the Kalman Gains are directly proportional to the weights used for

the process noise and inversely proportional to the weights for the measurement noise

values.

() QKalman Gain L
R

∝ (22)

28

Equation (22) was used as a guide to adjusting the weights from their previous

values using the simulation EKF in MATLAB® and the effect on position estimates

compared to GPS positions were evaluated for all available data sets. Specifically, the

pseudo-adaptive routine developed reduced the measurement noise weighting values used

for the position states, thereby forcing the filter to rely more heavily on the information

from the GPS fixes. The measurement noise matrix is 6x6 and only the diagonal values

associated with the fifth and sixth state of the measurement vector corresponding to the

position information is altered each time step through the filter based on the number of

satellites seen by the GPS receiver.

The algorithm developed for the code altered the measurement noise values for

the position states by reducing them by an order of magnitude as the number of satellites

visible from the GPS receiver increased. The original values were used for three or less

satellites visible, then reduced an order of magnitude for four satellites, the first position

information in which a GPS fix is declared and reduced another order of magnitude for

five or more satellites.

This combination was run on several of the data sets from the May, June, and July

timeframe of 2006 and the effects on estimated position when compared with the current

in-vehicle output as well as the GPS positions. Figure 9 shows the results of this

algorithm on the data obtained from Run 3 on July 25. The improved filter performance

can clearly be seen when compared with the GPS position after a two kilometer run.

After simulation runs on different data sets, confirming the results observed in Figure 9,

the algorithm shown in Figure 10 was implemented in the vehicle for field evaluation.

29

-40 -30 -20 -10 0 10 20
30

40

50

60

70

80

POSITION: GPS, Filter Estimated, In-Vehicle Estimated

Y [m]

X
 [m

]

Filter
Vehicle Filter
GPS NsV=3
GPS NsV=4
GPS NsV=5

Figure 9. Simulation with Pseudo-Adaptive Algorithm of Run 3 - 7/25/06

 // SPK 081606: Set elements of R Matrix based on
 NSv (as verified by SRV by 08/2006)
 if (NSv <= 3)
 nu[5]=1.0;
 nu[6]=1.0;
 else if (NSv == 4)
 nu[5]=0.1;
 nu[6]=0.1;
 else if (NSv >= 5)
 nu[5]=0.01;
 nu[6]=0.01;
 /* Update Diagonal R Matrix */
 for(i=1;i<=7;++i)
 R[i][i] = nu[i];

Figure 10. Pseudo-Adaptive Algorithm for Measurement Noise

Originally, the filter and the GPS software utilized a set point of three GPS

satellites as being sufficient fix quality to use in the filter, however, it was observed that

the use of three satellites produced a significant error in the solution as shown in Figure

11. Therefore, the GPS code was changed to declare GPS information available if the

30

number of visible satellites to the GPS receiver was greater than or equal to four

satellites. This higher threshold ensured the GPS receiver was obtaining higher quality

fix information.

2950 2960 2970 2980 2990 3000 3010 3020 3030 3040

2650

2660

2670

2680

2690

2700

2710

2720

Y [m]

X
 [m

]

d072506_03.d Path Plot

Waypoints
ARIES Track
Nav Filt Est w/GPS
GPS Fix

Example of 3 Satellite GPS Fix
Skewing Nav Filter Solution

At Least 4 Satellite GPS Fix
and GPS Receiver Stability

Figure 11. Three vs. Four GPS Satellite Fix

In addition to changing the measurement noise values for the position states,

computer simulations were run altering only the speed noise weighting values to observe

the effects on filter performance with respect to position estimates. The weighting values

were changed individually for the forward speed measurement and the lateral speed

measurement by orders of magnitude until satisfactory performance was achieved

qualitatively in simulation. These values were then checked against other data sets to

ensure that acceptable performance was maintained in terms of accurate position

estimation compared with GPS. The result was that the forward speed measurement

noise weighting value was reduced by two orders of magnitude and the lateral speed

measurement noise weighting value was altered by a single order of magnitude, placing

more reliance on the speed measurements overall.

31

Observing the resulting filter speed estimates when compared to actual

measurements it was seen that the effect on the speed states was reduced smoothing of

the data. The speed measurements from the RDI Doppler and the estimations of vehicle

speed from the EKF in-vehicle compared to the new estimates using the modified

weights are shown in Figure 12 and Figure 13. The red cross marks are the measured

values for speed from the RDI Doppler speed sensor, the blue dots are the in-vehicle EKF

estimates from that run and the green dots are the new estimates from the simulation EKF

after modifying the noise values.

622 624 626 628 630 632 634

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
ug: measured [red], sim estimated [green], exp estimated [blue]

Time (secs)

Fo
rw

ar
d

S
pe

ed
 (m

/s
)

Figure 12. Forward Speed Filter Results of Run 3 -7/25/06

32

982 983 984 985 986 987 988
-0.6

-0.4

-0.2

0

0.2

0.4

vg: measured [red], sim estimated [green], exp estimated [blue]

Time (secs)

La
te

ra
l S

pe
ed

 (m
/s

)

Figure 13. Lateral Speed Filter Results of Run 3 -7/25/06

The observation drawn here is that what appears to be noise in the measurements

and captured as such in the system model could be actual slight changes in vehicle speed

due to external forces, possibly from wave or current action or alterations in which the

thrusters propel the vehicle through the water. It would thus introduce slight errors to

model this information as noise vice actual variations in the speed measurement.

An additional feature of the fusion filter with the pseudo-adaptive algorithm is

that it is more responsive to the heading bias learning process. This phenomenon can be

observed in Figure 14; while not as smooth, it converges to the actual necessary

initialization error quicker than previous runs due to the increased weighting on the

position measurements. The oscillatory nature of the heading bias state early in the run is

from speed information that is approximately zero when the vehicle is on the surface at

the beginning of a run awaiting mission execution commands but with the navigation

process running.

33

0 500 1000 1500 2000 2500
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1
Bias

ψ
: sim estimated [green], exp estimated [blue]

time in seconds

B
ψ
 (r

ad
)

Figure 14. EKF Bias Learning with Pseudo-adaptive R Matrix – 7/25/06

Lastly, it was observed that once the vehicle started its thrusters and began a

mission with an increase in speed the heading bias converges quickly to a steady state

value that is very close to the final learned heading bias. This is due to the fact that

accurate position information is still being obtained via GPS fixes prior to submerging

and there is a non-zero speed component with a relatively accurate heading input. The

heading bias as the only unobserved state during this time frame which converges rapidly

within this estimator with all other states observed.

One last navigational modification was made based on this last observation after

the August 24 run. A time delay of 10 seconds was inserted into the executive process of

ARIES to delay submerging after thrusters were initiated. With this delay, the filter

would have all the state information necessary for accurate heading bias estimation

thereby eliminating needs for subsequent pop-ups. The value of this would be enhanced

mission effectiveness by eliminating the need for a GPS fix to correct the heading bias

prior to entering an operating area to conduct its mission.

34

THIS PAGE INTENTIONALLY LEFT BLANK

35

V. EXPERIMENTS AND RESULTS

A. INTRODUCTION

In order to understand the effects of the implementation of the IMU and

modifications to the vehicles software architecture presented in Chapters III and IV,

experiments with the vehicle were conducted in Monterey Bay with the ARIES vehicle

from September 2005 through September 2006. These tests were established to run the

vehicle in a controlled geometry with varying GPS pop-ups in order to quantify the

navigational position error between the filter estimate and the vehicles position as

determined by the GPS receiver.

B. EXPERIMENT GEOMETRIES

Experiment geometries were maintained rather simple and consistent to provide a

basis for rapid qualitative comparison in-situ as well as post analysis quantitative

comparison. This was done by utilizing a straight run of lengths of one kilometer initially

and then eventually expanding to two kilometer runs and finally a four kilometer run to

validate the findings. The runs were oriented on a North-South axis for simplicity of

track planning and safety of vehicle in order to run parallel to the shoreline in Monterey

Bay. The majority of runs were set to run at a depth of three to four meters unless other

testing requirements dictated that the vehicle run on altitude control utilizing the bottom

topography vice a commanded depth input.

1. GPS Pop-up Maneuvers

The number of GPS pop-ups varied from as many as approximately eight on the

early runs to two on the final runs towards the end of the test period. The use of many

GPS pop-ups allowed for statistical quantification of the mean error between filter

estimate of position and actual position. Additionally, the use of many pop-ups allowed

for analysis of filter performance with respect to estimating the gyro rate bias and the

heading bias throughout the run.

36

2. Geometry Modifications

There were two modifications to the geometry described above during the

experimental phase. First, a multi-heading, multi-turn geometry was utilized in order to

qualitatively observe performance of the vehicle IMU and filter under a rather intense

maneuvering scheme. This run can be seen below in Figure 15. The IMU performed

excellently as a heading reference on multiple courses over this run without incurring

additional errors that otherwise may have been incurred with a compass. Secondly, the

final four kilometer validation run was performed on an East-West cardinal heading

following a two kilometer North-South run to demonstrate that the results were

independent of vehicle heading. Additionally, this ensured no artificial bias may have

existed in the results obtained by the selection of repeated North-South runs.

6200 6300 6400 6500 6600 6700 6800

12200

12250

12300

12350

12400

12450

12500

12550

12600

12650

12700

0 1

2 3

, 4 , 5

, 6, 7

8

Y [m]

X
 [m

]

d051806_04.d Path Plot

Waypoints
ARIES Track
Nav Filt Est w/GPS NsV >4
GPS Fix

Figure 15. Multi-Heading Run Geometry – 5/18/06

37

C. EXPERIMENT RESULTS

The following sections will present the results of the modifications discussed in

Chapters III and IV following the same chronology.

1. Original Navigation Filter

The original navigation filter utilized a compass as the heading reference input

and the navigational errors incurred were relatively large. Figure 16. and Figure 17.

show the evolution of the mean errors with each major change to the navigation filter as

well as the mean error per unit distance traveled.

Navigation Accuracy Trend

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

10
-M

ay

10
-Ju

n
10

-Ju
l

10
-A

ug

10
-S

ep

10
-O

ct

10
-N

ov

10
-D

ec

10
-Ja

n

10
-Feb

10
-M

ar

10
-A

pr

10
-M

ay

10
-Ju

n
10

-Ju
l

10
-A

ug

10
-S

ep

Date

M
ea

n
E

rr
or

 (m
) &

E

rr
or

/U
ni

t D
is

t.
T

ra
ve

le
d

(%
)

Mean Errors
Percentage Error
1% Error Design Goal
Expon. (Mean Errors)
Expon. (Percentage Error)

IMU Installed

B_r =0 IMU Read

Pseudo-Adaptive
R Values

HMR Compass

Figure 16. Evolution of Navigation Filter Errors

38

Navigation Accuracy Trend

0.00

5.00

10.00

15.00

20.00

25.00

30.00

10-Apr 10-May 10-Jun 10-Jul 10-Aug 10-Sep

Date

M
ea

n
E

rr
or

 (m
) &

E

rr
or

/U
ni

t D
is

t.
T

ra
ve

le
d

(%
)

Mean Errors
Percentage Error
1% Error Design Goal
Expon. (Mean Errors)
Expon. (Percentage Error)

B_r =0

IMU Read
Pseudo-Adaptive

R Values

Figure 17. Expanded Evolution of Navigation

Figure 18 and Figure 19 illustrate typical tracks from the use of the compass as a

heading input to the navigation filter.

900 1000 1100 1200 1300 1400

-5450

-5400

-5350

-5300

-5250

-5200

-5150

-5100

-5050

0

1

2

, 3

4

Y [m]

X
 [m

]

d061005_02.d Path Plot

Waypoints
ARIES Track
Nav Filt Est w/GPS
GPS Fix

Figure 18. Compass Based Track – 6/10/05

39

6300 6400 6500 6600 6700 6800

12650

12700

12750

12800

12850

12900

12950

13000

13050

13100

13150

0

1

2

3

4

5

6

7

Y [m]

X
 [m

]

d080905_01.d Path Plot

Waypoints
ARIES Track
Nav Filt Est w/GPS
GPS Fix

Figure 19. Compass Based Track – 8/9/05

The navigational errors were large and highly dependent on the quality of the

compass calibration and the ability of the heading bias learning process to correctly

obtain the initialization error. With the compass as the heading reference, the baseline

mean error was 70.59 meters and the error per unit distance traveled was 66.67%.

2. Initial Hardware Modification

The installation of the Honeywell IMU replaced the Systron Donner Motion Pak

IMU as the source of the gyro rate which when integrated would provide the heading

input for the filter to produce better estimates of position based on the equations of

motion. The first run with the IMU saw significant improvements in the quality of the

position estimates. Figure 20 shows the results of this run.

40

1200 1300 1400 1500 1600 1700 1800

1000

1100

1200

1300

1400

1500

0

1 2

3

4

Y [m]

X
 [m

]

d090705_05.d Path Plot

Waypoints
ARIES Track
Nav Filt Est w/GPS
GPS Fix

Figure 20. Initial Post-IMU Install Run – 9/7/05

There was a significant difference in navigation performance with the

implementation of the IMU. Overall mean navigational errors were reduced to 8.04

meters and the error per unit distance traveled had been reduced to 3.04 % for this initial

run with installation of the IMU.

3. Gyro Rate Bias Modification

The corresponding reduction in navigational error was an order of magnitude.

Analysis of the September 7th run revealed that the rate bias state was producing rather

large values, which when compared to the manufacturers published gyro drift rate for the

IMU of one degree per hour indicated that there were additional errors being induced or

captured by this state through the vehicle dynamics. The gyro rate biases obtained from

the initial runs with the IMU are shown in Figure 21 and Figure 22.

41

0 500 1000 1500 2000 2500
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Nav Filter Br

Time: secs

R
at

e
B

ia
s:

 d
eg

/s
ec

Learned Heading Rate Bias
Actual IMU Heading Drift Rate=1 deg/hr

Figure 21. Navigation Filter Rate Bias – 9/7/05

0 500 1000 1500 2000 2500 3000 3500 4000
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Nav Filter Br

Time: secs

R
at

e
B

ia
s:

 d
eg

/s
ec

Learned Heading Rate Bias
Actual IMU Heading Drift Rate=1 deg/hr

Figure 22. Navigation Filter Rate Bias – 5/12/06

42

Based on the observations of Figure 21. and Figure 22. above it was determined to

force the rate bias state to zero within the filter to eliminate erroneous learning and thus

introducing errors into the filter. The mean positional errors during the time period that

the rate bias learning was activated and with the IMU installed was 19.23 m with an

associated 8.69 % error per unit distance traveled. There was significant variability in the

results as seen from the raw data in Table 2 of Appendix A.

With the rate bias state set to zero in the filter as discussed in Chapter IV, the

ARIES was run again on May 25, June 14 and June 15 without any other changes to the

navigation filter. Figure 23 is a typical result of the runs during this time period.

5600 5800 6000 6200 6400 6600 6800 7000 7200 7400
12000

12500

13000

13500

0

1

2

3

4

5 6

7

8

9

10

11

12

Y [m]

X
 [m

]

d061406_04.d Path Plot

Waypoints
ARIES Track
Nav Filt Est w/GPS
GPS Fix

Figure 23. Typical Run with Rate Bias set to Zero – 6/14/06

The mean navigational errors during this period were 16.09 meters, which is not a

significant change but the mean error as a percentage of the distance traveled decreased

to 5.63 %. Again, there was much variability observed in the results but the trend is

increasing downward.

43

4. IMU Code Averaging Scheme

During the June runs it was discovered that there were errors being introduced

into the 44 bit data streams containing the measurements from the IMU. These errors,

under the original architecture of the code, were being averaged over the 8 Hz period.

The erroneous heading rate was then being integrated for heading for use by the

navigation filter. The source of the errors was not discovered and the IMU code was

changed as discussed Chapter IV. The ARIES was run on July 19 and July 25 with the

results shown as follows in Figure 24 and Figure 25.

2400 2600 2800 3000 3200 3400

2600

2700

2800

2900

3000

3100

3200

3300

3400

3500

0

1

2

3 4

5

6

7

8

9

Y [m]

X
 [m

]

d071906_03.d Path Plot

Waypoints
ARIES Track
Nav Filt Est w/GPS
GPS Fix

Figure 24. ARIES Run with IMU change – 7/19/06

44

2400 2600 2800 3000 3200 3400 3600
2600

2800

3000

3200

3400

3600

0

1

2

3

4 5

6

7

8

9

10

Y [m]

X
 [m

]

d072506_03.d Path Plot

Waypoints
ARIES Track
Nav Filt Est w/GPS
GPS Fix

Figure 25. ARIES Run with IMU change – 7/25/06

A noticeable improvement was realized with this methodology which utilized a

single good sample from the 8 Hz calculation interval. The underlying assumption made

was that the true vehicle dynamics did not change quickly enough and that a single

measurement made over the interval would be representative of the interval. During this

period of runs, the mean navigational error improved to 7.92 meters and error per unit

distance traveled was 0.81 %. The overall goal of one percent of distance traveled had

been achieved but a review of Table 4 shows that there were some values that were right

above the desired level.

5. Pseudo-Adaptive Measurement Noise Modification

The result of implementing the pseudo-adaptive noise algorithm were errors

consistently less than one percent error over the distance traveled. An initial two

kilometer run was conducted on August 24 to verify the results compared to previous

runs of the same geometry and to validate what had been observed in simulation shown

45

in Figure 9. The total error after the two kilometers was 5.36 meters for a resulting

percentage error of 0.23% of the distance traveled. This run is shown below in Figure 26.

2600 2700 2800 2900 3000 3100 3200 3300 3400

2600

2800

3000

3200

3400

3600

3800

4000

4200

0

1 2

3

4

Y [m]

X
 [m

]
d082406_05.d Path Plot

Waypoints
ARIES Track
Nav Filt Est w/GPS NsV >4
GPS Fix

Figure 26. 2 km Run with Pseudo-Adaptive Algorithm – 8/24/06

A second run was then conducted to confirm the results obtained. For this run the

geometry would be rotated so that the runs would occur on East-West cardinal headings.

Additionally, the run would be doubled to four kilometers to observe how the filter

handled the accumulated error due to the drift of the IMU gyros during this extended run.

The four kilometer run is shown in Figure 27.

46

1800 2000 2200 2400 2600 2800 3000
2400

2450

2500

2550

2600

2650

2700

2750

2800

01

2 3

45

6 7

8

Y [m]

X
 [m

]

d082406_06a. Path Plot

Waypoints
ARIES Track
Nav Filt Est w/GPS NsV >4
GPS Fix

Figure 27. 4 km Run with Pseudo-Adaptive Algorithm – 8/24/06

The result for this run was an accumulated position error of 14.16 meters over the

four kilometer run, resulting in a percentage error of 0.33%. This geometry demonstrated

that the accuracy of the navigation was independent of any particular track heading.

6. Surface Time Delay Implementation

An initial ten second surface delay was inserted into the operating profile for the

vehicle and tested on October 17. This based on observations made during simulation on

the July 25 run as discussed in Chapter IV. The results of the surface delay are shown

below in Figure 28. An enhanced view of the initial surface run is illustrated in Figure

29. The heading bias with accurate position information and non-zero speed information

approaches a final steady state value, thus validating the hypothesis discussed in Chapter

IV. The result of learning the bias quickly before submerging is that, if given the proper

time, the filter estimates will converge with actual position by GPS which can be

observed in Figure 30.

47

0 500 1000 1500 2000 2500
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time: secs

Bias Learning Rate

Bias
ψ
 (x10) (rad)

NsV (/10)
Ug (/10) (m/s)

Figure 28. Bias Learning Rate after 10 second surface delay – 10/17/06

0 50 100 150 200 250 300 350 400 450 500
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time: secs

Bias Learning Rate

Bias
ψ
 (x10) (rad)

NsV (/10)
Ug (/10) (m/s)

Figure 29. Enhanced view of Bias Learning – 10/17/06

48

475 480 485 490
1495

1500

1505

1510

Y [m]

X
 [m

]

d101706_05.d Path Plot

Waypoints
ARIES Track
Nav Filt Est w/GPS
GPS Fix

Figure 30. EKF Estimate and GPS Convergence – 10/17/06

The result of implementing the surface time delay and thus learning the heading

bias while still surfaced is observed with an increase in accuracy of the initial GPS pop-

up maneuver. The filter estimate when compared to GPS position for the first GPS pop-

up can be seen in Figure 31.

340 350 360 370 380 390 400

1545

1550

1555

1560

1565

1570

1575

021 , 25

Y [m]

X
 [m

]

d101706_06.d Path Plot

Waypoints
ARIES Track
Nav Filt Est w/GPS
GPS Fix

Initial GPS Pop-UP Maneuver
Comapared with Filter Estimate

Figure 31. Initial GPS Pop-Up Maneuver with Surface Time Delay – 10/17/06

49

The work performed in this research has resulted in excellent navigational

accuracy for the ARIES AUV. It will allow the ARIES to be used for work in which

precise position information must be made available to the vehicle and will allow

research that had been unable to be accomplished.

50

THIS PAGE INTENTIONALLY LEFT BLANK

51

VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

This research demonstrated that good navigational accuracy could be achieved

through the use of a low cost IMU coupled with a properly tuned EKF. A one percent

error as a function of distance traveled was achievable in this research. This was shown

to be possible through the use of a higher quality IMU that had a lower gyro drift rate

thus inducing smaller errors over time in the heading input for the equations of motion

for the vehicle.

A pseudo-adaptive routine was developed that demonstrated how information

obtained from measurements could be maximized based on the quality of the information

by properly weighting the measurement noise values for certain states. In this manner

better estimates of position were obtained as compared to the GPS positions with overall

smaller errors. The better estimates of position were the result of a faster convergence to

a particular heading bias for a given run. The pseudo-adaptive routine forced the heading

bias state in the system to be more reactive and dynamic due to changes in the position,

heading and speed states.

It was also shown how a navigation filter could be enhanced by changes in

operating procedures. This was demonstrated through the surface time delay in which a

highly reactive heading bias state could converge quickly to the necessary value by

increasing speed while still on the surface receiving GPS information during the initial

period of a run. The result is that with the heading bias learned prior to initial

submergence, subsequent vehicle pop-up maneuvers to learn the heading bias could be

eliminated.

B. RECOMMENDATIONS

This research stimulated many questions regarding the accuracy of underwater

vehicle navigation. Some of these questions were answered by this thesis, more remain.

52

This work was based on establishing a GPS position as ground truth; however, there are

inaccuracies within this system that would leave an absolute position error that should be

dealt with.

The navigation filter during the course of the research was modified from an eight

state filter to a seven state filter through zeroing the rate bias state. The code and filter

should be redesigned to remove the zeroed state for the rate bias into a better defined

seven state model.

This work focused on utilizing a single specific channel from the IMU, i.e. the

yaw rate that was then integrated to provide a good heading reference. The IMU outputs

three dimensional body linear accelerations and angular rates that could be used to further

enhance the accuracy of the navigational estimates in both the horizontal and vertical

planes. The method proposed based on current system architecture is to integrate the

accelerations in the IMU code at 100 Hz and output the velocity components at 8 Hz

intervals. These velocities could then be used in place of the velocities provided by the

RDI Doppler in the EKF.

Adopting a two IMU system and removing the RDI Doppler as the primary speed

sensor. Eliminating the RDI Doppler as an onboard sensor has the following benefits:

 Hotel load reduced, increasing mission endurance.

 Reduced electrical noise impacts on Forward Look Sonar.

 Reduced capital cost.

o $35k (RDI Doppler) + $15k (IMU) vs.

o $15k (Primary IMU) + $15k (Backup IMU)

 Eliminates water column constraints by eliminating need to see ocean bottom.

 Increases payload space for other components or reduces overall size of AUV.

 Enhanced mission flexibility due to above.

This work discovered that a pseudo-adaptive measurement noise scheme worked

rather well in reducing the overall navigational error. While some work was performed

53

to adapt an algorithm by Busse et al., (2002) into the EKF, little success was made and

the filter solutions diverged. Additional work ought to be performed to determine an

adaptive process and measurement noise algorithm that will perform within the current

architecture of this EKF application.

There is potential work that warrants attention in post-process smoothing of the

vehicle track. In this manner by using more precise information from position

measurements made through GPS the track that the vehicle actually ran between GPS

pop-up maneuvers may be estimated. It can be seen from previous figures that the

vehicle bases its control action from position estimates made through the navigation filter

and that there are discontinuities in the solution from the (i-1) time step to the (i) time

step at which a GPS measurement is made. By using a fixed-interval smoothing routine

as proposed by Bar-Shalom (2001) the vehicle track may be post-processed for a more

accurate representation of true vehicle position between GPS fixes.

54

THIS PAGE INTENTIONALLY LEFT BLANK

55

APPENDIX A: EXPERIMENT DATA

The mean errors and associated errors per unit distance traveled for runs analyzed

during this research are summarized in tables 1 through 5. The tables are divided into

each specific evolution of the vehicle for navigation improvements.

Date NavD File d File Delta X Delta Y Error (m) Error %
Dist

Traveled
6/10/2005 NavD_061005_01 d061005_01 -45.49 -65.53 79.77 116.29

 50.04 -60.47 78.49 18.33
Totals 4.55 -126.00 158.26 134.62

 Means 2.27 -63.00 79.13 67.31
 StDev 67.55 3.57 0.90 69.27

8/9/2005 NavD_080905_01 d080905_01 -1.15 28.35 28.37 54.94
 -2.63 49.49 49.56 81.63
 -12.39 116.11 116.77 62.15

Totals -16.17 193.96 194.71 198.73
 Means -5.39 64.65 64.90 66.24
 StDev 6.11 45.80 46.15 13.80

Table 1. Pre-IMU ARIES Data

56

Date NavD File d File Delta X Delta Y Error (m) Error %

Dist
Traveled

9/7/2005 NavD_090705_01 d090705_05 4.27 9.19 10.14 4.84
 -0.14 5.95 5.95 1.24

Totals 4.14 15.14 16.09 6.08
 Means 2.07 7.57 8.04 3.04
 StDev 3.12 2.29 2.96 2.54

5/12/2006 NavD_051206_02 d051206_02 3.85 -0.07 3.85 1.88
 -0.08 0.87 0.87 0.48
 -0.32 -1.44 1.47 0.67
 0.58 -4.73 4.77 2.34
 0.81 -6.24 6.30 3.17
 -1.85 -12.34 12.48 6.25
 NavD_051206_03 d051206_03 14.22 -55.17 56.97 29.13
 -25.92 49.32 55.71 27.52
 7.39 53.30 53.81 23.99
 7.89 -1.62 8.06 3.48
 1.94 -32.71 32.76 17.09
 -10.45 -25.79 27.82 14.33
 8.32 -31.07 32.16 17.26
 NavD_051206_03 d051206_04 0.95 48.04 48.05 8.32

Totals 7.33 -19.65 345.08 155.92
 Means 0.52 -1.40 24.65 11.14
 StDev 9.56 32.24 21.89 10.31

5/18/2006 NavD_051806_03 d051806_04 3.37 -1.32 3.62 0.71
 -6.00 -2.70 6.58 3.60
 -0.93 -0.47 1.04 0.42
 -6.59 10.30 12.22 7.15

Totals -10.15 5.81 23.46 11.88
 Means -2.54 1.45 5.87 2.97
 StDev 4.68 5.97 4.80 3.13

Table 2. Post-IMU Installation ARIES Data

57

Date NavD File d File Delta X Delta Y Error (m) Error %

Dist
Traveled

5/25/2006 NavD_052506_03 d052506_03 1.85 0.32 1.88 0.26
 NavD_052506_04 d052506_04 4.12 -2.47 4.80 0.61

Totals 5.97 -2.15 6.68 0.87
 Means 2.98 -1.08 3.34 0.43
 StDev 1.61 1.97 2.07 0.25

6/14/2006 NavD_061406_02 d061406_02 2.33 -8.76 9.07 1.74
 5.10 -3.18 6.01 1.36
 NavD_061406_04 d061406_04 10.30 25.36 27.37 7.88
 1.86 16.00 16.10 6.43
 2.00 17.89 18.01 8.54
 -0.11 12.32 12.32 5.95
 15.45 14.11 20.93 8.19
 -1.29 30.81 30.84 15.27
 -5.84 19.96 20.80 11.12
 -2.02 11.10 11.28 5.87
 NavD_061406_06 d061406_06 -1.05 45.52 45.53 6.82
 -0.02 4.17 4.17 1.92
 5.36 12.83 13.91 7.65
 1.85 8.62 8.81 4.81
 0.73 0.58 0.93 0.42
 -5.19 -10.23 11.47 5.98
 0.76 -17.55 17.57 8.24

Totals 30.22 179.54 275.10 108.19
 Means 1.78 10.56 16.18 6.36
 StDev 5.19 15.76 10.90 3.73

6/15/2006 NavD_061506_03 d061506_04 3.88 18.08 18.49 2.92
 NavD_061506_04 d061506_05 1.67 -37.58 37.62 6.21

Totals 5.55 -19.50 56.11 9.13
 Means 2.78 -9.75 28.05 4.57
 StDev 1.56 39.36 13.53 2.33

Table 3. ARIES Data with Gyro Rate Bias Set to Zero

58

Date NavD File d File Delta X Delta Y Error (m) Error % Dist

Traveled
7/19/2006 NavD_071906_03 d071906_03 5.07 2.47 5.63 0.70

 -6.10 -5.58 8.27 1.24
 NavD_071906_06 d071906_07 3.81 1.29 4.02 0.70
 1.52 -3.56 3.87 0.74

Totals 4.29 -5.39 21.79 3.39
 Means 1.07 -1.35 5.45 0.85
 StDev 5.01 3.84 2.04 0.26

7/25/2006 NavD_072506_01 d072506_01 2.56 -3.36 4.22 0.42
 NavD_072506_02 d072506_02 5.16 -0.57 5.19 0.76
 NavD_072506_03 d072506_03 23.04 -7.62 24.27 1.13

Totals 30.75 -11.54 33.67 2.30
 Means 10.25 -3.85 11.22 0.77
 StDev 11.15 3.55 11.30 0.36

Table 4. ARIES Data with IMU Data Averaging Change

Date NavD File d File Delta X Delta Y Error (m) Error % Dist

Traveled
8/24/2006 NavD_082406_05 d082406_05 0.71 -5.32 5.36 0.23

 NavD_082406_06a d082406_06a 13.96 2.35 14.16 0.33
Totals 14.68 -2.96 19.52 0.56

 Means 7.34 -1.48 9.76 0.28
 StDev 9.37 5.42 6.22 0.07

9/12/2006 NavD_091206_01 d091206_02 3.18 9.61 10.13 0.45
Table 5. ARIES Data with Pseudo-Adaptive Algorithm

59

APPENDIX B: SIMULATION EKF CODE

 The following MATLAB® code was used for running simulations on the data

sets. The original code was developed by A. Healey with modifications made by H.S.

Kim and S. Vonheeder during the course of this work. The codes contained in

Appendices B and C are intended to run in MATLAB® with a specific data set structure

from the ARIES vehicle. These data sets may be obtained from the NPS Center for AUV

Research or the codes can be tailored to run with specific data sets to provide the correct

state information.

%%%
% AUV Research Center %
% Extended Kalman Filter For ARIES AUV %
% Edited: 11/9/06 %
%%%
close all; clear all; clc

%% Load data from Desired Run with Aries using d and NavD Files
% generate default file name for dialog box
 defDateFields = datevec(date);
 defYear = sprintf('%02d',defDateFields(1) - 2000);
 defMon = sprintf('%02d',defDateFields(2));
 defDay = sprintf('%02d',defDateFields(3));
 defDateStamp = [defMon defDay defYear '_01.d'];
 defNameD = ['d' defDateStamp];

% get d-file name from dialog box
 fields = {'D File:'};
 boxTitle = 'Get Data File';
 lineNo = 1;
 defaultInput = {defNameD};
 input = inputdlg(fields, boxTitle, lineNo, defaultInput, 'on');
 if (isempty(input))
 disp('No data file selected. Exit program.');
 return;
 else
 dFileName = input{1};
 end;

% get NavD-file name from dialog box
 fields = {'NavD File:'};
 boxTitle = 'Get Nav Data';
 lineNo = 1;
 defNameNavD = ['NavD_' dFileName(2:10) '.d'];
 defaultInput = {defNameNavD};
 input = inputdlg(fields, boxTitle, lineNo, defaultInput, 'on');
 if (isempty(input))

60

 disp('No data file selected. Exit program.');
 return;
 else
 dFileNameNav = input{1};
 end;

d =load(dFileName);
Nav =load(dFileNameNav);

%% Data Assignment to variables
sss =Nav(1,2);
eee =length(Nav(:,2))+Nav(1,2)-1;
mmm =max(size(Nav));

startSample=1;
endSample=mmm;

d_khs(:,1)=Nav(:,21); % gpsStatus check !-> ok)
d_khs(:,2)=Nav(:,32); % IMU theta [rad]
d_khs(:,3)=Nav(:,31); % IMU phi [rad]
d_khs(:,4)=Nav(:,54); % IMU psi [rad]
d_khs(:,5)=Nav(:,8); % yaw_rate [rad/sec]
d_khs(:,6)=Nav(:,10); % u [m/sec]
d_khs(:,7)=Nav(:,11); % v [m/sec]
d_khs(:,8)=Nav(:,12); % w [m/sec]
d_khs(:,9)=Nav(:,47); % GPS longitude
d_khs(:,10)=Nav(:,46); % GPS latitude

d_khs(:,11)=Nav(:,35); % Nav_lat (X [m])
d_khs(:,12)=Nav(:,36); % Nav_long (Y [m])
d_khs(:,13)=Nav(:,37); % Nav_heading [rad]
d_khs(:,14)=Nav(:,38); % Nav_yaw_rate [rad/sec]
d_khs(:,15)=Nav(:,39); % Nav_u [m/sec]
d_khs(:,16)=Nav(:,40); % Nav_v [m/sec]
d_khs(:,17)=Nav(:,42); % Nav_Bias_r [rad/sec] (experimentally
% estimated Bias_psi)
d_khs(:,18)=Nav(:,41); % Nav_Bias_psi [rad] (experimentally
% estimated Bias_r)

Bias_psi =Nav(:,41); % [rad] (experimentally estimated
Bias_psi)
Bias_r =Nav(:,42); % [rad/sec] (experimentally estimated
Bias_r)

gpsStatus =d_khs(:,1);
pitch =d_khs(:,2);
roll =d_khs(:,3);
heading =d_khs(:,4);
yaw_rate =d_khs(:,5);
ug =d_khs(:,6);

vg_RDI =d_khs(:,7);
vg =d_khs(:,7)-1.0*d_khs(:,5);

61

wg =d_khs(:,8);
long =d_khs(:,9);
lat =d_khs(:,10);
NsV =Nav(:,23);

l1=long(startSample);
l2=lat(startSample);
long=long-l1*ones(length(lat),1);
lat =lat-l2*ones(length(lat),1);

for i=1:mmm,
 if (gpsStatus(i,1)==0)
 long(i,1)=0.0; lat(i,1)=0.0;
 end
end

NsV_3=find(NsV==3 & Nav(:,46)~=0);
 GPS_3(:,1)=Nav(NsV_3,46);
 GPS_3(:,2)=Nav(NsV_3,47);
NsV_4=find(NsV==4 & Nav(:,46)~=0);
 GPS_4(:,1)=Nav(NsV_4,46);
 GPS_4(:,2)=Nav(NsV_4,47);
NsV_5=find(NsV>=5 & Nav(:,46)~=0);
 GPS_5(:,1)=Nav(NsV_5,46);
 GPS_5(:,2)=Nav(NsV_5,47);

dt=1/8;
t=0:dt:(length(ug)-1)*dt;

nheading = zeros(1,length(heading));
nheading(1) = heading(1);

for i=2:length(heading)
 if abs(heading(i) - heading(i-1)) <= pi
 nheading(i) = nheading(i-1) + heading(i) - heading(i-1);
 end
 if heading(i) - heading(i-1) > pi
 nheading(i) = nheading(i-1) + heading(i) - heading(i-1) - 2*pi;
 end
 if heading(i-1) - heading(i) > pi
 nheading(i) = nheading(i-1) + heading(i) - heading(i-1) + 2*pi;
 end
end

heading = nheading';

% MEASUREMENT VECTOR
y=[ug,vg,heading,yaw_rate,lat,long]; % Complete measured data

% STATE VECTOR
x(:,s)=[lat(s),long(s),psi0,yaw_rate(s)*pi/180,ug,vg,br,bpsi]';
psi0=heading(startSample);

62

% Initialize the state vector, x is 8, y is 6
x=zeros(8,endSample); err=zeros(6,endSample);
s=startSample;
x(:,s)=[lat(s),long(s),psi0,yaw_rate(s),ug(s),vg(s),Bias_r(s),…
Bias_psi(s)]';

% Initial A matrix
 A=zeros(8,8);
 X=x(1,s);Y=x(2,s);psi=x(3,s);r=x(4,s); dop_ug=x(5,s);dop_vg=x(6,s);
 br=x(7,s);bpsi=x(8,s);
 A(1,3)=-dop_ug*sin(psi)-dop_vg*cos(psi);
 A(1,5)=cos(psi);
 A(1,6)=-sin(psi);
 A(2,3)=dop_ug*cos(psi)-dop_vg*sin(psi);
 A(2,5)=sin(psi);
 A(2,6)=cos(psi);
 A(3,4)=1;

if (gpsStatus(1,1)==1.0 & NsV(1)>3) % The NsV>3 rejects fixes that are
less than 4 satellites
 C=zeros(6,8);
 C(1,5)=1;
 C(2,6)=1;
 C(3,3)=1;C(3,8)=1;
 C(4,4)=1;C(4,7)=0; % C(4,7) Forces B_r to 0
 C(5,1)=1;
 C(6,2)=1;
else
 C=zeros(6,8);
 C(1,5)=1;
 C(2,6)=1;
 C(3,3)=1;C(3,8)=1;
 C(4,4)=1;C(4,7)=0;
 C(5,1)=0;
 C(6,2)=0;
end

%% System Noise
q1=0.0; %variance on X, m^2
q2=0.0; %variance on Y, m^2
q3=0.001; %variance on psi, rad^2
q4=0.1; %variance on r, rad/s)^2
q5=0.01; %variance on ug,(m/s)^2
q6=0.01; %variance on vg,(m/s)^2
q7=0.0000001; %
q8=0.0; %
Q_dummy=[q1;q2;q3;q4;q5;q6;q7;q8];
Q=diag(Q_dummy);

 nu1 =0.001;
 nu2 =0.0001;
 nu3 =0.001;
 nu4 =0.001;
 nu5 =1.0;
 nu6 =1.0;

63

%% Initial CoVariance Matrix
% Note, old_after means measured data at old time, new_before means
% model predicted value

p_old_after=eye(8)*1e-2;
delx_old_after=zeros(8,1);
g=ones(8,1);
psave=zeros(8,startSample:endSample);

%% Main Calculation Loop
for i=startSample:endSample-1

 % Measurement Noise - Adjusts the values of the R-matrix based
 % on the quality of the fix or if no fix present.
 if NsV(i)<=3
 nu5=1.0;
 nu6=1.0;
 elseif NsV(i)==4
 nu5=0.1;
 nu6=0.1;
 elseif NsV(i)>=5
 nu5=0.01;
 nu6=0.01;
 end

R_dummy=[nu1;nu2;nu3;nu4;nu5;nu6];
R=diag(R_dummy);

% Compute linearized PHI matrix using updated A
% Phi=expm(A*dt);
 phi=eye(8,8)+A*dt+(A*dt)^2/2+(A*dt)^3/6;
 x_old_after=x(:,i); %reset initial state
 %[x_new_before]=prop8(x_old_after,0,0,dt); % nonlinear state
 % propagation
 xold=x_old_after;

%X=xold(1);Y=xold(2);psi=xold(3);r=xold(4);ug=xold(5);vg=xold(6);
 %bu=xold(7);bpsi=xold(8);
 f1=xold(5)*cos(xold(3))-xold(6)*sin(xold(3));
 f2=xold(5)*sin(xold(3))+xold(6)*cos(xold(3));
 f3=xold(4);
 f4=0; %rdot=0;
 f5=0; %ugdot=0;
 f6=0; %vgdot=0;
 f=[f1;f2;f3;f4;f5;f6;0;0];
 xnew=xold+f.*dt; %xd=f;
 x_new_before=xnew;
 p_new_before=phi*p_old_after*phi' + Q; % error covariance
% propagation

% new gain calculation using linearized new C matrix and current state
% error covariances.
% formulate the innovation using nonlinear output propagation as

64

% compared to new sampled data from measurements

if (gpsStatus(i+1,1)==1.0 & NsV(i+1)>3)
 ny_sub=6;
 xold=x_new_before;

yhat=[xold(5);xold(6);xold(3)+xold(8);xold(4)+xold(7);xold(1);xold(2)];
else
 ny_sub=4;
 xold=x_new_before;
 yhat=[xold(5);xold(6);xold(3)+xold(8);xold(4)+xold(7);0;0];
end

err(:,i+1)=(y(i+1,1:6)' - yhat); % Innovation

if (gpsStatus(i+1,1)==1.0 & NsV(i+1,1)>3)
 C=zeros(6,8);
 C(1,5)=1;
 C(2,6)=1;
 C(3,3)=1;C(3,8)=1;
 C(4,4)=1;C(4,7)=0;
 C(5,1)=1;
 C(6,2)=1;
else
 C=zeros(6,8);
 C(1,5)=1;
 C(2,6)=1;
 C(3,3)=1;C(3,8)=1;
 C(4,4)=1;C(4,7)=0;
 C(5,1)=0;
 C(6,2)=0;
end

if ny_sub==6,
 if
((y(i+1,1)==y(i,1))||(y(i+1,1)==0.0)||(abs(y(i+1,1))>=5.0)),C(1,:)=…
0.0*g';end;
 if
((y(i+1,2)==y(i,2))||(y(i+1,2)==0.0)||(abs(y(i+1,2))>=5.0)),C(2,:)=…
0.0*g';end;
 if (abs(y(i+1,3)-y(i,3))<=0.000001),C(3,:)=0.0*g';end;
 if (abs(y(i+1,4)-y(i,4))<=0.000001),C(4,:)=0.0*g';end;
 if (abs(y(i+1,5)-y(i,5))<=0.000001),C(5,:)=0.0*g';end;
 if (abs(y(i+1,6)-y(i,6))<=0.000001),C(6,:)=0.0*g';end;
else
 if
((y(i+1,1)==y(i,1))||(y(i+1,1)==0.0)||(abs(y(i+1,1))>=5.0)),C(1,:)=…
0.0*g';end;
 if
((y(i+1,2)==y(i,2))||(y(i+1,2)==0.0)||(abs(y(i+1,2))>=5.0)),C(2,:)=…
0.0*g';end;
 if (abs(y(i+1,3)-y(i,3))<=0.000001),C(3,:)=0.0*g';end;
 if (abs(y(i+1,4)-y(i,4))<=0.000001),C(4,:)=0.0*g';end;
end

65

% Compute gain, update Total State and error covariance
G=p_new_before*C(1:ny_sub,:)'*inv(C(1:ny_sub,:)*p_new_before*…
C(1:ny_sub,:)' + R(1:ny_sub,1:ny_sub)); % Kalman Gain

p_temp=G*C(1:ny_sub,:)*p_new_before;
p_old_after=p_new_before-p_temp;

psave(:,i+1)=diag(p_old_after);
x_new_after=x_new_before + G*err(1:ny_sub,i+1);

%i
%endSample

%carry new state into next update
x(:,i+1)=x_new_after;

%resetting up the linearized A matrix
A=zeros(8,8);
X=x(1,i+1);Y=x(2,i+1);psi=x(3,i+1);r=x(4,i+1);
dop_ug=x(5,i+1);dop_vg=x(6,i+1);bu=x(7,i+1);bpsi=x(8,i+1);

A(1,3)=-dop_ug*sin(psi)-dop_vg*cos(psi);
A(1,5)=cos(psi);
A(1,6)=-sin(psi);
A(2,3)=dop_ug*cos(psi)-dop_vg*sin(psi);
A(2,5)=sin(psi);
A(2,6)=cos(psi);
A(3,4)=1;

end;

%% Plot Results in Figures
% figure(1)
%
plot(long(startSample:endSample),lat(startSample:endSample),'r+'),grid
% hold on
% plot(x(2,startSample:endSample),x(1,startSample:endSample),'g.')
% hold off
% title('Filter Estimated Path(green), GPS (red)')
% ylabel('latitude in meters')
% xlabel('longitude in meters')
% grid
% axis equal

figure(2) % Path Plot
 %plot(long,lat,'r+');
 %hold on
 plot(x(2,:),x(1,:),'g-');
 hold on
 plot(d_khs(:,12)-d_khs(s,12),d_khs(:,11)-d_khs(s,11),'b-');
 plot(GPS_3(:,2)-d_khs(s,12),GPS_3(:,1)-d_khs(s,11),'*k',...
 GPS_4(:,2)-d_khs(s,12),GPS_4(:,1)-d_khs(s,11),'*m',...

66

 GPS_5(:,2)-d_khs(s,12),GPS_5(:,1)-d_khs(s,11),'*r');
 hold off
 grid
 title('POSITION: GPS, Filter Estimated, In-Vehicle Estimated');
 legend('Filter','Vehicle Filter','GPS NsV=3','GPS NsV=4',…
'GPS NsV=5');
 ylabel('X [m]')
 xlabel('Y [m]')
 axis equal

% figure(3) % X Dimension
% plot(t(startSample:endSample),lat(startSample:endSample),'r+',...
% t(startSample:endSample),x(1,startSample:endSample),'g.',...
% t(startSample:endSample),d_khs(startSample:endSample,11)-
% d_khs(s,11),'b.');
% title('X: measured [red], sim estimated [green], exp estimated
% [blue]');
%
% figure(4) % Y Dimension
%
% plot(t(startSample:endSample),long(startSample:endSample),'r+',...
% t(startSample:endSample),x(2,startSample:endSample),'g.',...
% t(startSample:endSample),d_khs(startSample:endSample,12)-
% d_khs(s,12),'b.');
% title('Y: measured [red], sim estimated [green], exp estimated
% [blue]');

figure(5) % Heading Results

plot(t(startSample:endSample),heading(startSample:endSample),'r+',...
 t(startSample:endSample),(x(3,startSample:endSample)),'g.',...

t(startSample:endSample),(d_khs(startSample:endSample,13)),'b.');
 title('Heading (radians): measured [red], sim estimated [green],…
exp estimated [blue]');

figure(6) % Yaw Rate

plot(t(startSample:endSample),yaw_rate(startSample:endSample),'r+',...
 t(startSample:endSample),x(4,startSample:endSample),'g.',...

t(startSample:endSample),d_khs(startSample:endSample,14),'b.');
 title('Yaw_rate: measured [red], sim estimated [green], exp…
estimated [blue]');

figure(7) % Speed, ug
 plot(t(startSample:endSample),ug(startSample:endSample),'r+',...
 t(startSample:endSample),x(5,startSample:endSample),'g.',...

t(startSample:endSample),d_khs(startSample:endSample,15),'b.');
 title('ug: measured [red], sim estimated [green], exp estimated…
[blue]');

figure(8) % Speed, vg

67

plot(t(startSample:endSample),vg_RDI(startSample:endSample),'r+',...
 t(startSample:endSample),x(6,startSample:endSample),'g.',...

t(startSample:endSample),d_khs(startSample:endSample,16),'b.');
 title('vg: measured [red], sim estimated [green], exp estimated…
[blue]');

figure(9) % Bias_r
 plot(t(startSample:endSample),x(7,startSample:endSample),'g.',...
 t(startSample:endSample),Bias_r(startSample:endSample,1),'b.')
 grid
 title('Bias_r: sim estimated [green], exp estimated [blue]');
 xlabel('time in seconds')
 ylabel('[deg/sec]')

figure(10) % Bias_psi
 plot(t(startSample:endSample),x(8,startSample:endSample),'g.',...

t(startSample:endSample),Bias_psi(startSample:endSample,1),'b.')
 grid
 title('Bias_\psi: sim estimated [green], exp estimated [blue]');
 xlabel('time in seconds')
 ylabel('B_\psi (rad)')

68

THIS PAGE INTENTIONALLY LEFT BLANK

69

APPENDIX C: SIMULATION UKF CODE

 The following MATLAB code was used for running simulations on the data sets

to evaluate UKF performance with EKF performance. The original code was developed

by H.S. Kim based on Julier and Uhlmann’s algorithm (1997) with modifications made

by S. Vonheeder during the course of this work.

%% %%%
% AUV Research Center %
% Unscented Kalman Filter For ARIES AUV %
% Edited: 11/09/06 %
%%
close all; clear all; clc

%% Load data from Desired Run with Aries using d and NavD Files
% generate default file name for dialog box
 defDateFields = datevec(date);
 defYear = sprintf('%02d',defDateFields(1) - 2000);
 defMon = sprintf('%02d',defDateFields(2));
 defDay = sprintf('%02d',defDateFields(3));
 defDateStamp = [defMon defDay defYear '_01.d'];
 defNameD = ['d' defDateStamp];

% get d-file name from dialog box
 fields = {'D File:'};
 boxTitle = 'Get Data File';
 lineNo = 1;
 defaultInput = {defNameD};
 input = inputdlg(fields, boxTitle, lineNo, defaultInput, 'on');
 if (isempty(input))
 disp('No data file selected. Exit program.');
 return;
 else
 dFileName = input{1};
 end;

% get NavD-file name from dialog box
 fields = {'NavD File:'};
 boxTitle = 'Get Nav Data';
 lineNo = 1;
 defNameNavD = ['NavD_' dFileName(2:10) '.d'];
 defaultInput = {defNameNavD};
 input = inputdlg(fields, boxTitle, lineNo, defaultInput, 'on');
 if (isempty(input))
 disp('No data file selected. Exit program.');
 return;
 else
 dFileNameNav = input{1};
 end;

70

d =load(dFileName);
Nav =load(dFileNameNav);

%% ==
% Data Manipulation from the experiment NAV data
% ===
mmm=max(size(Nav));
startSample=1;
endSample=mmm;

d_khs(:,1) =Nav(:,21); % gpsStatus check !-> ok)
d_khs(:,2) =Nav(:,32); % IMU theta [rad]
d_khs(:,3) =Nav(:,31); % IMU phi [rad]
d_khs(:,4) =Nav(:,54); % IMU psi [rad]
d_khs(:,5) =Nav(:,8); % yaw_rate [rad/sec]
d_khs(:,6) =Nav(:,10); % u [m/sec]
d_khs(:,7) =Nav(:,11); % v [m/sec]
d_khs(:,8) =Nav(:,12); % w [m/sec]
d_khs(:,9) =Nav(:,47); % GPS longitude
d_khs(:,10)=Nav(:,46); % GPS latitude

d_khs(:,11)=Nav(:,35); % Nav_lat (X [m])
d_khs(:,12)=Nav(:,36); % Nav_long (Y [m])
d_khs(:,13)=Nav(:,37); % Nav_heading [rad]
d_khs(:,14)=Nav(:,38); % Nav_yaw_rate [rad/sec]
d_khs(:,15)=Nav(:,39); % Nav_u [m/sec]
d_khs(:,16)=Nav(:,40); % Nav_v [m/sec]
d_khs(:,17)=Nav(:,42); % Nav_Bias_r [rad/sec](exp est Bias_psi)
d_khs(:,18)=Nav(:,41); % Nav_Bias_psi [rad] (exp ested Bias_r)

Bias_psi =Nav(:,41); % [rad] (exp est Bias_psi)
Bias_r =Nav(:,42); % [rad/sec] (exp est Bias_r)

%%==
% Initialize the experimental results
% ==
gpsStatus =d_khs(:,1);
pitch =d_khs(:,2);
roll =d_khs(:,3);
heading =d_khs(:,4);
yaw_rate =d_khs(:,5);
ug =d_khs(:,6);
vg =d_khs(:,7)-1.0*d_khs(:,5);
wg =d_khs(:,8);

long =d_khs(:,9);
lat =d_khs(:,10);
l1=long(startSample);
l2=lat(startSample);
long=long-l1.*ones(length(lat),1);
lat=lat-l2*ones(length(lat),1);

for i=1:mmm,
 if (gpsStatus(i,1)==0)
 long(i,1)=0.0;lat(i,1)=0.0;

71

 else
 end
end

% ==
% Time Vector
% ==
dt=1/8;
t=0:dt:(length(ug)-1)*dt;

% ==
% Heading Signal Wrapping
% ==
nheading = zeros(1, length(heading));
nheading(1) = heading(1);

for i=2:length(heading)
 if abs(heading(i) - heading(i-1)) <= pi
 nheading(i) = nheading(i-1) + heading(i) - heading(i-1);
 end
 if heading(i) - heading(i-1) > pi
 nheading(i) = nheading(i-1) + heading(i) - heading(i-1) - 2*pi;
 end
 if heading(i-1) - heading(i) > pi
 nheading(i) = nheading(i-1) + heading(i) - heading(i-1) + 2*pi;
 end
end

heading = nheading';

%==
% MEASUREMENT VECTOR
%==
y=[ug,vg,heading,yaw_rate,lat,long]; %complete measured data

%% ==
% Initialize the UKF parameters and state vector, x is 8, y is 6
%==
nx=8;
ny=6;
nv=8;
nn=6;
na=nx;

scale=3;
kappa=scale-na;
W0_m=kappa/(na+kappa);
Wi_m=1/(2*(na+kappa));
W0_c=kappa/(na+kappa);
Wi_c=1/(2*(na+kappa));

s=startSample;
x=zeros(8,endSample); err=zeros(6,endSample);
psi0=heading(s);
x(:,s)=[lat(s),long(s),psi0,yaw_rate(s),ug(s),vg(s),...

72

 Bias_r(s),Bias_psi(s)]';

xa(:,s)=[x(:,s)];
xa_old=xa(:,s);
x_old=x(:,s);

%% System Noise
q1=0.01; %variance on X, m^2 Cannot be 0, Q pos semi-def
q2=0.01; %variance on Y, m^2 for Cholesky Decomposition
q3=0.001; %variance on psi, rad^2
q4=0.1; %variance on r, (rad/s)^2
q5=0.01; %variance on ug,(m/s)^2
q6=0.01; %variance on vg,(m/s)^2
q7=0.0000001; %variance on B_r
q8=0.0 %variance on B_psi
Q_dummy=[q1;q2;q3;q4;q5;q6;q7;q8];
Q=diag(Q_dummy);

% Measurement Noise
nu1=0.1;
nu2=0.1;
nu3=0.001;
nu4=0.001;
nu5=1.0;
nu6=1.0;
R_dummy=[nu1;nu2;nu3;nu4;nu5;nu6];
R=diag(R_dummy);

%% ==
% Initial Pa matrix
%==
p_old_after=eye(nx)*1e-2;

delx_old_after=zeros(nx,1);
g=ones(nx,1);
psave=zeros(nx,startSample:endSample);

Pa_old=p_old_after;

%% Main Calculation Loop
for i=startSample:endSample-1
 %i
 %endSample
 %===
 % 1. Calculate Sigma points
 %===
 bias_Pa=chol((na+kappa)*Pa_old);

 %===
 Sigma_points_old(:,1)=xa_old;

 for j=1:na,
 Sigma_points_old(:,j+1)=xa_old+bias_Pa(j,:)';
 Sigma_points_old(:,na+j+1)=xa_old-bias_Pa(j,:)';
 end

73

 %===
 % Time Update
 %===
 % 2. Nonlinear state propagation
 %---
 for j=1:(2*na+1)
 % Sigma_points_new_before(1:nx,j)=prop_ukf...
 % (Sigma_points_old(1:nx,j),(process_noise*0.0),dt);
 xold=Sigma_points_old(1:nx,j);
 f1=xold(5)*cos(xold(3))-xold(6)*sin(xold(3));
 f2=xold(5)*sin(xold(3))+xold(6)*cos(xold(3));
 f3=xold(4);
 f4=0; %rdot=0;
 f5=0; %ugdot=0;
 f6=0; %vgdot=0;
 f7=0; %Bias_r_dot=0;
 f8=0; %Bias_psi_dot=0;
 f=[f1;f2;f3;f4;f5;f6;f7;f8];
 xnew=xold+f.*dt;
 Sigma_points_new_before(1:nx,j)=xnew;
 end
 %---
 % 3. mean value of x_new_before
 %---
 mean_x_new_before=zeros(nx,1);
 for j=1:(2*na+1)
 if j==1
 mean_x_new_before=mean_x_new_before+W0_m*...
 Sigma_points_new_before(1:nx,j);
 else
 mean_x_new_before=mean_x_new_before+Wi_m*...
 Sigma_points_new_before(1:nx,j);
 end
 mean_x_new_before(7)=0; % B_r=0
 end
 %---
 % 4. error covariance propagation
 %---
 P_new_before=Q;
 for j=1:(2*na+1),
 if j==1
 P_new_before=P_new_before+W0_c*...
 (Sigma_points_new_before(1:nx,j)-mean_x_new_before)*...
 (Sigma_points_new_before(1:nx,j)-mean_x_new_before)';
 else
 P_new_before=P_new_before+Wi_c*...
 (Sigma_points_new_before(1:nx,j)-mean_x_new_before)*...
 (Sigma_points_new_before(1:nx,j)-mean_x_new_before)';
 end
 end
 %---
 % 5. output Sigma_yhat
 %---
 for j=1:(2*na+1),

74

 if gpsStatus(i+1)==1
 ny_sub=ny;
 % Sigma_yhat_before(1:ny,j)=output_ukf_w_GPS...
 %(Sigma_points_new_before(1:nx,j),(measurement_noise*0.0));
 xold(1:nx)=Sigma_points_new_before(1:nx,j);
 y1=xold(5);
 y2=xold(6);
 y3=xold(3)+xold(8);
 y4=xold(4)+xold(7)*0;
 y5=xold(1);
 y6=xold(2);
 yhat=[y1;y2;y3;y4;y5;y6];
 Sigma_yhat_before(1:ny,j)=yhat;
 else
 ny_sub=ny-2;
 % Sigma_yhat_before(1:ny,j)=output_ukf_wo_GPS...
 %(Sigma_points_new_before(1:nx,j),(measurement_noise*0.0));
 xold(1:nx)=Sigma_points_new_before(1:nx,j);
 y1=xold(5);
 y2=xold(6);
 y3=xold(3)+xold(8);
 y4=xold(4)+xold(7)*0;
 y5=xold(1);
 y6=xold(2);
 yhat=[y1;y2;y3;y4;0;0];
 Sigma_yhat_before(1:ny,j)=yhat;
 end
 end

 %---
 % 6. mean value of yhat
 %---
 mean_yhat=zeros(ny,1);
 for j=1:(2*na+1),
 if j==1
 mean_yhat=mean_yhat+W0_m*Sigma_yhat_before(1:ny,j);
 else
 mean_yhat=mean_yhat+Wi_m*Sigma_yhat_before(1:ny,j);
 end
 end

 %===
 % Measurement Update
 %===
 %---
 % 1. Pyy_bar and Pxy
 %---
 Pyy_bar=zeros(ny_sub,ny_sub);
 Pxy=zeros(nx,ny_sub);

 for j=1:(2*na+1),
 err_x=Sigma_points_new_before(1:nx,j)-mean_x_new_before;
 err_y=Sigma_yhat_before(1:ny_sub,j)-mean_yhat(1:ny_sub,1);
 if j==1
 Pxy=Pxy+W0_c*err_x*err_y';

75

 Pyy_bar=Pyy_bar+W0_c*err_y*err_y';
 else
 Pxy=Pxy+Wi_c*err_x*err_y';
 Pyy_bar=Pyy_bar+Wi_c*err_y*err_y';
 end
 end

 S_temp=Pyy_bar-R(1:ny_sub,1:ny_sub);

 if gpsStatus(i+1)==1
 if ((y(i+1,1)==y(i,1))||(y(i+1,1)==0.0)||...
 (abs(y(i+1,1))>=5.0)),Pxy(:,1)=0.0*g;
 S_temp(:,1)=0.0*g(1:ny_sub,1);
 S_temp(1,:)=0.0*g(1:ny_sub,1)';
 end
 if ((y(i+1,2)==y(i,2))||(y(i+1,2)==0.0)||...
 (abs(y(i+1,2))>=5.0)),Pxy(:,2)=0.0*g;
 S_temp(:,2)=0.0*g(1:ny_sub,1);
 S_temp(2,:)=0.0*g(1:ny_sub,1)';
 end
 if (abs(y(i+1,3)-y(i,3))<=0.000001),Pxy(:,3)=0.0*g;
 S_temp(:,3)=0.0*g(1:ny_sub,1);
 S_temp(3,:)=0.0*g(1:ny_sub,1)';
 end
 if (abs(y(i+1,4)-y(i,4))<=0.000001),Pxy(:,4)=0.0*g;
 S_temp(:,4)=0.0*g(1:ny_sub,1);
 S_temp(4,:)=0.0*g(1:ny_sub,1)';
 end
 if (abs(y(i+1,5)-y(i,5))<=0.000001),Pxy(:,5)=0.0*g;
 S_temp(:,5)=0.0*g(1:ny_sub,1);
 S_temp(5,:)=0.0*g(1:ny_sub,1)';
 end
 if (abs(y(i+1,6)-y(i,6))<=0.000001),Pxy(:,6)=0.0*g;
 S_temp(:,6)=0.0*g(1:ny_sub,1);
 S_temp(6,:)=0.0*g(1:ny_sub,1)';
 end
 else
 if ((y(i+1,1)==y(i,1))||(y(i+1,1)==0.0)||...
 (abs(y(i+1,1))>=5.0)),Pxy(:,1)=0.0*g;
 S_temp(:,1)=0.0*g(1:ny_sub,1);
 S_temp(1,:)=0.0*g(1:ny_sub,1)';
 end;
 if ((y(i+1,2)==y(i,2))||(y(i+1,2)==0.0)||...
 (abs(y(i+1,2))>=5.0)),Pxy(:,2)=0.0*g;
 S_temp(:,2)=0.0*g(1:ny_sub,1);
 S_temp(2,:)=0.0*g(1:ny_sub,1)';
 end;
 if (abs(y(i+1,3)-y(i,3))<=0.000001),Pxy(:,3)=0.0*g;
 S_temp(:,3)=0.0*g(1:ny_sub,1);
 S_temp(3,:)=0.0*g(1:ny_sub,1)';
 end;
 if (abs(y(i+1,4)-y(i,4))<=0.000001),Pxy(:,4)=0.0*g;
 S_temp(:,4)=0.0*g(1:ny_sub,1);
 S_temp(4,:)=0.0*g(1:ny_sub,1)';
 end;

76

 end

 %---
 % 2. UKF Gain matrix
 %---
 UKF_K=Pxy*inv(S_temp+R(1:ny_sub,1:ny_sub));
 %---
 % 3. x_new
 % 3. x_new
 %---
 err(:,i+1)=(y(i+1,:)'-mean_yhat);
 %---
 if sqrt(err(5,i+1)^2+err(6,i+1)^2)>100,
 err(5,i+1)=0;err(6,i+1)=0;
 end;
 %---
 x_new=mean_x_new_before+UKF_K*err(1:ny_sub,i+1);
 x_new(7)=0;
 %---
 % 4. P_new
 %---
 P_new=P_new_before-UKF_K*(Pyy_bar)*UKF_K';
 %---
 % 5. xa_old & Pa_old
 %---
 xa_old=x_new;
 Pa_old=P_new;
 psave(:,i+1)=diag(P_new);
 x(:,i+1)=x_new;
end

%% Plot Results in Figures
figure(1),clf
 plot(long(startSample:endSample),lat(startSample:endSample),'r.')
 grid
 hold on
 plot(x(2,startSample:endSample),x(1,startSample:endSample),'g-')
 hold off
 title('Filter Estimated Path(green),GPS (red)')
 ylabel('latitude in meters')
 xlabel('longitude in meters')
 grid
 axis equal

figure(2), clf % Path Plot
 plot(long,lat,'r.');
 hold on
 plot(x(2,:),x(1,:),'g-');
 plot(d_khs(:,12)-d_khs(s,12),d_khs(:,11)-d_khs(s,11),'b-');
 hold off
 grid
 legend('GPS Data', 'UKF Estimate', 'EKF Estimate');
 title(strcat(dFileName(1:7),'_',dFileName(9:12),' Path Plot'));
 % title('POSTION: GPS [red], UKF Estimated [green] , In-Vehicle
 % EKF Estimated [blue]');

77

 ylabel('X [m]')
 xlabel('Y [m]')
 axis equal

figure(3), clf % X Dimension
 plot(t(startSample:endSample),lat(startSample:endSample),'r.',...
 t(startSample:endSample),x(1,startSample:endSample),'g-',...
 t(startSample:endSample),d_khs(startSample:endSample,11)…
 -d_khs(s,11),'b-');
 title('X: measured [red], sim estimated [green],…
 exp estimated [blue]');

figure(4), clf % Y Dimension
 plot(t(startSample:endSample),long(startSample:endSample),'r.',...
 t(startSample:endSample),x(2,startSample:endSample),'g-',...
 t(startSample:endSample),d_khs(startSample:endSample,12)…
 -d_khs(s,12),'b-');
 title('Y: measured [red], sim estimated [green],…
 exp estimated [blue]');

figure(5), clf % Heading Results

plot(t(startSample:endSample),heading(startSample:endSample),'r.',...
 t(startSample:endSample),(x(3,startSample:endSample)),'g-',...
 t(startSample:endSample),(d_khs(startSample:endSample,13)),'b-
');
 title('Heading (radians): measured [red], sim estimated [green],
exp estimated [blue]');

figure(6), clf % Yaw Rate

plot(t(startSample:endSample),yaw_rate(startSample:endSample),'r.',...
 t(startSample:endSample),x(4,startSample:endSample),'g-',...
 t(startSample:endSample),d_khs(startSample:endSample,14),…
 'b-');
 title('Yaw rate: measured [red], sim estimated [green],…
 exp estimated [blue]');

figure(7), clf % Speed, ug
 plot(t(startSample:endSample),ug(startSample:endSample),'r.',...
 t(startSample:endSample),x(5,startSample:endSample),'g.',...

t(startSample:endSample),d_khs(startSample:endSample,15),'b.');
 title('ug: measured [red], sim estimated [green],…
 exp estimated [blue]');

figure(8), clf % Speed, vg
 plot(t(startSample:endSample),vg(startSample:endSample),'r.',...
 t(startSample:endSample),x(6,startSample:endSample),'g.',...
 t(startSample:endSample),d_khs(startSample:endSample,16),'b.');
 title('vg: measured [red], sim estimated [green],…
 exp estimated [blue]');

figure(9), clf % Bias_r
 plot(t(startSample:endSample),x(7,startSample:endSample),'g.',...

78

 t(startSample:endSample),Bias_r(startSample:endSample,1),'b.')
 grid
 title('Bias_r: sim estimated [green], exp estimated [blue]');
 xlabel('time in seconds')
 ylabel('[deg/sec]')

figure(10), clf % Bias_psi
 plot(t(startSample:endSample),x(8,startSample:endSample),'g.',...

t(startSample:endSample),Bias_psi(startSample:endSample,1),'b.')
 grid
 title('Bias_\psi: sim estimated [green], exp estimated [blue]');
 xlabel('time in seconds')
 ylabel('B_\psi (rad)')

79

APPENDIX D: VEHICLE IMU CODE

 The following provides the IMU code, written in C, that processes the IMU data

output and performs the necessary reference frame rotations as well as the integration of

the yaw rate for the heading reference. The accelerations, angular rates and heading are

sent to the navigation filter for further processing. The original code was developed by J.

Nicholson, CAPT, USN and modified by S. Kragelund for this research.

/*---
** Modifications to Jack Nicholson's IMU.c for realtime (8Hz) operation
** This program downsamples the 100Hz IMU data, processing one message
** each 8Hz interval. Checksum verification has been added to ensure
** only valid data gets passed to the Nav process
**
** SPK/DTD 07/14/06
---*/
#define TRUE 1
#define FALSE 0

#include "IMU.h"

// SPK 010306: Need this to access migration library
#include <mig4nto.h>
#include <sys/neutrino.h>
#include <sys/netmgr.h>

// SPK 011106: Added for Neutrino timer pulses
#define MP_PULSE_CODE _PULSE_CODE_MINAVAIL

#define IMU_MSG_SIZE 44
#define PITCH_LIMIT (60.0) // degrees
#define ROLL_LIMIT (60.0) // degrees

// SPK 070506: Define values for IMU status word #1 bits
#define IMU_ACCEL_TEMP 0xFF00 // Bits 15-8 (LSB = 1 deg C)
#define IMU_RLG_A_PLC 0x0080 // Bit 7 (a-axis RLG in PLC reset)
#define IMU_RLG_B_PLC 0x0040 // Bit 6 (b-axis RLG in PLC reset)
#define IMU_RLG_C_PLC 0x0020 // Bit 5 (c-axis RLG in PLC reset)
#define IMU_FAILURE 0x0010 // Bit 4
#define IMU_SW1_ERR_BITS 0x00F0 // Bits 7-4
#define IMU_COUNTER 0X000F // Bits 3-0 (4-bit counter)

// SPK 070506: Define values for IMU status word #2 bits
#define IMU_PROC_FAILURE 0x8000 // Bit 15 (Processor tests failed)
#define IMU_MEM_FAILURE 0x4000 // Bit 14 (Memory tests failed)
#define IMU_OTHER_FAILURE 0x2000 // Bit 13 (Other tests failed)

80

#define IMU_ACCEL_FAILURE 0x1000 // Bit 12 (Accelerometer tests
failed)
#define IMU_GYRO_FAILURE 0x0800 // Bit 11 (Gyro tests failed)
#define IMU_RSV1_FAILURE 0x0400 // Bit 10 (Reserved)
#define IMU_RSV2_FAILURE 0x0200 // Bit 9 (Reserved)
#define IMU_RSV3_FAILURE 0x0100 // Bit 8 (Reserved)
#define IMU_SW2_ERR_BITS 0xF800 // Bits 15-11
#define IMU_SW_VER_NUMBER 0x00FF // Bits 7-0 (Software Version #)

// SPK 070606: Define value to identify a checksum error
#define IMU_CHKSUM_ERROR 0x0001

FILE *IMUalignfp;
FILE *NavLatfp;
FILE *Outfp; // Use during testing
FILE *DateStampInfp; // Use during testing

double pi=3.14159265;

// This function retrieves the last IMU message in the buffer at time,
// verifies its checksum, and returns an integer offset for the first
// byte of the message
int getLastMessage(buffer,numBytes)
 u_char* buffer;
 int numBytes;
{
 int i;
 int found = FALSE;
 unsigned short chkSum;
 unsigned short computedChkSum;

 if (numBytes < IMU_MSG_SIZE)
 return -1;

 for (i = (numBytes - IMU_MSG_SIZE); ((i >= 0) && (!found)); i--)
 {
 if ((*(buffer+i) == 0xA5) && (*(buffer+i+1) == 0x02))
 {
 chkSum = *(unsigned short*)(buffer + i + IMU_MSG_SIZE
- 2);
 computedChkSum = *(unsigned short*)(buffer + i + 2) +
 (unsigned short)(buffer + i + 4) +
 (unsigned short)(buffer + i + 6) +
 (unsigned short)(buffer + i + 8) +
 (unsigned short)(buffer + i + 10) +
 (unsigned short)(buffer + i + 12) +
 (unsigned short)(buffer + i + 14) +
 (unsigned short)(buffer + i + 16) +
 (unsigned short)(buffer + i + 18) +
 (unsigned short)(buffer + i + 20) +
 (unsigned short)(buffer + i + 22) +
 (unsigned short)(buffer + i + 24) +
 (unsigned short)(buffer + i + 26) +
 (unsigned short)(buffer + i + 28) +

81

 (unsigned short)(buffer + i + 30) +
 (unsigned short)(buffer + i + 32) +
 (unsigned short)(buffer + i + 34) +
 (unsigned short)(buffer + i + 36) +
 (unsigned short)(buffer + i + 38) +
 (unsigned short)(buffer + i + 40);
 if (chkSum == computedChkSum)
 {
 found = TRUE;
 i++;
 }
 else
 {
 printf("IMU.c: getLastMessage: Bad Checksum!\n");
 }
 } // if ((*buffer+1...
 } // for (i...
 //printf("Index %d\n", i);
 if (i < 0)
 {
 printf("IMU.c: getLastMessage: No Valid Record Found!\n");
 }
 return i;
} // getLastMessage

main()
{
 int IMU_Shmid,IMUFlag_Shmid, HMR_Shmid,read_status;
 int i,k,i_r,i_m,Msg,StartByte;
 int Port, BytesRead;

 double g = 32.2;

 // SPK 010306: changed from char to unsigned char arrays to prevent
 // compiler warnings due to comparisons with 165
//value
 // (greater than maximum value for signed chars)
 u_char ReadBuf[2000]; // Buffer for data coming in from serial
//port
 u_char MsgBuf[44]; // Message buffer, for aligning and
//parsing data
 char FileCommand[256]; // For reading latitude...
 char FileString[256]; // ...from Nav.inp
 short p, q, r, ax, ay, az; // Flt control angular rates and accel
 int dAx, dAy, dAz, dVx, dVy, dVz; // Inertial delta angles /
//velocities

 // SPK 070506: Added to verify IMU message checksums
 unsigned short int msgCkSum = 0;
 unsigned short int status1 = 0;
 unsigned short int status2 = 0;
 int LastMsgIdx = -1;

82

 // SPK 062606: added variables for first-order accelerometer filter
 double Tau,Coef1,Coef2,phiThresh,thetaThresh;
 int initFilter = FALSE;
 int filterAcc = FALSE; // set to TRUE for first-order filtering
of accelerometer data
 double p_out, q_out, r_out, ax_out, ay_out, az_out; //
Variables written...
 double dAx_out,dAy_out,dAz_out,dPsi_out; //
...to shared memory.
 double theta_out, phi_out; //
2 Euler angles
 double dt; //
sampling interval
 double Lat0, LatD, Lat; //
GPS Origin latitude
 double s_phi,c_phi,s_theta,c_theta,s_psi,c_psi,s_Lat,c_Lat; //
Sines and cosines
 double q_e,r_e; //
Earth rates in q,r
 double psi_out, psi_dot, dPsi; //
Heading

 // SPK 062606: Default behavior will write to shared memory AND file
unless FILE_FLAG = 0
 int FILE_FLAG=FALSE; // <<-- Set FILE_FLAG to zero to stop writing
100 Hz data to a file
 int INIT_ERROR = 0;
 int IMU_Error=0; // Flag to abort mission upon
IMU failure
 unsigned char IMU_msgError = 1; // Flag if individual message
contains an error
 unsigned short int IMU_msgErrBits = 0;// bits within status words
containing error bits
 unsigned short int IMU_ErrorType = 0; // Bits indicating what kind
of error occurred
 int IMU_Id=0;
 int IMU_Kill=0;
 int N_Samples=12; // Number of 100Hz samples to process before
writing to shared memory
 int nSamp = 0; // number of 100Hz samples actually used to
calculate average
 double Align_theta =0.0; // Default IMU mechanical
alignment...
 double Align_phi = 0.0; // ...angles (radians).
 double C_Rate=pow(2,-20)*600; // Coefficients by which
to multiply ...
 double C_Accel=pow(2,-14)*600; // ...summed data before
writing to shared...
 double C_DeltaAng=pow(2,-33); // ...memory. They scale
by data LSB,...
 double C_DeltaV=pow(2,-27); // ...and average flight
control data.
 double Rotation=0.0; // Integrated yaw rate
initialization

83

 double Omega=2*pi/(24*60*60); // Earth rate in radians
per second
 double DegRad = 0.01745329; // Convert degrees to
radians

 // Open IMU shared memory **** FOR TESTING, OPEN IMUd_mmddyy_nn.d
DATA FILE
 // SPK 071006: allocate space for null character in s
 char Filename[17],s[3];
 char ShellCom[] = "date '+IMUd_%m%d%y_ .d' > IMUDateStamp";

 // Real Time Loop Stuff
 int Hz,t_count;
 double t;
 pid_t LoopTimerProxy;
 timer_t LoopTimerId;
 struct itimerspec LoopTimer;
 struct sigevent event;

 // SPK 011106: Added for Neutrino timer pulses
 int timerChId;
 int timerConId;
 int timerRcvId;
 struct _pulse pulseMsg;

 Hz = 8;
 dt = 1.0 / (double)Hz;

 // SPK 010306: Get I/O privity for this thread in Neutrino
 // (This process must still be run as root)
 // Note: This replaces the -T1 compiler option from QNX4
 if (ThreadCtl (_NTO_TCTL_IO, NULL) == -1)
 {
 perror ("I/O Privilege Request failed!\n");
 return;
 }

 system(ShellCom);
 if(FILE_FLAG)
 {
 DateStampInfp = fopen("IMUDateStamp","r");
 for(k=0;k<12;++k) Filename[k] = getc(DateStampInfp);
 k=1;
 while(1)
 {
 if(k<10)
 sprintf(s,"0%d",k);
 else
 sprintf(s,"%d",k);
 Filename[12] = s[0];
 Filename[13] = s[1];
 Filename[14] = '.';
 Filename[15] = 'd';

84

 Filename[16] = NULL;
 // SPK 062606: Make this file binary for size/speed reasons
 if((Outfp=fopen(Filename,"r+b"))==NULL)
 {
 Outfp = fopen(Filename,"wb");
 // SPK DEBUG
 if (Outfp == NULL)
 {
 printf("Cannot open output file!\n");
 exit(0);
 }

 break;
 }
 else
 {
 fclose(Outfp);
 ++k;
 if(k==100)
 {
 printf("Cannot Create File Number 100\n");
 exit(0);
 }
 }
 } //-- end while(1) --
 } //-- end if(FILE_FLAG) --

 // Open IMU shared memory
 if((IMU_Shmid = OpenIMUShm()) == -1)
 {
 printf("Cannot Attach IMU Shared Memory\n");
 INIT_ERROR = 1;
 }
 if((IMUFlag_Shmid = OpenIMUFlagShm()) == -1)
 {
 printf("Cannot Create IMU Flag Shared Memory\n");
 INIT_ERROR = 1;
 }
 if(INIT_ERROR) exit(0);
 ResetIMUFlagShm(IMUFlag_Shmid);

 // Open HMR shared memory to get psi value to initialize to
 if((HMR_Shmid = OpenHMRShm()) == -1)
 {
 printf("Cannot Attach HMR Shared Memory\n");
 INIT_ERROR = 1;
 }

 sleep(2); // To ensure HMR has a value to initialize to
 ReadHMRShm(HMR_Shmid,&psi_out);
 CloseHMRShm(HMR_Shmid);

 printf("Initial psi=%f degrees.\n", psi_out);
 psi_out=psi_out*DegRad;

85

 //-- Read IMU angle offsets from IMU.inp --
 IMUalignfp = fopen("IMU.inp","r");
 if(IMUalignfp) fscanf(IMUalignfp,"%lf
%lf\n",&Align_theta,&Align_phi);
 fclose(IMUalignfp);

 //-- Read latitude from Nav.inp --
 OpenInputFile();
 while(1)
 {
 read_status = ReadFromInputFile(&FileString[0]);
 if(read_status > 0)
 {
 sscanf(FileString,"%s",&FileCommand[0]);
 if(!strcmp(FileCommand,"END")) break;
 }
 else if(!strcmp(FileCommand,"SET_GPS_ORIGIN"))
 {
 sscanf(FileString,"%s %lf",&FileCommand[0],&Lat0);
 // Convert to dd.dddd
 LatD = (double) ((int) (Lat0/100.0));
 Lat = LatD + (Lat0 - LatD*100.0)/60.0;
 }
 }
 CloseInputFile();
 s_Lat=sin(Lat*pi/180);
 c_Lat=cos(Lat*pi/180);

 //-- Open and flush the RS-422 port --
 Port = open("/dev/ser4", O_RDONLY | O_NOCTTY);
 BytesRead = 2000;
 while(BytesRead == 2000)
 {
 BytesRead = dev_read(Port,ReadBuf,2000,0,0,0,0,0);
 }

 // Initial load of message buffer
 BytesRead = dev_read(Port,ReadBuf,2000,44,0,0,0,0);
 for(i=0;i<44;i++)MsgBuf[i]=ReadBuf[i];

 // SPK 011106: Create channel and connection for timer pulse
 timerChId = ChannelCreate(0);
 timerConId = ConnectAttach(ND_LOCAL_NODE, 0, timerChId,
_NTO_SIDE_CHANNEL, 0);

 /* Attach to the Timer */
 // SPK 011106: Initialize pulse event using Neutrino macro
 SIGEV_PULSE_INIT(&event, timerConId, getprio(0), MP_PULSE_CODE, 0
);

 // SPK 010306: Neutrino version returns timer ID in third parameter
 // old: LoopTimerId = timer_create(CLOCK_REALTIME,&event);
 timer_create (CLOCK_REALTIME, &event, &LoopTimerId);

86

 if(LoopTimerId == -1)
 {
 printf("Unable to Attach Timer.");
 return;
 }

 /*
 * 1 nano-seconds before initial firing,
 * 1.0/Hz second repetitive timer afterwards.
 */
 LoopTimer.it_value.tv_sec = 0L;
 LoopTimer.it_value.tv_nsec = 1L;
 LoopTimer.it_interval.tv_sec = 0L;
 /* Convert Hz into NanoSecond Period */
 LoopTimer.it_interval.tv_nsec = (int) (1.0/((float)
Hz)*pow(10.0,9.0));
 timer_settime(LoopTimerId,0,&LoopTimer,NULL);

/***/
 /*-- Main loop - once per shared memory write cycle
(N_samples*10msec) --*/

/***/
 i_m=44;
 i_r=0;
 while(1)
 {
 /* Wait for the Proxy */
 // SPK 011106: No longer using old code (or mig4nto version)
 //old: Receive(LoopTimerProxy,0,0);
 timerRcvId = MsgReceive(timerChId, &pulseMsg, sizeof(pulseMsg),
NULL);

 // SPK 011106: Can check if timerRcvId == 0 to verify a pulse was
received and
 // can check if pulseMsg.code == MP_PULSE_CODE to verify it's
from our timer

 /**/
 /*-- Read loop - once per IMU data message period --*/
 /**/
 IMU_Error = 0;

 BytesRead = dev_read(Port,ReadBuf,2000,44,0,0,0,0);
 //printf("bytes read = %d\n", BytesRead);

 LastMsgIdx = getLastMessage(ReadBuf,BytesRead);

 if (LastMsgIdx < 0)
 {
 IMU_Error = 1;
 }
 else
 {

87

 // parse the message
 p =*(short*)(ReadBuf+LastMsgIdx+2); q
=*(short*)(ReadBuf+LastMsgIdx+4); r =*(short*)(ReadBuf+LastMsgIdx+6);
 ax =*(short*)(ReadBuf+LastMsgIdx+8); ay
=*(short*)(ReadBuf+LastMsgIdx+10); az
=*(short*)(ReadBuf+LastMsgIdx+12);
 status1=*(unsigned short*)(ReadBuf+LastMsgIdx+14);
status2=*(unsigned short*)(ReadBuf+LastMsgIdx+16);
 dAx=*(int*)(ReadBuf+LastMsgIdx+18);
dAy=*(int*)(ReadBuf+LastMsgIdx+22);
dAz=*(int*)(ReadBuf+LastMsgIdx+26);
 dVx=*(int*)(ReadBuf+LastMsgIdx+30);
dVy=*(int*)(ReadBuf+LastMsgIdx+34);
dVz=*(int*)(ReadBuf+LastMsgIdx+38);
 msgCkSum=*(unsigned short*)(ReadBuf+LastMsgIdx+42);

 p_out = (((double)p) * C_Rate);
 q_out = (((double)q) * C_Rate);
 r_out = (((double)r) * C_Rate);
 ax_out = (((double)ax) * C_Accel);
 ay_out = (((double)ay) * C_Accel);
 az_out = (((double)az) * C_Accel);
 // Note: IMU outputs negative acceleration values
 g = ((ax_out == 0.0) && (ay_out == 0.0) && (az_out == 0.0)) ?
32.2 :
 pow((pow(ax_out,2)+pow(ay_out,2)+pow(az_out,2)),0.5);

 // Bound input to asin function to prevent NANs
 if (fabs(ax_out/g) < 1.0)
 {
 theta_out = asin(ax_out/g);
 }
 else
 {
 theta_out = ((fabs(ax_out)) / (ax_out)) *
(PITCH_LIMIT*DegRad);
 }
 // Bound input to asin function to prevent NANs
 if (fabs(ay_out/(g*cos(theta_out))) < 1.0)
 {
 phi_out = -asin(ay_out/(g*cos(theta_out)));
 }
 else
 {
 phi_out = -((fabs(ay_out)) / (ay_out)) *
(ROLL_LIMIT*DegRad);
 }

 // Remove earth rate, convert angular rates into heading rate
(psi dot)
 s_phi = sin(phi_out); c_phi = cos(phi_out);
 s_theta= sin(theta_out); c_theta= cos(theta_out);
 s_psi = sin(psi_out); c_psi = cos(psi_out);
 q_e=(-c_phi*s_psi*c_Lat-s_phi*c_theta*s_Lat)*Omega;

88

 r_e=((s_phi*s_psi+c_phi*s_theta*c_psi)*c_Lat-
c_phi*c_theta*s_Lat)*Omega;
 q_out=q_out-q_e;
 r_out=r_out-r_e;
 psi_dot = s_phi*q_out/c_theta + c_phi*r_out/c_theta;
 dPsi = psi_dot*dt;
 psi_out = psi_out+dPsi;
 } // if (LastMsgIdx... else...

 ReadIMUFlagShm(IMUFlag_Shmid,&IMU_Kill);
 if(IMU_Kill) break;

 //--- SHARED MEMORY OUTPUT ---

WriteIMUShm(IMU_Shmid,IMU_Id,phi_out,theta_out,psi_out,p_out,q_out,r_ou
t,ax_out,
 ay_out,az_out,60.0,60.0,IMU_Error);
 IMU_Id++;
 if(IMU_Id>65534) IMU_Id = 0;

 } // while(1)

 ConnectDetach(timerConId);

 /* Get Rid of the Timer */
 timer_delete(LoopTimerId);

 if(FILE_FLAG)
 fclose(Outfp);

 close(Port);
 CloseIMUShm(IMU_Shmid);
 CloseIMUFlagShm(IMUFlag_Shmid);
 //CloseHMRShm(HMR_Shmid);
}

89

APPENDIX E: VEHICLE NAVIGATION FILTER CODE

The following provides the C-code for the navigation filter. This code has been

developed over many years of experience and was originally written by D. Marco and A.

Healey for use in the ARIES vehicle.

/*---
** SPK 010306: Modified for QNX Neutrino 6.3
 - comment out includes for obsolete files in Nav.h
 - include migration library header file in Nav.h
 - start the migration process manager (mig4nto_init)
 - updated timer_create() to Neutrino version
** SPK 010906: Replaced Creceive() with qnx_proxy_detach()
** SPK 011106: Implemented Neutrino timer pulses instead of
 migration library cover functions
 - no longer need migration process manager
**---
------*/
#include "Nav.h"
// SPK 011106: Included for Neutrino timer pulses
#include <sys/neutrino.h>
#include <sys/netmgr.h>

#define TRUE 1
#define FALSE 0

// SPK 011106: Added for Neutrino timer pulses
#define Nav_PULSE_CODE _PULSE_CODE_MINAVAIL

 FILE *Outfp;
 FILE *NavErrorfp;
 FILE *Inputfp;
 FILE *AbortLogfp;
 char FileString[256]; /* This is the Entire Line of the File */
 char FileCommand[256]; /* This is the File Command i.e. Leading
Text */

 double pi = 3.14159265358979;
 double RadDeg = 57.2957795;
 double DegRad = 0.01745329;

 /* Wait until RDI_AltEst is not equal to 0 - added by ajh 12/1/04
*/

 /* Altitude Filter Stuff */

 int KALMAN_INIT = TRUE;

/* added for RDI wait 12/01/04*/

90

 int WAIT = FALSE;
 int count = 0;

 double Alt_est = 0.0;
 double Alt_dot = 0.0;
 double Alt_ddot = 0.0;
 double RDI_AltRawPrev = 0.0;

 FILE *TestFilefp;

main()
{
 int read_status;
 double MaxDepth;
 double MinBatteryVoltage;
 double MaxLeakVoltage;

 int i,j,k,kk,jj,ip;
 int INIT_ERROR = FALSE;
 int ABORT_FLAG = FALSE;
 int KALMAN_ABORT_FLAG = FALSE;
 int Nav_Kill = FALSE;

 /* Real Time Loop Stuff */
 int Hz,t_count;
 double t,dt;
 pid_t LoopTimerProxy;
 timer_t LoopTimerId;
 struct itimerspec LoopTimer;
 struct sigevent event;

 // SPK 011106: Added for Neutrino timer pulses
 int timerChId;
 int timerConId;
 int timerRcvId;
 struct _pulse pulseMsg;

 /* Absolute Date & Time Stuff */
 struct timeb timebuf;
 time_t time_of_day;
 char buf[26];
 struct tm tmbuf;

 char TacticalMessage[16];

 /* date "+%m%d%y%H%M%S" */

 int Nav_Shmid;
 int NavFlag_Shmid;
 int NetFlag_Shmid;
 int RDI_Shmid;
 int MP_Shmid;

91

 int GPS_Shmid;
 int Analog_Shmid;
 int Bob_Shmid;
 int HMR_Shmid;

 double LatD,LongD;

 double KG_psi;

 int Nav_Id = 0; /* Navigation ID Process (1-65535) */
 int Month;
 int Day;
 int Year;
 int Hour; /* 24 Hour GMT */
 int Minute;
 double Second; /* Seconds and Fraction of Seconds */
 double DepthRaw = 0.0; /* Raw Depth from Depth Cell */
 /* (No Filtering) (m) */
 double DepthEst = 0.0; /* Estimated Depth from Depth Filter(m)*/
 double DepthDot = 0.0; /* Estimated Depth Rate from Depth */
 /* Filter (m/sec) */
 int Nav_Error = FALSE;

 int RDI_Id; /* RDI ID Process (1-65535) */
 double RDI_Ug; /* RDI U Ground (m/sec) */
 double RDI_Vg; /* RDI V Ground (m/sec) */
 double RDI_Wg; /* RDI W Ground (m/sec) */
 double RDI_Uf; /* RDI U Fluid (m/sec) */
 double RDI_Vf; /* RDI V Fluid (m/sec) */
 double RDI_Wf; /* RDI W Fluid (m/sec) */
 double RDI_AltRaw; /* Raw RDI Altitude (m) */
 double RDI_AltEst; /* Estimated Altitude from Alt Filter (m) */
 double RDI_AltDot; /* Estimated Altitude Rate from Filter (m/sec)*/
 double RDI_Heading; /* RDI Heading (Degrees) */
 double psi; /* RDI Heading (Radians) */
 int RDI_Error;

 int HMR_Id; /* HMR3000 Compass Process ID (1-65535) */
 double HMR_HeadingRaw; /* HMR3000 Uncompensated Compass Heading
 (Degrees) */
 double HMR_Heading; /* HMR3000 Compass Heading Angle (Degrees) */
 double HMR_Pitch; /* HMR3000 Compass Pitch Angle (Degrees) */
 double HMR_Roll; /* HMR3000 Compass Roll Angle (Degrees) */
 int HMR_Error;

 /* Kalman Filter Stuff */
 double RDI_AltRawComp;
 int AltZeroCount = 0;
 int SKIP_KALMAN = FALSE;
 double PrevRDI_AltRawComp = 0.0;

 // SPK 060206: Update variable definitions to reflect IMU process

92

 // Note: still need to rename all process and shared memory
variables
 int MP_Id; // IMU Process ID (1-65535)
 double MP_phi; // IMU Roll Angle (Rad)
 double MP_theta; // IMU Pitch Angle (Rad)
 double MP_psi; // IMU Heading Angle (Rad)
 double KG_q; // IMU Roll Rate (Rad/Sec)
 double MP_q; // IMU Pitch Rate (Rad/Sec)
 double MP_r; // IMU Yaw Rate (Rad/Sec)
 double MP_XAccel; // IMU X-axis Acceleration (m/sec^2)
 double MP_YAccel; // IMU Y-axis Acceleration (m/sec^2)
 double KG_r; // IMU Z-axis Acceleration (m/sec^2)
 double BatteryVoltageRaw; // Raw Battery Voltage Level (Volts)
 double BatteryVoltage; // Filtered Battery Voltage Level (Volts)
 int MP_Error; // IMU_Error

 int GPS_Id; /* GPS Process ID (1-65535) */
 int GPS_Signal; /* Status of Signal 1 = Present, 0 = Not
Present */
 double Lat0; /* GPS Latitude Origin in ddmm.mmmmmm */
 double Long0; /* GPS Longitude Origin in dddmm.mmmmmm */
 double LatDeg0; /* GPS Latitude Origin in dd.ddddd */
 double LongDeg0; /* GPS Longitude Origin in ddd.ddddd */
 double GPS_X; /* Distance in meters North/South from GPS
Latitude */
 /* Origin (Lat0) */
 double GPS_Y; /* Distance in meters East/West from GPS
Longitude */
 /* Origin (Long0) */
 int Diff; /* Raw or Diff. */
 int NSv; /* Number of SVs */
 double ToC; /* Time of Computation */
 double Lat; /* Latitude in ddmm.mmmmmm */
 double LatDeg; /* Latitude in dd.ddddd */
 double Long; /* Longitude in dddmm.mmmmmm */
 double LongDeg; /* Longitude in ddd.ddddd */
 double SbA; /* Sensor-Based Altitude */
 double TtTc; /* True Track/True Course */
 double SoG; /* Speed over Ground */
 double Vv; /* Vertical Velocity */
 double Pdop; /* Position dilution of position */
 double Hdop; /* Horiz. dilution of position */
 double Vdop; /* Vertical dilution of position */
 double Tdop; /* Time dilution of position */
 int GPS_Error;

 int Analog_Id; /* Analog Process ID (1-65535) */
 double BowLeakVoltage; /* Bow Section Leak Detector Voltage */
 /* Level (Volts) */
 double MidLeakVoltage; /* Mid Section Leak Detector Voltage */
 /* Level (Volts) */
 double SternLeakVoltage; /* Stern Section Leak Detector Voltage */
 /* Level (Volts) */
 double v_ls; /* Left Screw Speed (Rot/Sec) */
 double v_rs; /* Right Screw Speed (Rot/Sec) */

93

 double v_bvt; /* Bow Vertical Thruster Speed (Rot/Sec)*/
 double v_svt; /* Stern Vertical Thruster Speed (Rot/Sec) */
 double v_blt; /* Bow Lateral Thruster Speed (Rot/Sec) */
 double v_slt; /* Stern Lateral Thruster Speed (Rot/Sec) */
 int Analog_Error;

 /* Filter Vars */

 /* These are States (Outputs, Estimates from the Filter) */
 double NavFil_X; /* Global X Position (meters) Relative to */
 /* a GPS Origin (LatDeg0,LongDeg0) */
 double NavFil_Y; /* Global Y Position (meters) Relative to */
 /* a GPS Origin (LatDeg0,LongDeg0) */

 double NavFil_psi; /* Yaw Angle (Radians) */
 double NavFil_r; /* Yaw Rate (Rad/sec) */
 double NavFil_Ug; /* Longitudinal Ground Speed (m/sec) */
 double NavFil_Vg; /* Lateral Ground Speed (m/sec) */
 double NavFil_Bias_r; /* Yaw Rate Bias (Rad/sec) */
 double NavFil_Bias_psi; /* Yaw angle Bias (Radians) */

 double y[1][8],ym[8];

 double I8[9][9];
 double x[9];
 double x_bar1[9];
 double res[8][2],ym_prev[8],yhat[8];
 double psi0;

 double spsi,cpsi;
 double Adt[9][9];
 double C[8][9];
 double
P[9][9],M[9][9],LC[9][9],ImLC[9][9],P_diag_out[9],P_1_8_out,P_2_8_out;
 double phi[9][9],phi_t[9][9],Pphi_t[9][9],phiPphi_t[9][9];
 double C_t[9][8],MC_t[9][8],CMC_t[8][8];
 double CMCR[8][8],CMCRI[8][8],L[9][8],Lres[9][2];
 double Q[9][9];
 double R[8][8];
 double q[9],nu[8],p[9];

 /* Process Vars */
 int LastRDI_Id = 0;
 int RDI_IdDupCnt = 0;
 int MaxRDI_IdDupCnt = 10;

 int LastGPS_Id = 0;
 int GPS_IdDupCnt = 0;
 int MaxGPS_IdDupCnt = 12;

 int LastMP_Id = 0;
 int MP_IdDupCnt = 0;
 int MaxMP_IdDupCnt = 10;
 // SPK 071806

94

 int LastMP_Error = 0;
 int MP_ErrorCnt = 0;
 int MaxMP_ErrorCnt = 10;

 int LastAnalog_Id = 0;
 int Analog_IdDupCnt = 0;
 int MaxAnalog_IdDupCnt = 10;

 int LastHMR_Id = 0;
 int HMR_IdDupCnt = 0;
 int MaxHMR_IdDupCnt = 10;

 double Coef1;

 Coef1 = 3443.9*(1852.47)*(pi/180.0);
 /*Coef1 = 111318.8938906694;*/

 for(i=1;i<=8;++i)
 {
 for(j=1;j<=8;++j)
 {
 Adt[i][j] = 0.0;
 M[i][j] = 0.0;
 P[i][j] = 0.0;
 Q[i][j] = 0.0;
 I8[i][j] = 0.0;
 }
 }

 for(i=1;i<=8;++i)
 {
 I8[i][i] = 1.0;
 x_bar1[i] = 0.0;
 }

 for(i=1;i<=7;++i)
 {
 for(j=1;j<=7;++j)
 {
 R[i][j] = 0.0;
 }
 }

 for(i=1;i<=7;++i)
 {
 for(j=1;j<=8;++j)
 {
 C[i][j] = 0.0;
 }
 }

 /* Measurement Vector:
 y = [Ug,Vg,psi,r,LatDeg,LongDeg]; */

95

 /* New Measurement Vector:
 y = [Ug,Vg,psi,r,LatDeg,LongDeg,KG_psi];
 KG_psi = Integrted KG_r;

 */

 Hz = 8;
 t = 0.0;
 t_count = 0;
 dt = 1.0/((double) Hz);

 NavErrorfp = fopen("NavError.d","w");
 AbortLogfp = fopen("Abort.Log","w");
 OpenNavDataFile();
 OpenInputFile();

 if((Nav_Shmid = OpenNavShm()) == -1)
 {
 printf("Cannot Attach Nav Shared Memory\n");
 INIT_ERROR = TRUE;
 }

 if((NavFlag_Shmid = OpenNavFlagShm()) == -1)
 {
 printf("Cannot Create NavFlag Shared Memory\n");
 INIT_ERROR = TRUE;
 }

 if((NetFlag_Shmid = OpenNetFlagShm()) == -1)
 {
 printf("Cannot Create NetFlag Shared Memory\n");
 INIT_ERROR = TRUE;
 }

 if((RDI_Shmid = OpenRDIShm()) == -1)
 {
 printf("Cannot Attach RDI Shared Memory\n");
 INIT_ERROR = TRUE;
 }

 if((MP_Shmid = OpenMotPakShm()) == -1)
 {
 printf("Cannot Attach MotPak Shared Memory\n");
 INIT_ERROR = TRUE;
 }

 if((GPS_Shmid = OpenGPSShm()) == -1)
 {
 printf("Cannot Attach GPS Shared Memory\n");

96

 INIT_ERROR = TRUE;
 }

 if((Analog_Shmid = OpenAnalogShm()) == -1)
 {
 printf("Cannot Attach Analog Shared Memory\n");
 INIT_ERROR = TRUE;
 }

 if((Bob_Shmid = OpenBobShm()) == -1)
 {
 printf("Cannot Attach Bob Shared Memory\n");
 INIT_ERROR = TRUE;
 }

 if((HMR_Shmid = OpenHMRShm()) == -1)
 {
 printf("Cannot Attach HMR Shared Memory\n");
 INIT_ERROR = TRUE;
 }

 if(INIT_ERROR) exit(0);

 ResetNavFlagShm(NavFlag_Shmid);

 WriteTacticalMessage(NetFlag_Shmid,"GO");

 /* Get Initialization Values */
 while(TRUE)
 {
 read_status = ReadFromInputFile(&FileString[0]);

 if(read_status > 0)
 {
 sscanf(FileString,"%s",&FileCommand[0]);

 /* Break if End */
 if(!strcmp(FileCommand,"END"))
 {
 break;
 }
 else if(!strcmp(FileCommand,"SET_MAX_DEPTH"))
 {
 sscanf(FileString,"%s %lf",&FileCommand[0],&MaxDepth);
 }
 else if(!strcmp(FileCommand,"SET_GPS_ORIGIN"))
 {
 sscanf(FileString,"%s %lf %lf",&FileCommand[0],
 &Lat0,&Long0);
 /* Convert to dd.dddd */
 LatD = (double) ((int) (Lat0/100.0));
 LongD = (double) ((int) (Long0/100.0));

97

 LatDeg0 = LatD + (Lat0 - LatD*100.0)/60.0;
 LongDeg0 = LongD + (Long0 - LongD*100.0)/60.0;
 }
 else if(!strcmp(FileCommand,"SET_MIN_BATTERY_VOLTAGE"))
 {
 sscanf(FileString,"%s
%lf",&FileCommand[0],&MinBatteryVoltage);
 }
 else if(!strcmp(FileCommand,"SET_MAX_LEAK_VOLTAGE"))
 {
 sscanf(FileString,"%s
%lf",&FileCommand[0],&MaxLeakVoltage);
 }
 else
 {
 printf("FileCommand Not Recognized\n");
 }
 }
 }

 CloseInputFile();

 /* Read Initial Measurement Vector and Wait until RDI_AltRaw is not
equal to 0 - ajh 12/1/04 */
 while(WAIT)
 {

 ReadRDIShm(RDI_Shmid,&RDI_Id,&RDI_Ug,&RDI_Vg,&RDI_Wg,
 &RDI_Uf,&RDI_Vf,&RDI_Wf,
 &RDI_AltRaw,&RDI_Heading,
 &RDI_Error);
 sleep(1);
 if (RDI_AltRaw > 0.0)
 {
 count = count+1;
 }
 if (count == 3)
 {
 WAIT=FALSE;
 }
 }

 LastRDI_Id = RDI_Id;

 /* Read Initial Measurement Vector */

ReadHMRShm(HMR_Shmid,&HMR_Id,&HMR_HeadingRaw,&HMR_Heading,&HMR_Pitch,
 &HMR_Roll,
 &HMR_Error);

 LastHMR_Id = HMR_Id;

 ReadMotPakShm(MP_Shmid,&MP_Id,&MP_phi,&MP_theta,&MP_psi,
 &KG_q,&MP_q,&MP_r,

98

&MP_XAccel,&MP_YAccel,&KG_r,&BatteryVoltageRaw,
 &BatteryVoltage,
 &MP_Error);

 // SPK 09/01/05
 psi = MP_psi;

 LastMP_Id = MP_Id;
 // SPK 071806
 LastMP_Error = MP_Error;

ReadGPSShm(GPS_Shmid,&GPS_Id,&GPS_Signal,&Diff,&NSv,&ToC,&Lat,&LatDeg,
 &Long,&LongDeg,&SbA,&TtTc,&SoG,&Vv,
 &Pdop,&Hdop,&Vdop,&Tdop,&GPS_Error);

 LastGPS_Id = GPS_Id;

 ReadAnalogShm(Analog_Shmid,&Analog_Id,&DepthRaw,&DepthEst,&DepthDot,
 &BowLeakVoltage,&MidLeakVoltage,&SternLeakVoltage,

&v_ls,&v_rs,&v_bvt,&v_svt,&v_blt,&v_slt,&Analog_Error);

 LastAnalog_Id = Analog_Id;

 if(!GPS_Signal)
 {
 /* We Don't have a GPS Signal, Zero GPS_X and GPS_Y */
 GPS_X = 0.0;
 GPS_Y = 0.0;
 }
 else
 {
 GPS_X = Coef1*(LatDeg - LatDeg0);
 GPS_Y = Coef1*(LongDeg - LongDeg0)*cos(DegRad*LatDeg);
 }

 /* Assign Initial Measurement Vector */
 ym[1] = RDI_Ug;

 // SPK 09/01/05
 //ym[2] = RDI_Vg-1.0*KG_r;
 ym[2] = RDI_Vg-1.0*MP_r;

 // SPK 021606: Add delay to ensure we read the latest value from IMU
 sleep(1);
 ym[3] = psi;

 // SPK 09/01/05
 //ym[4] = KG_r; /* Was MP_r */
 ym[4] = MP_r;

99

 ym[5] = GPS_X;
 ym[6] = GPS_Y;

 // SPK 09/01/05
 //ym[7] = KG_psi; /* This is a Virtual Heading Ref. */
 ym[7] = psi;

 /* State Vector:
 x = [NavFil_X NavFil_Y NavFil_psi NavFil_r NavFil_Ug NavFil_Vg
 NavFil_Bias_r NavFil_Bias_psi]; */

 x[1] = ym[5]; /* Initial GPS_X */
 x[2] = ym[6]; /* Initial GPS_Y */
 x[3] = ym[3];
 x[4] = ym[4];
 x[5] = ym[1];
 x[6] = ym[2];
 x[7] = 0.0; /* Bias = 0 at Start */
 x[8] = 0.0; /* Bias = 0 at Start */

 /* Init the State Estimate Vector */

 NavFil_X = x[1];
 NavFil_Y = x[2];
 NavFil_psi = x[3];
 NavFil_r = x[4];
 NavFil_Ug = x[5];
 NavFil_Vg = x[6];
 NavFil_Bias_r = x[7];
 NavFil_Bias_psi = x[8];

 spsi = sin(NavFil_psi);
 cpsi = cos(NavFil_psi);

 Adt[1][3] = (-NavFil_Ug*spsi-NavFil_Vg*cpsi)*dt;
 Adt[1][5] = cpsi*dt;
 Adt[1][6] = -spsi*dt;
 Adt[2][3] = (NavFil_Ug*cpsi-NavFil_Vg*spsi)*dt;
 Adt[2][5] = spsi*dt;
 Adt[2][6] = cpsi*dt;
 Adt[3][4] = 1.0*dt;

 C[1][5] = 1.0;
 C[2][6] = 1.0;
 C[3][3] = 1.0;
 C[3][8] = 1.0; /* 120303 Mod to eliminate Bias learning for Compass
Tests. returned to 1.0 111904 */
 C[4][4] = 1.0;
 C[4][7] = 0.0; // SPK 061406: Force NavFil_Bias_r to 0.0
 C[5][1] = 1.0;
 C[6][2] = 1.0;
 C[7][3] = 0.0; // measurement 7 is not necessary when using the IMU
psi

100

 C[7][8] = 0.0; // measurement 7 is not necessary when using the IMU
psi

 /* q[3] = q[4] = 0.01, q[5] = q[6] = 0.1, q[7] = 0.0 */

 /* Orig Vals returned to original 111904 - ajh

 q[1] = 0.0;
 q[2] = 0.0;
 q[3] = 0.001;
 q[4] = 0.1;
 q[5] = 0.01;
 q[6] = 0.01;
 q[7] = 0.0000001;
 q[8] = 0.000001; */

 /* New Vals */

 q[1] = 0.0; /* variance on LatDeg */
 q[2] = 0.0; /* variance on LongDeg */
 q[3] = 0.001; /* variance on psi, (Radians)^2 returned 111904
ajh */
 q[4] = 0.1; /* variance on r, rad/sec)^2 */
 q[5] = 0.01; /* variance on Ug,(m/sec)^2 */
 q[6] = 0.01; /* variance on Vg,(m/sec)^2 */
 q[7] = 0.0000001; /* variance on NavFil_Bias_r, (Rad/sec) */
 q[8] = 0.0; /* variance on NavFil_Bias_psi (Radians) */

 /* Create Diagonal Q Matrix */
 for(i=1;i<=8;++i)
 {
 Q[i][i] = q[i];
 }

 /* Orig Vals

 // nu[1] = 0.01;
 // nu[2] = 0.01;
 // nu[3] = 0.1;
 // nu[4] = 0.001;
 // nu[5] = 1.0;
 // nu[6] = 1.0; */

 /* New Vals */

 // SPK 081606: Default values
 nu[1] = 0.001;
 nu[2] = 0.0001;
 nu[3] = 0.001;
 nu[4] = 0.001;
 nu[5] = 1.0;

101

 nu[6] = 1.0;
 nu[7] = 1.0;

 // SPK 081606: Set elements of R Matrix based on NSv (as verified by
SRV 08/2006)
 if (NSv <= 3)
 {
 nu[5]=1.0;
 nu[6]=1.0;
 }
 else if (NSv == 4)
 {
 nu[5]=0.1;
 nu[6]=0.1;
 }
 else if (NSv >= 5)
 {
 nu[5]=0.01;
 nu[6]=0.01;
 }

 /* Create Diagonal R Matrix */
 for(i=1;i<=7;++i)
 {
 R[i][i] = nu[i];
 /* R[i][i] = nu[i]; */
 }

 p[1] = 0.01;
 p[2] = 0.01;
 p[3] = 0.01;
 p[4] = 0.01;
 p[5] = 0.01;
 p[6] = 0.01;
 p[7] = 0.01;
 p[8] = 0.01;

 /* Create Diagonal P Matrix */
 for(i=1;i<=8;++i)
 {
 P[i][i] = p[i];
 }

 // SPK 060106: Write initialized values to first line of NavD file
 time_of_day = time(NULL);
 gmtime_r(&time_of_day,&tmbuf);
 ftime(&timebuf);
 Month = tmbuf.tm_mon+1;
 Day = tmbuf.tm_mday;
 Year = tmbuf.tm_year+1900;
 Hour = tmbuf.tm_hour;
 Minute = tmbuf.tm_min;
 Second = ((double) (tmbuf.tm_sec+timebuf.millitm/1000.0));

102

 fprintf(Outfp,"%d %d %d %f %d %f %f %f %d %f %f %f %f %f %f %f %f %f
%f %d %d %d %d %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f
%d %f %f %f %f %d %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f
%f %f %f %f\n",
 Nav_Id,
 Hour,
 Minute,
 Second,
 MP_Id,
 KG_q,
 MP_q,
 MP_r,
 RDI_Id,
 RDI_Ug,
 RDI_Vg,
 RDI_Wg,
 RDI_Uf,
 RDI_Vf,
 RDI_Wf,
 0.0,//RDI_AltRawComp, //SPK: use 0.0 because AltRawComp not
initialized yet
 RDI_AltRaw,//RDI_AltEst, //SPK: use AltRaw because AltEst not
initialized yet
 0.0,//RDI_AltDot, //SPK: use 0.0 because AltDot not
initialized yet
 RDI_Heading,
 GPS_Id,
 GPS_Signal,
 Diff,
 NSv,
 ToC,
 LatDeg,
 LongDeg,
 TtTc,
 DepthRaw,
 DepthEst,
 DepthDot,
 MP_phi,
 MP_theta,
 v_ls,
 v_rs,
 NavFil_X,
 NavFil_Y,
 NavFil_psi,
 NavFil_r,
 NavFil_Ug,
 NavFil_Vg,
 NavFil_Bias_psi,
 NavFil_Bias_r,
 Analog_Id,
 BatteryVoltageRaw,
 BatteryVoltage,
 GPS_X,
 GPS_Y,
 HMR_Id,

103

 HMR_HeadingRaw,
 HMR_Heading,
 HMR_Pitch,
 HMR_Roll,
 KG_r,
 psi,
 Pdop,
 Hdop,
 Vdop,
 Tdop,
 MP_XAccel,
 MP_YAccel,
 P[1][1], // SPK: initial diagonal elements of P matrix
 P[2][2], // SPK: initial diagonal elements of P matrix
 P[3][3], // SPK: initial diagonal elements of P matrix
 P[4][4], // SPK: initial diagonal elements of P matrix
 P[5][5], // SPK: initial diagonal elements of P matrix
 P[6][6], // SPK: initial diagonal elements of P matrix
 P[7][7], // SPK: initial diagonal elements of P matrix
 P[8][8], // SPK: initial diagonal elements of P matrix
 P[1][8], // SPK: initial 1,8 element of P matrix
 P[2][8]);// SPK: initial 2,8 element of P matrix
 // SPK 060106: End write of initialized values to first line of NavD
file

 // SPK 011106: Create channel and connection for timer pulse
 timerChId = ChannelCreate(0);
 timerConId = ConnectAttach(ND_LOCAL_NODE, 0, timerChId,
_NTO_SIDE_CHANNEL, 0);

 /* Get a Proxy for the Timer to Kick */
 // SPK 011106: No longer using the old code (or mig4nto version)
/*
 LoopTimerProxy = qnx_proxy_attach(0, 0, 0, -1);
 if(LoopTimerProxy == -1)
 {
 printf("Unable to Attach Proxy.");
 return;
 }
*/

 /* Attach to the Timer */
 // SPK 011106: Initialize pulse event using Neutrino macro
 // old: event.sigev_signo = -LoopTimerProxy;
 SIGEV_PULSE_INIT(&event, timerConId, getprio(0), Nav_PULSE_CODE, 0
);

 // SPK 010306: Neutrino version returns timer ID in third paramete
 // old: LoopTimerId = timer_create(CLOCK_REALTIME,&event);
 timer_create (CLOCK_REALTIME, &event, &LoopTimerId);
 if(LoopTimerId == -1)
 {
 printf("Unable to Attach Timer.");

104

 return;
 }

 /*
 * 1 nano-seconds before initial firing,
 * 1.0/Hz second repetitive timer afterwards.
 */
 LoopTimer.it_value.tv_sec = 0L;
 LoopTimer.it_value.tv_nsec = 1L;
 LoopTimer.it_interval.tv_sec = 0L;
 /* Convert Hz into NanoSecond Period */
 LoopTimer.it_interval.tv_nsec = (int) (1.0/((float)
Hz)*pow(10.0,9.0));
 timer_settime(LoopTimerId,0,&LoopTimer,NULL);

 while(TRUE)
 {
 /* Wait for the Proxy */
 // SPK 011106: No longer using old code (or mig4nto version)
 //old: Receive(LoopTimerProxy,0,0);
 timerRcvId = MsgReceive(timerChId, &pulseMsg, sizeof(pulseMsg),
NULL);

 // SPK 011106: Can check if timerRcvId == 0 to verify a pulse was
received and
 // can check if pulseMsg.code == Nav_PULSE_CODE to verify it's
from our timer

 /* Do Work */

 expAdt88(&Adt,&phi,8);

 spsi = sin(*(x+3));
 cpsi = cos(*(x+3));

 *(x_bar1+1) = *(x+1) + (*(x+5)*cpsi - *(x+6)*spsi)*dt;
 *(x_bar1+2) = *(x+2) + (*(x+5)*spsi + *(x+6)*cpsi)*dt;
 *(x_bar1+3) = *(x+3) + *(x+4)*dt;
 *(x_bar1+4) = *(x+4);
 *(x_bar1+5) = *(x+5);
 *(x_bar1+6) = *(x+6);
 *(x_bar1+7) = *(x+7);
 *(x_bar1+8) = *(x+8);

 transpose(&phi,&phi_t,8,8);
 AdotB(&P,&phi_t,&Pphi_t,8,8,8);
 AdotB(&phi,&Pphi_t,&phiPphi_t,8,8,8);
 ApmB(&phiPphi_t,&Q,&M,8,8,'+');

 *(yhat+1) = *(x_bar1+5);
 *(yhat+2) = *(x_bar1+6);
 *(yhat+3) = *(x_bar1+3) + *(x_bar1+8);
 *(yhat+4) = *(x_bar1+4) + *(x_bar1+7);
 *(yhat+5) = *(x_bar1+1);

105

 *(yhat+6) = *(x_bar1+2);
 *(yhat+7) = *(x_bar1+3) + *(x_bar1+8);

 for(j=1;j<=7;++j)
 {
 *(ym_prev+j) = *(ym+j);
 }

 ReadRDIShm(RDI_Shmid,&RDI_Id,&RDI_Ug,&RDI_Vg,&RDI_Wg,
 &RDI_Uf,&RDI_Vf,&RDI_Wf,
 &RDI_AltRaw,&RDI_Heading,
 &RDI_Error);

 /* Check for HungUp Process */
 if(RDI_Id == LastRDI_Id)
 {
 ++RDI_IdDupCnt;
 }
 else
 {
 RDI_IdDupCnt = 0;
 }
 if(RDI_IdDupCnt >= MaxRDI_IdDupCnt)
 {
 fprintf(AbortLogfp,"MaxRDI_IdDupCount = %d @ RDI_Id = %d\n",
 RDI_IdDupCnt,RDI_Id);
 fflush(AbortLogfp);
 WriteTacticalMessage(NetFlag_Shmid,"ABORT");
 ABORT_FLAG = TRUE;
 }
 LastRDI_Id = RDI_Id;

 /* psi = RDI_Heading*DegRad; */

 ReadHMRShm(HMR_Shmid,&HMR_Id,&HMR_HeadingRaw,&HMR_Heading,
 &HMR_Pitch,&HMR_Roll,&HMR_Error);

 /* Check for HungUp Process */
 if(HMR_Id == LastHMR_Id)
 {
 ++HMR_IdDupCnt;
 }
 else
 {
 HMR_IdDupCnt = 0;
 }
 if(HMR_IdDupCnt >= MaxHMR_IdDupCnt)
 {
 fprintf(AbortLogfp,"MaxHMR_IdDupCount = %d @ HMR_Id = %d\n",
 HMR_IdDupCnt,HMR_Id);
 fflush(AbortLogfp);
 WriteTacticalMessage(NetFlag_Shmid,"ABORT");
 ABORT_FLAG = TRUE;
 }

106

 LastHMR_Id = HMR_Id;

 /********* This is the New psi for the EKF *******/

 // SPK 09/01/05
 //psi = HMR_Heading*DegRad;

 /* psi = RDI_Heading*DegRad; */

 // SPK 09/01/05
 /* Integrate KG_r to obtain KG_psi */
 //KG_psi = KG_psi + dt*KG_r;

 /* Added to eliminate KG problems 10 Sep 02 */

 /* KG_psi = psi; */

 ReadMotPakShm(MP_Shmid,&MP_Id,&MP_phi,&MP_theta,&MP_psi,
 &KG_q,&MP_q,&MP_r,
 &MP_XAccel,&MP_YAccel,&KG_r,

&BatteryVoltageRaw,&BatteryVoltage,&MP_Error);

 // SPK 09/01/05
 psi = MP_psi;

 /* Bias KG_r */
 /* Perform bias correction in MotPakf.c instead -- SPK 3/22/04
 KG_r = KG_r - 1.219e-4;
 */

 /* Check for HungUp Process */
 if(MP_Id == LastMP_Id)
 {
 ++MP_IdDupCnt;
 }
 else
 {
 MP_IdDupCnt = 0;
 }
 if(MP_IdDupCnt >= MaxMP_IdDupCnt)
 {
 fprintf(AbortLogfp,"MaxMP_IdDupCount = %d @ MP_Id = %d\n",
 MP_IdDupCnt,MP_Id);
 fflush(AbortLogfp);
 WriteTacticalMessage(NetFlag_Shmid,"ABORT");
 ABORT_FLAG = TRUE;
 }
 LastMP_Id = MP_Id;

107

ReadGPSShm(GPS_Shmid,&GPS_Id,&GPS_Signal,&Diff,&NSv,&ToC,&Lat,&LatDeg,
 &Long,&LongDeg,&SbA,&TtTc,&SoG,&Vv,
 &Pdop,&Hdop,&Vdop,&Tdop,&GPS_Error);

 // SPK 081606: Set elements of R Matrix based on NSv (as verified by
SRV 08/2006)
 if (NSv <= 3)
 {
 nu[5]=1.0;
 nu[6]=1.0;
 }
 else if (NSv == 4)
 {
 nu[5]=0.1;
 nu[6]=0.1;
 }
 else if (NSv >= 5)
 {
 nu[5]=0.01;
 nu[6]=0.01;
 }

 /* Update Diagonal R Matrix */
 for(i=1;i<=7;++i)
 {
 R[i][i] = nu[i];
 /* R[i][i] = nu[i]; */
 }

 /* Check for HungUp Process */
 if(GPS_Id == LastGPS_Id)
 {
 ++GPS_IdDupCnt;
 }
 else
 {
 GPS_IdDupCnt = 0;
 }
 if(GPS_IdDupCnt >= MaxGPS_IdDupCnt)
 {
 fprintf(AbortLogfp,"MaxGPS_IdDupCount = %d @ GPS_Id = %d\n",
 GPS_IdDupCnt,GPS_Id);
 fflush(AbortLogfp);
 WriteTacticalMessage(NetFlag_Shmid,"ABORT");
 ABORT_FLAG = TRUE;
 }
 LastGPS_Id = GPS_Id;

 if(!GPS_Signal)
 {
 /* We Don't have a GPS Signal, Zero GPS_X and GPS_Y */
 GPS_X = 0.0;
 GPS_Y = 0.0;
 }

108

 else
 {
 GPS_X = Coef1*(LatDeg - LatDeg0);
 GPS_Y = Coef1*(LongDeg - LongDeg0)*cos(DegRad*LatDeg);
 }

ReadAnalogShm(Analog_Shmid,&Analog_Id,&DepthRaw,&DepthEst,&DepthDot,
 &BowLeakVoltage,&MidLeakVoltage,&SternLeakVoltage,

&v_ls,&v_rs,&v_bvt,&v_svt,&v_blt,&v_slt,&Analog_Error);

 /* Check for HungUp Process */
 if(Analog_Id == LastAnalog_Id)
 {
 ++Analog_IdDupCnt;
 }
 else
 {
 Analog_IdDupCnt = 0;
 }
 if(Analog_IdDupCnt >= MaxAnalog_IdDupCnt)
 {
 fprintf(AbortLogfp,"MaxAnalog_IdDupCount = %d @ Analog_Id =
%d\n",
 Analog_IdDupCnt,Analog_Id);
 fflush(AbortLogfp);
 WriteTacticalMessage(NetFlag_Shmid,"ABORT");
 ABORT_FLAG = TRUE;
 }
 LastAnalog_Id = Analog_Id;

 /* Assign the Measurements */
 *(ym+1) = RDI_Ug;

 // SPK 09/01/05
 //*(ym+2) = RDI_Vg-1.0*KG_r; /* This Takes into Account the RDI
Offset */
 *(ym+2) = RDI_Vg-1.0*MP_r;

 *(ym+3) = psi;

 // SPK 09/01/05
 //*(ym+4) = KG_r; /* Was MP_r */
 *(ym+4) = MP_r;

 *(ym+5) = GPS_X;
 *(ym+6) = GPS_Y;

 // SPK 09/01/05
 //*(ym+7) = KG_psi; /* This is a Virtual Heading Ref. */
 *(ym+7) = psi;

 for(j=1;j<=7;++j)

109

 {
 res[j][1] = *(ym+j) - *(yhat+j);
 }

 /* To Kill Spikes from RDI */

 /* Ug & Vg */
 for(k=1;k<=2;++k)
 {
 if((*(ym+k) == *(ym_prev+k)) || (fabs(*(ym+k)) > 5.0)
 || (*(ym+k) == 0.0))
 {
 for(j=1;j<=8;++j)
 {
 C[k][j] = 0.0;
 }
 }
 }

 /* Check Psi & r */
 for(k=3;k<=4;++k)
 {
 if(fabs(*(ym+k) - *(ym_prev+k)) < 0.000001)
 {
 for(j=1;j<=8;++j)
 {
 C[k][j] = 0.0;
 }
 }
 }

 /* Check X & Y */
 for(k=5;k<=6;++k)
 {
 if(fabs(*(ym+k) - *(ym_prev+k)) < 0.000001)
 {
 for(j=1;j<=8;++j)
 {
 C[k][j] = 0.0;
 }
 }
 }

 if(!GPS_Signal)
 {
 /* We Don't a GPS Signal, Zero the Rows */
 for(k=5;k<=6;++k)
 {
 for(j=1;j<=8;++j)
 {
 C[k][j] = 0.0;
 }
 }
 }

110

 transpose(&C,&C_t,7,8);

 AdotB(&M,&C_t,&MC_t,8,8,7);
 AdotB(&C,&MC_t,&CMC_t,7,8,7);
 ApmB(&CMC_t,&R,&CMCR,7,7,'+');
 inv(&CMCR,&CMCRI,7);
 AdotB(&MC_t,&CMCRI,&L,8,7,7);

 AdotB(&L,&C,&LC,8,7,8);
 ApmB(&I8,&LC,&ImLC,8,8,'-');
 AdotB(&ImLC,&M,&P,8,8,8);

 // SPK 11/21/05: store diagonal elements of P matrix
 for(ip=1;ip<=8;ip++)
 {
 P_diag_out[ip] = P[ip][ip];
 }

 // SPK 04/17/06: store elements 1,8 and 2,8 of P matrix
 P_1_8_out = P[1][8];
 P_2_8_out = P[2][8];

 AdotB(&L,&res,&Lres,8,7,1);
 for(j=1;j<=8;++j)
 {
 *(x+j) = *(x_bar1+j) + Lres[j][1];
 }

 // SPK 052406: Force NavFil_Bias_r to 0.0
 // SPK 061406: Undo this change and do it by zeroing the C-Matrix
elements
 //*(x+7) = 0.0;

 spsi = sin(*(x+3));
 cpsi = cos(*(x+3));

 Adt[1][3] = (-(*(x+5)*spsi)-(*(x+6))*cpsi)*dt;
 Adt[1][5] = cpsi*dt;
 Adt[1][6] = -spsi*dt;
 Adt[2][3] = (*(x+5)*cpsi - (*(x+6))*spsi)*dt;
 Adt[2][5] = spsi*dt;
 Adt[2][6] = cpsi*dt;
 Adt[3][4] = 1.0*dt;

 C[1][5] = 1.0;
 C[2][6] = 1.0;
 C[3][3] = 1.0;
 C[3][8] = 1.0; /* Turn on Bias learning 090105 ajh */

 C[4][4] = 1.0;
 C[4][7] = 0.0; // SPK 061406: Force NavFil_Bias_r to 0.0
 C[5][1] = 1.0;

111

 C[6][2] = 1.0;

 // SPK 09/01/05
 //C[7][3] = 1.0;
 C[7][3] = 0.0;
 C[7][8] = 0.0; /* Mod to turn off Bias learning 050405 ajh */

 NavFil_X = *(x+1);
 NavFil_Y = *(x+2);
 NavFil_psi = *(x+3);
 NavFil_r = *(x+4);
 NavFil_Ug = *(x+5);
 NavFil_Vg = *(x+6);
 NavFil_Bias_r = *(x+7);
 NavFil_Bias_psi = *(x+8);

 /* Compensate for Pitch & Roll */
 PrevRDI_AltRawComp = RDI_AltRawComp;
 RDI_AltRawComp = RDI_AltRaw*cos(MP_phi)*cos(MP_theta);

 /* Check for Sequential Zeros */
 if(RDI_AltRawComp == 0.0)
 {
 ++AltZeroCount;
 if(AltZeroCount<24)
 {
 SKIP_KALMAN = TRUE;
 RDI_AltDot = 0.0;
 }
 else
 {
 /* Too many Seqential Holidays */
 /* KALMAN_ABORT_FLAG = TRUE; */
 SKIP_KALMAN = TRUE;
 }
 }
 else
 {
 AltZeroCount = 0;
 if(PrevRDI_AltRawComp == 0.0)
 {
 SKIP_KALMAN = FALSE;
 KALMAN_INIT = TRUE;
 }
 }

 /* AltEst and Alt_dot are Filtered Outputs from the Kalman Filter
*/
 if(!SKIP_KALMAN)
 {

AltitudeKalman(RDI_AltRawComp,&RDI_AltEst,&RDI_AltDot,&KALMAN_ABORT_FLA
G);
 }

112

 if(KALMAN_ABORT_FLAG == TRUE)
 {
 if(ABORT_FLAG == FALSE)
 {
 WriteTacticalMessage(NetFlag_Shmid,"ABORT");
 fprintf(AbortLogfp,
 "Abort Due to Unstable Altitude Kalman Filter\n");
 fprintf(AbortLogfp,"RDI_AltRaw = %f\n",RDI_AltRaw);
 fprintf(AbortLogfp,"RDI_AltEst = %f\n",RDI_AltEst);
 fflush(AbortLogfp);
 ABORT_FLAG = TRUE;
 }
 }

 if((DepthRaw > MaxDepth) || (DepthEst > MaxDepth))
 {
 if(ABORT_FLAG == FALSE)
 {
 WriteTacticalMessage(NetFlag_Shmid,"ABORT");
 fprintf(AbortLogfp,"Abort Due to Exceeding MaxDepth =
%f\n",MaxDepth);
 fprintf(AbortLogfp,"DepthRaw = %f\n",DepthRaw);
 fprintf(AbortLogfp,"DepthEst = %f\n",DepthEst);
 fflush(AbortLogfp);
 ABORT_FLAG = TRUE;
 }
 }

 if(BatteryVoltage < MinBatteryVoltage)
 {
 if(ABORT_FLAG == FALSE)
 {
 WriteTacticalMessage(NetFlag_Shmid,"ABORT");
 fprintf(AbortLogfp,
 "Abort Since Below Minimum Battery Voltage = %f\n",
 MinBatteryVoltage);
 fprintf(AbortLogfp,"BatteryVoltage = %f\n",BatteryVoltage);
 fflush(AbortLogfp);
 ABORT_FLAG = TRUE;
 }
 }

 if(BowLeakVoltage > MaxLeakVoltage)
 {
 if(ABORT_FLAG == FALSE)
 {
 WriteTacticalMessage(NetFlag_Shmid,"ABORT");
 fprintf(AbortLogfp,"Abort Due to Leak in Bow
Compartment\n");
 fprintf(AbortLogfp,"BowLeakVoltage = %f\n",BowLeakVoltage);
 fflush(AbortLogfp);
 ABORT_FLAG = TRUE;
 }
 }

113

 if(MidLeakVoltage > MaxLeakVoltage)
 {
 if(ABORT_FLAG == FALSE)
 {
 WriteTacticalMessage(NetFlag_Shmid,"ABORT");
 fprintf(AbortLogfp,"Abort Due to Leak in Mid
Compartment\n");
 fprintf(AbortLogfp,"MidLeakVoltage = %f\n",MidLeakVoltage);
 fflush(AbortLogfp);
 ABORT_FLAG = TRUE;
 }
 }

 if(SternLeakVoltage > MaxLeakVoltage)
 {
 if(ABORT_FLAG == FALSE)
 {
 WriteTacticalMessage(NetFlag_Shmid,"ABORT");
 fprintf(AbortLogfp,"Abort Due to Leak in Stern
Compartment\n");
 fprintf(AbortLogfp,"SternLeakVoltage =
%f\n",SternLeakVoltage);
 fflush(AbortLogfp);
 ABORT_FLAG = TRUE;
 }
 }

 /* After setting Time using date Execute

 rtc -s -l hw

 */

 time_of_day = time(NULL);

 // SPK 010306: Neutrino uses gmtime_r() instead of _gmtime()
 // old: _gmtime(&time_of_day,&tmbuf);
 gmtime_r(&time_of_day,&tmbuf);
 ftime(&timebuf);
 Month = tmbuf.tm_mon+1;
 Day = tmbuf.tm_mday;
 Year = tmbuf.tm_year+1900;
 Hour = tmbuf.tm_hour;
 Minute = tmbuf.tm_min;
 Second = ((double) (tmbuf.tm_sec+timebuf.millitm/1000.0));

 WriteBobShm(Bob_Shmid,Month,Day,Year,Hour,Minute,Second,

NavFil_X,NavFil_Y,DepthEst,RDI_AltEst,GPS_Signal,
 LatDeg0,LongDeg0,HMR_Heading);

114

 /* Write Estimates and Direct Measurements Here */
 WriteNavShm(Nav_Shmid,
 Nav_Id,
 Month,Day,Year,Hour,Minute,Second,
 NavFil_X,
 NavFil_Y,
 DepthEst,
 RDI_AltEst,
 MP_phi,
 MP_theta,
 NavFil_psi,
 NavFil_Ug,
 NavFil_Vg,
 DepthDot,
 RDI_AltDot,
 KG_q,
 MP_q,
 NavFil_r,
 NavFil_Bias_psi,
 NavFil_Bias_r,
 Diff,
 NSv,
 LatDeg,
 LongDeg,
 TtTc,
 v_ls,
 v_rs,
 v_bvt,
 v_svt,
 v_blt,
 v_slt,
 Lat0,
 Long0,
 Nav_Error);

 fprintf(Outfp,"%d %d %d %f %d %f %f %f %d %f %f %f %f %f %f %f %f
%f %f %d %d %d %d %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f
%f %d %f %f %f %f %d %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f %f
%f %f %f %f %f\n",
 Nav_Id,
 Hour,
 Minute,
 Second,
 MP_Id,
 KG_q,
 MP_q,
 MP_r,
 RDI_Id,
 RDI_Ug,
 RDI_Vg,
 RDI_Wg,
 RDI_Uf,
 RDI_Vf,
 RDI_Wf,

115

 RDI_AltRawComp,
 RDI_AltEst,
 RDI_AltDot,
 RDI_Heading,
 GPS_Id,
 GPS_Signal,
 Diff,
 NSv,
 ToC,
 LatDeg,
 LongDeg,
 TtTc,
 DepthRaw,
 DepthEst,
 DepthDot,
 MP_phi,
 MP_theta,
 v_ls,
 v_rs,
 NavFil_X,
 NavFil_Y,
 NavFil_psi,
 NavFil_r,
 NavFil_Ug,
 NavFil_Vg,
 NavFil_Bias_psi,
 NavFil_Bias_r,
 Analog_Id,
 BatteryVoltageRaw,
 BatteryVoltage,
 GPS_X,
 GPS_Y,
 HMR_Id,
 HMR_HeadingRaw,
 HMR_Heading,
 HMR_Pitch,
 HMR_Roll,
 KG_r,

 // SPK 09/01/05
 //KG_psi,
 psi,

 Pdop,
 Hdop,
 Vdop,
 Tdop,

 // SPK 10/24/05
 MP_XAccel,
 MP_YAccel,

 // SPK 11/22/05
 P_diag_out[1],
 P_diag_out[2],

116

 P_diag_out[3],
 P_diag_out[4],
 P_diag_out[5],
 P_diag_out[6],
 P_diag_out[7],
 P_diag_out[8],

 // SPK 04/17/06
 P_1_8_out,
 P_2_8_out);

 ReadNavFlagShm(NavFlag_Shmid,&Nav_Kill);
 if(Nav_Kill) break;

 /* Don't Stop Navigator if ABORT */
 /*if(ABORT_FLAG) break; */

 if(Nav_Id>65534)
 {
 Nav_Id = 0;
 }
 ++Nav_Id;

 ++t_count;
 if(t_count == Hz) t_count = 0;
 t = (double) (t_count*dt);
 }

 /* Clear Pending Proxies */
 // SPK 010906: Neutrino equivalent is MsgReceive, preceeded
 // immediately by special timer code; but this requires
 // a channel ID vice a process ID; for now, just use
 // qnx_proxy_detach()
 // old: while(Creceive(LoopTimerProxy,0,0) == LoopTimerProxy);
 // SPK 011106: No longer using old code (or mig4nto version)
 //replace: qnx_proxy_detach(LoopTimerProxy);
 ConnectDetach(timerConId);

 /* Get Rid of the Timer */
 timer_delete(LoopTimerId);

 CloseNavDataFile();
 fclose(AbortLogfp);
 CloseNavShm(Nav_Shmid);
 CloseNavFlagShm(NavFlag_Shmid);
 CloseNetFlagShm(NetFlag_Shmid);
 CloseRDIShm(RDI_Shmid);
 CloseMotPakShm(MP_Shmid);
 CloseGPSShm(GPS_Shmid);
 CloseAnalogShm(Analog_Shmid);
 CloseBobShm(Bob_Shmid);
 CloseHMRShm(HMR_Shmid);
}

117

LIST OF REFERENCES

Bar-Shalom, Y., Rong Li, X., and Kirubarajan, T., Estimation with Applications to
Tracking and Navigation, John Wiley & Sons, 2001.

Busse, F., How, J, and Simpson, J., “Demonstration of Adaptive Extended Kalman Filter

for Low Earth Orbit Formation Estimation Using CDGPS,” paper presented at the
Institute of Navigation GPS Meeting, Portland, OR, September 2002.

Department of the Navy (2004). The Navy Unmanned Undersea Vehicle (UUV) Master

Plan. Retrieved March 26, 2006 from
www.chinfo.navy.mil/navpalib/technology/uuvmp.pdf.

Julier, S. J. and Uhlmann, J. K., "A New Extension of the Kalman Filter to nonlinear

systems," in Proceedings of AeroSense: The 11th International Symposium on
Aerospace / Defence Sensing, Simulation and Controls, vol. Multi Sensor Fusion,
Tracking and Resource Management II, 1997.

Healey, A. J., Dynamics of Marine Vehicles (MA-4823), Class Notes, Naval Postgraduate

School, Monterey, CA, 1995.

Healey, A. J., Center for AUV Research Presentation, Naval Postgraduate School,

Monterey, CA, 2006.

Kragelund, S., Re: Hardware Installation. Available e-mail: from spkragel@nps.edu, 13

November 2006.

Marco, D. B. and Healey, A.J., "Command, control, and navigation experimental results

with the NPS ARIES AUV," Oceanic Engineering, IEEE Journal of , vol.26, no.4,
pp. 466-476, October 2001.

Mehra, R. K., “On the Identification of Variances and Adaptive Kalman Filtering,” IEEE

Transactions on Automatic Control, Vol AC-15, No. 2, pp. 175-184, April 1970.

Myers, K. A. and Tapley, B. D., “Adaptive Sequential Estimation with Unknown Noise

Statistics,” IEEE Transactions on Automatic Control, pp. 520-523, August 1976.

Roth, F., “Strapdown Inertial Navigation for Ground Penetrating Radar Data Acquisition:

Theory and Experiments,” Master’s Thesis, Colorado School of Mines, Golden,
Colorado, 1999.

Siouris, G., Aerospace Avionics Systems: A Modern Synthesis, Academic Press, 1993.

118

Yakimenko, O. A., Marine Navigation (MA-4821), Class Notes, Naval Postgraduate
School, Monterey, CA, 2006.

119

BIBLIOGRAPHY

Arulampalam, M. S., Maskell, S., Gordon, N., Clapp, T., "A tutorial on particle filters for
online nonlinear/non-Gaussian Bayesian tracking," Signal Processing, IEEE
Transactions on, vol.50, no.2, pp.174-188, February 2002.

Cambrideg University Engineering Department Technical Report 380, The Unscented

Particle Filter, by R. van der Merwe, A. Doucet, N. de Freitas, and E. Wan, 16
April 2000.

Choi, J., Bouchard, M., Hin Yeap, T., Kwon, O., “A Derivative-Free Kalman Filter for

Parameter Estimation of Recurrent Neural Networks and Its Applications to
Nonlinear Channel Equalization” paper presented at the Fourth International ICSC
Symposium on Engineering of Intelligent Systems, February 29 – March 2, 2004.

Healey, A. J., An, E. P., Marco, D.B., "Online compensation of heading sensor bias for

low cost AUVs," Autonomous Underwater Vehicles, 1998. AUV'98. Proceedings Of
The 1998 Workshop on , pp.35-42, 20-21 August 1998

Jetto, L., and Longhi, S., “Development and Experimental Validation of an Adaptive
Extended Kalman Filter for the Localization of Mobile Robots,” IEEE
Transactions on Robotics and Automation, Vol. 15, No. 2, pp. 219-229, April
1999.

MIT Marine Robotics Laboratory Technical Memorandum 98-1, Autonomous

Underwater Vehicle Navigation, by J. J. Leonard, A. A. Bennett, C. M. Smith, H. J.
S. Feder, 1 August 1998.

Noriega, G., and Pasupathy, S., “Adaptive Estimation of Noise Covariance Matrices in

Real-Time Preprocessing of Geophysical Data,” IEEE Transactions on
GEOSCIENCE and Remote Sensing, Vol. 35, No. 5, pp. 1146-1159, September
1997.

Ristic, B., Arulampalam, S., Gordon, N., Beyond the Kalman Filter: Particle Filters for

Tracking Applications, Artech House Radar Library, 2004.

Valappil, J., and Georgakis, C., “Systematic Estimation of State Noise Statistics for

Extended Kalman Filters,” American Institute of Chemical Engineers Journal, Vol.
46, No. 2, pp. 292-308, February 2000.

120

THIS PAGE INTENTIONALLY LEFT BLANK

121

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library

Naval Postgraduate School
Monterey, California

3. Mechanical Engineering Department Chairman, Code ME

Naval Postgraduate School
Monterey, California

4. Mechanical Engineering Curriculum, Code 34
Naval Postgraduate School
Monterey, California

5. Professor Anthony J. Healey, Code ME/HY
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, California

6. CAPT J. W. Nicholson

Department of Weapons and Systems Engineering
United States Naval Academy
Annapolis, Maryland

7. Dr. Kwang Sub Song, Code ME/SO

Department of Mechanical Engineering
Naval Postgraduate School
Monterey, California

8. Dr. Tom Swean, Code 32

Office of Naval Research
Arlington, Viginia

9. Mr. Scott Willcox

Bluefin Robotics
Cambridge, Massachusetts

10. Dr. Chris von Alt

Hyrdoid, Inc.
Pocasset, Massachusetts

122

11. LCDR Steve Vonheeder
Puget Sound Naval Shipyard
Bremerton, Washington

