-“WV "

NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

THESIS

DISCRETE ASYNCHRONOUS KALMAN
FILTERING OF NAVIGATION DATA FOR THE
PHOENIX AUTONOMOUS UNDERWATER
VEHICLE

by

David W. McClarin

March 1996

Thesis Advisor: Robert McGhee
Co-Adpvisor: Anthony Healey

Approved for public release; distribution is unlimited.

1 99 60 620 1 1 5 DTIC QUALITY (HEPECTED 2

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average I hour per response, including the time for reviewing instruction, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction

Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave 2. REPORT DATE 3. REPORT TYPE AND DATES
blank) March 1996 COVERED
Master’s Thesis
4. TITLE AND SUBTITLE DISCRETE ASYNCHRONOUS KALMAN |5. FUNDING NUMBERS
FILTERING OF NAVIGATION DATA FOR THE PHOENIX
AUTONOMOUS UNDERWATER VEHICLE
6. AUTHOR(S) David W. McClarin
PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING
Naval Postgraduate School ORGANIZATION
Monterey CA 93943-5000 REPORT NUMBER
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORI
NG
AGENCY REPORT
NUMBER
11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect thej
official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.
13. ABSTRACT (maximum 200 words)

The Phoenix Autonomous Underwater Vehicle must be able to accurately determine its position at all times.
This requires: 1) GPS and differential GPS for surface navigation, 2) short baseline sonar ranging system for
submerged navigation, and 3) mathematical modeling of position.

This thesis describes a method of Kalman filtering to merge the GPS, differential GPS, short baseline sonar
ranging, and the mathematical model to produce a single state vector of vehicle position and ocean currents. |J
The filter operates in the extended mode for processing the non-linear sonar ranges, and in normal mode for the
linear GPS/DGPS data. This required installation of a GPS system and the determination of the different
variances and errors between these systems.

Phoenix now has a real time method of position determination using either position measuring system
separately or combined. The results of this work have been validated by real world testing of the vehicle at sea,

|

where position estimates accurate to within several meters were obtained.

14 SUBJECTTERMS NAVIGATION, KALMAN-FILTERING, AUTONOMOUS |15. NUMBER OF 1'

UNDERWATER VEHICLES PAGES 140
, 16. PRICE CODE ||
17. SECURITY 18. SECURITY CLASSIFL- | 19, SECURITY 20. LIMITATION
CLASSIFICATION CATION OF THIS CLASSIFICATION OF
OF REPORT PAGE OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

o
=ri

Approved for public release; distribution is unlimited.

DISCRETE ASYNCHRONOUS KALMAN FILTERING OF
NAVIGATION DATA FOR THE PHOENIX AUTONOMOUS
UNDERWATER VEHICLE

David W. McClarin
Lieutenant, United States Navy
B.S., University of Florida, 1989

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
March 1996

Author: OM [’/ /’ / / ///4’4//

Dav1d W. McClarin

Approved by @M S

Robert McGhee, Thesis Advisor

Uit

Aélthony Healey -Advisor

: /M—

Ted Lewis, Chairman,
Department of Computer Science

iii

ABSTRACT

The Phoenix Autonomous Underwater Vehicle must be able to accurately determine
its position at all times. This requires: 1) GPS and differential GPS for surface navigation,
2) short baseline sonar ranging system for submerged navigation, and 3) mathematical
modeling of position.

This thesis describes a method of Kalman filtering to merge the GPS, differential GPS,
short baseline sonar ranging, and the mathematical model to prodﬁce a single state vector of
vehicle position and ocean currents. The filter operates in the extended mode for processing
the non-linear sonar rahges, and in normal mode for the linear GPS/DGPS data. This
required installation of a GPS system and the determination of the different variances and
errors between these systems.

Phoenix now has a real time method of position determination using either position
measuring system separately or combined. The results of this work have been validated by
real world testing of the vehicle at sea, where position estimates accurate to within several

meters were obtained.

TABLE OF CONTENTS

L INTRODUCTION ... e i ettt i e 1
A. BACKGROUND et 1

B. THE PHOENIX AUV ... e e 2

1. StrategicLevel i 2

2. Tactical Level 2

3. Executionlevel i 4

C NAVIGATIONMODULE i 4

L. Navigatorl.C i 4

2. Kalman_filter.C i 5

3. Readgps.C 5

4. Matrix.C .. e 5

D. THESIS CHAPTER SUMMARY i 5

II. PHOENIX HARDWARE CHARACTERISTICS AND SHORTFALLS 7
A. INTRODUCTION e e e 7

B. PHOENIX AUV HARDWARE OVERVIEW 7

C. VOYAGER LAPTOP WORKSTATIONccoiinienen... 9

D. MOTOROLA GPS/DGPSUNITt 9

E. DIVETRACKER SYSTEM oo 10

F. SUMMARY ... e 11

II. KALMAN FILTERING it et et et 13
A. INTRODUCTION ... e ettt 13

B. PHOENIX IMPLEMENTATION i, 13

1. Statistical Background o i it 14

2. MovementModelt 14

C. KALMAN FILTER FORMULASt 15

1. Motion and Measurement Models 15

2. MovementStepot 17

3. Measurement Stepttt e 17

D. DIMENSIONLESS SHOCKttt anne 18

E. EXTENDED KALMANFILTERINGc.coiiuienan... 19

F. SPEED/CURRENT ERRORMODEL 20

G. SUMMARY ... e 22

IV. NAVIGATION ..o e e e e et 23
A. INTRODUCTION i et et e 23

B. NAVIGATION OVERVIEW i, 23

C. NAVIGATION CO-ORDINATESc..ciiiiiieiinn.... 24

D. GPS/DGPS . ..o 25

vii

2. Kalman Filtering of GPS/DGPSData 29

3. GPS/DGPS Navigationccuuiiiinnnenennnnn. 36

E. DIVETRACKER RANGE UTILIZATIONu... 36
1. Divetracker Varianceccoiiuiiiinennnnnn.. 37

2. BaselineProblem 37

F. FILTER RESPONSE VS VEHICLE STABILITY 38
G. FIX DETERMINATIONo e 41
H. FIX POSITION TRANSLATION TO VEHICLE CENTER 42
L NAVIGATION INITIALIZATION 43
J. OCEAN CURRENT (ERROR) ESTIMATION 43
K. WATER SPEED SENSOR CALIBRATION 44
L. SIMULATIONMODE i 44
M. SUMMARY .. 46
V. SOFTWARE e e e e i 47
A. INTRODUCTION e e e e e 47
B. NAVIGATORIL.C ... e e e 47
1. Navigation Module Operation 47

2. Navl_Initialize Function, 50

3. My_Parse_Telemetry_String Function e 50

4. Reset_Kalman Functionciir ... 50

C. KALMAN_FILTER.C e 50
1. Kalman_Filter Operation iien... 51

2. Navtorad Function, 52

3. Mysquare Function 52

D. READGPS.C .. e e 52
1. Get_GPS_DataFunctionoiuuuiininnunennn. 53

2. CheckSumCheck Function 53

3. GetmilsecFunction e 53

4, Getgpstime Functioncc.oouou.t. ...54

5. Getgpsfixtype Function iiiiiiiiin.n. 54

6. Determine Fix Functioncoou... 54

7. Gps_Serial Read Function 55

8. Initialize_Serial Function oo, 55

9. Open_TtyFunction cvoon... 55

10. Tty and Serial_Read Timeout Functions 56

11. Simulate_ GPS_DataFunctioncccuuueune... 56

E. MATRIX.C ..o 56
1. Matrix_Multiply Function 57

2. Matrix_Add and Subtract Functions 57

3. Matrix_Transpose Function 57

4, Matrix_Inverse Function, 57

5. Gauss_Elimination Function 57

viii

6. Matrix_Rtransform Function 58

7. Output_Matrix Functiont 58

F. SUMMARY ..o e e 58

VI. SUMMARY AND CONCLUSIONS i i 59
A. SUMMARY ..o e 59

B. FUTUREWORK i i 60

C. CONCLUSION ... e e e i 61
APPENDIX A. NAVIGATORI.C i 63
APPENDIX B. KALMAN_FILTERH....... 81
APPENDIX C. KALMAN_FILTER.C i 85
APPENDIXD. READGPS.H i e 93
APPENDIX E. READGPS.C i i et 95
APPENDIX F. MATRIX.H e 111
APPENDIX G. MATRIX.C i i i 113
LISTOFREFERENCES it 121
INITIAL DISTRIBUTION LISTo i 125

X

ACKNOWLEDGMENTS

During the course of my thesis work, there were many people who were instrumental
in helping me. Without their guidance, help and patience, I would have never been able to
accomplish the work of this thesis. I would like to take this opportunity to acknowledge
some of them.

I would like to thank my thesis advisors, Professor Robert McGhee and Professor
Anthony Healey, both of whom were driving factors to the successful completion of this
phase of Phoenix development. Professor Alan Washburn introduced me to Kalman
Filtering. A small MATLAB project required for his class served as the kernel of my entire
project.

My fellow members of the Phoenix software team were Brad Leonhardt, Mike
Campbell, Mike Burns and Duane Davis. Without their support, hard work and dedication
none of this work would have been possible. A special thanks to Russ Whalen for efforts
and support in this project.

I'must give immense thanks to my wife Ruth and our children Lori, Jackie, Mark and
Christopher. Their love and support during long nights of work away at the lab was of
immeasurable value to me.

This research was supported in part by Grant BCS-9306252 from the National

Science Foundation to the Naval Postgraduate School.

Xi

xii

I. INTRODUCTION

For any vehicle to be truly autonomous requires that it hgve knowledge of its local
world coordinate position. This thesis describes a method of discrete Kalman Filtering of
short baseline sonar range data (DiveTracker) and satellite navigation data (GPS) to achieve
accurate positioning of the NPS Phoenix AUV [MARC96].

A. BACKGROUND

An inherent difficulty in any precision navigation system is the accuracy of the
measurements. No measurement system is perfect, just the amount of error in the system
varies. Kalman Filtering is a method of filtering measurement data based on the known or
approximated variance of the measurements and vehicle movements. [GELB88]

Previous and continuing related work in this area includes the Shallow-Water AUV
Navigation System (SANS) [MCGH95],[BACH96]. SANS utilizes a twelve state
continuous Kalman (complementary) filter of inertial measurement unit (IMU) data with
differential GPS updating. SANS provides highly accurate dead reckoning utilizing IMU
data. The SANS position is updated using raw DGPS data as the “Truth”. SANS has no
method of position updating other than dead reckoning when submerged, and only takes GPS
measurements when surfaced. This system was used as a background for the work of this
thesis.

Phoenix presently does not have an IMU, so all dead reckoning is performed using
speeds developed via mass motion formulas, a vertical and heading gyro, and a water wheel
speed measuring unit [MARC96]. Phoenix also has the DiveTracker system [FLAG94]

which allows position measurements while submerged, and GPS for measurements while

surfaced. The work of this thesis utilizes filtered GPS and DiveTracker ranges for updating
dead reckoned positions, versus using raw data as SANS does.
B. THE PHOENIX AUV

The Phoenix autonomous underwater vehicle is a shallow-water mine warfare test
bed prototype (Figure 1). The vehicle is designed to act autonomously in searching for mine-
like objects and accurately reporting their positions. This requires a complex software suite
with a highly accurate method of navigation. The Phoenix runs on a unique three level
software architecture, consisting of strategic, tactical and execution levels called the
“Rational behavior Model” [BYRN96]. These levels are based on proven methods of actual
U. S. Submarine control {HOLD95].

1. Strategic Level

The strategic level acts as the vehicle’s Commanding Officer. This level holds the
mission logic and controls the mission by giving orders to the tactical level. The strategic
level only gives commands and awaits reports that the commands are accepted or completed.
The tactical level responds with either a command accepted, command complete, or
command aborted message. The strategic level then takes actions depending upon the
command report. This level was written in Prolog, and treats the tactical level as a function
call [MARC96],[LEON96].

2. Tactical Level

The tactical level acts as the vehicle’s Officer of the Deck (OOD). It receives orders
from the strategic level and takes the actions required to compete these actions, if possible.

The tactical level OOD runs in parallel with the Sonar [CAMP96] and Navigation sub-levels,

ANV X1U20Y{ : 3an3iy

FIN

DIVE TRACKER

~~
T M e e e n e e e s e e ee e e e

TRANSDUCER

DRAIN
PLUG

RADIO ETHERNET
ANTENNA (FIXED
TO HULL OR FLOATING)

\l GPS ANTENNA

ST725 SONAR

SIDE VIEW

DIFFERENTIAL
GPS ANTENNA

ST1000 SONAR
TURBO PROBE

THIN WIRE / RADIO
ETHERNET PORT

]

REAR SCREWS

THRUSTER

TOP VIEW

ACCESS HATCH

Drawn By D. Marco '96

and gives vehicle control commands to the execution level. Sonar and Navigation report
directly to the tactical level OOD. The tactical level uses the sonar inputs to determine if an
object has been encountered, and the navigation inputs to update the execution level’s
estimate of the vehicle’s position. [LEON96]

3. Execution Level

The execution level acts as the ships crew; ie., it drives the vehicle from point to
point, controls all control surfaces, and takes emergency actions [BYRN96]. The execution
level can hover at a given point, maintain ordered depth, and take all actions required to corin
the vehicle from point to point. The execution level communicates with the tactical level,
updating vehicle parameters and receiving new orders and vehicle positidns [BURNO6].
C. NAVIGATION MODULE

The navigation module utilizes both discrete normal and extended Kalman Filtering
of measured GPS/DGPS, or short baseline sonar ranges (DiveTracker System), to producé
the best estimate of the vehicle’s position. This level consists of four main functions:
Navigatorl.C, Kalman_Filter.C, ReadGps.C, and Matrix.C.

1. Navigator1.C

Navigatorl.C is the driver of the navigation rﬁodule. This section of code
communicates with the tactical level via piped communications. It receives basic
initialization information, and subsequent updated vehicle parameters, and returns the best
estimate of the vehicles current position and N/S, E/'W (X,Y) current estimations. It calls the
Kalman filter routine to return the updated position estimate. This process also records to

data for later analysis.

2. Kalman_filter.C

This code performs “dead-reckoning” (movement step) and filters the input
navigation data (measurement step) to create an updated vehicle position estimate. It filters
either linear data (GPS/DGPS) as a normal filter, or non-linear data (DiveTracker) as an
extended filter. It also develops a combined estimate of “Ocean Currents/Errors” and
determines if the filter has possibly lost track or has a bad measurement.

3. Readgps.C

This code reads the data from the Motorola GPS/DGPS receiver. It opens the Solaris
serial port for communications with the GPS unit and then decodes the GPS binary data. It
also has the routine that determines the best type of fix information to use based on input
data.

4. Matrix.C

This code performs the basic matrix operations required by the Kalman filter to
include addition, subtraction, and multiplication. It also computes a matrix inverse using
Gausian elimination and constructs the rotation matrices required for body speed
transformation to earth coordinates.
D. THESIS CHAPTER SUMMARY

Chapter I overviews the Phoenix, GPS and Dive-Tracker hardware. Chapter I
provides an in-depth description of Kalman filtering, describing this implementation and
variance determination. Chapter IV describes the navigation problem and its solutions.
Chapter V covers pertinent factors of the developed software. Chapter VI summarizes the

conclusions and results of this work and discusses possible future work to be performed.

Z.m[0][0] = Dt1.Range;
Z.m[1][0] = Dt2.Range;

if (Trace){
printf("X = %If Y = %If Z = %lf\n" x,y,z);
printf("Dt1X = %If Dtly = %]If Dtz = %If\n",Dt1.Xloc,
Dtl.Yloc, Dt1.Zloc);
printf("Dt2X = %If Dt2y = %If Dt2z = %1f\n",Dt2.Xloc,
Dt2.Yloc, Dt2.Zloc);
printf("Calcl %If DT1-RANGE %]If Calc2 %If DT2-RANGE %If\n",
Calc_Dist1,Dtl.Range ,Calc_Dist2, Dt2.Range);

}
}

else{
/* a gps fix which is linear and uses non-extened filtering */
Z.m[0][0] = Gps_X;
Z.m[1][0] = Gps_Y;

}

/* K gain calculations */
InverseMat = matrix_inverse(matrix_add(matrix_multiply(
matrix_multiply(H,*Sigma),matrix_transpose(H)),R));
*K = matrix_multiply(matrix_multiply(*Sigma,matrix_transpose(H)),
InverseMat);

/* calculate shock for extended or non extended filtering */
if (Fix_Type ==2)
Shock = matrix_subtract(matrix_subtract(Z,Fu),Uv);
else
Shock = matrix_subtract(matrix_subtract(Z,Uv),
matrix_multiply(H,U));

/* calculates dimensionless shock */
Ds = matrix_multiply(matrix_multiply(matrix_transpose(Shock),
InverseMat),Shock);

if (Trace)
printf("Dimensionless Shock = %If\n",Ds.m[0][0]);

/* only perform measurment steps if DS < 50, to ensure no bad
measurements */
if (Ds.m[0][0] < 50){

88

if (Trace){
printf("shock \n");
output_matrix(Shock);
printf("k \n");
output_matrix(*K);
printf("k * Shock\n");
output_matrix(matrix_multiply(*K,Shock));

}

U = matrix_add(U,matrix_multiply(*K,Shock));
*Sigma = matrix_multiply(matrix_subtract(
ID,matrix_multiply(*K,H)),*Sigma);

/* updates the total amount of error or drift if the measurement
was good */

*Total_Drift = sqrt(U.m[2]}[0]*U.m[2][0]+U.m[3][0]*U.m[3][0]);
}
else {

/* sets loss track to TRUE for bad measurement */

if (Trace) printf("DS = %]If Ignoring last measurement\n",

Ds.m[0][0]);

*Loss_Track = TRUE;

}

/* Put translated fix from sensor back to center of Phoenix */
U = position_translate(To_Center, U, Course, Fix_Type);

}

return U;

}

89

[kt st sk sk skeok sk sk sk ok sk sk skok ok stk skoskokoskskok ek sk sk skkokoskokokoskok skekokok ok kokoskokokoskoskok skoskokoskskok sokoslok sk skek sk kek

FUNCTION: NavtoRad()
AUTHOR: Dave Mcclarin
DATE: 7 February 1996

PURPOSE: Computes the Radian equivilant of a Naval Degree
Measurement

RETURNS: Rads as a Double
skt okl ookl kokskolok koo sk s kol oo ok ok

double NavtoRad(double Degrees, double Gyro_Error){
double Rad;

/* adds Gyro_Error to input degrees */
Degrees = Degrees + Gyro_Error;

/* normalizes degrees */
if (Degrees < 0.0)
Degrees = Degrees + 360.0;
if (Degrees >= 360.0)
Degrees = Degrees - 360.0;

/* assigns the proper rads to Naval degrees */
if ((0.0 <= Degrees) & (Degrees <= 90.0))
Rad = (90.0-Degrees)*M_P1/180.0;

else if ((90.0 < Degrees) & (Degrees <= 180.0))
Rad = M_P1/180.0*(180.0-Degrees)+3.0*M_PI1/2.0;

else if ((180.0 < Degrees) & (Degrees <= 270.0))
Rad = M_PV/180.0*(270.0-Degrees)+M_PI;

else if ((270.0 < Degrees) & (Degrees <= 360.0))
Rad = M_PV/180.0*(360.0-Degrees)+M_PI/2.0;

return Rad;

}

90

SRRk ok ko ok okokokokskoksokosoksksfokokskokskoslekok skokstekoslokoskskok sk soksk stk stokoskokokok ok ok skokok ok ok skoksk ok

FUNCTION: my_square()
AUTHOR: Dave Mcclarin
DATE: 7 February 1996

PURPOSE: Computes square of a double (for some reason Pow stopped
working when integrated with others code)

RETURNS: Double * Double

***/

double my_square(double xx){
return Xx*xx;

}

[P st sk sk sk skokok sk sk sk steskeskeok ok ok sk sk sk st sfeste sk sheskeskeste ok skeok sk sk sk sk sk ok sk sk sk ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skesk sk sk sk ok sk ok ok

FUNCTION: translate_position()
AUTHOR: Dave Mcclarin
DATE: 1 February 1996

PURPOSE: Translates the Pheonix center to the DiveTracker transducer or the
Gps Antenna, or translate from sensor to center of Phenoex.

RETURNS: matrix

***/

matrix translate_position(double Direction, matrix U, double Course, int Fix_Type){

/* translate the divetracker transducer to center and vice versa depending upon
The direction 1 = to transducer, -1 = to center */

if (Fix_Type == 2){
U.m[0][0] += Direction*DiveTrackerXducer_Dist*sin(Course);
U.m[1][0] 4= Direction*DiveTrackerXducer_Dist*cos(Course);

}

else{ /* translates the GPS antenna to center and vice versa */
U.m[0][0] += Direction*GpsAntenna_Dist*sin(Course);
U.m[1][0] += Direction*GpsAntenna_Dist*cos(Course);

} .

}

91

92

APPENDIX D. READGPS.H

[k skskek sk ok sk skokoske stk ok sk sk sk sk sk skok sk sk ks st sk sk sl stestok sk skl st s ek sk sk skskeok sk sk sk sk sk sk ok sk sk ook skosk ok sk stk sk g skok sk

FILENAME: readgps.h
AUTHOR: Dave McClarin
DATE: 15 March 1996

PURPOSE: 'H' file for Opens and reads of Gps Data through a Solaris
serial port,then parses and returns the desired gps data.

**/

#ifndef READGPS_H
#define READGPS_H

#include <stdio.h>
#include <ctype.h>
#include <errno.h>
#include <string.h>
#include <signal.h>
#include "kalman_filter.h"
#include "matrix.h"

#define GPSBLOCKSIZE 76 /* size of motorola @ @Ea position message */
#idefine New_Data 1

#define Old_Data 0

#define GPS_STR_SIZE GPSBLOCKSIZE-1

#define SATELITE_DATA 39

/* sets number of channels of the gps reciever */
const int CHANNELS = §;

/* used in raw gps data decoding */
typedef long FOURBYTE;

/* defines the decoded gps data storage type */
typedef struct{

double lat;

double lon;

double time;

int type;
}gps;

93

/* defines the raw gps data storage type */
typedef struct{

unsigned char GPSdata[2*GPSBLOCKSIZE];
int data_status;

}raw_gps;

/* Defines raw gps data storage 'GLOBAL' */
raw_gps Gps_Message = {"none",Old_Data};

/*serial read timeout variable */
int TIMEOUT = FALSE;

/* headers for 6 and 8 channel motorola messages */
char header_6[5] = "@@Ba"; /* 6 channel */
char header_8[5] = "@ @Ea"; /* 8 channel */

/* function prototypes for readgps.c */

gps get_gps_data(const int path);

int CheckSumCheck(void);

gps GetMilSec(gps temp);

gps GetGpsTime(gps temp);

gps GetGpsFixType(gps temp);

int determine_fix(double Rangel, double Range2, gps Gps_Fix,
int *Gps_Avail,int *Dgps_Avail, int *Dt_Avail,
int *Fix_By, int *Fix_Concur, matrix U,
double Gps_X, double Gps_Y, int Loss_Track,
double t, double DT_Timer);

int Gps_Serial_Read(int path);

int initialize_serial(void);

int open_tty(char *device_name);

void tty_open_timeout(int arg);

void serial_read_timeout(int arg);

gps simulate_gps_data(double x, double y, int fix_type);

#endif

94

APPENDIX E. READGPS.C

[k sk sk sk sk sk skoskok ok sk stk sk sk koo sk stk sk sk sk sk sk sk ok sk stok sk stk sk ok skl sk sk sk sk sk stk o ok sk okeskok sk ook sk s kol sk ok

FILENAME: readgps.c
AUTHOR: Dave McClarin
DATE: 15 March 1996

PURPOSE: Opens and reads Gps Data through a Solaris serial ports,
then parses and returns the desired gps data.

FUNCTIONS: get_gps_data()
CheckSumCheck()
GetMilSec()
GetGpsTime()
GetGpsFixType()
determine_fix()
Gps_Serial_Read()
initialize_serial()
tty_open_timeout()
open_tty()
serial_read_timeout()
simulate_gps_data()

***/
#include <stdio.h>

#include <ctype.h>

#include <errno.h>

#include <string.h>

#include <math.h>

#include <stdlib.h>

#include "readgps.h"

#include <sys/types.h>
#include <sys/stat.h>

#include <fcntl.h>

#include <signal.h>

#include <unistd.h>

/* #include <sys/termiox.h> */
#include "termiox.h"

#include <sys/uio.h>

#include <termios.h>
#include <termio.h>

#include "matrix.h"

#include "kalman_filter.h"

95

/***

FUNCTION: get_gps_data()
AUTHOR: Dave Mcclarin
DATE: 6 February 1996

PURPOSE: Determines if an updated gps position message is available
and copies it into the input argument 'rawMessage'. If the
message has a valid checksum and was obtained with at least
three satelites in view, a 'TRUE' is returned to the
caller, indicating that the message is valid.

RETURNS: GPS Data Structure.

***/

gps get_gps_data(const int path){

unsigned char tempchar;
int satelites;

/* returned gps values stored in temp and initialied to zeroes */
gps temp;

temp.lat = 0.0;

temp.lon = 0.0;

temp.time = 0.0;

temp.type = 0;

/* Global that keeps track of the serial read has timed out */
TIMEOUT = FALSE;

/* calls read that places data in Gps_Message global */
Gps_Serial_Read(path);

if (Gps_Message.data_status == New_Data){
/* finds the number of satelites available */
tempchar = Gps_Message.GPSdata[39];

satelites = (int)tempchar;

/* ensures there is a valid checksum and 3 satelites for data
places data into the gps temp structure */

96

if ((CheckSumCheck() == TRUE) && (satelites > 3)){
temp = GetMilSec(temp);
temp = GetGpsTime(temp);
temp = GetGpsFixType(temp);

}

}

else
temp.type = 0;

/* sets flag to indicated data has been read */
Gps_Message.data_status = Old_Data;

return temp;

}

[e ckkskodeoke sk skosk sk ok sk skok sk sk sk sk sk sk sk sk sk sk sk ok ok sk sk sk sk s sk ok sk skesk ok sk sk ok sk sk sk sk sk sk sk sfe sk ok kR sk skok skosk sk sk skesk skoksksk sk ok ok

FUNCTION: checkSumCheck

AUTHOR: Dave Mcclarin

DATE: 6 February 1996

MODIFIED: From code by Dave Gay and Eric Bachman 11 July 95

PURPOSE: Takes an exclusive or of bytes 2 through 78 in a Motorola
format (@ @EA) position message and compares it to the
checksum of the message of the message.

-RETURNS: TRUE, if the message contains a valid checksum
***/
int CheckSumCheck()

unsigned short chkSum,;
unsigned short temp;
int i;

/* gets first element of message */
chkSum = Gps_Message.GPSdata[2];

97

