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ABSTRACT 
 
 
 

One day fully autonomous AUV’s will no longer require human interactions to 

complete its missions.  To make this a reality, the AUV must be able to safely navigate in 

unfamiliar environments with unknown obstacles.  This thesis builds on previous work 

conducted at NPS’s Center for AUV Research to improve the autonomy of the REMUS 

class of AUVs with an implemented FLS.  The first part of this thesis deals with accurate 

path following with the use of look-ahead pitch calculations.  With the use of a 

SIMULINK model, constraints surrounding obstacle avoidance path planning are then 

explored, focusing on optimal sensor orientation issues.  Two path planning methods are 

developed to address the issues of a limited sonar field of view and uncertainties brought 

on by an occlusion area.  The first approach utilizes a pop-up maneuver to increase the 

field of view and minimize the occlusion area, while the second approach creates a path 

with the addition of a spline.  Comparing the two methods, it was concluded that spline 

addition planner provided a robust optimal obstacle avoidance path and along with the 

look-ahead pitch controller completes the design of a “back-seat driver” to improve 

REMUS’s survivability in an unknown environment.     
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I. INTRODUCTION  

A. BACKGROUND 
Autonomous Underwater Vehicles (AUVs) provide the Navy with unlimited 

potential.  According to the Office of Naval Research’s (ONR) Future Naval Capabilities 

program, AUVs will someday provide Maritime Reconnaissance, Submarine Track and 

Trail, Communication/Navigation Aid, and Undersea Search and Survey without direct 

human control [1].  A preview of this technology took place in April 2003 with the 

deployment of the Remote Environmental Monitoring Units (REMUS), a class of AUVs, 

in the Iraqi Port of Umm Qasr [2].  This first-ever intelligence gathering mission in 

hostile waters, aided in allowing 232 tons of critically needed food, water, blankets and 

other supplies to reach Iraqi civilians.  According to Ken Jordan, the president of Hydroid 

(www.hydroidinc.com June 2006), the Navy’s main benefit is the possibility for valuable 

resources such as human divers or multi-million dollar equipment to be replaced with a 

$250,000 vehicle which is undeterred by cold temperatures, murky waters, sharks or 

hunger.  In order to make this a reality, the vehicle must be fully autonomous and require 

no human interaction to accomplish its mission in the presence of known and unknown 

obstacles. 

B. PLATFORM 

1. REMUS  
The REMUS class of AUVs is the product of over 10 years of leading edge 

research and development by Woods Hole Oceanographic Institute and later the spin-off 

company, Hydroid LLC.   

 
Figure 1.   REMUS 100 (From: www.hydroidinc.com June 2006) 
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It is a compact, light-weight, autonomous underwater vehicle designed for operation in 

coastal environments up to 100 meters in depth.  Only 67 inches long, 7.5 inches in 

diameter and weighing less than 80 lbs, the REMUS can be easily transported worldwide 

and deployed by a two-man team.  Its list of applications include hydrographic surveying, 

harbor security operations, environmental monitoring, search and salvage operations, and 

fishery operations.  For the United State’s Navy, REMUS is the instrument of choice for 

shallow water mine counter measure operations due to its system features, ease of 

operations, and proven reliability.   

 
Maximum Diameter:   19 cm (7.5 in)

Maximum Length: 160 cm (63 in)
 
Weight In Air: 37 kg (< 80 lbs)

Trim Weight:  1 kg
 
Max Depth 100 m (328 ft)

Energy: 1 kw-hr internally rechargeable Lithium ion
 

22 hrs at 1.5 m/s (3 knots)
>8 hrs at 2.6 m/s (5 knots)

 
Propulsion: DC brushless motor to open 3-bladed prop

Control: 2 coupled yaw and pitch fins

Long baseline (LBL)
Ultra short baseline (USBL)
Doppler-assisted dead reckoning

Acoustic Doppler Current Profiler (ADCP)
Doppler Velocity Log (DVL)
Side Scan Sonar
Conductivity & Temperature
Pressure

Endurance: 

Navigation: 

Standard Sensors: 

 
Table 1. REMUS Specifications (After: www.hydroidinc.com June 2006) 

 
2. Forward Looking Sonar (FLS) 
In November 2005, the Center for AUV Research’s REMUS at the Naval Post 

Graduate School’s (NPS) was fitted with a ProViewer 450-15 multi-beam sonar 

manufactured by Blue View Technologies (www.blueviewtech.com June 2006).   
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Vertical Staves 

Figure 2.   REMUS with BlueView’s ProViewer 450-15 Acoustic Sonar 
 

The ProViewer is a high performance acoustic imaging device that bounces sound 

waves off the ocean floor and objects within its insonified volume and turns them into 

two-dimensional digital images.  The unit can be either mounted horizontally or 

vertically and the real-time streaming sonar images are rapidly updated for use in 

applications such as underwater inspection, search and recovery, port security, and fish 

tracking.   

 
Range: 5 to 450ft
Update Rate: Up to 10Hz
Transducter: 450 KHz
Field of View: 50°
Beam Width: 1° x 15° nominal
Range Resolution: 2 in
Depth Rating: Up to 300ft deep
Power: 10 Watts @ 9-36 VDC
Comms Interface: USB 1.1
Software: Runs on Windows (2000/XP)  

Table 2. ProViewer 450-15 Specification (From: www.blueviewtech.com June 
2006) 

 

The ProViewer is mounted vertically and positioned in a “forward looking” 

manner on REMUS.  The forward looking sonar (FLS) easily detects and tracks targets in 

dynamic conditions and is the vehicle’s primary sensor for obstacle avoidance.     

C. MOTIVATION 
For current REMUS missions, a predetermined path is entered beforehand into the 

vehicle by means of waypoints.  An altitude control “auto-pilot” steers the vehicle to the 

3 
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path set forth by these waypoints as it gathers information about the environment.  

Although this approach may seem autonomous, it is limited to known static 

environments.  It is similar to telling a car where and when to turn based on a satellite 

snap shot of the terrain, without taking into account traffic, pedestrians or changing light 

signals that may occur during the trip.  The introduction of unknown variables into the 

environment severely degraded the likelihood of a successful pre-planned mission.  Since 

most REMUS operations will take place in the ever-changing littoral waters, it is 

imperative that the vehicle be able to react to an unknown environment  

D. PREVIOUS RESEARCH 

This thesis expands on previous research work that has been conducted at the 

NPS Center for AUV Research dealing with the autonomy issues of REMUS.  Healey 

has shown that the REMUS’s normal altitude control “auto-pilot,” using only the RDI 

Doppler Velocity Log, is unable to maintain a safe altitude over sharp rises in the ocean 

floor of 45 degrees or greater [5].  In anticipation to its installment on REMUS.  Churan 

[6] and Hemminger [7] both looked into using a FLS for obstacle avoidance in the 

vertical plane.  Churan studied the use of a “danger bearing” algorithm, while 

Hemminger looked into the use of a Gaussian-based additive function for obstacle 

avoidance.  Although both provide a reasonable solution to sharp rises in the ocean floor 

or objects protruding off the bottom, little or no emphasis is placed on sensor orientation 

for optimal obstacle path planning.   

E. APPROACH 
This thesis explores the issues surrounding the development of obstacle avoidance 

for the REMUS class of AUVs.  The goal is to design a “back-seat driver” to work in 

conjunction with the current onboard altitude control “auto-pilot” to safely navigate the 

vehicle in the presence of previously unknown obstacle and threats.   
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OA Path 
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Figure 3.   REMUS’s Control Architecture 

 

The back-seat driver consisting of a path generator and path-following controller 

would over-ride the normal configured autopilot when an obstacle is detected.  Ideally, 

the path generator takes the information gathered by its FLS, provides an optimal path to 

avoid the detected obstacle, and then the vertical pitch controller follows the path with as 

little error as possible. 

The first part of the thesis is the design of an accurate path-following controller by 

using the equations of motions (EOM) previously derived by Healey [8] to model 

REMUS’s pitch response to stern plane deflections.  Next, using a FLS model and 

simulated hazardous two-dimensional ocean environments, optimal vehicle sensor 

orientation with regards to obstacle avoidance planning is defined; and issues regarding 

obstacle height determination and occlusion areas are shown.  An occlusion area is a 

portion of the normal insonified region that goes “unseen” by the sonar and is created 

when an obstacle blocks the sonar’s acoustic waves from “seeing” behind it.    

Two approaches are presented to maximize the information gathered about the 

environment by optimally positioning the vehicle to increase the FLS’s field of view.  

The first approach utilizes an initial pop-up maneuver to determine the obstacle’s height 

and minimize the occlusion area, which enables the planner to generate a safe avoidance 

path.  The second approach alters a standard fixed obstacle avoidance path with the 

addition of a piece-wise continuous curve for safe navigation in the presence of 

previously undetected obstacles.  The goal to design an effective “back-seat driver” was 

achieved by implementing the path planning method which most closely satisfies the 

defined criteria for optimal reactive avoidance along with the ideal path following pitch 

controller.   
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II. VEHICLE KINEMATICS AND DYNAMICS 

A. ASSUMPTIONS 
In order to achieve realistic simulated results, an accurate model or equations of 

motions (EOM) must first be derived to describe the maneuvering and motion control of 

the vehicle.  Healey [8] made the following initial assumptions when describing the 

maneuvering and motion control of REMUS: 

• the vehicle behaves as a rigid body; 

• the earth's rotation is negligible as far as acceleration components of the 
vehicle's center of mass is concerned; 

• the primary forces that act on the marine vehicle have inertial and 
gravitational origins and hydrostatic, propulsion, thruster, and 
hydrodynamic forces from lift and drag. 

B. EQUATIONS OF MOTION 

Using a Newton-Euler approach and Euler angle transformations, rotational and 

translational equations were developed, and incorporating the weight/buoyancy forces, 

Healey [8] derived the EOM for a six degree of freedom model. 

 
Figure 4.   Coordinate System with Euler Angle Transformations (From: [7]) 

 
 
 

7 



2 2

SURGE EQUATION OF MOTION
[ ( ) ( ) ( )] ( )sir r r G G Gm u v r w q x q r y pq r z pr q W B Xθ− + − + + − + + + − =n f

in f

os f

)

 

2 2

SWAY EQUATION OF MOTION
[ ( ) ( ) ( )] ( ) cos sr r r G G Gm v u r w p x pq r y p r z qr p W B Yθ φ+ − + + − + + − − − =

 

2 2

HEAVE EQUATION OF MOTION
[ ( ) ( ) ( )] ( ) cos cr r r G G Gm w u q v p x pr q y qr p z p q W B Zθ φ− + + − + + − + − − =

 

2 2

ROLL EQUATION OF MOTION
( ) ( ) ( ) ( ) [ (

( )] ( ) cos cos ( ) cos sin
x z y xy yz xz G r r

G r r r G B G B f

I p I I qr I pr q I q r I pq r m y w u q v p

z v u r w p y W y B z W z B Kθ φ θ φ

+ − + − − − − + + − +

− + − − − + − =

 

2 2

PITCH EQUATION OF MOTION
( ) ( ) ( ) ( ) [ (

( )] ( ) cos cos ( )sin
y x z xy yz xz G r r r

G r r r G B G B f

)I q I I pr I qr p I pq r I p r m x w u q v p

z u v r w q x W x B z W z B Mθ φ θ

+ − − + + − + − − − +

− − + + − + − =

 

2 2

YAW EQUATION OF MOTION
( ) ( ) ( ) ( ) [ (

( )] ( ) cos sin ( )sin
z y x xy yz xz G r r r

G r r r G B G B f

)I r I I pq I p q I pr q I qr p m x v u r w p

y u v r w q x W x B y W y B Nθ φ θ

+ − − − − + + − + + −

− − + − − − − =

 

where: 

W = weight 

B = buoyancy 

I = mass moment of inertia terms 

ur vr wr = component velocities for a body fixed system with respect to the water 

p, q, r = component angular velocities for a body fixed system 

xB  yB  zB = position difference between geometric center and center of buoyancy 

xG  yG   zG = position difference between geometric center and center of gravity 

Xf  Yf  Zf  Kf  Mf  Nf = sums of all external forces (body fixed directions) 

C. VERTICAL PLANE SIMPLIFICATIONS 
The scope of this thesis only deals with motion in the vertical plane, therefore, the 

six-degrees of freedom EOM were simplified by neglecting all of the horizontal 

components, , , , ,  and rv r p Yφ ψ, .  The EOM were further simplified by assuming the 

following: 
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• the center of mass of the vehicle lies below the origin 

• xg and yg are zero 

• the vehicle is symmetric in its inertial properties 

• ur equals the forward speed, Uo 

The resulting simplified EOM that model REMUS’s pitch and depth dynamics in 

response to stern plane action is: 

0

0

                                                                                                    (1)
( ) cos  ( )       (2)

( )sin
r

r

r w r w r q q

yy B q qG

u U
mw mU q W B Z w Z w Z q Z q Z t

I q z B z W M q M q
δθ δ

θ

=

= + − + + + + +

= − + +

0

+M ( )          (3)

                                                                                                        (4)
sin cos                                      

rw r w r pl

r

M w w M t

q
X w U

δδ

θ

θ θ

+ +

=

= +

0

                                       (5)

cos sin                                                                               (6)rZ w Uθ θ= −

pl

 

where, 

= heave velocity
 = pitch rate
 = pitch

( ) Stern plane deflection

X = horizontal position
Z = depth

r

pl

w
q

t
θ
δ =

D. MATRIX FORM 

 The above simplified equations were reduced to the Linear Time Invariant (LTI) 

form which is used later in the Simulink model: 

[m] ( ) [a] ( ) [b] (t) t t δ= +x x  where, x(t) [ , , ]r
Tw q θ=  and, 

( )
0( ) 0 ( ) 0

[m] ( ) 0 ;   [a]= ;  [b]= ;
0 0 1 0 1 0

w q w q

w yy q w q B G

m Z Z Z mU Z Z
M I M M M z B z W M

δ

δ

− − +   
   = − − −   
       0

 
 
 
  
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From the above equations, x(t) is a state matrix and  is the vehicle’s response 

in the vertical plane with respect to time. The input matrices [a] and [b] contain geometry 

dependent hydrodynamic coefficients of REMUS and [m] is defined as the system’s mass 

matrix.   

( )tx

The forward speed of the vehicle, Uo, was set to a constant 1.5 meters per second 

since it provided its maximum endurance of 22 hours.  The hydrodynamic coefficients 

used taken from a previous thesis by Prestero in 2001 [9] and shown below. 

g

yy

0

q q

w w

q

q w

z  = 1.96e-2;     W = 299;

B = 306;            I  = 3.45;

U  = 1.5;           m = 299/9.81;
M  = -6.87;       M  = -4.88;

M  = 30.7;       M  = -1.93;
M  = -34.6;       Z  = -9.67;

Z  = -1.93;        Z
δ

w

= -66.6;

Z  = -35.5;       Z  = -50.6;δ

 

The Matlab code “Vehicle_Dynamics” [Appendix] took the simplified EOM and 

the hydrodynamic coefficients and calculated the state space matrices of REMUS for use 

in the SIMULINK model. 
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III. PATH FOLLOWING CONTROLLER 

A. PITCH CONTROLLER 
As previously stated, the requirement for a “back-seat driver” arises due to the 

inability of REMUS’s auto-pilot to safely maneuver over sharp rises in the ocean floor or 

obstacles proud of the bottom.  The most basic necessity for any “driver” or pilot is that it 

must be able to execute where and what it is ordered to accomplish.  Endless research and 

resources spent on developing a perfect path planning method are wasted if there were no 

way of following the path; therefore, the first step toward designing an effective “back-

seat driver” is developing an accurate path-following controller.   Simply stated, it is a 

modification of the line of sight (LOS) heading controller developed by Healey and 

Lienard [8], which minimizes the cross track error (CTE) between the vehicle and the 

adjacent ordered track.  Figure 5 defines the variables used in calculating the pitch 

command for the controller. 

 

(X1, Z1)

Position

Track Normal

1

Line of sig
a

t
t n

hcorrect
CTEθ −  

=  
 

Line of sight = 4

Track

X

Z

U

u

(X2, Z2)

 

(X , Z)

CTE 

Figure 5.   Definitions for Pitch Command Calculation 
 

The coordinates (X, Z) represent the global position of the vehicle.  Coordinates 

(X1, Z1) is where the vehicle should vertically be at its present horizontal “X” position if 

it were on the ordered track.  In other words, “X1” and “u” are always equivalent to the 

vehicles horizontal position and velocity, “X” and “U,” respectively and “Z1” is the 
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track’s altitude at “X”.  The “Position” vector is a result of the difference between (X, Z) 

and (X1, Z1).  Coordinates (X2, Z2) composes of adding 0.1 to “X1” and calculating the 

tracks altitude at “X2”.  The track’s tangent is the difference between (X2, Z2) and (X1, 

Z1).  “Track Normal” is the negative inverse of the track’s tangent and the “CTE” is the 

projection of the “Position” vector onto the “Track Normal” vector.  “Line of sight” is a 

constant distance set in front of the vehicle where it is aiming to regain the ordered track.  

A real-world example to the “Line of sight” approach is steering to the “previewed” road 

seen out of the car’s windshield instead of the “passing” road seen out the driver’s side 

window.  The angle or pitch command is then calculated by taking the inverse tangent of 

the “Error” divided by “Line of sight”.  A Matlab code entitled “Tracking” [Appendix] 

was created with the above definitions and used in the next section to provide vehicle 

pitch commands during simulations. 

B. SIMULINK MODEL 
A SIMULINK model was created to observe the vehicle’s simulated response and 

the designed controller’s path following ability. 
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Figure 6.   SIMULINK Model 
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The “State Space” block contains the state space matrices “A’ and “B” that were 

derived in Chapter II.  The Matlab Function block “X_dot, Z_dot” takes the outputs 

, ,and w q θ  from “State Space” and uses Equations 5 and 6 from Chapter II to calculate 

X and Z .  X and Z  are then integrated, resulting in the vehicles position (X, Z) which 

the Matlab “Tracking” code uses to calculate the vehicle’s pitch command.  The pitch 

command is fed back into the state space system along with the state-feedback gains to 

close the loop.  The state-feedback gains -1.6807, 0.2935, and 0.0889 were determined 

with a simple pole placement technique of using the Matlab command “place.”   The 

location of the “placed” poles, -.5+.866i, -.5-.866i, and -1, were found using the 

Butterworth pole pattern method [10]. 

To keep the simulations as accurate as possible, real-world mechanical vehicle 

limitations were incorporated into the SIMULINK model.  First, “Plane Sat” was added 

to limit the stern plane deflections to +/- 0.4 radians (22.9 degrees) due to stall 

restrictions [8].  Next, “Pitch Sat” prevents the ordered pitch angle from exceeding the 

maximum pitch achievable by the vehicle.  The model’s maximum achievable vehicle 

pitch was determined to be +/- pi/3 radians (60 degrees) by placing and holding the stern 

planes at their maximum deflection for an extended period of time.  Lastly, the -5.7/40 

multiplying factor was included to the pitch command for a desired one-to-one ratio in 

the ordered and responding vehicle pitch. 

C. PATH FOLLOWING SIMULATIONS 
Simulations were conducted with the vehicle trying to follow a “generic” obstacle 

avoidance path generated by a Gaussian potential function.  The Gaussian function was 

initially chosen based on Hemminger’s reasonable obstacle avoidance success using 

potential functions [7].  Hemminger concluded, “The characteristics of the potential 

function alone control vehicle avoidance maneuvers by creating a repulsive field around 

an obstacle that forces the vehicle to trace the potential field in order to regain its 

commanded trajectory.  Also, not only is the obstacle avoidance path smooth and 

efficient but its magnitudes can be updated and optimized by assigning certain parameters 

with the actual Gaussian potential function.”   
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In one-dimension, the Gaussian function is the probability function of the normal 

distribution as shown in Figure 7. 

2

2
( )

2( ) *exp
x

oP x h
µ
σ
−

−
=  

2σ

µ

oh

 
Figure 7.   Gaussian Function (After: www.mathworld.com May 2006) 

 

The multiplying parameter, , linearly affects the maximum height of the 

potential curve at the location of its mean, 

oh

µ , therefore, increasing  by 10 will also 

increase the maximum height by 10.  The parameter 

oh

2σ is the function’s variance and 

represents the width or distribution of the function.  The choice of the parameters 

determines the resulting ordered trajectory for the vehicle that can be customized to 

satisfy various mission goals.  In the case of generating an obstacle avoidance path,  

would be the desired vertical clearance of an obstacle located at 

oh

µ , and 2σ  would 

determine the execution and termination distance from the obstacle for the avoidance 

trajectory.  For the controller path following trials, a Gaussian function with 

and a mean at 60 meters were used.  The “generic” path would order the 

vehicle to begin pitching up about 15 meters prior to the location of the obstacle and 

provides an altitude change of two meters above its original course.  Figure 8 shows the 

simulated vehicle’s response in attempts to follow the Gaussian path using the designed 

pitch controller.  

22,  25oh σ= =

14 

http://www.mathworld.com/
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Figure 8.   Ordered Versus Actual 

 

 
Figure 9.   Ordered Pitch, Actual Pitch, Stern Plane Deflection in Degrees 
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Although the desired contour is achieved using the LOS pitch controller, a 

horizontal lag of about five meters exists between the “Actual” and “Ordered” plots.  The 

commanded and responding vehicle pitch shown in Figure 9 are nearly identical and 

display a one-to-one ratio.  Also, the stern plane deflection in relation to its saturation 

limit is small and indicates that the vehicle could handle more radical contours if needed. 

The controller’s path-following error was defined as the vertical difference 

between the actual altitude of the vehicle and the altitude of the ordered path at a given 

“X”.  The Matlab file “Controller_Errors” [Appendix] uses the following equations, to 

calculate and plot the vertical and total errors for the entire simulation.   

2
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( ) ( ( ) - ( ))

_ ( ) ( )

__

n

n
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total error X error X
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Figure 10.   Vertical Error 
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Figure 11.   Total Vertical Error 

 

The maximum vertical deviation was found to be 1.152 meters with an average 

error of 0.1716 meters, and the total error stabilized at 12.1849 meters.  Although an 

average error of 0.1716 meters may seem reasonable, having deviations reach 1.152 

meters at times represents a very high relative error of 57.6% when compared to an 

ordered two-meter altitude rise.  In Section D, the design of an effective path-following 

controller continues as two approaches are studied in attempts to minimize the current 

controller errors.  

D. REMOVING THE LAG 

1. Including the Path’s Slope 

The first attempt to reduce the lag and large relative controller error was to 

include the slope of the ordered path into the pitch command calculations.  The pitch 

command would be the result of adding the correcting angle and the slope of the path, 

therefore, in theory increasing the response of the vehicle.  The addition of the slope 

would also prevent any rapid growth in the deviations in the event of an extreme track 

slope.  The definitions governing this theory are shown below in Figure 12. 
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Figure 12.   Slope Addition Definitions 
 

All the definitions regarding the coordinates remain the same as before and the 

slope of the path, θslope, is found by taking the arc tangent of the difference between “Z2” 

and “Z1” and “X2” and “X1”.  θcorrect is calculated exactly like the pitch command from 

the previous approach and added to θslope to obtain θcommand.  The Matlab code 

“Tracking_plus_slope” [Appendix] was written using these definitions and replaces the 

previous “Tracking” code in the SIMULINK model.  The simulation was repeated as 

before and the vehicle’s path-following response utilizing the slope addition controller is 

shown in Figure 13. 
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Figure 13.   Order versus Actual with Slope 
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Figure 14.   Ordered Pitch, Actual Pitch, Plane Deflection with Slope 

 

The horizontal lag from the vehicle’s original response has been reduced from 

five meters to approximately one meter by incorporating the track’s slope into the pitch 

command.  Although improvements with the lag issue have been made, overshoots at the 

peak and conclusion of the Gaussian path of almost one-half meter have been introduced.  

The controller errors were calculated in the same fashion as before to accurately evaluate 

any increases or decreases in the controller performance.   
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Figure 15.   Vertical Error with Slope 
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Figure 16.   Total Vertical Error with Slope 

 

The inclusion of the path’s slope showed an improvement over the original LOS 

pitch controller in all three errors.  The maximum vertical error was reduced by 27.4% to 

0.8365m, the average error by 42.02% to .0995 meters, and the total error by 40.4% to 

7.2607 meters.   

2. Include a “Look Ahead” 
Controller performance improvements were made with the slope-inclusion 

approach; however, the maximum vertical error still resulted in an unacceptable relative 

error of 41.8% to the ordered two-meter altitude change.  The overshoots also pose a 

problem when an autonomous mission requires precise maneuvering in an unknown 

hazardous environment.  A second approach involving the vehicle “looking ahead” was 

tested in an attempt to reduce the controller errors within acceptable tolerances.  When 

“looking ahead,” the vehicle’s pitch command is calculated identical to the original LOS 

approach, however, it uses coordinates at a “look ahead” distance from the vehicles 

current position.  A visual representation to this approach is shown in Figure 17.   
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Figure 17.   Look ahead Definitions 
 

Using this approach, the vehicle receives a pitch command that it would have 

originally received further down the track, therefore, increasing the controller’s 

responsiveness.  For example, Figure 17 shows the pitch command being calculated 

based on the upcoming climbing trajectory instead of the diving trajectory that the 

vehicle is currently on.  The Matlab code “Tracking_lookahead” [Appendix] included 

this philosophy and was written for calculating the new vehicle pitch command.   

The SIMULINK simulations were once again conducted using the same Gaussian 

function as before and “Tracking” was replaced with “Tracking_lookahead” in the 

Matlab Function block.  The initial simulation was conducted with a “look ahead” set at 

the horizontal lag distance of five-meters.  Various distances were then tested to find the 

ideal “look ahead” and summarized in Table 3.   
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ho=2m sig = 5 U=1.5 m/s aim = 4
Look Ahead Max Error Avg Error Total

5 0.1686 0.0228 1.6165
4.9 0.1591 0.0198 1.4276
4.8 0.1489 0.0177 1.273
4.7 0.1389 0.0158 1.1373

4.65 0.1368 0.0148 1.0688
4.6 0.1346 0.0145 1.0405

4.59 0.1342 0.0145 1.0405
4.58 0.1337 0.0145 1.0413
4.57 0.1333 0.0146 1.0491
4.56 0.1329 0.0147 1.058
4.55 0.134 0.0148 1.0668
4.54 0.1364 0.0149 1.0756
4.53 0.1389 0.0151 1.0844
4.52 0.1413 0.0152 1.0933
4.51 0.1437 0.0153 1.1051
4.5 0.1462 0.0156 1.12
4.4 0.1703 0.0177 1.2761
4.3 0.194 0.0202 1.4526
4.2 0.2176 0.0228 1.6444
4.1 0.2413 0.0258 1.8559

4 0.2649 0.029 2.0889

Various Look Ahead Distances

 
Table 3. Errors at Various Look Ahead Distances 

 

Since the three minimal controller errors occurred at different “look ahead” 

distances, the ideal “look ahead” was determined to be 4.58 meters and used in all future 

simulations, as it caused the greatest reduction in all three errors.  The following three 

figures compare the response and errors for all three approaches. 
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Figure 18.   Ordered vs. Actual with Look Ahead 
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Figure 19.   Vertical Error with Look Ahead 
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Figure 20.   Total Vertical Error w/Look Ahead 

 

Using this “look ahead” reduced the original maximum vertical error by 88.46% 

to 0.1329 meters with an average error of only 0.0145 meters.  The total error was 

reduced by 91.46% to 1.0405 meters.  Table 4 summarizes the controller errors for all 

three controllers and their improvement over the original errors. 

 
Approach Max Error Redution % Avg Error Redution % Total Error Redution %
Original 1.152 0.1716 12.1849
Slope Addition 0.8365 27.39% 0.0995 42.02% 7.2067 40.86%
Look Ahead 0.1329 88.46% 0.0145 91.55% 1.0405 91.46%  

Table 4. Summarization of Controller Errors (Meters) 
 

It is evident that the “look ahead” approach successfully reduces the original 

horizontal lag problem, and unlike the slope addition approach, does so without the 

introduction of large vertical overshoots.  The drastic reduction in controller errors to 

within acceptable tolerances support the fact that the first requirement of an effective path 

following controller for the obstacle avoidance “back-seat driver” has been met. 
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IV. OPTIMAL SENSOR ORIENTATION FOR OBSTACLE 
AVOIDANCE PLANNING 

A. PATH PLANNING STRATEGY 

With the design of an adequate path following controller, the remainder of this 

thesis addresses effective obstacle avoidance path planning for the REMUS’s “back-seat 

driver”.  An adaptation of what Horner [12] described as some constraints associated with 

optimal reactive avoidance path planning are: 

• Avoid obstacle 

• Smooth continuous navigation 

• Vehicle limitations 

• Optimal sensor orientations 

The list of constraints is used as a basis in developing an effective strategy for 

REMUS’s “back-seat driver”.  The obstacle avoidance path must first and foremost 

provide safe and collision free navigation for the vehicle.  Collision free is a clear cut 

requirement and for simplicity reasons, a “safe” path was deemed as avoiding the 

obstacle by a minimum vertical distance of two-meters.  The freedom of the path is 

further limited by the requirement that the path must be smooth and continuous for pitch 

command calculations.  Next, the vehicle limitations such as maximum pitch angle and 

stern plane deflection, processing/information relay time, and actuator lag time can all 

have an affect on the sharpest path curvature the vehicle would be able to accurately 

follow, also known as the vehicle’s maximum achievable turning radius.  Since the 

vehicle’s maximum pitch and stern plane deflection are the most limiting on the vehicle’s 

turning radius, they are the only two vehicle limitations incorporated into the Simulink 

model.   

The first three path planning constraints discussed above consist of predetermined 

variables and provide limited effect to an obstacle avoidance strategy.  Optimal sensor 

orientation on the other hand varies within dynamic unknown environments and is the 

focus for this chapter.  To date, NPS research on optimal sensor orientation has mainly 

dealt with the orientation of the vehicle’s side scanning sonar, which found that flying at 

a low fixed altitude would provide consistent sonar images and reduce the “near-nadir” 
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region [12].  The implementation of the FLS as the vehicle’s primary obstacle avoidance 

sensor introduces another element to the optimal sensor orientation constraint.  Now the 

vehicle must be positioned in such a way to maximize the information gathered by the 

FLS about upcoming hazards, while trying to maintain the low-fixed altitude for the side 

scanning sonar.    

B. MODELING 

1. Environment 

Models of possible hazardous environments [“Ocean_Model,” Appendix] were 

created in MATLAB to explore the issues governing optimal sensor orientations.  Since 

REMUS’s auto-pilot is currently unable to steer to sharp rises [5], the environment 

modeled consists of either one or two sea wall(s) present on a flat ocean floor.  A sea wall 

is also a simple representation for the FLS’s perspective of large protruding obstacles 

sitting on the ocean bottom.   
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Figure 21.   Ocean Model with One Sea Wall 
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Figure 22.   Ocean Model with Two Sea Walls 

 

The first ocean model, shown in Figure 21 contains a five meter sea wall located 

100 meters from the global origin.  The second model including two sea walls was 

created to study the situation when an obstacle is located within a FLS occlusion area 

created by the first obstacle.  The second sea wall located 10 meters aft and a half-meter 

shorter then the first sea wall  will be undetected when the vehicle is flying at the fixed 

altitude of three meters; a problem which is discussed in more detail later in this chapter. 

2. Sonar 
Although the FLS installed on REMUS contains two sonar staves, for 

simplification, only one stave was modeled using the MATLAB code [“Sonar,” 

Appendix] to represent the two-dimensional field of view for the vehicle.  The vehicle’s 

field of view was defined as the area bounded by the upper most sonar beam, the lowest 

most sonar beam, and the nominal maximum sonar range of 100 meters as shown in 

Figure 23. 
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Figure 23.   2-D Field of View for REMUS 
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The sonar’s beam width of 22.5 degree was broken up into 225 beams to simulate 

the ProViewer multi-beam sonar.  The high number of beams were required to obtain 

accurate and smooth sonar images at ranges of 50 meters or greater.  The sonar image 

was created by calculating where and if each sonar beam, originating from a given 

vehicle position and pitch, intersected the modeled environment.  All the interception 

points were then gathered and plotted to create a simulated sonar image.  If an occlusion 

was present, it was represented by a red line which bounded the “unseen” area.  Figures 

24 and 25 show the simulated sonar images plotted below a graphical representation of 

the vehicle/sonar position and orientation.  The vehicle is indicated by the blue circle and 

the sonar beams by the black dashed lines.  It should be noted that the axes vary largely 

in scale and cause a distorted representation in slopes and angles.   
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Figure 24.   Simulated Sonar Image of an Ocean Floor 
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Figure 25.   Simulated Sonar Image of a Sea Wall and Occlusion 
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To model the sonar for a moving vehicle, “Sonar” was modified with a “for” loop 

to repeat the imaging with varying vehicle position and pitch during a simulated obstacle 

avoidance run [“Sonar_Moving, Appendix].  A video clip of the sequential sonar images 

is generated to be used for studying possible sensor orientation issues. 

 

 
Figure 26.   Stills from a Video Generated by “Sonar_Moving” Matlab Model  

 
C. FLS ORIENTATION ISSUES 

1. Limited Field of View 
In order to satisfy the initial optimal sensor orientation constraint of minimizing 

the “near-nadir” region, the vehicle flies at a low fixed altitude of three meters.  However, 

this increases the likelihood of encountering obstacles that protrude higher off the ocean 

floor then the vehicle is flying.  Since the sonar is configured to search 2.5 degrees below 

the vehicle’s zero-pitch horizon, the obstacle will always saturate the vehicle’s 

downward-angled field of view if it remains on its fixed altitude path.   
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Figure 27.   REMUS Unable to See Entire Obstacle 

 

As shown in Figure 27, without pitching the vehicle upward, the vehicle never 

“sees” the entire five meter obstacle and the vehicle would have to guess a safe altitude 

required to clear the obstacle.      

2. Occlusion Areas 
Even if vehicle correctly “guessed” the altitude required to clear the obstacle, 

there still exists a problem if another obstacle lies within the occlusion area brought on by 

the first obstacle.  Normal obstacle avoidance methodology of projecting a typical 

Gaussian may provide a solution for the first obstacle, but fails to safely avoid the 

previously “unseen” obstacle.  Figure 28 shows the standard Gaussian path that would be 

generated based on only the information of the “seen” obstacle.   

 

 
Figure 28.   Stills Showing Occlusion Problem 
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The blue path is the ordered obstacle avoidance path.  The vehicle first detects the 

second obstacle at the peak of the Gaussian curve as it pitch back down towards its 

original ordered altitude.  Current methods prevent the predetermined Gaussian from 

being altered mid-course; therefore the vehicle is unable to avoid the recently detected 

obstacle.  In Chapter V, two approaches are developed in an attempt to achieve optimal 

obstacle avoidance path planning while incorporating the additional FLS orientation 

constraints discussed above. 
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V. OPTIMAL REACTIVE OBSTACLE AVOIDANCE  

A. GAUSSIAN POP-UP 
The first method attempting to deal with the FLS orientation issues discussed in 

Chapter IV includes ordering the vehicle to conduct a “pop-up” when a possible threat 

has been detected.  Figure 29 illustrates the methodology behind the “pop-up” method. 

 

Pitch 
vehicle/sonar

Fly higher then 
obstacle

Adjusts Gaus
“ho” &“Sigma”

Determine Height
Checks OA path

Minimize Occlusion

 
Figure 29.   The “Pop-Up” Methodology 

 

The first stage of the pop-up pitches the vehicle upwards therefore tilting the 

downward-angled sonar upward.  This increases the sonar’s vertical field of view and 

allows the vehicle to “see” the entire obstacle to determine its height.  It also allows the 

surveying of the area above the obstacle to ensure clear and safe waters for an obstacle 

avoidance path.  The “pop-up” will then drive the vehicle to a high enough altitude so the 

sonar can look above and behind the detected obstacle.  This will minimize the 

uncertainties in the occlusion area and provide additional information regarding any 

possible obstacles that were previously undetected.  Finally, the original Gaussian 

obstacle avoidance variables “ho” and “sigma” are updated to provide a safe path based 

on the recently gathered information.   

A Gaussian potential function was chosen as the “pop-up” trajectory for the same 

reasons explained in Chapter III, and it parameters “ho” and “σ2” were set to 5 and 25 
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respectively.  A “ho” of five meters drives the vehicle to a total altitude of eight meters or 

three meters higher then the first modeled obstacle, and a smaller “σ2” decreases the 

horizontal distance and time the pop-up deviates from its original fixed altitude.  The 

simulation was conducted with the Matlab file “Tracking_Popup” [Appendix] 

implemented into the SIMULINK model.  Figure 30 shows the vehicle’s response to the 

ordered Gaussian pop-up.   

 

 
Figure 30.   Height Determination and Occlusion Minimization using a Gaussian 

Pop-Up 
 

The picture on the left shows the determination of the obstacle’s height and the 

verification of clear waters.  The pitching of the vehicle allowed the sonar to increase its 

vertical field of view from under three meters to over fifteen meters.  Secondly, as the 

vehicle was driven higher then the obstacle, it allowed the sonar to detect the previously 

unknown second obstacle as shown in the second picture.  With the amplifying 

environment information, the obstacle avoidance Gaussian’s “ho” and “σ2” were then 

adjusted to 3 and 144 respectively to account for all detected obstacles.  Figure 31 shows 

the vehicle response to the entire ordered path generated using the “pop-up” method.  
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Figure 31.   Response to Pop-Up 

 

By comparing the path generated to the previously defined constraints for optimal 

obstacle avoidance, the “pop-up” method’s effectiveness was determined.  Most 

importantly, the path provided a collision free path that vertically cleared all obstacles by 

a minimum of two meters.  Secondly, due to the characteristics of the Gaussian functions 

used, the path was smooth and met the requirements of containing no sharp corners or 

jumps for pitch command calculations and consistent sonar images.  The designed pitch 

controller was also able to accurately follow the path with a maximum controller error of 

0.197 meters.  With regards to optimal sensor orientation for the side scanning sonar, the 

magnitude of the deviations from the fixed altitude of three meters was quantified for 

later comparison.  The total vertical deviation (TVD) was defined as the area above the 

desired altitude bounded by the obstacle avoidance path and calculated to be 212.78 

meters2 using the following trapezoid approximation equation [“TVD_Cal,” Appendix]: 
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Lastly, the Gaussian pop-up reasonably dealt with the two issues surrounding 

optimal sensor orientation for the FLS.  The detected obstacle’s height was able to be 

determined by pitching the vehicle upwards and the second obstacle was briefly detected 

within the occlusion area which enabled the planner to provide a safe collision-free path.   
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Although the Gaussian pop-up method successfully cleared the obstacles in this 

simulated case, certain factors limit the method’s robustness.  For example, in a real 

world environment, the vehicle will encounter additional situations to the one simulated 

such as a third obstacle located in the occlusion area created by the second obstacle.  The 

third obstacle may not be “seen” during the initial pop-up and is first detected when the 

vehicle pitches downward at the peak of the second Gaussian.   The problem with not be 

able to alter the Gaussian mid-course once again arises; therefore, this method requires 

prior knowledge of all obstacles within the area to ensure a safe collision-free path.   

Another limiting factor is caused by the pop-up’s main purpose of driving the 

vehicle to an altitude above the detected obstacle to minimize the occlusion area.  

However, since the pop-up’s purpose is to also determine the obstacle’s height, the 

altitude it needs to drive up to in order to ensure an occlusion look is unknown prior to its 

execution.  The pop-up is ordered using a predetermined “ho” which may be too high or 

not high enough to see over the obstacle and an optimal path for varying situations can 

not be guaranteed. 

Lastly, the execution of the pop-up results in large deviation from the original 

fixed altitude due to the requirement of driving the vehicle to a high altitude  A narrow 

“pop-up” would reduce the TVD, however, it would also increase the rising slope of the 

path and its peak’s sharpness.  These increases could cause inconsistent sonar images and 

decrease the number of “looks” the sonar had at the obstacle or occlusion area due to 

larger pitch velocities.  To classify obstacles and accurately determine their location and 

height, real-world sonar imagery processing requires consistent and frequent returns.  

Due to the battling requirement for consistent and frequent returns, little improvements 

can be made to the pop-up method to reduce its TVD. 

B. SPLINE ADDITION 

The second method developed to deal with the FLS issues incorporates a mid-

course Gaussian spline addition alteration in an attempt to achieve an optimal obstacle 

avoidance path.  Figure 32 illustrates the methodology behind this approach.  
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Figure 32.   Spline Addition Methodology 
 

When the vehicle initially detects an obstacle, it conducts a miniature 

predetermined Gaussian pop-up only to determine the height of the obstacle and check 

for clear waters.  The small Gaussian keeps deviations from the original fixed altitude to 

a minimum and with parameter, ho = 0.75 and “σ2” = 4, the sonar’s vertical field of view 

is increased from three meters to 10 meters.  Simulations were again conducted using 

“Tracking_Spline” [Appendix] to implement the spline approach into the SIMULINK 

model.  Figure 33 is the vehicles response and increased view while conducting the 

modified pop-up. 
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Figure 33.   Height Determination for the Spline Method 

 

After returning to its original altitude, a standard Gaussian path is then projected 

to clear the detected obstacle.  As the vehicle reaches the peak of this Gaussian, it begins 

to pitch back downwards and gets an up-close look at the occlusion area.  The sonar is 

now able to detect the previously unseen obstacle and the Gaussian is immediately 

altered with the use of a spline to provide a safe path.   

 

 
Figure 34.   Occlusion Look and Obstacle Detection 

 

38 



The choice of a spline was based on its ability provide a continuous curve that can 

be varied based on its knot locations.  The Matlab command “PP = SPLINE(X,Z)” 

provides a piecewise polynomial for the cubic spline interpolated to the values of “Z” at 

“X”.  “X” and “Z” are vectors, with “Z” containing two more values than “X,” since the 

first and last value in “Z” can used as the end-slopes for the cubic spline.  By including 

the end-slopes, a smooth equivalent slope can be assured when the path transitions from 

the Gaussian to the cubic spline, and then from the spline back to the ordered original 

altitude.  Figure 35 shows how the “X” and “Z” vectors are calculated in the event 

another obstacle is detected. 

 

 
Figure 35.   Spline Calculations  

 

Once an obstacle is detected, the vehicle’s location, X_Remus, is noted and the 

obstacles horizontal position and height are defined as X_Obstacle and Z_Obstacle.  The 

spline’s first knot or coordinate, (X1,Z2), is located at a horizontal look-ahead distance in 

front of X_Remus since the pitch commands are being calculated at that point and at an 

altitude equal to the Gaussian at that horizontal location.  The first end-slope, Z1, is 

equivalent to the slope of the Gaussian at the adjoining location and found by taking the 
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derivative of the Gaussian at X1.  Coordinates (X4, Z5) represent the peak of the spline 

and is located two meters directly above the second obstacle.  Two knots are then placed 

between the first knot and the peak knot, which divide the horizontal and vertical distance 

between the two into thirds.  The last knot brings the vehicle back down to the original 

three meter altitude, 10 meters behind the obstacle, with a slope of zero.  Figure 36 shows 

the entire obstacle avoidance path generated using the spline method along with the 

response of the vehicle.  Figure 37 provides a closer look of the spline addition portion of 

the path. 

 

 

 
Figure 36.   Ordered and Actual Vehicle Response Using the Spline Method 
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Figure 37.   Enlarged Spline Portion 

 

The results from the spline method were also compared to the defined constraints 

for optimal obstacle avoidance.  The vertical path over the second obstacle was less then 

the desired “safe” two-meter minimum clearance, however, the navigation was more 

importantly collision-free.  Also, this method is truly reactive and requires no prior 

knowledge of the obstacles since the spline can be implemented anywhere along the 

Gaussian, and the locations of its knots can be altered to provide even greater flexibility.  

This method is therefore robust and able to deal with a number of real-world situations in 

addition to the one simulated.   

Continuity throughout the path was established by matching the start and end 

slopes of the spline with the end slope of the altered Gaussian and zero-slope of the 

original fixed altitude.  The path’s smoothness, however, is at the mercy of the knot 

locations creating the interpolating polynomial.  There are combinations of knots will 

cause an undulating path or one that exceeds the maximum turning radius of the vehicle.  

The path created in the simulation contains sections that were not accurately followed by 

the look-ahead pitch controller, resulting in errors of 0.463 meters.  
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Lastly, the spline method provided effective positioning for REMUS’s sensors.  

The TVD from the optimal side scanning sonar orientation was calculated to be 79.386 

meters2 and the small pop-up keeps majority of the TVD to be caused by avoiding the 

obstacle.  Also, by only altering the backend of the Gaussian keeps the vehicle flying at 

its fixed altitude for as long as possible.  The spline method successfully dealt with the 

FLS orientation issues by pitching the vehicle upwards to determine the obstacle’s height, 

and the second obstacle was detected within the occlusion area.  Since the avoidance 

Gaussian can be altered mid-course, the vehicle is no longer required to gather 

information about the occlusion area before-hand.   The vehicle can now get a complete 

view of a occlusion by waiting until it clears the first obstacle and is positioned above and 

near the previously unknown area.  The mid-course alteration not only allows 

minimization of the uncertainties, but it also allows this method to be “reactive,” creating 

a path that can be updated due to real-time information about the environment and 

obstacles detected. 

C. APPROACH COMPARISON 

A metrics was used to compare and weigh the advantages between the two 

methods with regards to the optimal obstacle path constraints.   A scale of one to five was 

used to measure the significance of any advantage one method has over the other.  A five 

represents an advantage of high significance, while a one is of little significance, and 

dashes were used if no advantage existed between the two methods 

 
Pop-up Spline

Min Clearance 1 -
Robustness - 5
Smooth 3 -
Contiuous - -
Controller Error 2 -
Pitch 3 -
Plane Deflection - -
Vertical Deviation - 3
Occlusions - 5

TOTAL 9 13

Vehicle 
Limitations

Avoid Obstacle

Navigation

Sensor 
Orientation

 
Table 5. Comparison Metrics 
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Even though the spline method did not always achieve the “safe” minimum 

clearance of two-meters, it met the more important requirement of providing a collision-

free path from all obstacles.  Also, unlike the pop-up, the spline is able to adjust to 

varying environments and not just the isolated cases that were simulated.  The pop up 

method has the advantage of producing a smoother path that wouldn’t order the vehicle to 

exceed its maximum turning radius.  The spline method, however, excels in the optimal 

sensor orientation for both of REMUS’s sensors, which support its primary mission as an 

environment information gatherer.   

The use of a spline addition offers a robust method required when operating in a 

unknown environment.  Not only is it able to react to real-time updates, it also positions 

the vehicle to maximize the information gathered about the environment, therefore, the 

spline method proves to be the superior choice for the “back-seat driver’s” path planner. 
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VI. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 
One day fully autonomous AUV’s will no longer require human interactions to 

complete its missions allowing the Navy to keep divers and valuable resources out of 

harms way.  This thesis built on the previous work conducted at NPS’s Center for AUV 

Research to improve the autonomy of the REMUS class of AUVs with an implemented 

FLS.  The goal was to design a reactive “back-seat driver” to coincide with the normal 

altitude control auto-pilot to safely navigate the vehicle in the presence of previously 

unknown obstacles.   

For the first “back-seat” driver requirement, a modified LOS pitch controller with 

a look-ahead distance proved to be an accurate path follower by reducing the controller 

errors to acceptable levels.  Using a model of the FLS, two additional sensor orientation 

constraints were discovered while conducting SIMULINK simulations in a hazardous 

environment.  A Gaussian pop-up and a spine addition method were developed to over-

come these issues while providing an optimal obstacle avoidance path.  Comparing the 

two methods, the spline addition method proved to be the path planner of preference 

since it provided a robust avoidance path while optimizing the vehicle’s information 

gathering sensors.  Along with the look-ahead pitch controller, the spline addition path 

planner makes up a truly reactive “back-seat driver” that will improve REMUS’s 

survivability in an unknown environment.     

B. RECOMMENDATIONS 
There are three areas in which further research can build of this thesis’s effort to 

improve the autonomy of REMUS.  First, this thesis was a first look at the use of splines 

for an obstacle avoidance path and further research is required to fully maximize the 

benefits behind its use.  The addition of further knots will improve the smoothness of the 

curve and offer even greater flexibility by possibility replacing the entire obstacle 

avoidance path with one large multi-knot spline.  The path could be altered by changing 

the locations of knots within the vicinity of any obstacle it encounters.  Secondly, before 

implementing the “back-seat driver” into the vehicle for real-world testing, the spline 

method needs to be tested with current sonar imagery processing methods.  Doing so will 
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verify that the processor is able to accurately classify and locate a obstacle while 

conducting a pop-up or in the middle of a Gaussian.  Finally, since this thesis only 

involved motion in the vertical plane, future work should focus on defining optimal path 

planning constraints in the horizontal plane.  By including horizontal plane motions, an 

optimal three-dimensional path can be generated, providing a more realistic solution in 

avoiding the obstacle. 
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APPENDIX.  MATLAB CODE 

VEHICLE_DYNAMICS 
 
% REMUS parameters developed by Chris Churan edited by Tyler Furukawa 
clear 
clc 
z_g = 1.96e-2; x_b = 0; W = 299; buoy = 306; 
I_z = 3.45; I_y = 3.45; I_x = 1.77e-1; 
U = 1.5; to = 0; tf = 80; 
m = 299/9.81; M_q = -6.87; M_qdot = -4.88; 
M_w = 30.7; M_wdot = -1.93; M_d = -34.6; 
Z_q = -9.67; Z_qdot = -1.93; 
Z_w = -66.6; Z_wdot = -35.5; Z_d = -50.6; 
 
% Dynamics ------------------------------------------------------------ 
% modified for [wr; q; theta] 
M = [m-Z_wdot -Z_qdot 0; -M_wdot I_y-M_qdot 0; 0 0 1]; 
A_0 = [Z_w m*U+Z_q 0; M_w M_q -z_g*W; 0 1 0]; 
B_0 = [Z_d; M_d; 0]; 
A = inv(M)*A_0 
B = inv(M)*B_0 
C = [0 0 1] 
  
%Check open loop poles 
open_loop_poles = eig(A) 
  
%Check Controlability 
Control=[B,A*B,A^2*B]; 
Controllable=rank(Control) 
  
%Check Observability 
Observe=[C',A'*C',A'^2*C']; 
Observability=rank(Observe) 
  
p = [-.5+.866i, -.5-.866i, -1] %using butterworth pattern 
K = place(A,B,p) %[-1.6807, 0.2935, 0.0889] 
 
 
 
TRACKING 
 
function command=tracking(x,z) 
  
aim = 4; %aims 4 meters ahead 
 
%%%%%Normal Altitude Command%%%%%%%%% 
Z_mine=35; 
min_clear=2; 
X_mine = 60; 
sigma=5; %sigma^2=25 
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%Gaussian Function 
x_g1 = x; %x-position 
z_g1 = Z_mine-min_clear*exp(-(X_mine-x_g1)^2/(2*sigma^2));% z-posit 
x_g2 = x+0.1; %creates a delta x of 0.1 meter  
z_g2 = Z_mine-min_clear*exp(-(X_mine - x_g2)^2/(2*sigma^2));  
 
%Tangent 
T2=[(x_g2-x_g1);(z_g2-z_g1)]; 
 
%Normal 
N2=[-(z_g2-z_g1);(x_g2-x_g1)]; 
 
%Position 
P2=[(0);(z-z_g1)]; 
 
%cross track error 
CTE=P2'*N2/sqrt(N2'*N2); 
  
command=-atan2(-CTE,aim); 
 
 
 
TRACKING_WITH_SLOPE 
 
function command=tracking_with_slope(x,z) 
  
aim = 4; %aims 4 meters ahead 
  
Z_mine=35; 
min_clear=2; 
X_mine = 60; 
sigma=5; %sigma^2=25 
  
%Gaussian Function 
x_g1 = x; %x-position 
z_g1 = Z_mine-min_clear*exp(-(X_mine-x_g1)^2/(2*sigma^2)); % z-posi  t
x_g2 = x+0.1; %creates a delta x of 0.1 meter for slope calculation 
z_g2 = Z_mine - min_clear*exp(-(X_mine - x_g2)^2/(2*sigma^2));  
 
%Tangent 
T2=[(x_g2-x_g1);(z_g2-z_g1)]; 
%Normal 
N2=[-(z_g2-z_g1);(x_g2-x_g1)]; 
%Position 
P2=[(0);(z-z_g1)]; 
%cross track error 
CTE=P2'*N2/sqrt(N2'*N2); 
  
slope=atan2(-(z_g2-z_g1),(x_g2-x_g1)); 
  
command=slope-atan2(-CTE,aim); 
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TRACKING_LOOKAHEAD 
 
function command=tracking_lookahead(x,z) 
  
aim = 4; %aims 4 meters ahead 
  
Z_mine=35; 
min_clear=2; 
X_mine = 60; 
sigma=5; %sigma^2=25 
lookahead = 4.58 %ideal lookahead = 4.58 m 
  
%Gaussian Function 
x_g1 = x+lookahead; %modified x-position 
z_g1 = Z_mine-min_clear*exp(-(X_mine-x_g1)^2/(2*sigma^2)); %mod z-posit 
x_g2 = x_g1+0.1; %creates a delta x of 0.1 meter 
z_g2 = Z_mine - min_clear*exp(-(X_mine - x_g2)^2/(2*sigma^2));  
 
%Tangent 
T2=[(x_g2-x_g1);(z_g2-z_g1)]; 
%Normal 
N2=[-(z_g2-z_g1);(x_g2-x_g1)]; 
%Position 
P2=[(0);(z-z_g1)]; 
%cross track error 
CTE=P2'*N2/sqrt(N2'*N2); 
 
command=-atan2(-CTE,aim); 
 
 
 
CONTROLLER ERRORS 
 
%calculates and plots controller errors 
 
x_sim=(1:1:120); 
[num_points, columns] = size(x_pos); 
  
E=zeros(num_points,1); 
for k=1:1:num_points 
    E(k,1)=sqrt(((ocean_depth-z_pos(k))-(Mine_altitude+min_clear*exp(-
(x_pos(k)-X_mine)^2/(2*sigma^2))))^2); 
end 
figure(1);clf 
plot(x_pos,E), title('Vertical Error') 
xlabel('Horizontal Position (m)') 
ylabel('Vertical Error (m)') 
  
%Calculates and plots sum of error 
sum_error=zeros(num_points,1); 
for l=2:1:num_points 
    sum_error(l,1)=sum_error(l-1)+E(l-1); 
end 
figure(2); 
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xlabel('Horizontal Position (m)') 
ylabel('Total Vertical Error (m)') 
  
max_error = max(E) 
avg_error = sum(E)/num_points 
total_error =sum(E) 

 
 
 

OCEAN MODELS 
Wall_Z = 5; %height of obstacle 
Wall_X = 100; 
Wall_Z2 = 4.5; 
Wall_X2= 110; 
 
%Floor 1 
X_Floor1 = 0:Interval:Wall_X-Interval;   
Z_Floor1 = zeros(1,length(X_Floor1)); 
%Floor 2 
Z_Floor2 = 0:Interval:Wall_Z;   
X_Floor2 = Wall_X*ones(1,length(Z_Floor2)); 
%Floor 3 
X_Floor3 = Wall_X+Interval:Interval:2*Wall_X;   
Z_Floor3 = zeros(1,length(X_Floor3)); 
%Floor 4 
Z_Floor4 = 0:Interval:Wall_Z2;   
X_Floor4 =Wall_X2*ones(1,length(Z_Floor4)); 
 
%plots the floor 
subplot(2,1,1) 
plot(X_Floor1,Z_Floor1,'g*'), hold on 
plot(X_Floor2,Z_Floor2,'g*') 
plot(X_Floor3,Z_Floor3,'g*') 
plot(X_Floor4,Z_Floor4,'g*') 
axis ([0 120 0 60]) 
 
 
 
SONAR_MODEL 
 
Wall_Z = 5; %height of obstacle 
Wall_X = 60; 
Interval = 0.1; 
  
%Floor 1 
X_Floor1 = 0:Interval:Wall_X-Interval;   
Z_Floor1 = zeros(1,length(X_Floor1)); 
%Floor 2 
Z_Floor2 = 0:Interval:Wall_Z;   
X_Floor2 = Wall_X*ones(1,length(Z_Floor2)); 
%Floor 3 
X_Floor3 = Wall_X+Interval:Interval:120;   
Z_Floor3 = zeros(1,length(X_Floor3)); 
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%plots the floor 
subplot(2,1,1) 
plot(X_Floor1,Z_Floor1,'g*'), hold on 
plot(X_Floor2,Z_Floor2,'g*') 
plot(X_Floor3,Z_Floor3,'g*') 
axis ([0 120 0 60]) 
title('Sonar Model') 
 
%plots ordered path 
x_sim=(1:1:120); 
for j=1:1:length(x_sim) 
    plot(x_sim(j),Mine_altitude+min_clear*exp(-(x_sim(j) 
X_mine)^2/(2*sigma^2)),'r*');hold on 
end 
  
X_Remus = 0; Z_Remus = 5; %Remus Position (Can take from SIMULINK) 
plot(X_Remus, Z_Remus,'bo') 
Theta = 0; %Remus Pitch in degrees(taken from SIMULINK model) 
  
Max_Sonar_Range = 100; %in meters 
 
%Calculates Slopes of Sonar Beam 
sonar_angle =-22.5+Theta:-.5:-45+Theta; %interval determines # of beams 
for a=1:length(sonar_angle) 
    sonar_slope(a)=tand(sonar_angle(a)); 
    %plots sonar lines 
    Beam_X=[X_Remus, X_Remus+Max_Sonar_Range*cosd(-sonar_angle(a))]; 
    Beam_Z=[Z_Remus, Z_Remus-Max_Sonar_Range*sind(-sonar_angle(a))]; 
    plot(Beam_X,Beam_Z,'k:') 
end 
  
%finds the highest beam that intercepts the wall 
for b=1:length(sonar_angle) 
    Wall_Intercept(b)=sonar_slope(b)*(Wall_X-X_Remus) + Z_Remus; 
    if Wall_Intercept(b)<=Wall_Z & Wall_Intercept(b)>=0 
        Beam_Intercept = b; 
        Highest_Beam_Z = Wall_Intercept(b); 
        break 
    els Highest_Beam_Z=0; e 
    end 
end 
  
%find occlusion area 
if Highest_Beam_Z>0 
    Occlusion_X=[Wall_X, Wall_X, Wall_X, Wall_X+(Max_Sonar_Range-
(Wall_X-X_Remus))*cosd(-sonar_angle(Beam_Intercept))]; 
    Occlusion_Z=[0, Highest_Beam_Z, Highest_Beam_Z, Highest_Beam_Z-
(Max_Sonar_Range-(Wall_X-X_Remus))*sind(-sonar_angle(Beam_Intercept))]; 
else Occlusion_X = [0, 0]; Occlusion_Z=[0, 0]; 
end 
subplot(2,1,2) 
plot(X_Floor1,Z_Floor1,'g*'), hold on 
plot(X_Floor2,Z_Floor2,'g*') 
plot(X_Floor3,Z_Floor3,'g*') 
plot(Occlusion_X,Occlusion_Z,'r--') 
axis ([0 120 0 60]) 
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title('Occlusion Area') 
 %y=mx+b  for the sonar b = Z_remus and Global_X = x +X_Remus 
  
%Find where bottom beam intercepts the bottom 0=mx+Z_remus or x = -
Z_remus/m 
Lowest_Beam_X = -Z_Remus/sonar_slope(length(sonar_angle)); 
if sqrt(Z_Remus^2 +Lowest_Beam_X^2) < Max_Sonar_Range & 
Lowest_Beam_X+X_Remus > X_Remus %check range & if x intercept < X_Remus 
    Left_X = Lowest_Beam_X +X_Remus; 
els Left_X = 0; e 
end 
  
%if bottom beam doesn't intercept bottom, find its “Z” at wall 
if Left_X<=0 & abs(Wall_X-X_Remus)<=Max_Sonar_Range 
    %y = mx+b where x = (Wall_X-X_Remus), and b = Z_Remus 
    Lowest_Beam_Z=sonar_slope(length(sonar_angle))*(Wall_X-X_Remus) + 
Z_Remus; 
    if Lowest_Beam_Z<=Wall_Z; 
        Low_Wall_Intercept = Lowest_Beam_Z; 
    else 
        Low_Wall_Intercept = 0; 
    end 
end 
  
%if X intercept is behind wall, find its “Z” at wall 
if Left_X>Wall_X & abs(Wall_X-X_Remus)<=Max_Sonar_Range 
    %y = mx+b where x = Wall_X, and b = Z_Remus 
    Lowest_Beam_Z=sonar_slope(length(sonar_angle))*(Wall_X-X_Remus) + 
Z_Remus; 
    if Lowest_Beam_Z<=Wall_Z; 
        Low_Wall_Intercept = Lowest_Beam_Z; 
    else 
        Low_Wall_Intercept = 0; 
    end 
end 
 
 
 
SONAR_MOVING 
clf 
Wall_X = 100;  Wall_Z = 5; %height of obstacle 
Wall_X2= 110;  Wall_Z2 = 4.5; 
 
Interval = 0.1; 
Max_Sonar_Range = 100; %in meters 
  
Gaus2_offset = 35; 
Gaus2_range = Wall_X-Gaus2_offset; 
Orig_alt = 3; 
  
%Floor 1 
X_Floor1 = 0:Interval:Wall_X-Interval;   
Z_Floor1 = zeros(1,length(X_Floor1)); 
%Floor 2 
Z_Floor2 = 0:Interval:Wall_Z;   
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X_Floor2 = Wall_X*ones(1,length(Z_Floor2)); 
%Floor 3 
X_Floor3 = Wall_X+Interval:Interval:2*Wall_X;   
Z_Floor3 = zeros(1,length(X_Floor3)); 
%Floor 4 
Z_Floor4 = 0:Interval:Wall_Z2;   
X_Floor4 =Wall_X2*ones(1,length(Z_Floor4)); 
  
x_sim=(0:.2:2*Wall_X); 
 
figure(1),clf; 
for k=1:1:length(x_sim) 
    if x_sim(k)<Gaus2_range 
        %plot orig alt 
        plot(x_sim(k),Orig_alt,'r*');hold on 
    else if x_sim(k)<(Wall_X+Gaus2_offset) 
        %plot gaussian 
        plot(x_sim(k),Orig_alt+(min_clear+Wall_Z-Orig_alt)*exp(-
(x_sim(k)-Wall_X)^2/(2*sigma2^2)),'r*') 
        else 
            plot(x_sim(k),Orig_alt,'r*') 
        end 
    end 
end 
  
%plot(X_mine,Mine_altitude,'ro'); 
plot(x_pos,(ocean_depth-z_pos)); 
axis([0 2*Wall_X 0 15]), title('Ordered versus Actual') 
xlabel('X - meters'), ylabel('Altitude - meters') 
  
mov = avifile('sonar_Movie.avi','Compression','Cinepak','FPS',1); 
  
for c=3:2:length(x_pos); 
     
    set(gcf,'doublebuffer','on'); 
     
    figure(c) 
    %plots the floor 
    subplot(2,1,1) 
    plot(X_Floor1,Z_Floor1,'g*'), hold on 
    plot(X_Floor2,Z_Floor2,'g*') 
    plot(X_Floor3,Z_Floor3,'g*') 
    plot(X_Floor4,Z_Floor4,'g*') 
    %plots actual course 
    %plot(x_pos,ocean_depth-z_pos,'c*') 
    axis ([30 130 0 15]) 
    title('Sonar Model') 
      
    X_Remus = x_pos(c);  
    Z_Remus = ocean_depth-z_pos(c); %Remus Posit (Taken from SIMULINK) 
    plot(X_Remus, Z_Remus,'bo') 
    Theta = Remus_theta(c); %Remus Pitch in degrees(taken from SIMULINK 
  
    %Calculates Slopes of Sonar Beam 
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    sonar_angle =(-2.5+Theta):-Interval:(-25+Theta); %determines # of 
beams 
    for a=1:length(sonar_angle) 
        sonar_slope(a)=tand(sonar_angle(a)); 
        %plots sonar lines 
        Beam_X=[X_Remus, X_Remus+Max_Sonar_Range*cosd(-
sonar_angle(a))]; 
        Beam_Z=[Z_Remus, Z_Remus+Max_Sonar_Range*sind(sonar_angle(a))]; 
        plot(Beam_X,Beam_Z,'k:') 
    end 
  
    %finds the highest beam that intercepts the wall 
    for b=1:length(sonar_angle) 
        Wall_Intercept(b)=sonar_slope(b)*(Wall_X-X_Remus) + Z_Remus; 
        if Wall_Intercept(b)<=Wall_Z & Wall_Intercept(b)>=0 
            Beam_Intercept = b; 
            Highest_Beam_Z = Wall_Intercept(b); 
            break 
        else 
            Beam_Intercept=-1; 
            Highest_Beam_Z=-1; 
        end 
    end 
     
    %find if “sees” second obstacle 
    %if intercepts 1st wall 
    Sonar_Wall_Z2=-1;%initialize each time 
    Sonar_Wall_X2=-1;%intiialize each time 
    if Beam_Intercept>1; 
        Wall2_Intercept = sonar_slope(Beam_Intercept)*(Wall_X2-X_Remus) 
+Z_Remus; 
        if Wall2_Intercept <= Wall_Z2 
            Sonar_Wall_Z2=Wall2_Intercept:Interval:Wall_Z2; 
            Sonar_Wall_X2=Wall_X2*ones(1,length(Sonar_Wall_Z2)); 
        end 
    elseif Beam_Intercept<1; 
        %check to see if intercept 2nd wall 
        for d=length(sonar_angle):-1:1 %cycle from lowest beam 
            Wall_Intercept2=sonar_slope(d)*(Wall_X2-X_Remus) + Z_Remus; 
            if Wall_Intercept2<=Wall_Z2 & Wall_Intercept2>=0 & 
X_Remus<Wall_X2 
                %Beam_Intercept2 = d; 
                %Lowest_Beam_Z2 = Wall_Intercept2(d); 
                Sonar_Wall_Z2=Wall_Intercept2:Interval:Wall_Z2; 
                Sonar_Wall_X2=Wall_X2*ones(1,length(Sonar_Wall_Z2)); 
                eak br
            else 
                Sonar_Wall_X2=-1; 
                Sonar_Wall_Z2=-1; 
            end 
        end 
    end 
     
    if Highest_Beam_Z>0 & X_Remus<Wall_X 
        %find occlusion area 
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        Occlusion_X=[Wall_X, Wall_X+(Max_Sonar_Range-(Wall_X-
X_Remus))*cosd(-sonar_angle(Beam_Intercept))]; 
        Occlusion_Z=[Highest_Beam_Z, Highest_Beam_Z-(Max_Sonar_Range-
(Wall_X-X_Remus))*sind(-sonar_angle(Beam_Intercept))]; 
    els Occlusion_X = [0, 0]; Occlusion_Z=[0, 0]; e 
    end 
    subplot(2,1,2) 
        plot(Occlusion_X,Occlusion_Z,'r--'), hold on 
    axis ([30 130 0 15]) 
    title('Sonar Image w/Occlusion Area') 
   
    %y=mx+b  for the sonar b = Z_remus and Global_X = x +X_Remus 
     
    %Find where top beam intercepts the bottom 0=mx+Z_remus or x = -
Z_remus/m 
    Top_Beam_X=-Z_Remus/sonar_slope(1); 
    if sqrt(Z_Remus^2+Top_Beam_X^2)<Max_Sonar_Range & 
Top_Beam_X+X_Remus<Wall_X & Top_Beam_X+X_Remus>X_Remus%check range and 
if x intercept < Wall_X 
        Right_X=Top_Beam_X+X_Remus; 
    else Right_X=-1; 
    end 
     
    %Find where bottom beam intercepts the bottom 0=mx+Z_remus or x = -
Z_remus/m 
    Lowest_Beam_X = -Z_Remus/sonar_slope(length(sonar_angle)); 
    if sqrt(Z_Remus^2+Lowest_Beam_X^2)<Max_Sonar_Range & 
Lowest_Beam_X+X_Remus<Wall_X & Lowest_Beam_X+X_Remus>X_Remus%check 
range and if x intercept<Wall_X 
        Left_X = Lowest_Beam_X +X_Remus; 
        if Right_X>0 
            X_Sonar_floor1=Left_X:Interval:Right_X; 
        else  
            X_Sonar_floor1=Left_X:Interval:Wall_X-Interval; 
        end 
        Z_Sonar_floor1=zeros(1,length(X_Sonar_floor1)); 
        Z_Sonar_floor2=0:Interval:Highest_Beam_Z; 
        X_Sonar_floor2=Wall_X*ones(1,length(Z_Sonar_floor2)); 
    elseif abs(Wall_X-X_Remus)<=Max_Sonar_Range 
        %if bottom beam doesn't intercept bottom or is behind wall, 
find its “Z” at wall 
        Lowest_Beam_Z=sonar_slope(length(sonar_angle))*(Wall_X-X_Remus) 
+ Z_Remus; 
        if Lowest_Beam_Z<=Wall_Z; 
           Low_Wall_Intercept = Lowest_Beam_Z; 
           Z_Sonar_floor1=Low_Wall_Intercept:Interval:Highest_Beam_Z; 
           X_Sonar_floor1=Wall_X*ones(1,length(Z_Sonar_floor1)); 
           Z_Sonar_floor2=-1; 
           X_Sonar_floor2=-1; 
        else Z_Sonar_floor1 = -1; X_Sonar_floor1=-1; Z_Sonar_floor2=-1; 
           X_Sonar_floor2=-1; 
        end 
    end 
    %subplot(3,1,3) 
    plot(X_Sonar_floor1,Z_Sonar_floor1,'g*') 
    plot(X_Sonar_floor2,Z_Sonar_floor2,'g*') 
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    plot(Sonar_Wall_X2,Sonar_Wall_Z2,'g*') 
    axis ([30 130 0 15]) 
     
    F = getframe(gcf); 
    mov = addframe(mov,F);     
    pause(.1); 
end 
  
mov = close(mov); 
  
 
 
TRACKING_POPUP 
 
function command=tracking_popup(x,z) 
  
aim = 4; %aims 4 meters ahead 
  
X_mine = 100; 
Z_mine=35; %Altitude of 5 (when ocean_depth=40) 
org_depth = 37; %altitude of 3 (when ocean_depth=40) 
%for popup Gaussian 
ho=5; 
sigma1=5; 
%for Obstacle Avoidance Gaussian 
min_clear=3; 
sigma2=12; 
clear = (min_clear+org_depth-Z_mine); 
gaus1_offset=80; 
gaus1_range=X_mine-gaus1_offset; 
  
gaus2_offset = 40; %do gaussian 40m before and after obstacle 
gaus2_range = X_mine-gaus2_offset; 
  
lookahead = 4.5; %”look” ahead 4.5 
delta_x = .1; %for slope calculation 
  
if x<(gaus1_range-lookahead) 
    %do original altitude 
    x_g1 = x+lookahead; %modified x-position 
    z_g1 = org_depth; 
    x_g2 = x_g1+delta_x; %creates a delta x of 0.1 meter 
    z_g2 = org_depth;  
elseif x<(gaus2_range-lookahead) 
    %do 1st gaus 
    x_g1 = x+lookahead; %modified x-position 
    z_g1 = org_depth - ho*exp(-(gaus1_range+25-x_g1)^2/(2*sigma1^2)); 
    x_g2 = x_g1+delta_x; %creates a delta x of 0.1 meter  
    z_g2 = org_depth - ho*exp(-(gaus1_range+25-x_g2)^2/(2*sigma1^2)); 
elseif x<(X_mine+gaus2_offset) 
    %do gaussian 
    x_g1 = x+lookahead; %modified x-position 
    z_g1 = org_depth - clear*exp(-(X_mine-x_g1)^2/(2*sigma2^2));  
    x_g2 = x_g1+delta_x; %creates a delta x of 0.1 meter 
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else  
    x_g1 = x+lookahead; %modified x-position 
    z_g1 = org_depth; 
    x_g2 = x_g1+delta_x; %creates a delta x of 0.1 meter 
    z_g2 = org_depth; 
end 
  
  
%Tangent 
T2=[(x_g2-x_g1);(z_g2-z_g1)]; 
%Normal 
N2=[-(z_g2-z_g1);(x_g2-x_g1)]; 
%Position 
P2=[(0);(z-z_g1)]; 
%cross track error 
CTE=P2'*N2/sqrt(N2'*N2); 
  
command=-atan2(-CTE,aim); 
 
 
 
TVD CALCULATION 
Original_Depth=37; %altitude =3m m 
Deviation=zeros(1,length(x_pos)); 
Area=Deviation; 
for n=2:1:length(x_pos); 
    Deviation(n)=(Original_Depth - (z_pos(n)+z_pos(n-1))/2); %avg 
deviation between 2 pts 
    Area(n)=Deviation(n)*(x_pos(n)-x_pos(n-1)); %tapezoid rule 
end 
  
Max_Deviation=max(Deviation) 
  
TVD=sum(Area) 
 
 
 
TRACKING SPLINE 
 
function out=tracking_spline2(x,z) 
  
aim = 4; %aims 4 meters ahead 
X_mine = 100; 
Z_mine=35; %Altitude of 5 (when ocean_depth=40) 
org_depth = 37; %altitude of 3 (when ocean_depth=40) 
%for modified popup 
ho=.75; 
sigma1=2; 
%for obstacle avoidance Gaussian 
min_clear=2; 
sigma2=5; 
clearance = org_depth-(Z_mine-min_clear); 
gaus1_offset=80; 
gaus1_range=X_mine-gaus1_offset; 
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gaus2_offset = 20; %do gaussian 20m before and after obstacle 
gaus2_range = X_mine-gaus2_offset; 
  
lookahead = 4.58; %”look” ahead 4.58 
delta_x = .1; %for slope calculation 
  
%second obstacle 
Wall_Z2 = 35.5; 
Wall_X2= 110; 
clear2=org_depth-(Wall_Z2-min_clear); 
Orig_alt = 3; 
  
%for spline 
Interval=0.1; 
spline_offset=.1; 
spline_range=X_mine+spline_offset; 
X_slope1=spline_range+lookahead; 
spline_X_int=Wall_X2-X_slope1; 
  
X_spline1=X_slope1; 
X_spline2=X_spline1+(spline_X_int)/3; 
X_spline3=X_spline2+(spline_X_int)/3; 
X_spline4=Wall_X2; 
X_spline5=Wall_X2+10; 
X_spline6=X_spline5+1; 
X_spline7=X_spline6+1; 
X_spline8=2*X_mine; 
X_spline=[X_spline1 X_spline2 X_spline3 X_spline4 X_spline5 X_spline6 
X_spline7 X_spline8]; 
  
Z_spline1=clearance*exp(-(X_mine-X_slope1)^2/(2*sigma2^2))*(100-
X_slope1)/-(sigma2^2); %slope of spline 
Z_spline2=org_depth-clearance*exp(-(X_mine-
X_slope1)^2/(2*sigma2^2));%height at gaussian 
Z_spline3=Z_spline2-(Z_spline2-(Wall_Z2-min_clear))/3; 
Z_spline4=Z_spline3-(Z_spline2-(Wall_Z2-min_clear))/3; 
Z_spline5=Wall_Z2-min_clear; 
Z_spline6=org_depth; 
Z_spline7=Z_spline6; 
Z_spline8=Z_spline6; 
Z_spline9=Z_spline6; 
Z_spline10=0.0; 
Z_spline=[Z_spline1 Z_spline2 Z_spline3 Z_spline4 Z_spline5 Z_spline6 
Z_spline7 Z_spline8 Z_spline9 Z_spline10]; 
 
%xx=X_slope1:Interval:X_spline8; 
%yy=spline(X_spline,Z_spline,xx); 
  
if x<(gaus1_range-lookahead) 
    %do original altitude 
    x_g1 = x+lookahead; %modified x-position 
    z_g1 = org_depth; 
    x_g2 = x_g1+delta_x; %creates a delta x of 0.1 meter 
    z_g2 = org_depth;  
elseif x<(gaus2_range-lookahead) 
    %do 1st gaus 
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    x_g1 = x+lookahead; %modified x-position 
    z_g1 = org_depth - ho*exp(-(gaus1_range+25-x_g1)^2/(2*sigma1^2)); 
    x_g2 = x_g1+delta_x; %creates a delta x of 0.1 meter 
    z_g2 = org_depth - ho*exp(-(gaus1_range+25-x_g2)^2/(2*sigma1^2)); 
elseif x<(spline_range) 
    %do 2nd gaussian 
    x_g1 = x+lookahead; %modified x-position 
    z_g1 = org_depth - clearance*exp(-(X_mine-x_g1)^2/(2*sigma2^2));  
    x_g2 = x_g1+delta_x; %creates a delta x of 0.1 meter 
    z_g2 = org_depth - clearance*exp(-(X_mine - x_g2)^2/(2*sigma2^2)); 
else  
    x_g1 = x+lookahead; %modified x-position 
    z_g1 = spline(X_spline,Z_spline,x_g1); 
    x_g2 = x_g1+delta_x; %creates a delta x of 0.1 meter 
    z_g2 = spline(X_spline,Z_spline,x_g2);  
end 
  
  
%Tangent 
T2=[(x_g2-x_g1);(z_g2-z_g1)]; 
%Normal 
N2=[-(z_g2-z_g1);(x_g2-x_g1)]; 
%Position 
P2=[(0);(z-z_g1)]; 
%cross track error 
error=P2'*N2/sqrt(N2'*N2); 
  
slope=atan2((z_g2-z_g1),(x_g2-x_g1)); 
  
command= -atan2(-error,aim); 
x_g1=x_g1; 
z_g1=z_g1; 
out=[command,x_g1,z_g1]; 
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