

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

REACTIVE OBSTACLE AVOIDANCE FOR THE REMUS
AUTONOMOUS UNDERWATER VEHICLE UTILIZING A

FORWARD LOOKING SONAR

by

Tyler H. Furukawa

June 2006

 Thesis Advisor: Anthony J. Healey
 Second Reader: Douglas Horner

Approved for public release; distribution is unlimited

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
June 2006

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Reactive Obstacle Avoidance for the REMUS
Autonomous Underwater Vehicle Utilizing a Forward Looking Sonar
6. AUTHOR(S) Tyler H. Furukawa

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release, distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
One day fully autonomous AUV’s will no longer require human interactions to complete its missions. To

make this a reality, the AUV must be able to safely navigate in unfamiliar environments with unknown obstacles.
This thesis builds on previous work conducted at NPS’s Center for AUV Research to improve the autonomy of the
REMUS class of AUVs with an implemented FLS. The first part of this thesis deals with accurate path following
with the use of look-ahead pitch calculations. With the use of a SIMULINK model, constraints surrounding
obstacle avoidance path planning are then explored, focusing on optimal sensor orientation issues. Two path
planning methods are developed to address the issues of a limited sonar field of view and uncertainties brought on
by an occlusion area. The first approach utilizes a pop-up maneuver to increase the field of view and minimize the
occlusion area, while the second approach creates a path with the addition of a spline. Comparing the two
methods, it was concluded that spline addition planner provided a robust optimal obstacle avoidance path and
along with the look-ahead pitch controller completes the design of a “back-seat driver” to improve REMUS’s
survivability in an unknown environment.

15. NUMBER OF
PAGES

79

14. SUBJECT TERMS REMUS, AUV, UUV, Autonomous Underwater Vehicle, Reactive Obstacle
Avoidance, Forward Looking Sonar, Vertical Plane, Pitch Controller, Spline, Gaussian, Occlusion,
Optimal Sensor Orientation

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 i

THIS PAGE INTENTIONALLY LEFT BLANK

 ii

Approved for public release; distribution is unlimited

REACTIVE OBSTACLE AVOIDANCE FOR THE REMUS AUTONOMOUS
UNDERWATER VEHICLE UTILIZING A FORWARD LOOKING SONAR

Tyler H. Furukawa
Lieutenant, United States Navy

B.S., University of Washington, 2001

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
June 2006

Author: Tyler H. Furukawa

Approved by: Anthony J. Healey

Thesis Advisor

Douglas P. Horner
Second Reader

Anthony J. Healey
Chairman, Department of Mechanical & Astronautical Engineering

 iii

THIS PAGE INTENTIONALLY LEFT BLANK

 iv

ABSTRACT

One day fully autonomous AUV’s will no longer require human interactions to

complete its missions. To make this a reality, the AUV must be able to safely navigate in

unfamiliar environments with unknown obstacles. This thesis builds on previous work

conducted at NPS’s Center for AUV Research to improve the autonomy of the REMUS

class of AUVs with an implemented FLS. The first part of this thesis deals with accurate

path following with the use of look-ahead pitch calculations. With the use of a

SIMULINK model, constraints surrounding obstacle avoidance path planning are then

explored, focusing on optimal sensor orientation issues. Two path planning methods are

developed to address the issues of a limited sonar field of view and uncertainties brought

on by an occlusion area. The first approach utilizes a pop-up maneuver to increase the

field of view and minimize the occlusion area, while the second approach creates a path

with the addition of a spline. Comparing the two methods, it was concluded that spline

addition planner provided a robust optimal obstacle avoidance path and along with the

look-ahead pitch controller completes the design of a “back-seat driver” to improve

REMUS’s survivability in an unknown environment.

 v

THIS PAGE INTENTIONALLY LEFT BLANK

 vi

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND ..1
B. PLATFORM...1

1. REMUS ...1
2. Forward Looking Sonar (FLS) ...2

C. MOTIVATION ..3
D. PREVIOUS RESEARCH..4
E. APPROACH...4

II. VEHICLE KINEMATICS AND DYNAMICS ...7
A. ASSUMPTIONS...7
B. EQUATIONS OF MOTION...7
C. VERTICAL PLANE SIMPLIFICATIONS ..8
D. MATRIX FORM..9

III. PATH FOLLOWING CONTROLLER ..11
A. PITCH CONTROLLER ...11
B. SIMULINK MODEL...12
C. PATH FOLLOWING SIMULATIONS ..13
D. REMOVING THE LAG ...17

1. Including the Path’s Slope...17
2. Include a “Look Ahead”..20

IV. OPTIMAL SENSOR ORIENTATION FOR OBSTACLE AVOIDANCE
PLANNING ..25
A. PATH PLANNING STRATEGY ...25
B. MODELING...26

1. Environment...26
2. Sonar ...27

C. FLS ORIENTATION ISSUES..29
1. Limited Field of View ..29
2. Occlusion Areas..30

V. OPTIMAL REACTIVE OBSTACLE AVOIDANCE..33
A. GAUSSIAN POP-UP ...33
B. SPLINE ADDITION..36
C. APPROACH COMPARISON ..42

VI. CONCLUSIONS AND RECOMMENDATIONS...45
A. CONCLUSIONS ..45
B. RECOMMENDATIONS...45

APPENDIX. MATLAB CODE..47

LIST OF REFERENCES..61

INITIAL DISTRIBUTION LIST ...63

 vii

THIS PAGE INTENTIONALLY LEFT BLANK

 viii

LIST OF FIGURES

Figure 1. REMUS 100 (From: www.hydroidinc.com June 2006)1
Figure 2. REMUS with BlueView’s ProViewer 450-15 Acoustic Sonar3
Figure 3. REMUS’s Control Architecture...5
Figure 4. Coordinate System with Euler Angle Transformations (From: [7])7
Figure 5. Definitions for Pitch Command Calculation..11
Figure 6. SIMULINK Model...12
Figure 7. Gaussian Function (After: www.mathworld.com May 2006)14
Figure 8. Ordered Versus Actual...15
Figure 9. Ordered Pitch, Actual Pitch, Stern Plane Deflection in Degrees.....................15
Figure 10. Vertical Error ...16
Figure 11. Total Vertical Error..17
Figure 12. Slope Addition Definitions ..18
Figure 13. Order versus Actual with Slope ...18
Figure 14. Ordered Pitch, Actual Pitch, Plane Deflection with Slope19
Figure 15. Vertical Error with Slope ...19
Figure 16. Total Vertical Error with Slope..20
Figure 17. Look ahead Definitions..21
Figure 18. Ordered vs. Actual with Look Ahead ..23
Figure 19. Vertical Error with Look Ahead ..23
Figure 20. Total Vertical Error w/Look Ahead...24
Figure 21. Ocean Model with One Sea Wall...26
Figure 22. Ocean Model with Two Sea Walls ..27
Figure 23. 2-D Field of View for REMUS..27
Figure 24. Simulated Sonar Image of an Ocean Floor ..28
Figure 25. Simulated Sonar Image of a Sea Wall and Occlusion28
Figure 26. Stills from a Video Generated by “Sonar_Moving” Matlab Model29
Figure 27. REMUS Unable to See Entire Obstacle...30
Figure 28. Stills Showing Occlusion Problem ..30
Figure 29. The “Pop-Up” Methodology..33
Figure 30. Height Determination and Occlusion Minimization using a Gaussian Pop-

Up...34
Figure 31. Response to Pop-Up...35
Figure 32. Spline Addition Methodology ...37
Figure 33. Height Determination for the Spline Method ..38
Figure 34. Occlusion Look and Obstacle Detection..38
Figure 35. Spline Calculations ..39
Figure 36. Ordered and Actual Vehicle Response Using the Spline Method40
Figure 37. Enlarged Spline Portion ...41

 ix

THIS PAGE INTENTIONALLY LEFT BLANK

 x

LIST OF TABLES

Table 1. REMUS Specifications (After: www.hydroidinc.com June 2006)....................2
Table 2. ProViewer 450-15 Specification (From: www.blueviewtech.com June

2006) ..3
Table 3. Errors at Various Look Ahead Distances...22
Table 4. Summarization of Controller Errors (Meters)..24
Table 5. Comparison Metrics...42

 xi

THIS PAGE INTENTIONALLY LEFT BLANK

 xii

ACKNOWLEDGMENTS

I would like to thank Professor Anthony Healey and Doug Horner for their

guidance, assistance and expertise in a field of unlimited potential. Their enthusiasm on

the subject provided an enlightening learning environment and proved they “have the

coolest toys in the department”.

 xiii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiv

I. INTRODUCTION

A. BACKGROUND
Autonomous Underwater Vehicles (AUVs) provide the Navy with unlimited

potential. According to the Office of Naval Research’s (ONR) Future Naval Capabilities

program, AUVs will someday provide Maritime Reconnaissance, Submarine Track and

Trail, Communication/Navigation Aid, and Undersea Search and Survey without direct

human control [1]. A preview of this technology took place in April 2003 with the

deployment of the Remote Environmental Monitoring Units (REMUS), a class of AUVs,

in the Iraqi Port of Umm Qasr [2]. This first-ever intelligence gathering mission in

hostile waters, aided in allowing 232 tons of critically needed food, water, blankets and

other supplies to reach Iraqi civilians. According to Ken Jordan, the president of Hydroid

(www.hydroidinc.com June 2006), the Navy’s main benefit is the possibility for valuable

resources such as human divers or multi-million dollar equipment to be replaced with a

$250,000 vehicle which is undeterred by cold temperatures, murky waters, sharks or

hunger. In order to make this a reality, the vehicle must be fully autonomous and require

no human interaction to accomplish its mission in the presence of known and unknown

obstacles.

B. PLATFORM

1. REMUS
The REMUS class of AUVs is the product of over 10 years of leading edge

research and development by Woods Hole Oceanographic Institute and later the spin-off

company, Hydroid LLC.

Figure 1. REMUS 100 (From: www.hydroidinc.com June 2006)

1

http://www.hydroidinc.com/
http://www.hydroidinc.com/

It is a compact, light-weight, autonomous underwater vehicle designed for operation in

coastal environments up to 100 meters in depth. Only 67 inches long, 7.5 inches in

diameter and weighing less than 80 lbs, the REMUS can be easily transported worldwide

and deployed by a two-man team. Its list of applications include hydrographic surveying,

harbor security operations, environmental monitoring, search and salvage operations, and

fishery operations. For the United State’s Navy, REMUS is the instrument of choice for

shallow water mine counter measure operations due to its system features, ease of

operations, and proven reliability.

Maximum Diameter: 19 cm (7.5 in)

Maximum Length: 160 cm (63 in)

Weight In Air: 37 kg (< 80 lbs)

Trim Weight: 1 kg

Max Depth 100 m (328 ft)

Energy: 1 kw-hr internally rechargeable Lithium ion

22 hrs at 1.5 m/s (3 knots)
>8 hrs at 2.6 m/s (5 knots)

Propulsion: DC brushless motor to open 3-bladed prop

Control: 2 coupled yaw and pitch fins

Long baseline (LBL)
Ultra short baseline (USBL)
Doppler-assisted dead reckoning

Acoustic Doppler Current Profiler (ADCP)
Doppler Velocity Log (DVL)
Side Scan Sonar
Conductivity & Temperature
Pressure

Endurance:

Navigation:

Standard Sensors:

Table 1. REMUS Specifications (After: www.hydroidinc.com June 2006)

2. Forward Looking Sonar (FLS)
In November 2005, the Center for AUV Research’s REMUS at the Naval Post

Graduate School’s (NPS) was fitted with a ProViewer 450-15 multi-beam sonar

manufactured by Blue View Technologies (www.blueviewtech.com June 2006).

2

http://www.hydroidinc.com/
http://www.blueviewtech.com/

Vertical Staves

Figure 2. REMUS with BlueView’s ProViewer 450-15 Acoustic Sonar

The ProViewer is a high performance acoustic imaging device that bounces sound

waves off the ocean floor and objects within its insonified volume and turns them into

two-dimensional digital images. The unit can be either mounted horizontally or

vertically and the real-time streaming sonar images are rapidly updated for use in

applications such as underwater inspection, search and recovery, port security, and fish

tracking.

Range: 5 to 450ft
Update Rate: Up to 10Hz
Transducter: 450 KHz
Field of View: 50°
Beam Width: 1° x 15° nominal
Range Resolution: 2 in
Depth Rating: Up to 300ft deep
Power: 10 Watts @ 9-36 VDC
Comms Interface: USB 1.1
Software: Runs on Windows (2000/XP)

Table 2. ProViewer 450-15 Specification (From: www.blueviewtech.com June
2006)

The ProViewer is mounted vertically and positioned in a “forward looking”

manner on REMUS. The forward looking sonar (FLS) easily detects and tracks targets in

dynamic conditions and is the vehicle’s primary sensor for obstacle avoidance.

C. MOTIVATION
For current REMUS missions, a predetermined path is entered beforehand into the

vehicle by means of waypoints. An altitude control “auto-pilot” steers the vehicle to the

3

http://www.blueviewtech.com/

path set forth by these waypoints as it gathers information about the environment.

Although this approach may seem autonomous, it is limited to known static

environments. It is similar to telling a car where and when to turn based on a satellite

snap shot of the terrain, without taking into account traffic, pedestrians or changing light

signals that may occur during the trip. The introduction of unknown variables into the

environment severely degraded the likelihood of a successful pre-planned mission. Since

most REMUS operations will take place in the ever-changing littoral waters, it is

imperative that the vehicle be able to react to an unknown environment

D. PREVIOUS RESEARCH

This thesis expands on previous research work that has been conducted at the

NPS Center for AUV Research dealing with the autonomy issues of REMUS. Healey

has shown that the REMUS’s normal altitude control “auto-pilot,” using only the RDI

Doppler Velocity Log, is unable to maintain a safe altitude over sharp rises in the ocean

floor of 45 degrees or greater [5]. In anticipation to its installment on REMUS. Churan

[6] and Hemminger [7] both looked into using a FLS for obstacle avoidance in the

vertical plane. Churan studied the use of a “danger bearing” algorithm, while

Hemminger looked into the use of a Gaussian-based additive function for obstacle

avoidance. Although both provide a reasonable solution to sharp rises in the ocean floor

or objects protruding off the bottom, little or no emphasis is placed on sensor orientation

for optimal obstacle path planning.

E. APPROACH
This thesis explores the issues surrounding the development of obstacle avoidance

for the REMUS class of AUVs. The goal is to design a “back-seat driver” to work in

conjunction with the current onboard altitude control “auto-pilot” to safely navigate the

vehicle in the presence of previously unknown obstacle and threats.

4

OA Path
Planner

Obstacle
Avoidance

Path-
Following
Controller

Sonar Data

Autopilot
Obstacle??

Yes

Fixed
Altitude

No

Back-Seat Driver

Figure 3. REMUS’s Control Architecture

The back-seat driver consisting of a path generator and path-following controller

would over-ride the normal configured autopilot when an obstacle is detected. Ideally,

the path generator takes the information gathered by its FLS, provides an optimal path to

avoid the detected obstacle, and then the vertical pitch controller follows the path with as

little error as possible.

The first part of the thesis is the design of an accurate path-following controller by

using the equations of motions (EOM) previously derived by Healey [8] to model

REMUS’s pitch response to stern plane deflections. Next, using a FLS model and

simulated hazardous two-dimensional ocean environments, optimal vehicle sensor

orientation with regards to obstacle avoidance planning is defined; and issues regarding

obstacle height determination and occlusion areas are shown. An occlusion area is a

portion of the normal insonified region that goes “unseen” by the sonar and is created

when an obstacle blocks the sonar’s acoustic waves from “seeing” behind it.

Two approaches are presented to maximize the information gathered about the

environment by optimally positioning the vehicle to increase the FLS’s field of view.

The first approach utilizes an initial pop-up maneuver to determine the obstacle’s height

and minimize the occlusion area, which enables the planner to generate a safe avoidance

path. The second approach alters a standard fixed obstacle avoidance path with the

addition of a piece-wise continuous curve for safe navigation in the presence of

previously undetected obstacles. The goal to design an effective “back-seat driver” was

achieved by implementing the path planning method which most closely satisfies the

defined criteria for optimal reactive avoidance along with the ideal path following pitch

controller.

5

THIS PAGE INTENTIONALLY LEFT BLANK

6

II. VEHICLE KINEMATICS AND DYNAMICS

A. ASSUMPTIONS
In order to achieve realistic simulated results, an accurate model or equations of

motions (EOM) must first be derived to describe the maneuvering and motion control of

the vehicle. Healey [8] made the following initial assumptions when describing the

maneuvering and motion control of REMUS:

• the vehicle behaves as a rigid body;

• the earth's rotation is negligible as far as acceleration components of the
vehicle's center of mass is concerned;

• the primary forces that act on the marine vehicle have inertial and
gravitational origins and hydrostatic, propulsion, thruster, and
hydrodynamic forces from lift and drag.

B. EQUATIONS OF MOTION

Using a Newton-Euler approach and Euler angle transformations, rotational and

translational equations were developed, and incorporating the weight/buoyancy forces,

Healey [8] derived the EOM for a six degree of freedom model.

Figure 4. Coordinate System with Euler Angle Transformations (From: [7])

7

2 2

SURGE EQUATION OF MOTION
[() () ()] ()sir r r G G Gm u v r w q x q r y pq r z pr q W B Xθ− + − + + − + + + − =n f

in f

os f

)

2 2

SWAY EQUATION OF MOTION
[() () ()] () cos sr r r G G Gm v u r w p x pq r y p r z qr p W B Yθ φ+ − + + − + + − − − =

2 2

HEAVE EQUATION OF MOTION
[() () ()] () cos cr r r G G Gm w u q v p x pr q y qr p z p q W B Zθ φ− + + − + + − + − − =

2 2

ROLL EQUATION OF MOTION
() () () () [(

()] () cos cos () cos sin
x z y xy yz xz G r r

G r r r G B G B f

I p I I qr I pr q I q r I pq r m y w u q v p

z v u r w p y W y B z W z B Kθ φ θ φ

+ − + − − − − + + − +

− + − − − + − =

2 2

PITCH EQUATION OF MOTION
() () () () [(

()] () cos cos ()sin
y x z xy yz xz G r r r

G r r r G B G B f

)I q I I pr I qr p I pq r I p r m x w u q v p

z u v r w q x W x B z W z B Mθ φ θ

+ − − + + − + − − − +

− − + + − + − =

2 2

YAW EQUATION OF MOTION
() () () () [(

()] () cos sin ()sin
z y x xy yz xz G r r r

G r r r G B G B f

)I r I I pq I p q I pr q I qr p m x v u r w p

y u v r w q x W x B y W y B Nθ φ θ

+ − − − − + + − + + −

− − + − − − − =

where:

W = weight

B = buoyancy

I = mass moment of inertia terms

ur vr wr = component velocities for a body fixed system with respect to the water

p, q, r = component angular velocities for a body fixed system

xB yB zB = position difference between geometric center and center of buoyancy

xG yG zG = position difference between geometric center and center of gravity

Xf Yf Zf Kf Mf Nf = sums of all external forces (body fixed directions)

C. VERTICAL PLANE SIMPLIFICATIONS
The scope of this thesis only deals with motion in the vertical plane, therefore, the

six-degrees of freedom EOM were simplified by neglecting all of the horizontal

components, , , , , and rv r p Yφ ψ, . The EOM were further simplified by assuming the

following:

8

• the center of mass of the vehicle lies below the origin

• xg and yg are zero

• the vehicle is symmetric in its inertial properties

• ur equals the forward speed, Uo

The resulting simplified EOM that model REMUS’s pitch and depth dynamics in

response to stern plane action is:

0

0

 (1)
() cos () (2)

()sin
r

r

r w r w r q q

yy B q qG

u U
mw mU q W B Z w Z w Z q Z q Z t

I q z B z W M q M q
δθ δ

θ

=

= + − + + + + +

= − + +

0

+M () (3)

 (4)
sin cos

rw r w r pl

r

M w w M t

q
X w U

δδ

θ

θ θ

+ +

=

= +

0

 (5)

cos sin (6)rZ w Uθ θ= −

pl

where,

= heave velocity
 = pitch rate
 = pitch

() Stern plane deflection

X = horizontal position
Z = depth

r

pl

w
q

t
θ
δ =

D. MATRIX FORM

 The above simplified equations were reduced to the Linear Time Invariant (LTI)

form which is used later in the Simulink model:

[m] () [a] () [b] (t) t t δ= +x x where, x(t) [, ,]r
Tw q θ= and,

()
0() 0 () 0

[m] () 0 ; [a]= ; [b]= ;
0 0 1 0 1 0

w q w q

w yy q w q B G

m Z Z Z mU Z Z
M I M M M z B z W M

δ

δ

− − +   
   = − − −   
       0

 
 
 
  

9

From the above equations, x(t) is a state matrix and is the vehicle’s response

in the vertical plane with respect to time. The input matrices [a] and [b] contain geometry

dependent hydrodynamic coefficients of REMUS and [m] is defined as the system’s mass

matrix.

()tx

The forward speed of the vehicle, Uo, was set to a constant 1.5 meters per second

since it provided its maximum endurance of 22 hours. The hydrodynamic coefficients

used taken from a previous thesis by Prestero in 2001 [9] and shown below.

g

yy

0

q q

w w

q

q w

z = 1.96e-2; W = 299;

B = 306; I = 3.45;

U = 1.5; m = 299/9.81;
M = -6.87; M = -4.88;

M = 30.7; M = -1.93;
M = -34.6; Z = -9.67;

Z = -1.93; Z
δ

w

= -66.6;

Z = -35.5; Z = -50.6;δ

The Matlab code “Vehicle_Dynamics” [Appendix] took the simplified EOM and

the hydrodynamic coefficients and calculated the state space matrices of REMUS for use

in the SIMULINK model.

10

III. PATH FOLLOWING CONTROLLER

A. PITCH CONTROLLER
As previously stated, the requirement for a “back-seat driver” arises due to the

inability of REMUS’s auto-pilot to safely maneuver over sharp rises in the ocean floor or

obstacles proud of the bottom. The most basic necessity for any “driver” or pilot is that it

must be able to execute where and what it is ordered to accomplish. Endless research and

resources spent on developing a perfect path planning method are wasted if there were no

way of following the path; therefore, the first step toward designing an effective “back-

seat driver” is developing an accurate path-following controller. Simply stated, it is a

modification of the line of sight (LOS) heading controller developed by Healey and

Lienard [8], which minimizes the cross track error (CTE) between the vehicle and the

adjacent ordered track. Figure 5 defines the variables used in calculating the pitch

command for the controller.

(X1, Z1)

Position

Track Normal

1

Line of sig
a

t
t n

hcorrect
CTEθ −  

=  
 

Line of sight = 4

Track

X

Z

U

u

(X2, Z2)

(X , Z)

CTE

Figure 5. Definitions for Pitch Command Calculation

The coordinates (X, Z) represent the global position of the vehicle. Coordinates

(X1, Z1) is where the vehicle should vertically be at its present horizontal “X” position if

it were on the ordered track. In other words, “X1” and “u” are always equivalent to the

vehicles horizontal position and velocity, “X” and “U,” respectively and “Z1” is the

11

track’s altitude at “X”. The “Position” vector is a result of the difference between (X, Z)

and (X1, Z1). Coordinates (X2, Z2) composes of adding 0.1 to “X1” and calculating the

tracks altitude at “X2”. The track’s tangent is the difference between (X2, Z2) and (X1,

Z1). “Track Normal” is the negative inverse of the track’s tangent and the “CTE” is the

projection of the “Position” vector onto the “Track Normal” vector. “Line of sight” is a

constant distance set in front of the vehicle where it is aiming to regain the ordered track.

A real-world example to the “Line of sight” approach is steering to the “previewed” road

seen out of the car’s windshield instead of the “passing” road seen out the driver’s side

window. The angle or pitch command is then calculated by taking the inverse tangent of

the “Error” divided by “Line of sight”. A Matlab code entitled “Tracking” [Appendix]

was created with the above definitions and used in the next section to provide vehicle

pitch commands during simulations.

B. SIMULINK MODEL
A SIMULINK model was created to observe the vehicle’s simulated response and

the designed controller’s path following ability.

z_pos

z_pos

x_pos

x_pos

MATLAB
Function

tracking

MATLAB
Function

X_dot, Z_dot

XZ

x' = Ax+Bu
 y = Cx+Du

State-Space

Remus_theta

Remus_theta
R2D

Radians
to Degrees3

R2D

Radians
to Degrees1

R2D

Radians
to Degrees

Plane Sat

Plane Deflect

Pitch Sat

Pitch Angle

1
s

Initial alt = 3m

K*u

Gain

Dive Command

MATLAB
Function

Changes to Altitude

-K-

-5.7/40

Figure 6. SIMULINK Model

12

The “State Space” block contains the state space matrices “A’ and “B” that were

derived in Chapter II. The Matlab Function block “X_dot, Z_dot” takes the outputs

, ,and w q θ from “State Space” and uses Equations 5 and 6 from Chapter II to calculate

X and Z . X and Z are then integrated, resulting in the vehicles position (X, Z) which

the Matlab “Tracking” code uses to calculate the vehicle’s pitch command. The pitch

command is fed back into the state space system along with the state-feedback gains to

close the loop. The state-feedback gains -1.6807, 0.2935, and 0.0889 were determined

with a simple pole placement technique of using the Matlab command “place.” The

location of the “placed” poles, -.5+.866i, -.5-.866i, and -1, were found using the

Butterworth pole pattern method [10].

To keep the simulations as accurate as possible, real-world mechanical vehicle

limitations were incorporated into the SIMULINK model. First, “Plane Sat” was added

to limit the stern plane deflections to +/- 0.4 radians (22.9 degrees) due to stall

restrictions [8]. Next, “Pitch Sat” prevents the ordered pitch angle from exceeding the

maximum pitch achievable by the vehicle. The model’s maximum achievable vehicle

pitch was determined to be +/- pi/3 radians (60 degrees) by placing and holding the stern

planes at their maximum deflection for an extended period of time. Lastly, the -5.7/40

multiplying factor was included to the pitch command for a desired one-to-one ratio in

the ordered and responding vehicle pitch.

C. PATH FOLLOWING SIMULATIONS
Simulations were conducted with the vehicle trying to follow a “generic” obstacle

avoidance path generated by a Gaussian potential function. The Gaussian function was

initially chosen based on Hemminger’s reasonable obstacle avoidance success using

potential functions [7]. Hemminger concluded, “The characteristics of the potential

function alone control vehicle avoidance maneuvers by creating a repulsive field around

an obstacle that forces the vehicle to trace the potential field in order to regain its

commanded trajectory. Also, not only is the obstacle avoidance path smooth and

efficient but its magnitudes can be updated and optimized by assigning certain parameters

with the actual Gaussian potential function.”

13

In one-dimension, the Gaussian function is the probability function of the normal

distribution as shown in Figure 7.

2

2
()

2() *exp
x

oP x h
µ
σ
−

−
=

2σ

µ

oh

Figure 7. Gaussian Function (After: www.mathworld.com May 2006)

The multiplying parameter, , linearly affects the maximum height of the

potential curve at the location of its mean,

oh

µ , therefore, increasing by 10 will also

increase the maximum height by 10. The parameter

oh

2σ is the function’s variance and

represents the width or distribution of the function. The choice of the parameters

determines the resulting ordered trajectory for the vehicle that can be customized to

satisfy various mission goals. In the case of generating an obstacle avoidance path,

would be the desired vertical clearance of an obstacle located at

oh

µ , and 2σ would

determine the execution and termination distance from the obstacle for the avoidance

trajectory. For the controller path following trials, a Gaussian function with

and a mean at 60 meters were used. The “generic” path would order the

vehicle to begin pitching up about 15 meters prior to the location of the obstacle and

provides an altitude change of two meters above its original course. Figure 8 shows the

simulated vehicle’s response in attempts to follow the Gaussian path using the designed

pitch controller.

22, 25oh σ= =

14

http://www.mathworld.com/

45 50 55 60 65 70 75 80

3

4

5

6

7

8

9

10

Ordered versus Actual

X - meters

A
lti

tu
de

 -
m

et
er

s

Actual
Ordered

Lag

Figure 8. Ordered Versus Actual

Figure 9. Ordered Pitch, Actual Pitch, Stern Plane Deflection in Degrees

15

Although the desired contour is achieved using the LOS pitch controller, a

horizontal lag of about five meters exists between the “Actual” and “Ordered” plots. The

commanded and responding vehicle pitch shown in Figure 9 are nearly identical and

display a one-to-one ratio. Also, the stern plane deflection in relation to its saturation

limit is small and indicates that the vehicle could handle more radical contours if needed.

The controller’s path-following error was defined as the vertical difference

between the actual altitude of the vehicle and the altitude of the ordered path at a given

“X”. The Matlab file “Controller_Errors” [Appendix] uses the following equations, to

calculate and plot the vertical and total errors for the entire simulation.

2

1

() (() - ())

_ () ()

__

n

n

error X Zpos X Zpath X

total error X error X

total erroraverage error
n

=

=

=

∑

0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Vertical Error

Horizontal Position (m)

V
er

tic
al

 E
rro

r (
m

)

Figure 10. Vertical Error

16

0 50 100 150
0

2

4

6

8

10

12

14
Total Vertical Error

Horizontal Position (m)

To
ta

l V
er

tic
al

 E
rro

r (
m

)

Figure 11. Total Vertical Error

The maximum vertical deviation was found to be 1.152 meters with an average

error of 0.1716 meters, and the total error stabilized at 12.1849 meters. Although an

average error of 0.1716 meters may seem reasonable, having deviations reach 1.152

meters at times represents a very high relative error of 57.6% when compared to an

ordered two-meter altitude rise. In Section D, the design of an effective path-following

controller continues as two approaches are studied in attempts to minimize the current

controller errors.

D. REMOVING THE LAG

1. Including the Path’s Slope

The first attempt to reduce the lag and large relative controller error was to

include the slope of the ordered path into the pitch command calculations. The pitch

command would be the result of adding the correcting angle and the slope of the path,

therefore, in theory increasing the response of the vehicle. The addition of the slope

would also prevent any rapid growth in the deviations in the event of an extreme track

slope. The definitions governing this theory are shown below in Figure 12.

17

(X1, Z1)

Position

Track Normal

1

Line of sig
a

t
t n

hcorrect
CTEθ −  

=  
 

Line of sight = 4

Track

X

Z

command correct slopeθ θ θ= +

slopeθ(X2, Z2)

(X , Z)

CTE

Figure 12. Slope Addition Definitions

All the definitions regarding the coordinates remain the same as before and the

slope of the path, θslope, is found by taking the arc tangent of the difference between “Z2”

and “Z1” and “X2” and “X1”. θcorrect is calculated exactly like the pitch command from

the previous approach and added to θslope to obtain θcommand. The Matlab code

“Tracking_plus_slope” [Appendix] was written using these definitions and replaces the

previous “Tracking” code in the SIMULINK model. The simulation was repeated as

before and the vehicle’s path-following response utilizing the slope addition controller is

shown in Figure 13.

50 55 60 65 70 75

3

4

5

6

7

8

9

10
Ordered versus Actual w/Slope

X - meters

A
lti

tu
de

 -
m

et
er

s

Actual
Ordered

Figure 13. Order versus Actual with Slope

18

Figure 14. Ordered Pitch, Actual Pitch, Plane Deflection with Slope

The horizontal lag from the vehicle’s original response has been reduced from

five meters to approximately one meter by incorporating the track’s slope into the pitch

command. Although improvements with the lag issue have been made, overshoots at the

peak and conclusion of the Gaussian path of almost one-half meter have been introduced.

The controller errors were calculated in the same fashion as before to accurately evaluate

any increases or decreases in the controller performance.

0 50 100 150
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Vertical Error w/Slope

Horizontal Position (m)

V
er

tic
al

 E
rro

r (
m

)

Figure 15. Vertical Error with Slope

19

0 50 100 150
0

1

2

3

4

5

6

7

8
Total Vertical Error w/Slope

Horizontal Position (m)

To
ta

l V
er

tic
al

 E
rro

r (
m

)

Figure 16. Total Vertical Error with Slope

The inclusion of the path’s slope showed an improvement over the original LOS

pitch controller in all three errors. The maximum vertical error was reduced by 27.4% to

0.8365m, the average error by 42.02% to .0995 meters, and the total error by 40.4% to

7.2607 meters.

2. Include a “Look Ahead”
Controller performance improvements were made with the slope-inclusion

approach; however, the maximum vertical error still resulted in an unacceptable relative

error of 41.8% to the ordered two-meter altitude change. The overshoots also pose a

problem when an autonomous mission requires precise maneuvering in an unknown

hazardous environment. A second approach involving the vehicle “looking ahead” was

tested in an attempt to reduce the controller errors within acceptable tolerances. When

“looking ahead,” the vehicle’s pitch command is calculated identical to the original LOS

approach, however, it uses coordinates at a “look ahead” distance from the vehicles

current position. A visual representation to this approach is shown in Figure 17.

20

(X1, Z1)

Position

Path Normal
Lookahead Position

(X’1, Z’1)
Line of sight = 4

1

Line of Sig
a

t
t n

hcorrect
CTEθ −  

=  
 

(X , Z)

CTE

Figure 17. Look ahead Definitions

Using this approach, the vehicle receives a pitch command that it would have

originally received further down the track, therefore, increasing the controller’s

responsiveness. For example, Figure 17 shows the pitch command being calculated

based on the upcoming climbing trajectory instead of the diving trajectory that the

vehicle is currently on. The Matlab code “Tracking_lookahead” [Appendix] included

this philosophy and was written for calculating the new vehicle pitch command.

The SIMULINK simulations were once again conducted using the same Gaussian

function as before and “Tracking” was replaced with “Tracking_lookahead” in the

Matlab Function block. The initial simulation was conducted with a “look ahead” set at

the horizontal lag distance of five-meters. Various distances were then tested to find the

ideal “look ahead” and summarized in Table 3.

21

ho=2m sig = 5 U=1.5 m/s aim = 4
Look Ahead Max Error Avg Error Total

5 0.1686 0.0228 1.6165
4.9 0.1591 0.0198 1.4276
4.8 0.1489 0.0177 1.273
4.7 0.1389 0.0158 1.1373

4.65 0.1368 0.0148 1.0688
4.6 0.1346 0.0145 1.0405

4.59 0.1342 0.0145 1.0405
4.58 0.1337 0.0145 1.0413
4.57 0.1333 0.0146 1.0491
4.56 0.1329 0.0147 1.058
4.55 0.134 0.0148 1.0668
4.54 0.1364 0.0149 1.0756
4.53 0.1389 0.0151 1.0844
4.52 0.1413 0.0152 1.0933
4.51 0.1437 0.0153 1.1051
4.5 0.1462 0.0156 1.12
4.4 0.1703 0.0177 1.2761
4.3 0.194 0.0202 1.4526
4.2 0.2176 0.0228 1.6444
4.1 0.2413 0.0258 1.8559

4 0.2649 0.029 2.0889

Various Look Ahead Distances

Table 3. Errors at Various Look Ahead Distances

Since the three minimal controller errors occurred at different “look ahead”

distances, the ideal “look ahead” was determined to be 4.58 meters and used in all future

simulations, as it caused the greatest reduction in all three errors. The following three

figures compare the response and errors for all three approaches.

22

40 45 50 55 60 65 70 75 80 85
4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

Ordered versus Actual

X - meters

A
lti

tu
de

 -
m

et
er

s

Original
Slope
Lookahead
Ordered

Figure 18. Ordered vs. Actual with Look Ahead

0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Vertical Error

Horizontal Position (m)

V
er

tic
al

 E
rro

r (
m

)

Original
Slope
Lookahead

Figure 19. Vertical Error with Look Ahead

23

0 50 100 150
0

2

4

6

8

10

12

14
Total Vertical Error

Horizontal Position (m)

To
ta

l V
er

tic
al

 E
rro

r (
m

)

Original
Slope
Lookahead

Figure 20. Total Vertical Error w/Look Ahead

Using this “look ahead” reduced the original maximum vertical error by 88.46%

to 0.1329 meters with an average error of only 0.0145 meters. The total error was

reduced by 91.46% to 1.0405 meters. Table 4 summarizes the controller errors for all

three controllers and their improvement over the original errors.

Approach Max Error Redution % Avg Error Redution % Total Error Redution %
Original 1.152 0.1716 12.1849
Slope Addition 0.8365 27.39% 0.0995 42.02% 7.2067 40.86%
Look Ahead 0.1329 88.46% 0.0145 91.55% 1.0405 91.46%

Table 4. Summarization of Controller Errors (Meters)

It is evident that the “look ahead” approach successfully reduces the original

horizontal lag problem, and unlike the slope addition approach, does so without the

introduction of large vertical overshoots. The drastic reduction in controller errors to

within acceptable tolerances support the fact that the first requirement of an effective path

following controller for the obstacle avoidance “back-seat driver” has been met.

24

IV. OPTIMAL SENSOR ORIENTATION FOR OBSTACLE
AVOIDANCE PLANNING

A. PATH PLANNING STRATEGY

With the design of an adequate path following controller, the remainder of this

thesis addresses effective obstacle avoidance path planning for the REMUS’s “back-seat

driver”. An adaptation of what Horner [12] described as some constraints associated with

optimal reactive avoidance path planning are:

• Avoid obstacle

• Smooth continuous navigation

• Vehicle limitations

• Optimal sensor orientations

The list of constraints is used as a basis in developing an effective strategy for

REMUS’s “back-seat driver”. The obstacle avoidance path must first and foremost

provide safe and collision free navigation for the vehicle. Collision free is a clear cut

requirement and for simplicity reasons, a “safe” path was deemed as avoiding the

obstacle by a minimum vertical distance of two-meters. The freedom of the path is

further limited by the requirement that the path must be smooth and continuous for pitch

command calculations. Next, the vehicle limitations such as maximum pitch angle and

stern plane deflection, processing/information relay time, and actuator lag time can all

have an affect on the sharpest path curvature the vehicle would be able to accurately

follow, also known as the vehicle’s maximum achievable turning radius. Since the

vehicle’s maximum pitch and stern plane deflection are the most limiting on the vehicle’s

turning radius, they are the only two vehicle limitations incorporated into the Simulink

model.

The first three path planning constraints discussed above consist of predetermined

variables and provide limited effect to an obstacle avoidance strategy. Optimal sensor

orientation on the other hand varies within dynamic unknown environments and is the

focus for this chapter. To date, NPS research on optimal sensor orientation has mainly

dealt with the orientation of the vehicle’s side scanning sonar, which found that flying at

a low fixed altitude would provide consistent sonar images and reduce the “near-nadir”

25

region [12]. The implementation of the FLS as the vehicle’s primary obstacle avoidance

sensor introduces another element to the optimal sensor orientation constraint. Now the

vehicle must be positioned in such a way to maximize the information gathered by the

FLS about upcoming hazards, while trying to maintain the low-fixed altitude for the side

scanning sonar.

B. MODELING

1. Environment

Models of possible hazardous environments [“Ocean_Model,” Appendix] were

created in MATLAB to explore the issues governing optimal sensor orientations. Since

REMUS’s auto-pilot is currently unable to steer to sharp rises [5], the environment

modeled consists of either one or two sea wall(s) present on a flat ocean floor. A sea wall

is also a simple representation for the FLS’s perspective of large protruding obstacles

sitting on the ocean bottom.

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15
One Obstacle Sea Bottom

X - meters

A
lti

tu
de

 -
m

et
er

s

Figure 21. Ocean Model with One Sea Wall

26

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15
Two Obstacle Sea Bottom

X - meters

A
lti

tu
de

 -
m

et
er

s

Figure 22. Ocean Model with Two Sea Walls

The first ocean model, shown in Figure 21 contains a five meter sea wall located

100 meters from the global origin. The second model including two sea walls was

created to study the situation when an obstacle is located within a FLS occlusion area

created by the first obstacle. The second sea wall located 10 meters aft and a half-meter

shorter then the first sea wall will be undetected when the vehicle is flying at the fixed

altitude of three meters; a problem which is discussed in more detail later in this chapter.

2. Sonar
Although the FLS installed on REMUS contains two sonar staves, for

simplification, only one stave was modeled using the MATLAB code [“Sonar,”

Appendix] to represent the two-dimensional field of view for the vehicle. The vehicle’s

field of view was defined as the area bounded by the upper most sonar beam, the lowest

most sonar beam, and the nominal maximum sonar range of 100 meters as shown in

Figure 23.

X

Z

2.5o

22.5o

6.5 m 67 m

3m
“Field of View”

Figure 23. 2-D Field of View for REMUS

27

The sonar’s beam width of 22.5 degree was broken up into 225 beams to simulate

the ProViewer multi-beam sonar. The high number of beams were required to obtain

accurate and smooth sonar images at ranges of 50 meters or greater. The sonar image

was created by calculating where and if each sonar beam, originating from a given

vehicle position and pitch, intersected the modeled environment. All the interception

points were then gathered and plotted to create a simulated sonar image. If an occlusion

was present, it was represented by a red line which bounded the “unseen” area. Figures

24 and 25 show the simulated sonar images plotted below a graphical representation of

the vehicle/sonar position and orientation. The vehicle is indicated by the blue circle and

the sonar beams by the black dashed lines. It should be noted that the axes vary largely

in scale and cause a distorted representation in slopes and angles.

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15
Sonar Model

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15
Sonar Image w/Occlusion Area

Figure 24. Simulated Sonar Image of an Ocean Floor

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15
Sonar Model

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15
Sonar Image w/Occlusion Area

Figure 25. Simulated Sonar Image of a Sea Wall and Occlusion

28

To model the sonar for a moving vehicle, “Sonar” was modified with a “for” loop

to repeat the imaging with varying vehicle position and pitch during a simulated obstacle

avoidance run [“Sonar_Moving, Appendix]. A video clip of the sequential sonar images

is generated to be used for studying possible sensor orientation issues.

Figure 26. Stills from a Video Generated by “Sonar_Moving” Matlab Model

C. FLS ORIENTATION ISSUES

1. Limited Field of View
In order to satisfy the initial optimal sensor orientation constraint of minimizing

the “near-nadir” region, the vehicle flies at a low fixed altitude of three meters. However,

this increases the likelihood of encountering obstacles that protrude higher off the ocean

floor then the vehicle is flying. Since the sonar is configured to search 2.5 degrees below

the vehicle’s zero-pitch horizon, the obstacle will always saturate the vehicle’s

downward-angled field of view if it remains on its fixed altitude path.

29

Figure 27. REMUS Unable to See Entire Obstacle

As shown in Figure 27, without pitching the vehicle upward, the vehicle never

“sees” the entire five meter obstacle and the vehicle would have to guess a safe altitude

required to clear the obstacle.

2. Occlusion Areas
Even if vehicle correctly “guessed” the altitude required to clear the obstacle,

there still exists a problem if another obstacle lies within the occlusion area brought on by

the first obstacle. Normal obstacle avoidance methodology of projecting a typical

Gaussian may provide a solution for the first obstacle, but fails to safely avoid the

previously “unseen” obstacle. Figure 28 shows the standard Gaussian path that would be

generated based on only the information of the “seen” obstacle.

Figure 28. Stills Showing Occlusion Problem

30

The blue path is the ordered obstacle avoidance path. The vehicle first detects the

second obstacle at the peak of the Gaussian curve as it pitch back down towards its

original ordered altitude. Current methods prevent the predetermined Gaussian from

being altered mid-course; therefore the vehicle is unable to avoid the recently detected

obstacle. In Chapter V, two approaches are developed in an attempt to achieve optimal

obstacle avoidance path planning while incorporating the additional FLS orientation

constraints discussed above.

31

THIS PAGE INTENTIONALLY LEFT BLANK

32

V. OPTIMAL REACTIVE OBSTACLE AVOIDANCE

A. GAUSSIAN POP-UP
The first method attempting to deal with the FLS orientation issues discussed in

Chapter IV includes ordering the vehicle to conduct a “pop-up” when a possible threat

has been detected. Figure 29 illustrates the methodology behind the “pop-up” method.

Pitch
vehicle/sonar

Fly higher then
obstacle

Adjusts Gaus
“ho” &“Sigma”

Determine Height
Checks OA path

Minimize Occlusion

Figure 29. The “Pop-Up” Methodology

The first stage of the pop-up pitches the vehicle upwards therefore tilting the

downward-angled sonar upward. This increases the sonar’s vertical field of view and

allows the vehicle to “see” the entire obstacle to determine its height. It also allows the

surveying of the area above the obstacle to ensure clear and safe waters for an obstacle

avoidance path. The “pop-up” will then drive the vehicle to a high enough altitude so the

sonar can look above and behind the detected obstacle. This will minimize the

uncertainties in the occlusion area and provide additional information regarding any

possible obstacles that were previously undetected. Finally, the original Gaussian

obstacle avoidance variables “ho” and “sigma” are updated to provide a safe path based

on the recently gathered information.

A Gaussian potential function was chosen as the “pop-up” trajectory for the same

reasons explained in Chapter III, and it parameters “ho” and “σ2” were set to 5 and 25
33

respectively. A “ho” of five meters drives the vehicle to a total altitude of eight meters or

three meters higher then the first modeled obstacle, and a smaller “σ2” decreases the

horizontal distance and time the pop-up deviates from its original fixed altitude. The

simulation was conducted with the Matlab file “Tracking_Popup” [Appendix]

implemented into the SIMULINK model. Figure 30 shows the vehicle’s response to the

ordered Gaussian pop-up.

Figure 30. Height Determination and Occlusion Minimization using a Gaussian

Pop-Up

The picture on the left shows the determination of the obstacle’s height and the

verification of clear waters. The pitching of the vehicle allowed the sonar to increase its

vertical field of view from under three meters to over fifteen meters. Secondly, as the

vehicle was driven higher then the obstacle, it allowed the sonar to detect the previously

unknown second obstacle as shown in the second picture. With the amplifying

environment information, the obstacle avoidance Gaussian’s “ho” and “σ2” were then

adjusted to 3 and 144 respectively to account for all detected obstacles. Figure 31 shows

the vehicle response to the entire ordered path generated using the “pop-up” method.

34

30 40 50 60 70 80 90 100 110 120 130
0

2

4

6

8

10

12

14

Ordered versus Actual

X - meters

A
lti

tu
de

 -
m

et
er

s

Actual
Ordered

Figure 31. Response to Pop-Up

By comparing the path generated to the previously defined constraints for optimal

obstacle avoidance, the “pop-up” method’s effectiveness was determined. Most

importantly, the path provided a collision free path that vertically cleared all obstacles by

a minimum of two meters. Secondly, due to the characteristics of the Gaussian functions

used, the path was smooth and met the requirements of containing no sharp corners or

jumps for pitch command calculations and consistent sonar images. The designed pitch

controller was also able to accurately follow the path with a maximum controller error of

0.197 meters. With regards to optimal sensor orientation for the side scanning sonar, the

magnitude of the deviations from the fixed altitude of three meters was quantified for

later comparison. The total vertical deviation (TVD) was defined as the area above the

desired altitude bounded by the obstacle avoidance path and calculated to be 212.78

meters2 using the following trapezoid approximation equation [“TVD_Cal,” Appendix]:

()1
1

2
3

2

N
j j

j j
j

Z Z
TVD meters X X−

−
=

+ 
= − − 

 
∑

Lastly, the Gaussian pop-up reasonably dealt with the two issues surrounding

optimal sensor orientation for the FLS. The detected obstacle’s height was able to be

determined by pitching the vehicle upwards and the second obstacle was briefly detected

within the occlusion area which enabled the planner to provide a safe collision-free path.

35

Although the Gaussian pop-up method successfully cleared the obstacles in this

simulated case, certain factors limit the method’s robustness. For example, in a real

world environment, the vehicle will encounter additional situations to the one simulated

such as a third obstacle located in the occlusion area created by the second obstacle. The

third obstacle may not be “seen” during the initial pop-up and is first detected when the

vehicle pitches downward at the peak of the second Gaussian. The problem with not be

able to alter the Gaussian mid-course once again arises; therefore, this method requires

prior knowledge of all obstacles within the area to ensure a safe collision-free path.

Another limiting factor is caused by the pop-up’s main purpose of driving the

vehicle to an altitude above the detected obstacle to minimize the occlusion area.

However, since the pop-up’s purpose is to also determine the obstacle’s height, the

altitude it needs to drive up to in order to ensure an occlusion look is unknown prior to its

execution. The pop-up is ordered using a predetermined “ho” which may be too high or

not high enough to see over the obstacle and an optimal path for varying situations can

not be guaranteed.

Lastly, the execution of the pop-up results in large deviation from the original

fixed altitude due to the requirement of driving the vehicle to a high altitude A narrow

“pop-up” would reduce the TVD, however, it would also increase the rising slope of the

path and its peak’s sharpness. These increases could cause inconsistent sonar images and

decrease the number of “looks” the sonar had at the obstacle or occlusion area due to

larger pitch velocities. To classify obstacles and accurately determine their location and

height, real-world sonar imagery processing requires consistent and frequent returns.

Due to the battling requirement for consistent and frequent returns, little improvements

can be made to the pop-up method to reduce its TVD.

B. SPLINE ADDITION

The second method developed to deal with the FLS issues incorporates a mid-

course Gaussian spline addition alteration in an attempt to achieve an optimal obstacle

avoidance path. Figure 32 illustrates the methodology behind this approach.

36

Pitch
vehicle/sonar

Use “generic”
Gaussian

Alters path by
spline addition

Determine height
Checks OA path

Resume original
altitude cmd

Detects Another Obstacle

Figure 32. Spline Addition Methodology

When the vehicle initially detects an obstacle, it conducts a miniature

predetermined Gaussian pop-up only to determine the height of the obstacle and check

for clear waters. The small Gaussian keeps deviations from the original fixed altitude to

a minimum and with parameter, ho = 0.75 and “σ2” = 4, the sonar’s vertical field of view

is increased from three meters to 10 meters. Simulations were again conducted using

“Tracking_Spline” [Appendix] to implement the spline approach into the SIMULINK

model. Figure 33 is the vehicles response and increased view while conducting the

modified pop-up.

37

Figure 33. Height Determination for the Spline Method

After returning to its original altitude, a standard Gaussian path is then projected

to clear the detected obstacle. As the vehicle reaches the peak of this Gaussian, it begins

to pitch back downwards and gets an up-close look at the occlusion area. The sonar is

now able to detect the previously unseen obstacle and the Gaussian is immediately

altered with the use of a spline to provide a safe path.

Figure 34. Occlusion Look and Obstacle Detection

38

The choice of a spline was based on its ability provide a continuous curve that can

be varied based on its knot locations. The Matlab command “PP = SPLINE(X,Z)”

provides a piecewise polynomial for the cubic spline interpolated to the values of “Z” at

“X”. “X” and “Z” are vectors, with “Z” containing two more values than “X,” since the

first and last value in “Z” can used as the end-slopes for the cubic spline. By including

the end-slopes, a smooth equivalent slope can be assured when the path transitions from

the Gaussian to the cubic spline, and then from the spline back to the ordered original

altitude. Figure 35 shows how the “X” and “Z” vectors are calculated in the event

another obstacle is detected.

Figure 35. Spline Calculations

Once an obstacle is detected, the vehicle’s location, X_Remus, is noted and the

obstacles horizontal position and height are defined as X_Obstacle and Z_Obstacle. The

spline’s first knot or coordinate, (X1,Z2), is located at a horizontal look-ahead distance in

front of X_Remus since the pitch commands are being calculated at that point and at an

altitude equal to the Gaussian at that horizontal location. The first end-slope, Z1, is

equivalent to the slope of the Gaussian at the adjoining location and found by taking the

39

derivative of the Gaussian at X1. Coordinates (X4, Z5) represent the peak of the spline

and is located two meters directly above the second obstacle. Two knots are then placed

between the first knot and the peak knot, which divide the horizontal and vertical distance

between the two into thirds. The last knot brings the vehicle back down to the original

three meter altitude, 10 meters behind the obstacle, with a slope of zero. Figure 36 shows

the entire obstacle avoidance path generated using the spline method along with the

response of the vehicle. Figure 37 provides a closer look of the spline addition portion of

the path.

Figure 36. Ordered and Actual Vehicle Response Using the Spline Method

40

Figure 37. Enlarged Spline Portion

The results from the spline method were also compared to the defined constraints

for optimal obstacle avoidance. The vertical path over the second obstacle was less then

the desired “safe” two-meter minimum clearance, however, the navigation was more

importantly collision-free. Also, this method is truly reactive and requires no prior

knowledge of the obstacles since the spline can be implemented anywhere along the

Gaussian, and the locations of its knots can be altered to provide even greater flexibility.

This method is therefore robust and able to deal with a number of real-world situations in

addition to the one simulated.

Continuity throughout the path was established by matching the start and end

slopes of the spline with the end slope of the altered Gaussian and zero-slope of the

original fixed altitude. The path’s smoothness, however, is at the mercy of the knot

locations creating the interpolating polynomial. There are combinations of knots will

cause an undulating path or one that exceeds the maximum turning radius of the vehicle.

The path created in the simulation contains sections that were not accurately followed by

the look-ahead pitch controller, resulting in errors of 0.463 meters.

41

Lastly, the spline method provided effective positioning for REMUS’s sensors.

The TVD from the optimal side scanning sonar orientation was calculated to be 79.386

meters2 and the small pop-up keeps majority of the TVD to be caused by avoiding the

obstacle. Also, by only altering the backend of the Gaussian keeps the vehicle flying at

its fixed altitude for as long as possible. The spline method successfully dealt with the

FLS orientation issues by pitching the vehicle upwards to determine the obstacle’s height,

and the second obstacle was detected within the occlusion area. Since the avoidance

Gaussian can be altered mid-course, the vehicle is no longer required to gather

information about the occlusion area before-hand. The vehicle can now get a complete

view of a occlusion by waiting until it clears the first obstacle and is positioned above and

near the previously unknown area. The mid-course alteration not only allows

minimization of the uncertainties, but it also allows this method to be “reactive,” creating

a path that can be updated due to real-time information about the environment and

obstacles detected.

C. APPROACH COMPARISON

A metrics was used to compare and weigh the advantages between the two

methods with regards to the optimal obstacle path constraints. A scale of one to five was

used to measure the significance of any advantage one method has over the other. A five

represents an advantage of high significance, while a one is of little significance, and

dashes were used if no advantage existed between the two methods

Pop-up Spline

Min Clearance 1 -
Robustness - 5
Smooth 3 -
Contiuous - -
Controller Error 2 -
Pitch 3 -
Plane Deflection - -
Vertical Deviation - 3
Occlusions - 5

TOTAL 9 13

Vehicle
Limitations

Avoid Obstacle

Navigation

Sensor
Orientation

Table 5. Comparison Metrics

42

Even though the spline method did not always achieve the “safe” minimum

clearance of two-meters, it met the more important requirement of providing a collision-

free path from all obstacles. Also, unlike the pop-up, the spline is able to adjust to

varying environments and not just the isolated cases that were simulated. The pop up

method has the advantage of producing a smoother path that wouldn’t order the vehicle to

exceed its maximum turning radius. The spline method, however, excels in the optimal

sensor orientation for both of REMUS’s sensors, which support its primary mission as an

environment information gatherer.

The use of a spline addition offers a robust method required when operating in a

unknown environment. Not only is it able to react to real-time updates, it also positions

the vehicle to maximize the information gathered about the environment, therefore, the

spline method proves to be the superior choice for the “back-seat driver’s” path planner.

43

THIS PAGE INTENTIONALLY LEFT BLANK

44

VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS
One day fully autonomous AUV’s will no longer require human interactions to

complete its missions allowing the Navy to keep divers and valuable resources out of

harms way. This thesis built on the previous work conducted at NPS’s Center for AUV

Research to improve the autonomy of the REMUS class of AUVs with an implemented

FLS. The goal was to design a reactive “back-seat driver” to coincide with the normal

altitude control auto-pilot to safely navigate the vehicle in the presence of previously

unknown obstacles.

For the first “back-seat” driver requirement, a modified LOS pitch controller with

a look-ahead distance proved to be an accurate path follower by reducing the controller

errors to acceptable levels. Using a model of the FLS, two additional sensor orientation

constraints were discovered while conducting SIMULINK simulations in a hazardous

environment. A Gaussian pop-up and a spine addition method were developed to over-

come these issues while providing an optimal obstacle avoidance path. Comparing the

two methods, the spline addition method proved to be the path planner of preference

since it provided a robust avoidance path while optimizing the vehicle’s information

gathering sensors. Along with the look-ahead pitch controller, the spline addition path

planner makes up a truly reactive “back-seat driver” that will improve REMUS’s

survivability in an unknown environment.

B. RECOMMENDATIONS
There are three areas in which further research can build of this thesis’s effort to

improve the autonomy of REMUS. First, this thesis was a first look at the use of splines

for an obstacle avoidance path and further research is required to fully maximize the

benefits behind its use. The addition of further knots will improve the smoothness of the

curve and offer even greater flexibility by possibility replacing the entire obstacle

avoidance path with one large multi-knot spline. The path could be altered by changing

the locations of knots within the vicinity of any obstacle it encounters. Secondly, before

implementing the “back-seat driver” into the vehicle for real-world testing, the spline

method needs to be tested with current sonar imagery processing methods. Doing so will
45

verify that the processor is able to accurately classify and locate a obstacle while

conducting a pop-up or in the middle of a Gaussian. Finally, since this thesis only

involved motion in the vertical plane, future work should focus on defining optimal path

planning constraints in the horizontal plane. By including horizontal plane motions, an

optimal three-dimensional path can be generated, providing a more realistic solution in

avoiding the obstacle.

46

APPENDIX. MATLAB CODE

VEHICLE_DYNAMICS

% REMUS parameters developed by Chris Churan edited by Tyler Furukawa
clear
clc
z_g = 1.96e-2; x_b = 0; W = 299; buoy = 306;
I_z = 3.45; I_y = 3.45; I_x = 1.77e-1;
U = 1.5; to = 0; tf = 80;
m = 299/9.81; M_q = -6.87; M_qdot = -4.88;
M_w = 30.7; M_wdot = -1.93; M_d = -34.6;
Z_q = -9.67; Z_qdot = -1.93;
Z_w = -66.6; Z_wdot = -35.5; Z_d = -50.6;

% Dynamics --
% modified for [wr; q; theta]
M = [m-Z_wdot -Z_qdot 0; -M_wdot I_y-M_qdot 0; 0 0 1];
A_0 = [Z_w m*U+Z_q 0; M_w M_q -z_g*W; 0 1 0];
B_0 = [Z_d; M_d; 0];
A = inv(M)*A_0
B = inv(M)*B_0
C = [0 0 1]

%Check open loop poles
open_loop_poles = eig(A)

%Check Controlability
Control=[B,A*B,A^2*B];
Controllable=rank(Control)

%Check Observability
Observe=[C',A'*C',A'^2*C'];
Observability=rank(Observe)

p = [-.5+.866i, -.5-.866i, -1] %using butterworth pattern
K = place(A,B,p) %[-1.6807, 0.2935, 0.0889]

TRACKING

function command=tracking(x,z)

aim = 4; %aims 4 meters ahead

%%%%%Normal Altitude Command%%%%%%%%%
Z_mine=35;
min_clear=2;
X_mine = 60;
sigma=5; %sigma^2=25

47

%Gaussian Function
x_g1 = x; %x-position
z_g1 = Z_mine-min_clear*exp(-(X_mine-x_g1)^2/(2*sigma^2));% z-posit
x_g2 = x+0.1; %creates a delta x of 0.1 meter
z_g2 = Z_mine-min_clear*exp(-(X_mine - x_g2)^2/(2*sigma^2));

%Tangent
T2=[(x_g2-x_g1);(z_g2-z_g1)];

%Normal
N2=[-(z_g2-z_g1);(x_g2-x_g1)];

%Position
P2=[(0);(z-z_g1)];

%cross track error
CTE=P2'*N2/sqrt(N2'*N2);

command=-atan2(-CTE,aim);

TRACKING_WITH_SLOPE

function command=tracking_with_slope(x,z)

aim = 4; %aims 4 meters ahead

Z_mine=35;
min_clear=2;
X_mine = 60;
sigma=5; %sigma^2=25

%Gaussian Function
x_g1 = x; %x-position
z_g1 = Z_mine-min_clear*exp(-(X_mine-x_g1)^2/(2*sigma^2)); % z-posi t
x_g2 = x+0.1; %creates a delta x of 0.1 meter for slope calculation
z_g2 = Z_mine - min_clear*exp(-(X_mine - x_g2)^2/(2*sigma^2));

%Tangent
T2=[(x_g2-x_g1);(z_g2-z_g1)];
%Normal
N2=[-(z_g2-z_g1);(x_g2-x_g1)];
%Position
P2=[(0);(z-z_g1)];
%cross track error
CTE=P2'*N2/sqrt(N2'*N2);

slope=atan2(-(z_g2-z_g1),(x_g2-x_g1));

command=slope-atan2(-CTE,aim);

48

TRACKING_LOOKAHEAD

function command=tracking_lookahead(x,z)

aim = 4; %aims 4 meters ahead

Z_mine=35;
min_clear=2;
X_mine = 60;
sigma=5; %sigma^2=25
lookahead = 4.58 %ideal lookahead = 4.58 m

%Gaussian Function
x_g1 = x+lookahead; %modified x-position
z_g1 = Z_mine-min_clear*exp(-(X_mine-x_g1)^2/(2*sigma^2)); %mod z-posit
x_g2 = x_g1+0.1; %creates a delta x of 0.1 meter
z_g2 = Z_mine - min_clear*exp(-(X_mine - x_g2)^2/(2*sigma^2));

%Tangent
T2=[(x_g2-x_g1);(z_g2-z_g1)];
%Normal
N2=[-(z_g2-z_g1);(x_g2-x_g1)];
%Position
P2=[(0);(z-z_g1)];
%cross track error
CTE=P2'*N2/sqrt(N2'*N2);

command=-atan2(-CTE,aim);

CONTROLLER ERRORS

%calculates and plots controller errors

x_sim=(1:1:120);
[num_points, columns] = size(x_pos);

E=zeros(num_points,1);
for k=1:1:num_points
 E(k,1)=sqrt(((ocean_depth-z_pos(k))-(Mine_altitude+min_clear*exp(-
(x_pos(k)-X_mine)^2/(2*sigma^2))))^2);
end
figure(1);clf
plot(x_pos,E), title('Vertical Error')
xlabel('Horizontal Position (m)')
ylabel('Vertical Error (m)')

%Calculates and plots sum of error
sum_error=zeros(num_points,1);
for l=2:1:num_points
 sum_error(l,1)=sum_error(l-1)+E(l-1);
end
figure(2);

49
plot(x_pos,sum_error), title('Total Vertical Error')

xlabel('Horizontal Position (m)')
ylabel('Total Vertical Error (m)')

max_error = max(E)
avg_error = sum(E)/num_points
total_error =sum(E)

OCEAN MODELS
Wall_Z = 5; %height of obstacle
Wall_X = 100;
Wall_Z2 = 4.5;
Wall_X2= 110;

%Floor 1
X_Floor1 = 0:Interval:Wall_X-Interval;
Z_Floor1 = zeros(1,length(X_Floor1));
%Floor 2
Z_Floor2 = 0:Interval:Wall_Z;
X_Floor2 = Wall_X*ones(1,length(Z_Floor2));
%Floor 3
X_Floor3 = Wall_X+Interval:Interval:2*Wall_X;
Z_Floor3 = zeros(1,length(X_Floor3));
%Floor 4
Z_Floor4 = 0:Interval:Wall_Z2;
X_Floor4 =Wall_X2*ones(1,length(Z_Floor4));

%plots the floor
subplot(2,1,1)
plot(X_Floor1,Z_Floor1,'g*'), hold on
plot(X_Floor2,Z_Floor2,'g*')
plot(X_Floor3,Z_Floor3,'g*')
plot(X_Floor4,Z_Floor4,'g*')
axis ([0 120 0 60])

SONAR_MODEL

Wall_Z = 5; %height of obstacle
Wall_X = 60;
Interval = 0.1;

%Floor 1
X_Floor1 = 0:Interval:Wall_X-Interval;
Z_Floor1 = zeros(1,length(X_Floor1));
%Floor 2
Z_Floor2 = 0:Interval:Wall_Z;
X_Floor2 = Wall_X*ones(1,length(Z_Floor2));
%Floor 3
X_Floor3 = Wall_X+Interval:Interval:120;
Z_Floor3 = zeros(1,length(X_Floor3));

50

%plots the floor
subplot(2,1,1)
plot(X_Floor1,Z_Floor1,'g*'), hold on
plot(X_Floor2,Z_Floor2,'g*')
plot(X_Floor3,Z_Floor3,'g*')
axis ([0 120 0 60])
title('Sonar Model')

%plots ordered path
x_sim=(1:1:120);
for j=1:1:length(x_sim)
 plot(x_sim(j),Mine_altitude+min_clear*exp(-(x_sim(j)
X_mine)^2/(2*sigma^2)),'r*');hold on
end

X_Remus = 0; Z_Remus = 5; %Remus Position (Can take from SIMULINK)
plot(X_Remus, Z_Remus,'bo')
Theta = 0; %Remus Pitch in degrees(taken from SIMULINK model)

Max_Sonar_Range = 100; %in meters

%Calculates Slopes of Sonar Beam
sonar_angle =-22.5+Theta:-.5:-45+Theta; %interval determines # of beams
for a=1:length(sonar_angle)
 sonar_slope(a)=tand(sonar_angle(a));
 %plots sonar lines
 Beam_X=[X_Remus, X_Remus+Max_Sonar_Range*cosd(-sonar_angle(a))];
 Beam_Z=[Z_Remus, Z_Remus-Max_Sonar_Range*sind(-sonar_angle(a))];
 plot(Beam_X,Beam_Z,'k:')
end

%finds the highest beam that intercepts the wall
for b=1:length(sonar_angle)
 Wall_Intercept(b)=sonar_slope(b)*(Wall_X-X_Remus) + Z_Remus;
 if Wall_Intercept(b)<=Wall_Z & Wall_Intercept(b)>=0
 Beam_Intercept = b;
 Highest_Beam_Z = Wall_Intercept(b);
 break
 els Highest_Beam_Z=0; e
 end
end

%find occlusion area
if Highest_Beam_Z>0
 Occlusion_X=[Wall_X, Wall_X, Wall_X, Wall_X+(Max_Sonar_Range-
(Wall_X-X_Remus))*cosd(-sonar_angle(Beam_Intercept))];
 Occlusion_Z=[0, Highest_Beam_Z, Highest_Beam_Z, Highest_Beam_Z-
(Max_Sonar_Range-(Wall_X-X_Remus))*sind(-sonar_angle(Beam_Intercept))];
else Occlusion_X = [0, 0]; Occlusion_Z=[0, 0];
end
subplot(2,1,2)
plot(X_Floor1,Z_Floor1,'g*'), hold on
plot(X_Floor2,Z_Floor2,'g*')
plot(X_Floor3,Z_Floor3,'g*')
plot(Occlusion_X,Occlusion_Z,'r--')
axis ([0 120 0 60])

51

title('Occlusion Area')
 %y=mx+b for the sonar b = Z_remus and Global_X = x +X_Remus

%Find where bottom beam intercepts the bottom 0=mx+Z_remus or x = -
Z_remus/m
Lowest_Beam_X = -Z_Remus/sonar_slope(length(sonar_angle));
if sqrt(Z_Remus^2 +Lowest_Beam_X^2) < Max_Sonar_Range &
Lowest_Beam_X+X_Remus > X_Remus %check range & if x intercept < X_Remus
 Left_X = Lowest_Beam_X +X_Remus;
els Left_X = 0; e
end

%if bottom beam doesn't intercept bottom, find its “Z” at wall
if Left_X<=0 & abs(Wall_X-X_Remus)<=Max_Sonar_Range
 %y = mx+b where x = (Wall_X-X_Remus), and b = Z_Remus
 Lowest_Beam_Z=sonar_slope(length(sonar_angle))*(Wall_X-X_Remus) +
Z_Remus;
 if Lowest_Beam_Z<=Wall_Z;
 Low_Wall_Intercept = Lowest_Beam_Z;
 else
 Low_Wall_Intercept = 0;
 end
end

%if X intercept is behind wall, find its “Z” at wall
if Left_X>Wall_X & abs(Wall_X-X_Remus)<=Max_Sonar_Range
 %y = mx+b where x = Wall_X, and b = Z_Remus
 Lowest_Beam_Z=sonar_slope(length(sonar_angle))*(Wall_X-X_Remus) +
Z_Remus;
 if Lowest_Beam_Z<=Wall_Z;
 Low_Wall_Intercept = Lowest_Beam_Z;
 else
 Low_Wall_Intercept = 0;
 end
end

SONAR_MOVING
clf
Wall_X = 100; Wall_Z = 5; %height of obstacle
Wall_X2= 110; Wall_Z2 = 4.5;

Interval = 0.1;
Max_Sonar_Range = 100; %in meters

Gaus2_offset = 35;
Gaus2_range = Wall_X-Gaus2_offset;
Orig_alt = 3;

%Floor 1
X_Floor1 = 0:Interval:Wall_X-Interval;
Z_Floor1 = zeros(1,length(X_Floor1));
%Floor 2
Z_Floor2 = 0:Interval:Wall_Z;

52

X_Floor2 = Wall_X*ones(1,length(Z_Floor2));
%Floor 3
X_Floor3 = Wall_X+Interval:Interval:2*Wall_X;
Z_Floor3 = zeros(1,length(X_Floor3));
%Floor 4
Z_Floor4 = 0:Interval:Wall_Z2;
X_Floor4 =Wall_X2*ones(1,length(Z_Floor4));

x_sim=(0:.2:2*Wall_X);

figure(1),clf;
for k=1:1:length(x_sim)
 if x_sim(k)<Gaus2_range
 %plot orig alt
 plot(x_sim(k),Orig_alt,'r*');hold on
 else if x_sim(k)<(Wall_X+Gaus2_offset)
 %plot gaussian
 plot(x_sim(k),Orig_alt+(min_clear+Wall_Z-Orig_alt)*exp(-
(x_sim(k)-Wall_X)^2/(2*sigma2^2)),'r*')
 else
 plot(x_sim(k),Orig_alt,'r*')
 end
 end
end

%plot(X_mine,Mine_altitude,'ro');
plot(x_pos,(ocean_depth-z_pos));
axis([0 2*Wall_X 0 15]), title('Ordered versus Actual')
xlabel('X - meters'), ylabel('Altitude - meters')

mov = avifile('sonar_Movie.avi','Compression','Cinepak','FPS',1);

for c=3:2:length(x_pos);

 set(gcf,'doublebuffer','on');

 figure(c)
 %plots the floor
 subplot(2,1,1)
 plot(X_Floor1,Z_Floor1,'g*'), hold on
 plot(X_Floor2,Z_Floor2,'g*')
 plot(X_Floor3,Z_Floor3,'g*')
 plot(X_Floor4,Z_Floor4,'g*')
 %plots actual course
 %plot(x_pos,ocean_depth-z_pos,'c*')
 axis ([30 130 0 15])
 title('Sonar Model')

 X_Remus = x_pos(c);
 Z_Remus = ocean_depth-z_pos(c); %Remus Posit (Taken from SIMULINK)
 plot(X_Remus, Z_Remus,'bo')
 Theta = Remus_theta(c); %Remus Pitch in degrees(taken from SIMULINK

 %Calculates Slopes of Sonar Beam

53

 sonar_angle =(-2.5+Theta):-Interval:(-25+Theta); %determines # of
beams
 for a=1:length(sonar_angle)
 sonar_slope(a)=tand(sonar_angle(a));
 %plots sonar lines
 Beam_X=[X_Remus, X_Remus+Max_Sonar_Range*cosd(-
sonar_angle(a))];
 Beam_Z=[Z_Remus, Z_Remus+Max_Sonar_Range*sind(sonar_angle(a))];
 plot(Beam_X,Beam_Z,'k:')
 end

 %finds the highest beam that intercepts the wall
 for b=1:length(sonar_angle)
 Wall_Intercept(b)=sonar_slope(b)*(Wall_X-X_Remus) + Z_Remus;
 if Wall_Intercept(b)<=Wall_Z & Wall_Intercept(b)>=0
 Beam_Intercept = b;
 Highest_Beam_Z = Wall_Intercept(b);
 break
 else
 Beam_Intercept=-1;
 Highest_Beam_Z=-1;
 end
 end

 %find if “sees” second obstacle
 %if intercepts 1st wall
 Sonar_Wall_Z2=-1;%initialize each time
 Sonar_Wall_X2=-1;%intiialize each time
 if Beam_Intercept>1;
 Wall2_Intercept = sonar_slope(Beam_Intercept)*(Wall_X2-X_Remus)
+Z_Remus;
 if Wall2_Intercept <= Wall_Z2
 Sonar_Wall_Z2=Wall2_Intercept:Interval:Wall_Z2;
 Sonar_Wall_X2=Wall_X2*ones(1,length(Sonar_Wall_Z2));
 end
 elseif Beam_Intercept<1;
 %check to see if intercept 2nd wall
 for d=length(sonar_angle):-1:1 %cycle from lowest beam
 Wall_Intercept2=sonar_slope(d)*(Wall_X2-X_Remus) + Z_Remus;
 if Wall_Intercept2<=Wall_Z2 & Wall_Intercept2>=0 &
X_Remus<Wall_X2
 %Beam_Intercept2 = d;
 %Lowest_Beam_Z2 = Wall_Intercept2(d);
 Sonar_Wall_Z2=Wall_Intercept2:Interval:Wall_Z2;
 Sonar_Wall_X2=Wall_X2*ones(1,length(Sonar_Wall_Z2));
 eak br
 else
 Sonar_Wall_X2=-1;
 Sonar_Wall_Z2=-1;
 end
 end
 end

 if Highest_Beam_Z>0 & X_Remus<Wall_X
 %find occlusion area

54

 Occlusion_X=[Wall_X, Wall_X+(Max_Sonar_Range-(Wall_X-
X_Remus))*cosd(-sonar_angle(Beam_Intercept))];
 Occlusion_Z=[Highest_Beam_Z, Highest_Beam_Z-(Max_Sonar_Range-
(Wall_X-X_Remus))*sind(-sonar_angle(Beam_Intercept))];
 els Occlusion_X = [0, 0]; Occlusion_Z=[0, 0]; e
 end
 subplot(2,1,2)
 plot(Occlusion_X,Occlusion_Z,'r--'), hold on
 axis ([30 130 0 15])
 title('Sonar Image w/Occlusion Area')

 %y=mx+b for the sonar b = Z_remus and Global_X = x +X_Remus

 %Find where top beam intercepts the bottom 0=mx+Z_remus or x = -
Z_remus/m
 Top_Beam_X=-Z_Remus/sonar_slope(1);
 if sqrt(Z_Remus^2+Top_Beam_X^2)<Max_Sonar_Range &
Top_Beam_X+X_Remus<Wall_X & Top_Beam_X+X_Remus>X_Remus%check range and
if x intercept < Wall_X
 Right_X=Top_Beam_X+X_Remus;
 else Right_X=-1;
 end

 %Find where bottom beam intercepts the bottom 0=mx+Z_remus or x = -
Z_remus/m
 Lowest_Beam_X = -Z_Remus/sonar_slope(length(sonar_angle));
 if sqrt(Z_Remus^2+Lowest_Beam_X^2)<Max_Sonar_Range &
Lowest_Beam_X+X_Remus<Wall_X & Lowest_Beam_X+X_Remus>X_Remus%check
range and if x intercept<Wall_X
 Left_X = Lowest_Beam_X +X_Remus;
 if Right_X>0
 X_Sonar_floor1=Left_X:Interval:Right_X;
 else
 X_Sonar_floor1=Left_X:Interval:Wall_X-Interval;
 end
 Z_Sonar_floor1=zeros(1,length(X_Sonar_floor1));
 Z_Sonar_floor2=0:Interval:Highest_Beam_Z;
 X_Sonar_floor2=Wall_X*ones(1,length(Z_Sonar_floor2));
 elseif abs(Wall_X-X_Remus)<=Max_Sonar_Range
 %if bottom beam doesn't intercept bottom or is behind wall,
find its “Z” at wall
 Lowest_Beam_Z=sonar_slope(length(sonar_angle))*(Wall_X-X_Remus)
+ Z_Remus;
 if Lowest_Beam_Z<=Wall_Z;
 Low_Wall_Intercept = Lowest_Beam_Z;
 Z_Sonar_floor1=Low_Wall_Intercept:Interval:Highest_Beam_Z;
 X_Sonar_floor1=Wall_X*ones(1,length(Z_Sonar_floor1));
 Z_Sonar_floor2=-1;
 X_Sonar_floor2=-1;
 else Z_Sonar_floor1 = -1; X_Sonar_floor1=-1; Z_Sonar_floor2=-1;
 X_Sonar_floor2=-1;
 end
 end
 %subplot(3,1,3)
 plot(X_Sonar_floor1,Z_Sonar_floor1,'g*')
 plot(X_Sonar_floor2,Z_Sonar_floor2,'g*')

55

 plot(Sonar_Wall_X2,Sonar_Wall_Z2,'g*')
 axis ([30 130 0 15])

 F = getframe(gcf);
 mov = addframe(mov,F);
 pause(.1);
end

mov = close(mov);

TRACKING_POPUP

function command=tracking_popup(x,z)

aim = 4; %aims 4 meters ahead

X_mine = 100;
Z_mine=35; %Altitude of 5 (when ocean_depth=40)
org_depth = 37; %altitude of 3 (when ocean_depth=40)
%for popup Gaussian
ho=5;
sigma1=5;
%for Obstacle Avoidance Gaussian
min_clear=3;
sigma2=12;
clear = (min_clear+org_depth-Z_mine);
gaus1_offset=80;
gaus1_range=X_mine-gaus1_offset;

gaus2_offset = 40; %do gaussian 40m before and after obstacle
gaus2_range = X_mine-gaus2_offset;

lookahead = 4.5; %”look” ahead 4.5
delta_x = .1; %for slope calculation

if x<(gaus1_range-lookahead)
 %do original altitude
 x_g1 = x+lookahead; %modified x-position
 z_g1 = org_depth;
 x_g2 = x_g1+delta_x; %creates a delta x of 0.1 meter
 z_g2 = org_depth;
elseif x<(gaus2_range-lookahead)
 %do 1st gaus
 x_g1 = x+lookahead; %modified x-position
 z_g1 = org_depth - ho*exp(-(gaus1_range+25-x_g1)^2/(2*sigma1^2));
 x_g2 = x_g1+delta_x; %creates a delta x of 0.1 meter
 z_g2 = org_depth - ho*exp(-(gaus1_range+25-x_g2)^2/(2*sigma1^2));
elseif x<(X_mine+gaus2_offset)
 %do gaussian
 x_g1 = x+lookahead; %modified x-position
 z_g1 = org_depth - clear*exp(-(X_mine-x_g1)^2/(2*sigma2^2));
 x_g2 = x_g1+delta_x; %creates a delta x of 0.1 meter

56
 z_g2 = org_depth - clear*exp(-(X_mine - x_g2)^2/(2*sigma2^2));

else
 x_g1 = x+lookahead; %modified x-position
 z_g1 = org_depth;
 x_g2 = x_g1+delta_x; %creates a delta x of 0.1 meter
 z_g2 = org_depth;
end

%Tangent
T2=[(x_g2-x_g1);(z_g2-z_g1)];
%Normal
N2=[-(z_g2-z_g1);(x_g2-x_g1)];
%Position
P2=[(0);(z-z_g1)];
%cross track error
CTE=P2'*N2/sqrt(N2'*N2);

command=-atan2(-CTE,aim);

TVD CALCULATION
Original_Depth=37; %altitude =3m m
Deviation=zeros(1,length(x_pos));
Area=Deviation;
for n=2:1:length(x_pos);
 Deviation(n)=(Original_Depth - (z_pos(n)+z_pos(n-1))/2); %avg
deviation between 2 pts
 Area(n)=Deviation(n)*(x_pos(n)-x_pos(n-1)); %tapezoid rule
end

Max_Deviation=max(Deviation)

TVD=sum(Area)

TRACKING SPLINE

function out=tracking_spline2(x,z)

aim = 4; %aims 4 meters ahead
X_mine = 100;
Z_mine=35; %Altitude of 5 (when ocean_depth=40)
org_depth = 37; %altitude of 3 (when ocean_depth=40)
%for modified popup
ho=.75;
sigma1=2;
%for obstacle avoidance Gaussian
min_clear=2;
sigma2=5;
clearance = org_depth-(Z_mine-min_clear);
gaus1_offset=80;
gaus1_range=X_mine-gaus1_offset;

57

gaus2_offset = 20; %do gaussian 20m before and after obstacle
gaus2_range = X_mine-gaus2_offset;

lookahead = 4.58; %”look” ahead 4.58
delta_x = .1; %for slope calculation

%second obstacle
Wall_Z2 = 35.5;
Wall_X2= 110;
clear2=org_depth-(Wall_Z2-min_clear);
Orig_alt = 3;

%for spline
Interval=0.1;
spline_offset=.1;
spline_range=X_mine+spline_offset;
X_slope1=spline_range+lookahead;
spline_X_int=Wall_X2-X_slope1;

X_spline1=X_slope1;
X_spline2=X_spline1+(spline_X_int)/3;
X_spline3=X_spline2+(spline_X_int)/3;
X_spline4=Wall_X2;
X_spline5=Wall_X2+10;
X_spline6=X_spline5+1;
X_spline7=X_spline6+1;
X_spline8=2*X_mine;
X_spline=[X_spline1 X_spline2 X_spline3 X_spline4 X_spline5 X_spline6
X_spline7 X_spline8];

Z_spline1=clearance*exp(-(X_mine-X_slope1)^2/(2*sigma2^2))*(100-
X_slope1)/-(sigma2^2); %slope of spline
Z_spline2=org_depth-clearance*exp(-(X_mine-
X_slope1)^2/(2*sigma2^2));%height at gaussian
Z_spline3=Z_spline2-(Z_spline2-(Wall_Z2-min_clear))/3;
Z_spline4=Z_spline3-(Z_spline2-(Wall_Z2-min_clear))/3;
Z_spline5=Wall_Z2-min_clear;
Z_spline6=org_depth;
Z_spline7=Z_spline6;
Z_spline8=Z_spline6;
Z_spline9=Z_spline6;
Z_spline10=0.0;
Z_spline=[Z_spline1 Z_spline2 Z_spline3 Z_spline4 Z_spline5 Z_spline6
Z_spline7 Z_spline8 Z_spline9 Z_spline10];

%xx=X_slope1:Interval:X_spline8;
%yy=spline(X_spline,Z_spline,xx);

if x<(gaus1_range-lookahead)
 %do original altitude
 x_g1 = x+lookahead; %modified x-position
 z_g1 = org_depth;
 x_g2 = x_g1+delta_x; %creates a delta x of 0.1 meter
 z_g2 = org_depth;
elseif x<(gaus2_range-lookahead)
 %do 1st gaus

58

 x_g1 = x+lookahead; %modified x-position
 z_g1 = org_depth - ho*exp(-(gaus1_range+25-x_g1)^2/(2*sigma1^2));
 x_g2 = x_g1+delta_x; %creates a delta x of 0.1 meter
 z_g2 = org_depth - ho*exp(-(gaus1_range+25-x_g2)^2/(2*sigma1^2));
elseif x<(spline_range)
 %do 2nd gaussian
 x_g1 = x+lookahead; %modified x-position
 z_g1 = org_depth - clearance*exp(-(X_mine-x_g1)^2/(2*sigma2^2));
 x_g2 = x_g1+delta_x; %creates a delta x of 0.1 meter
 z_g2 = org_depth - clearance*exp(-(X_mine - x_g2)^2/(2*sigma2^2));
else
 x_g1 = x+lookahead; %modified x-position
 z_g1 = spline(X_spline,Z_spline,x_g1);
 x_g2 = x_g1+delta_x; %creates a delta x of 0.1 meter
 z_g2 = spline(X_spline,Z_spline,x_g2);
end

%Tangent
T2=[(x_g2-x_g1);(z_g2-z_g1)];
%Normal
N2=[-(z_g2-z_g1);(x_g2-x_g1)];
%Position
P2=[(0);(z-z_g1)];
%cross track error
error=P2'*N2/sqrt(N2'*N2);

slope=atan2((z_g2-z_g1),(x_g2-x_g1));

command= -atan2(-error,aim);
x_g1=x_g1;
z_g1=z_g1;
out=[command,x_g1,z_g1];

59

THIS PAGE INTENTIONALLY LEFT BLANK

60

LIST OF REFERENCES

[1] Ackleson, Steven, “Office of Naval Research Investments in Unmanned
Underwater Vehicles (UUV),” Office of Naval Research,
[http://www.onr.navy.mil/about/conferences/rd_partner/2005/docs/past/2002/200
2_ackleson_investments_uuv.pdf], June 2006.

[2] Coleman, Jack,” Undersea drones pull duty in Iraq hunting mines,” Cape Code
Times, 2 April 2003.

[3] Hydroid Inc., Homepage, [www.hydoridinc.com], June 2006.

[4] Blue View Technologies Homepage, [www.blueviewtech.com], June 2006.

[5] Healey, A. J., “Obstacle Avoidance While Bottom Following for the REMUS
Autonomous Underwater Vehicle,” Proceedings of the IFAC-IAV 2004
Conference, Lisbon, Portugal, July 5-7, 2004.
[http://web.nps.navy.mil/~me/healey/papers/IAV2004.pdf], June 2006.

[6] Churan, C., Obstacle Avoidance Control for the REMUS Autonomous Underwater
Vehicle, MSME Thesis, Naval Postgraduate School, Monterey, California,
September 2003.

[7] Heminger, Dan, Vertical Plane Obstacle Avoidance and Control of the REMUS
Autonomous Underwater Vehicle Using Forward Looking Sonar, MSME Thesis,
Naval Postgraduate School, Monterey, California, June 2005.

[8] Healey, A. J., “Dynamics and Control of Mobile Robotic Vehicles (MA-4823),”
Class Notes, Naval Postgraduate School, Monterey, California, Winter 2001.

[9] Prestero, Timothy, Verification of a Six-Degree of Freedom Simulation Model for
the REMUS Autonomous Underwater Vehicle, M.S. Thesis, Massachusetts
Institute of Technology, September 2001.

[10] Ogata, Katsuhiko, Modern Control Engineering, Fourth Edition, Prentice Hall,
2001.

[11] Mathworld Homepage, [www.mathworld.com], June 2006.

[12] Horner, D. P., Healey, A. J. and Kragelund, S. P., “AUV Experiments in Obstacle
Avoidance,” Proceedings of the OCEANS 2005 MTS/IEEE Conference,
Washington D.C., September 18-23, 2005.

61

http://www.onr.navy.mil/about/conferences/rd%5Fpartner/2005/docs/past/2002/2002%5Fackleson%5Finvestments%5Fuuv.pdf
http://www.onr.navy.mil/about/conferences/rd%5Fpartner/2005/docs/past/2002/2002%5Fackleson%5Finvestments%5Fuuv.pdf
http://www.hydoridinc.com/
http://www.blueviewtech.com/
http://web.nps.navy.mil/~me/healey/papers/IAV2004.pdf
http://www.mathworld.com/

THIS PAGE INTENTIONALLY LEFT BLANK

62

63

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Distinguished Professor Anthony J. Healey
Department of Mechanical and Astronautical Engineering
Naval Post Graduate School
Monterey, California

4. Research Associate Douglas P. Horner
Center for AUV Research
Naval Post Graduate School
Monterey, California

5. Research Associate Professor Oleg Yakimenko
Department of Mechanical and Astronautical Engineering
Naval Post Graduate School
Monterey, California

6. Dr. Tom Swean
Office of Naval Research
Arlington, Virginia

7. Chris Von Alt
Woods Hole Oceanographic Institute
Woods Hole, Massachusetts

8. Dr. Kerry Commander
Office of Naval Research
Arlington, Virginia

9. Ken Kruger
U.T. Applied Research Lab
Austin, Texas

	I.INTRODUCTION
	A.BACKGROUND
	B.PLATFORM
	1.REMUS
	2.Forward Looking Sonar (FLS)

	C.MOTIVATION
	D.PREVIOUS RESEARCH
	E.APPROACH

	II.VEHICLE KINEMATICS AND DYNAMICS
	A.ASSUMPTIONS
	B.EQUATIONS OF MOTION
	C.VERTICAL PLANE SIMPLIFICATIONS
	D.MATRIX FORM

	III.PATH FOLLOWING CONTROLLER
	A.PITCH CONTROLLER
	B.SIMULINK MODEL
	C.PATH FOLLOWING SIMULATIONS
	D.REMOVING THE LAG
	1.Including the Path’s Slope
	2.Include a “Look Ahead”

	IV.OPTIMAL SENSOR ORIENTATION FOR OBSTACLE AVOIDANCE PLANNING
	A.PATH PLANNING STRATEGY
	B.MODELING
	1.Environment
	2.Sonar

	C.FLS ORIENTATION ISSUES
	1.Limited Field of View
	2.Occlusion Areas

	V.OPTIMAL REACTIVE OBSTACLE AVOIDANCE
	A.GAUSSIAN POP-UP
	B.SPLINE ADDITION
	C.APPROACH COMPARISON

	VI.CONCLUSIONS AND RECOMMENDATIONS
	A.CONCLUSIONS
	B.RECOMMENDATIONS

	APPENDIX. MATLAB CODE
	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

